1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
|
# -*- coding: utf-8 -*-
# author : Bastian Steder
# http://pointclouds.org/documentation/tutorials/narf_keypoint_extraction.php#narf-keypoint-extraction
import pcl
import pcl.pcl_visualization
import numpy as np
import random
import argparse
import time
# Parameters
angular_resolution = 0.5
support_size = 0.2
coordinate_frame = pcl.CythonCoordinateFrame_Type.CAMERA_FRAME
setUnseenToMaxRange = False
# void setViewerPose (pcl::visualization::PCLVisualizer& viewer, const EigenAffine3f& viewer_pose)
# EigenVector3f pos_vector = viewer_pose EigenVector3f (0, 0, 0);
# EigenVector3f look_at_vector = viewer_pose.rotation () EigenVector3f (0, 0, 1) + pos_vector;
# EigenVector3f up_vector = viewer_pose.rotation () EigenVector3f (0, -1, 0);
# viewer.setCameraPosition (pos_vector[0], pos_vector[1], pos_vector[2],
# look_at_vector[0], look_at_vector[1], look_at_vector[2],
# up_vector[0], up_vector[1], up_vector[2]);
# -----Main-----
# -----Parse Command Line Arguments-----
parser = argparse.ArgumentParser(description='PointCloudLibrary example: narf keyPoint extraction')
parser.add_argument('--UnseenToMaxRange', '-m', default=True, type=bool,
help='Setting unseen values in range image to maximum range readings')
parser.add_argument('--CoordinateFrame', '-c', default=-1, type=int,
help='Using coordinate frame = ')
parser.add_argument('--SupportSize', '-s', default=0, type=int,
help='Setting support size to = ')
parser.add_argument('--AngularResolution', '-r', default=0, type=int,
help='Setting angular resolution to = ')
parser.add_argument('--Help',
help='Usage: narf_keypoint_extraction.py [options] <scene.pcd>\n\n'
'Options:\n'
'-------------------------------------------\n'
'-r <float> angular resolution in degrees (default = angular_resolution)\n'
'-c <int> coordinate frame (default = coordinate_frame)\n'
'-m Treat all unseen points as maximum range readings\n'
'-s <float> support size for the interest points (diameter of the used sphere - default = support_size)\n'
'-h this help\n\n\n')
args = parser.parse_args()
# args setting
setUnseenToMaxRange = args.UnseenToMaxRange
# coordinate_frame = pcl.RangeImage.CoordinateFrame (args.CoordinateFrame)
# angular_resolution = pcl.deg2rad (args.AngularResolution)
# -----Read pcd file or create example point cloud if not given-----
# pcl::PointCloudPointTypePtr point_cloud_ptr (new pcl::PointCloud::PointType);
# pcl::PointCloudPointType& point_cloud = point_cloud_ptr
# pcl::PointCloud<pcl::PointWithViewpoint> far_ranges
##
# point_cloud = pcl.PointCloud()
# Eigen::Affine3f scene_sensor_pose (Eigen::Affine3f::Identity ())
# scene_sensor_pose = (eigen3.Affine3f.Identity ())
# vector[int] pcd_filename_indices = pcl::console::parse_file_extension_argument (argc, argv, pcd)
# pcd_filename_indices = './examples/official/IO/test_pcd.pcd'
# pcd_filename_indices = [0, 0, 0]
# if pcd_filename_indices.empty() == False
pcd_filename_indices = ''
if len(pcd_filename_indices) != 0:
# # string filename = argv[pcd_filename_indices[0]]
# filename = argv[pcd_filename_indices[0]]
# point_cloud = pcl.load(argv[0])
point_cloud = pcl.load('./examples/official/IO/test_pcd.pcd')
# scene_sensor_pose = Eigen::Affine3f (Eigen::Translation3f (point_cloud.sensor_origin_[0],
# point_cloud.sensor_origin_[1],
# point_cloud.sensor_origin_[2])) *
# Eigen::Affine3f (point_cloud.sensor_orientation_);
# Python
# origin = point_cloud.sensor_origin
# sensor_orientation = eigen3.Affine3f(origin[0], origin[1], origin[2]) * eigen3.Affine3f(point_cloud.sensor_orientation)
# std::string far_ranges_filename = pcl::getFilenameWithoutExtension (filename)+_far_ranges.pcd;
# if (pcl::io::loadPCDFile (far_ranges_filename.c_str (), far_ranges) == -1)
# stdcout Far ranges file far_ranges_filename does not exists.n;
far_ranges_filename = os.path.splitext(pcd_filename_indices) + '_far_ranges.pcd'
far_ranges = pcl.load_PointWithViewpoint(far_ranges_filename)
# Error
# print('Far ranges file ' + far_ranges_filename + 'does not exists.\n')
else:
setUnseenToMaxRange = True
print ('No *.pcd file given = Genarating example point cloud.\n')
# for (float x = -0.5f; x = 0.5f; x += 0.01f)
# for (float y = -0.5f; y = 0.5f; y += 0.01f)
# points = np.zeros((1, 3), dtype=np.float32)
# points[0][0] = x
# points[0][1] = y
# points[0][2] = 2.0f - y
# end
# end
count = 0
points = np.zeros((100 * 100, 3), dtype=np.float32)
# float NG
# TypeError: range() integer end argument expected, got float.
# for x in range(-0.5, 0.5, 0.01):
# for y in range(-0.5, 0.5, 0.01):
for x in range(-50, 50, 1):
for y in range(-50, 50, 1):
points[count][0] = x * 0.01
points[count][1] = y * 0.01
points[count][2] = 2.0 - y * 0.01
count = count + 1
# point_cloud.points.push_back (point);
# point_cloud.width = (int) point_cloud.points.size ()
# point_cloud.height = 1;
point_cloud = pcl.PointCloud()
point_cloud.from_array(points)
far_ranges = pcl.PointCloud_PointWithViewpoint()
# Create RangeImage from the PointCloud
noise_level = 0.0
min_range = 0.0
border_size = 1
# boost::shared_ptr<pcl::RangeImage> range_image_ptr (new pcl::RangeImage);
# pcl::RangeImage& range_image = *range_image_ptr;
range_image = point_cloud.make_RangeImage()
print ('range_image::createFromPointCloud.\n')
print ('point_cloud(size ) = ' + str(point_cloud.size ) )
print ('point_cloud(width ) = ' + str(point_cloud.width ) )
print ('point_cloud(height) = ' + str(point_cloud.height) )
# range_image.createFromPointCloud (
# point_cloud, angular_resolution, pcl.deg2rad (360.0f), pcl.deg2rad (180.0f),
# scene_sensor_pose, coordinate_frame, noise_level, min_range, border_size);
range_image.CreateFromPointCloud (point_cloud,
angular_resolution, pcl.deg2rad (360.0), pcl.deg2rad (180.0),
coordinate_frame, noise_level, min_range, border_size)
# NG
# print ('range_image::integrateFarRanges.\n')
# range_image.IntegrateFarRanges (far_ranges)
# if (setUnseenToMaxRange)
# range_image.setUnseenToMaxRange ();
print ('range_image::setUnseenToMaxRange.\n')
if setUnseenToMaxRange == True:
range_image.SetUnseenToMaxRange ()
# Open 3D viewer and add point cloud
# pcl::visualization::PCLVisualizer viewer ("3D Viewer")
# viewer.setBackgroundColor (1, 1, 1)
# pcl::visualization::PointCloudColorHandlerCustom<pcl::PointWithRange> range_image_color_handler (range_image_ptr, 0, 0, 0);
# viewer.addPointCloud (range_image_ptr, range_image_color_handler, "range image");
# viewer.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 1, "range image");
# viewer.initCameraParameters ();
##
# viewer = pcl.PCLVisualizering("3D Viewer")
viewer = pcl.pcl_visualization.PCLVisualizering('3D Viewer')
viewer.SetBackgroundColor (1, 1, 1)
# NG
# range_image_color_handler = pcl.PointCloudColorHandlerCustoms[cpp.PointWithRange] (range_image, 0, 0, 0)
# range_image_color_handler = pcl.PointCloudColorHandlerCustoms (range_image, 0, 0, 0)
# range_image_color_handler = pcl.pcl_visualization.PointCloudColorHandleringCustom (range_image, 0, 0, 0)
range_image_color_handler = pcl.pcl_visualization.PointCloudColorHandleringCustom (point_cloud, 0, 0, 0)
viewer.AddPointCloud_ColorHandler (point_cloud, range_image_color_handler, b'range image')
# viewer.AddPointCloud (point_cloud, 'range image', 0)
# viewer.AddPointCloud (point_cloud)
time.sleep(1)
viewer.SetPointCloudRenderingProperties (pcl.pcl_visualization.PCLVISUALIZER_POINT_SIZE, 1, b'range image')
time.sleep(1)
viewer.InitCameraParameters ()
time.sleep(1)
# Show range image
# pcl::visualization::RangeImageVisualizer range_image_widget ("Range image");
# range_image_widget.showRangeImage (range_image);
range_image_widget = pcl.pcl_visualization.RangeImageVisualization()
range_image_widget.ShowRangeImage (range_image)
# Extract NARF keypoints
# pcl::RangeImageBorderExtractor range_image_border_extractor;
# pcl::NarfKeypoint narf_keypoint_detector (&range_image_border_extractor);
# narf_keypoint_detector.setRangeImage (&range_image);
# narf_keypoint_detector.getParameters ().support_size = support_size;
# narf_keypoint_detector.getParameters ().add_points_on_straight_edges = true;
# narf_keypoint_detector.getParameters ().distance_for_additional_points = 0.5;
# pcl::PointCloud<int> keypoint_indices;
# narf_keypoint_detector.compute (keypoint_indices);
# std::cout << "Found" << keypoint_indices.points.size () << "key points.\n";
range_image_border_extractor = pcl.RangeImageBorderExtractor()
narf_keypoint_detector = pcl.NarfKeypoint(range_image_border_extractor)
# narf_keypoint_detector.SetRangeImage (&range_image)
# pcl::PointCloud<int> keypoint_indices;
# narf_keypoint_detector.compute (keypoint_indices);
print("Found" + str(keypoint_indices.size) + "key points.\n")
# Show keypoints in range image widget
### Comment ###
# for (size_t i=0; ikeypoint_indices.points.size (); ++i)
# range_image_widget.markPoint (keypoint_indices.points[i] % range_image.width,
# keypoint_indices.points[i], range_image.width);
# for size_t i=0; ikeypoint_indices.points.size (); ++i:
# range_image_widget.markPoint (keypoint_indices.points[i] % range_image.width, keypoint_indices.points[i], range_image.width)
###
# Show keypoints in 3D viewer
# pcl::PointCloud<pcl::PointXYZPtr> keypoints_ptr (new pclPointCloudpclPointXYZ);
# pcl::PointCloud<pcl::PointXYZ> &keypoints = keypoints_ptr;
# keypoints.points.resize (keypoint_indices.points.size ());
# for (size_t i=0; ikeypoint_indices.points.size (); ++i)
# keypoints.points[i].getVector3fMap () = range_image.points[keypoint_indices.points[i]].getVector3fMap ();
##
keypoints = pcl.KeyPoints()
keypoints.resize(keypoint_indices.size)
# for i in range(0, keypoint_indices.size, 1):
# keypoints.points[i].getVector3fMap () = range_image[keypoint_indices.points[i]].getVector3fMap ()
# for x in range(-50, 50, 1):
# for y in range(-50, 50, 1):
# pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZ> keypoints_color_handler (keypoints_ptr, 0, 255, 0);
# viewer.addPointCloud<pcl::PointXYZ> (keypoints_ptr, keypoints_color_handler, keypoints);
# viewer.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 7, keypoints);
# keypoints_color_handler = pcl.PointCloudColorHandlerCustom (0, 255, 0)
# viewer.AddPointCloud<pcl::PointXYZ} (keypoints_ptr, keypoints_color_handler, keypoints)
# viewer.SetPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 7, keypoints);
## pcl
# keypoints_color_handler = pcl.visualization.PointCloudColorHandlerCustom[pcl.PointXYZ](keypoints_ptr, 0, 255, 0)
viewer.addPointCloud (keypoints_ptr, keypoints_color_handler, keypoints)
viewer.setPointCloudRenderingProperties (pcl.pcl_visualization.PCL_VISUALIZER_POINT_SIZE, 7, keypoints)
keypoints_color_handler = pcl.PointCloudColorHandlerCustom (0, 255, 0)
viewer.AddPointCloud (keypoints_ptr, keypoints_color_handler, keypoints)
viewer.SetPointCloudRenderingProperties (pcl.pcl_visualization.PCL_VISUALIZER_POINT_SIZE, 7, keypoints)
# Main loop
# # while (!viewer.wasStopped ())
# # process GUI events
# range_image_widget.spinOnce ()
# viewer.spinOnce ()
# # pcl_sleep(0.01);
# end
print("while")
while True:
# process GUI events
range_image_widget.SpinOnce ()
viewer.SpinOnce ()
|