1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
|
# -*- coding: utf-8 -*-
# Euclidean Cluster Extraction
# http://pointclouds.org/documentation/tutorials/cluster_extraction.php#cluster-extraction
import numpy as np
import pcl
# int main (int argc, char** argv)
# {
# // Read in the cloud data
# pcl::PCDReader reader;
# pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ>), cloud_f (new pcl::PointCloud<pcl::PointXYZ>);
# reader.read ("table_scene_lms400.pcd", *cloud);
# std::cout << "PointCloud before filtering has: " << cloud->points.size () << " data points." << std::endl; //*
cloud = pcl.load('./examples/pcldata/tutorials/table_scene_lms400.pcd')
# // Create the filtering object: downsample the dataset using a leaf size of 1cm
# pcl::VoxelGrid<pcl::PointXYZ> vg;
# pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_filtered (new pcl::PointCloud<pcl::PointXYZ>);
# vg.setInputCloud (cloud);
# vg.setLeafSize (0.01f, 0.01f, 0.01f);
# vg.filter (*cloud_filtered);
# std::cout << "PointCloud after filtering has: " << cloud_filtered->points.size () << " data points." << std::endl; //*
vg = cloud.make_voxel_grid_filter()
vg.set_leaf_size (0.01, 0.01, 0.01)
cloud_filtered = vg.filter ()
# // Create the segmentation object for the planar model and set all the parameters
# pcl::SACSegmentation<pcl::PointXYZ> seg;
# pcl::PointIndices::Ptr inliers (new pcl::PointIndices);
# pcl::ModelCoefficients::Ptr coefficients (new pcl::ModelCoefficients);
# pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_plane (new pcl::PointCloud<pcl::PointXYZ> ());
# pcl::PCDWriter writer;
# seg.setOptimizeCoefficients (true);
# seg.setModelType (pcl::SACMODEL_PLANE);
# seg.setMethodType (pcl::SAC_RANSAC);
# seg.setMaxIterations (100);
# seg.setDistanceThreshold (0.02);
seg = cloud.make_segmenter()
seg.set_optimize_coefficients (True)
seg.set_model_type (pcl.SACMODEL_PLANE)
seg.set_method_type (pcl.SAC_RANSAC)
seg.set_MaxIterations (100)
seg.set_distance_threshold (0.02)
# int i=0, nr_points = (int) cloud_filtered->points.size ();
# while (cloud_filtered->points.size () > 0.3 * nr_points)
# {
# // Segment the largest planar component from the remaining cloud
# seg.setInputCloud (cloud_filtered);
# seg.segment (*inliers, *coefficients);
# if (inliers->indices.size () == 0)
# {
# std::cout << "Could not estimate a planar model for the given dataset." << std::endl;
# break;
# }
# // Extract the planar inliers from the input cloud
# pcl::ExtractIndices<pcl::PointXYZ> extract;
# extract.setInputCloud (cloud_filtered);
# extract.setIndices (inliers);
# extract.setNegative (false);
#
# // Get the points associated with the planar surface
# extract.filter (*cloud_plane);
# std::cout << "PointCloud representing the planar component: " << cloud_plane->points.size () << " data points." << std::endl;
#
# // Remove the planar inliers, extract the rest
# extract.setNegative (true);
# extract.filter (*cloud_f);
# *cloud_filtered = *cloud_f;
# }
i = 0
nr_points = cloud_filtered.size
# while nr_points > 0.3 * nr_points:
# # Segment the largest planar component from the remaining cloud
# [inliers, coefficients] = seg.segment()
# # extract = cloud_filtered.extract()
# # extract = pcl.PointIndices()
# cloud_filtered.extract(extract)
# extract.set_Indices (inliers)
# extract.set_Negative (false)
# cloud_plane = extract.filter ()
#
# extract.set_Negative (True)
# cloud_f = extract.filter ()
# cloud_filtered = cloud_f
# Creating the KdTree object for the search method of the extraction
# pcl::search::KdTree<pcl::PointXYZ>::Ptr tree (new pcl::search::KdTree<pcl::PointXYZ>);
# tree->setInputCloud (cloud_filtered);
tree = cloud_filtered.make_kdtree()
# tree = cloud_filtered.make_kdtree_flann()
# std::vector<pcl::PointIndices> cluster_indices;
# pcl::EuclideanClusterExtraction<pcl::PointXYZ> ec;
# ec.setClusterTolerance (0.02); // 2cm
# ec.setMinClusterSize (100);
# ec.setMaxClusterSize (25000);
# ec.setSearchMethod (tree);
# ec.setInputCloud (cloud_filtered);
# ec.extract (cluster_indices);
ec = cloud_filtered.make_EuclideanClusterExtraction()
ec.set_ClusterTolerance (0.02)
ec.set_MinClusterSize (100)
ec.set_MaxClusterSize (25000)
ec.set_SearchMethod (tree)
cluster_indices = ec.Extract()
print('cluster_indices : ' + str(cluster_indices.count) + " count.")
# print('cluster_indices : ' + str(cluster_indices.indices.max_size) + " count.")
# int j = 0;
# for (std::vector<pcl::PointIndices>::const_iterator it = cluster_indices.begin (); it != cluster_indices.end (); ++it)
# {
# pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_cluster (new pcl::PointCloud<pcl::PointXYZ>);
# for (std::vector<int>::const_iterator pit = it->indices.begin (); pit != it->indices.end (); ++pit)
# cloud_cluster->points.push_back (cloud_filtered->points[*pit]); //*
# cloud_cluster->width = cloud_cluster->points.size ();
# cloud_cluster->height = 1;
# cloud_cluster->is_dense = true;
#
# std::cout << "PointCloud representing the Cluster: " << cloud_cluster->points.size () << " data points." << std::endl;
# std::stringstream ss;
# ss << "cloud_cluster_" << j << ".pcd";
# writer.write<pcl::PointXYZ> (ss.str (), *cloud_cluster, false); //*
# j++;
# }
#
cloud_cluster = pcl.PointCloud()
for j, indices in enumerate(cluster_indices):
# cloudsize = indices
print('indices = ' + str(len(indices)))
# cloudsize = len(indices)
points = np.zeros((len(indices), 3), dtype=np.float32)
# points = np.zeros((cloudsize, 3), dtype=np.float32)
# for indice in range(len(indices)):
for i, indice in enumerate(indices):
# print('dataNum = ' + str(i) + ', data point[x y z]: ' + str(cloud_filtered[indice][0]) + ' ' + str(cloud_filtered[indice][1]) + ' ' + str(cloud_filtered[indice][2]))
# print('PointCloud representing the Cluster: ' + str(cloud_cluster.size) + " data points.")
points[i][0] = cloud_filtered[indice][0]
points[i][1] = cloud_filtered[indice][1]
points[i][2] = cloud_filtered[indice][2]
cloud_cluster.from_array(points)
ss = "cloud_cluster_" + str(j) + ".pcd";
pcl.save(cloud_cluster, ss)
|