File: narf_keypoint_extraction.py

package info (click to toggle)
python-pcl 0.3.0~rc1%2Bdfsg-14
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 31,828 kB
  • sloc: python: 3,094; cpp: 283; makefile: 181; sh: 24; ansic: 12
file content (264 lines) | stat: -rw-r--r-- 12,172 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
# -*- coding: utf-8 -*-
# author : Bastian Steder 
# http://pointclouds.org/documentation/tutorials/narf_keypoint_extraction.php#narf-keypoint-extraction

import pcl
import pcl.pcl_visualization
import numpy as np
import random
import argparse
import time

# Parameters
angular_resolution = 0.5
support_size = 0.2
coordinate_frame = pcl.CythonCoordinateFrame_Type.CAMERA_FRAME
setUnseenToMaxRange = False

# void setViewerPose (pcl::visualization::PCLVisualizer& viewer, const EigenAffine3f& viewer_pose)
#   EigenVector3f pos_vector = viewer_pose  EigenVector3f (0, 0, 0);
#   EigenVector3f look_at_vector = viewer_pose.rotation ()  EigenVector3f (0, 0, 1) + pos_vector;
#   EigenVector3f up_vector = viewer_pose.rotation ()  EigenVector3f (0, -1, 0);
#   viewer.setCameraPosition (pos_vector[0], pos_vector[1], pos_vector[2],
#                             look_at_vector[0], look_at_vector[1], look_at_vector[2],
#                             up_vector[0], up_vector[1], up_vector[2]);

# -----Main-----
# -----Parse Command Line Arguments-----
parser = argparse.ArgumentParser(description='PointCloudLibrary example: narf keyPoint extraction')
parser.add_argument('--UnseenToMaxRange', '-m', default=True, type=bool,
                    help='Setting unseen values in range image to maximum range readings')
parser.add_argument('--CoordinateFrame', '-c', default=-1, type=int,
                    help='Using coordinate frame = ')
parser.add_argument('--SupportSize', '-s', default=0, type=int,
                    help='Setting support size to = ')
parser.add_argument('--AngularResolution', '-r', default=0, type=int,
                    help='Setting angular resolution to = ')
parser.add_argument('--Help', 
                    help='Usage: narf_keypoint_extraction.py [options] <scene.pcd>\n\n'
                    'Options:\n'
                    '-------------------------------------------\n'
                    '-r <float>   angular resolution in degrees (default = angular_resolution)\n'
                    '-c <int>     coordinate frame (default = coordinate_frame)\n'
                    '-m           Treat all unseen points as maximum range readings\n'
                    '-s <float>   support size for the interest points (diameter of the used sphere - default = support_size)\n'
                    '-h           this help\n\n\n')

args = parser.parse_args()

# args setting
setUnseenToMaxRange = args.UnseenToMaxRange
# coordinate_frame = pcl.RangeImage.CoordinateFrame (args.CoordinateFrame)
# angular_resolution = pcl.deg2rad (args.AngularResolution)

# -----Read pcd file or create example point cloud if not given-----
# pcl::PointCloudPointTypePtr point_cloud_ptr (new pcl::PointCloud::PointType);
# pcl::PointCloudPointType& point_cloud = point_cloud_ptr
# pcl::PointCloud<pcl::PointWithViewpoint> far_ranges
##
# point_cloud = pcl.PointCloud()

# Eigen::Affine3f scene_sensor_pose (Eigen::Affine3f::Identity ())
# scene_sensor_pose = (eigen3.Affine3f.Identity ())

# vector[int] pcd_filename_indices = pcl::console::parse_file_extension_argument (argc, argv, pcd)
# pcd_filename_indices = './examples/official/IO/test_pcd.pcd'
# pcd_filename_indices = [0, 0, 0]
# if pcd_filename_indices.empty() == False

pcd_filename_indices = ''
if len(pcd_filename_indices) != 0:
    # # string filename = argv[pcd_filename_indices[0]]
    # filename = argv[pcd_filename_indices[0]]
    # point_cloud = pcl.load(argv[0])
    point_cloud = pcl.load('./examples/official/IO/test_pcd.pcd')
    
    # scene_sensor_pose = Eigen::Affine3f (Eigen::Translation3f (point_cloud.sensor_origin_[0],
    #                                                            point_cloud.sensor_origin_[1],
    #                                                            point_cloud.sensor_origin_[2])) *
    #                     Eigen::Affine3f (point_cloud.sensor_orientation_);
    # Python
    # origin = point_cloud.sensor_origin
    # sensor_orientation = eigen3.Affine3f(origin[0], origin[1], origin[2]) * eigen3.Affine3f(point_cloud.sensor_orientation)
    
    # std::string far_ranges_filename = pcl::getFilenameWithoutExtension (filename)+_far_ranges.pcd;
    # if (pcl::io::loadPCDFile (far_ranges_filename.c_str (), far_ranges) == -1)
    #     stdcout  Far ranges file far_ranges_filename does not exists.n;
    far_ranges_filename = os.path.splitext(pcd_filename_indices) + '_far_ranges.pcd'
    far_ranges = pcl.load_PointWithViewpoint(far_ranges_filename)
    
    # Error
    # print('Far ranges file ' + far_ranges_filename + 'does not exists.\n')
    
else:
    setUnseenToMaxRange = True
    print ('No *.pcd file given = Genarating example point cloud.\n')
    
    # for (float x = -0.5f; x = 0.5f; x += 0.01f)
    #     for (float y = -0.5f; y = 0.5f; y += 0.01f)
    #         points = np.zeros((1, 3), dtype=np.float32)
    #         points[0][0] = x  
    #         points[0][1] = y
    #         points[0][2] = 2.0f - y
    #     end
    # end
    
    count = 0
    points = np.zeros((100 * 100, 3), dtype=np.float32)
    
    # float NG
    # TypeError: range() integer end argument expected, got float.
    # for x in range(-0.5, 0.5, 0.01):
    #     for y in range(-0.5, 0.5, 0.01):
    for x in range(-50, 50, 1):
        for y in range(-50, 50, 1):
            points[count][0] = x * 0.01
            points[count][1] = y * 0.01
            points[count][2] = 2.0 - y * 0.01
            count = count + 1
    
    # point_cloud.points.push_back (point);
    # point_cloud.width  = (int) point_cloud.points.size ()
    # point_cloud.height = 1;
    point_cloud = pcl.PointCloud()
    point_cloud.from_array(points)
    
    far_ranges = pcl.PointCloud_PointWithViewpoint()

# Create RangeImage from the PointCloud
noise_level = 0.0
min_range = 0.0
border_size = 1

# boost::shared_ptr<pcl::RangeImage> range_image_ptr (new pcl::RangeImage);
# pcl::RangeImage& range_image = *range_image_ptr;
range_image = point_cloud.make_RangeImage()

print ('range_image::createFromPointCloud.\n')
print ('point_cloud(size  ) = ' + str(point_cloud.size  ) )
print ('point_cloud(width ) = ' + str(point_cloud.width ) )
print ('point_cloud(height) = ' + str(point_cloud.height) )

# range_image.createFromPointCloud (
#                             point_cloud, angular_resolution, pcl.deg2rad (360.0f), pcl.deg2rad (180.0f),
#                             scene_sensor_pose, coordinate_frame, noise_level, min_range, border_size);
range_image.CreateFromPointCloud (point_cloud, 
                                    angular_resolution, pcl.deg2rad (360.0), pcl.deg2rad (180.0), 
                                    coordinate_frame, noise_level, min_range, border_size)

# NG
# print ('range_image::integrateFarRanges.\n')
# range_image.IntegrateFarRanges (far_ranges)

# if (setUnseenToMaxRange)
#     range_image.setUnseenToMaxRange ();
print ('range_image::setUnseenToMaxRange.\n')
if setUnseenToMaxRange == True:
   range_image.SetUnseenToMaxRange ()

# Open 3D viewer and add point cloud
# pcl::visualization::PCLVisualizer viewer ("3D Viewer")
# viewer.setBackgroundColor (1, 1, 1)
# pcl::visualization::PointCloudColorHandlerCustom<pcl::PointWithRange> range_image_color_handler (range_image_ptr, 0, 0, 0);
# viewer.addPointCloud (range_image_ptr, range_image_color_handler, "range image");
# viewer.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 1, "range image");
# viewer.initCameraParameters ();
##
# viewer = pcl.PCLVisualizering("3D Viewer")
viewer = pcl.pcl_visualization.PCLVisualizering('3D Viewer')
viewer.SetBackgroundColor (1, 1, 1)
# NG
# range_image_color_handler = pcl.PointCloudColorHandlerCustoms[cpp.PointWithRange] (range_image, 0, 0, 0)
# range_image_color_handler = pcl.PointCloudColorHandlerCustoms (range_image, 0, 0, 0)
# range_image_color_handler = pcl.pcl_visualization.PointCloudColorHandleringCustom (range_image, 0, 0, 0)
range_image_color_handler = pcl.pcl_visualization.PointCloudColorHandleringCustom (point_cloud, 0, 0, 0)

viewer.AddPointCloud_ColorHandler (point_cloud, range_image_color_handler, b'range image')
# viewer.AddPointCloud (point_cloud, 'range image', 0)
# viewer.AddPointCloud (point_cloud)

time.sleep(1)
viewer.SetPointCloudRenderingProperties (pcl.pcl_visualization.PCLVISUALIZER_POINT_SIZE, 1, b'range image')
time.sleep(1)
viewer.InitCameraParameters ()
time.sleep(1)

# Show range image
# pcl::visualization::RangeImageVisualizer range_image_widget ("Range image");
# range_image_widget.showRangeImage (range_image);
range_image_widget = pcl.pcl_visualization.RangeImageVisualization()
range_image_widget.ShowRangeImage (range_image)

# Extract NARF keypoints
# pcl::RangeImageBorderExtractor range_image_border_extractor;
# pcl::NarfKeypoint narf_keypoint_detector (&range_image_border_extractor);
# narf_keypoint_detector.setRangeImage (&range_image);
# narf_keypoint_detector.getParameters ().support_size = support_size;
# narf_keypoint_detector.getParameters ().add_points_on_straight_edges = true;
# narf_keypoint_detector.getParameters ().distance_for_additional_points = 0.5;
# pcl::PointCloud<int> keypoint_indices;
# narf_keypoint_detector.compute (keypoint_indices);
# std::cout << "Found" << keypoint_indices.points.size () << "key points.\n";
range_image_border_extractor = pcl.RangeImageBorderExtractor()
narf_keypoint_detector = pcl.NarfKeypoint(range_image_border_extractor)
# narf_keypoint_detector.SetRangeImage (&range_image)

# pcl::PointCloud<int> keypoint_indices;
# narf_keypoint_detector.compute (keypoint_indices);
print("Found" + str(keypoint_indices.size) + "key points.\n")

# Show keypoints in range image widget
### Comment ###
# for (size_t i=0; ikeypoint_indices.points.size (); ++i)
# range_image_widget.markPoint (keypoint_indices.points[i] % range_image.width,
#                               keypoint_indices.points[i], range_image.width);
# for size_t i=0; ikeypoint_indices.points.size (); ++i:
#     range_image_widget.markPoint (keypoint_indices.points[i] % range_image.width, keypoint_indices.points[i], range_image.width)
###

# Show keypoints in 3D viewer
# pcl::PointCloud<pcl::PointXYZPtr> keypoints_ptr (new pclPointCloudpclPointXYZ);
# pcl::PointCloud<pcl::PointXYZ> &keypoints = keypoints_ptr;
# keypoints.points.resize (keypoint_indices.points.size ());
# for (size_t i=0; ikeypoint_indices.points.size (); ++i)
# keypoints.points[i].getVector3fMap () = range_image.points[keypoint_indices.points[i]].getVector3fMap ();
##
keypoints = pcl.KeyPoints()
keypoints.resize(keypoint_indices.size)
# for i in range(0, keypoint_indices.size, 1):
#     keypoints.points[i].getVector3fMap () = range_image[keypoint_indices.points[i]].getVector3fMap ()

# for x in range(-50, 50, 1):
# for y in range(-50, 50, 1):


# pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZ> keypoints_color_handler (keypoints_ptr, 0, 255, 0);
# viewer.addPointCloud<pcl::PointXYZ> (keypoints_ptr, keypoints_color_handler, keypoints);
# viewer.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 7, keypoints);
# keypoints_color_handler = pcl.PointCloudColorHandlerCustom (0, 255, 0)
# viewer.AddPointCloud<pcl::PointXYZ} (keypoints_ptr, keypoints_color_handler, keypoints)
# viewer.SetPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 7, keypoints);

## pcl
# keypoints_color_handler = pcl.visualization.PointCloudColorHandlerCustom[pcl.PointXYZ](keypoints_ptr, 0, 255, 0)
viewer.addPointCloud (keypoints_ptr, keypoints_color_handler, keypoints)
viewer.setPointCloudRenderingProperties (pcl.pcl_visualization.PCL_VISUALIZER_POINT_SIZE, 7, keypoints)
keypoints_color_handler = pcl.PointCloudColorHandlerCustom (0, 255, 0)
viewer.AddPointCloud (keypoints_ptr, keypoints_color_handler, keypoints)
viewer.SetPointCloudRenderingProperties (pcl.pcl_visualization.PCL_VISUALIZER_POINT_SIZE, 7, keypoints)

# Main loop
# # while (!viewer.wasStopped ())
#     # process GUI events
#     range_image_widget.spinOnce ()
#     viewer.spinOnce ()
#     # pcl_sleep(0.01);
# end

print("while")
while True:
    # process GUI events
    range_image_widget.SpinOnce ()
    viewer.SpinOnce ()