File: matrix_transform%20matrix_transform.txt

package info (click to toggle)
python-pcl 0.3.0~rc1%2Bdfsg-14
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 31,828 kB
  • sloc: python: 3,094; cpp: 283; makefile: 181; sh: 24; ansic: 12
file content (139 lines) | stat: -rw-r--r-- 5,020 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
# Using a matrix to transform a point cloud
# http://pointclouds.org/documentation/tutorials/matrix_transform.php#matrix-transform

#include <iostream>

#include <pcl/io/pcd_io.h>
#include <pcl/io/ply_io.h>
#include <pcl/point_cloud.h>
#include <pcl/console/parse.h>
#include <pcl/common/transforms.h>
#include <pcl/visualization/pcl_visualizer.h>

// This function displays the help
void
showHelp(char * program_name)
{
  std::cout << std::endl;
  std::cout << "Usage: " << program_name << " cloud_filename.[pcd|ply]" << std::endl;
  std::cout << "-h:  Show this help." << std::endl;
}

// This is the main function
int
main (int argc, char** argv)
{

  // Show help
  if (pcl::console::find_switch (argc, argv, "-h") || pcl::console::find_switch (argc, argv, "--help")) {
    showHelp (argv[0]);
    return 0;
  }

  // Fetch point cloud filename in arguments | Works with PCD and PLY files
  std::vector<int> filenames;
  bool file_is_pcd = false;

  filenames = pcl::console::parse_file_extension_argument (argc, argv, ".ply");

  if (filenames.size () != 1)  {
    filenames = pcl::console::parse_file_extension_argument (argc, argv, ".pcd");

    if (filenames.size () != 1) {
      showHelp (argv[0]);
      return -1;
    } else {
      file_is_pcd = true;
    }
  }

  // Load file | Works with PCD and PLY files
  pcl::PointCloud<pcl::PointXYZ>::Ptr source_cloud (new pcl::PointCloud<pcl::PointXYZ> ());

  if (file_is_pcd) {
    if (pcl::io::loadPCDFile (argv[filenames[0]], *source_cloud) < 0)  {
      std::cout << "Error loading point cloud " << argv[filenames[0]] << std::endl << std::endl;
      showHelp (argv[0]);
      return -1;
    }
  } else {
    if (pcl::io::loadPLYFile (argv[filenames[0]], *source_cloud) < 0)  {
      std::cout << "Error loading point cloud " << argv[filenames[0]] << std::endl << std::endl;
      showHelp (argv[0]);
      return -1;
    }
  }

  /* Reminder: how transformation matrices work :

           |-------> This column is the translation
    | 1 0 0 x |  \
    | 0 1 0 y |   }-> The identity 3x3 matrix (no rotation) on the left
    | 0 0 1 z |  /
    | 0 0 0 1 |    -> We do not use this line (and it has to stay 0,0,0,1)

    METHOD #1: Using a Matrix4f
    This is the "manual" method, perfect to understand but error prone !
  */
  Eigen::Matrix4f transform_1 = Eigen::Matrix4f::Identity();

  // Define a rotation matrix (see https://en.wikipedia.org/wiki/Rotation_matrix)
  float theta = M_PI/4; // The angle of rotation in radians
  transform_1 (0,0) = cos (theta);
  transform_1 (0,1) = -sin(theta);
  transform_1 (1,0) = sin (theta);
  transform_1 (1,1) = cos (theta);
  //    (row, column)

  // Define a translation of 2.5 meters on the x axis.
  transform_1 (0,3) = 2.5;

  // Print the transformation
  printf ("Method #1: using a Matrix4f\n");
  std::cout << transform_1 << std::endl;

  /*  METHOD #2: Using a Affine3f
    This method is easier and less error prone
  */
  Eigen::Affine3f transform_2 = Eigen::Affine3f::Identity();

  // Define a translation of 2.5 meters on the x axis.
  transform_2.translation() << 2.5, 0.0, 0.0;

  // The same rotation matrix as before; theta radians arround Z axis
  transform_2.rotate (Eigen::AngleAxisf (theta, Eigen::Vector3f::UnitZ()));

  // Print the transformation
  printf ("\nMethod #2: using an Affine3f\n");
  std::cout << transform_2.matrix() << std::endl;

  // Executing the transformation
  pcl::PointCloud<pcl::PointXYZ>::Ptr transformed_cloud (new pcl::PointCloud<pcl::PointXYZ> ());
  // You can either apply transform_1 or transform_2; they are the same
  pcl::transformPointCloud (*source_cloud, *transformed_cloud, transform_2);

  // Visualization
  printf(  "\nPoint cloud colors :  white  = original point cloud\n"
      "                        red  = transformed point cloud\n");
  pcl::visualization::PCLVisualizer viewer ("Matrix transformation example");

   // Define R,G,B colors for the point cloud
  pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZ> source_cloud_color_handler (source_cloud, 255, 255, 255);
  // We add the point cloud to the viewer and pass the color handler
  viewer.addPointCloud (source_cloud, source_cloud_color_handler, "original_cloud");

  pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZ> transformed_cloud_color_handler (transformed_cloud, 230, 20, 20); // Red
  viewer.addPointCloud (transformed_cloud, transformed_cloud_color_handler, "transformed_cloud");

  viewer.addCoordinateSystem (1.0, "cloud", 0);
  viewer.setBackgroundColor(0.05, 0.05, 0.05, 0); // Setting background to a dark grey
  viewer.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 2, "original_cloud");
  viewer.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 2, "transformed_cloud");
  //viewer.setPosition(800, 400); // Setting visualiser window position

  while (!viewer.wasStopped ()) { // Display the visualiser until 'q' key is pressed
    viewer.spinOnce ();
  }

  return 0;
}