File: pcl_segmentation_172.pxd

package info (click to toggle)
python-pcl 0.3.0~rc1%2Bdfsg-14
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 31,828 kB
  • sloc: python: 3,094; cpp: 283; makefile: 181; sh: 24; ansic: 12
file content (4068 lines) | stat: -rw-r--r-- 203,547 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
# -*- coding: utf-8 -*-

from libc.stddef cimport size_t

from libcpp.vector cimport vector
from libcpp.string cimport string
from libcpp cimport bool

from boost_shared_ptr cimport shared_ptr

# main
# cimport pcl_defs as cpp
from pcl_defs cimport PointIndices
from pcl_defs cimport ModelCoefficients
from pcl_defs cimport PointCloud
from pcl_defs cimport PointXYZ
from pcl_defs cimport PointXYZI
from pcl_defs cimport PointXYZRGB
from pcl_defs cimport PointXYZRGBA
from pcl_defs cimport Normal
from pcl_defs cimport PCLBase
from pcl_sample_consensus_172 cimport SacModel
cimport pcl_surface_172 as pclsf
cimport pcl_kdtree_172 as pclkdt

##

cimport eigen as eigen3
from vector cimport vector as vector2

###############################################################################
# Types
###############################################################################

### base class ###

cdef extern from "pcl/segmentation/sac_segmentation.h" namespace "pcl":
    cdef cppclass SACSegmentation[T](PCLBase[T]):
        SACSegmentation()
        void setModelType (SacModel)
        # /** \brief Empty constructor. */
        # SACSegmentation () :  model_ (), sac_ (), model_type_ (-1), method_type_ (0), 
        #                       threshold_ (0), optimize_coefficients_ (true), 
        #                       radius_min_ (-std::numeric_limits<double>::max()), radius_max_ (std::numeric_limits<double>::max()), samples_radius_ (0.0), eps_angle_ (0.0),
        #                       axis_ (Eigen::Vector3f::Zero ()), max_iterations_ (50), probability_ (0.99)
        # 
        # /** \brief Get the type of SAC model used.
        # inline int getModelType () const { return (model_type_); }
        int getModelType ()
        
        # \brief Get a pointer to the SAC method used.
        # inline SampleConsensusPtr getMethod () const { return (sac_); }
        # 
        # \brief Get a pointer to the SAC model used.
        # inline SampleConsensusModelPtr getModel () const { return (model_); }
        
        void setMethodType (int)
        
        # brief Get the type of sample consensus method used.
        # inline int getMethodType () const { return (method_type_); }
        int getMethodType ()
        
        void setDistanceThreshold (float)

        # brief Get the distance to the model threshold.
        # inline double getDistanceThreshold () const { return (threshold_); }
        double getDistanceThreshold ()
        
        # use PCLBase class function
        # void setInputCloud (shared_ptr[PointCloud[T]])
        
        void setMaxIterations (int)
        # \brief Get maximum number of iterations before giving up.
        # inline int getMaxIterations () const { return (max_iterations_); }
        int getMaxIterations ()
        
        # \brief Set the probability of choosing at least one sample free from outliers.
        # \param[in] probability the model fitting probability
        # inline void setProbability (double probability) { probability_ = probability; }
        void setProbability (double probability)
        
        # \brief Get the probability of choosing at least one sample free from outliers.
        # inline double getProbability () const { return (probability_); }
        double getProbability ()
        
        void setOptimizeCoefficients (bool)
        
        # \brief Get the coefficient refinement internal flag.
        # inline bool getOptimizeCoefficients () const { return (optimize_coefficients_); }
        bool getOptimizeCoefficients ()
        
        # \brief Set the minimum and maximum allowable radius limits for the model (applicable to models that estimate a radius)
        # \param[in] min_radius the minimum radius model
        # \param[in] max_radius the maximum radius model
        # inline void setRadiusLimits (const double &min_radius, const double &max_radius)
        void setRadiusLimits (const double &min_radius, const double &max_radius)
        
        # \brief Get the minimum and maximum allowable radius limits for the model as set by the user.
        # \param[out] min_radius the resultant minimum radius model
        # \param[out] max_radius the resultant maximum radius model
        # inline void getRadiusLimits (double &min_radius, double &max_radius)
        void getRadiusLimits (double &min_radius, double &max_radius)
        
        # \brief Set the maximum distance allowed when drawing random samples
        # \param[in] radius the maximum distance (L2 norm)
        # inline void setSamplesMaxDist (const double &radius, SearchPtr search)
        # void setSamplesMaxDist (const double &radius, SearchPtr search)
        
        # \brief Get maximum distance allowed when drawing random samples
        # \param[out] radius the maximum distance (L2 norm)
        # inline void getSamplesMaxDist (double &radius)
        void getSamplesMaxDist (double &radius)
        
        # \brief Set the axis along which we need to search for a model perpendicular to.
        # \param[in] ax the axis along which we need to search for a model perpendicular to
        # inline void setAxis (const Eigen::Vector3f &ax) { axis_ = ax; }
        void setAxis (const eigen3.Vector3f &ax)
        
        # \brief Get the axis along which we need to search for a model perpendicular to.
        # inline Eigen::Vector3f getAxis () const { return (axis_); }
        eigen3.Vector3f getAxis ()
        
        # \brief Set the angle epsilon (delta) threshold.
        # \param[in] ea the maximum allowed difference between the model normal and the given axis in radians.
        # inline void setEpsAngle (double ea) { eps_angle_ = ea; }
        void setEpsAngle (double ea)
        
        # /** \brief Get the epsilon (delta) model angle threshold in radians. */
        # inline double getEpsAngle () const { return (eps_angle_); }
        double getEpsAngle ()

        void segment (PointIndices, ModelCoefficients)


ctypedef SACSegmentation[PointXYZ] SACSegmentation_t
ctypedef SACSegmentation[PointXYZI] SACSegmentation_PointXYZI_t
ctypedef SACSegmentation[PointXYZRGB] SACSegmentation_PointXYZRGB_t
ctypedef SACSegmentation[PointXYZRGBA] SACSegmentation_PointXYZRGBA_t
###

# \brief @b SACSegmentationFromNormals represents the PCL nodelet segmentation class for Sample Consensus methods and
# models that require the use of surface normals for estimation.
# \ingroup segmentation
cdef extern from "pcl/segmentation/sac_segmentation.h" namespace "pcl":
    # cdef cppclass SACSegmentationFromNormals[T, N](SACSegmentation[T])
    cdef cppclass SACSegmentationFromNormals[T, N]:
        SACSegmentationFromNormals()
        void setOptimizeCoefficients (bool)
        void setModelType (SacModel)
        void setMethodType (int)
        void setNormalDistanceWeight (float)
        void setMaxIterations (int)
        void setDistanceThreshold (float)
        void setRadiusLimits (float, float)
        void setInputCloud (shared_ptr[PointCloud[T]])
        void setInputNormals (shared_ptr[PointCloud[N]])
        void setEpsAngle (double ea)
        void segment (PointIndices, ModelCoefficients)
        void setMinMaxOpeningAngle(double, double)
        void getMinMaxOpeningAngle(double, double)
        # Add
        # /** \brief Empty constructor. */
        # SACSegmentationFromNormals () : 
        #   normals_ (), 
        #   distance_weight_ (0.1), 
        #   distance_from_origin_ (0), 
        #   min_angle_ (), 
        #   max_angle_ ()
        # {};
        # 
        # /** \brief Provide a pointer to the input dataset that contains the point normals of 
        #   * the XYZ dataset.
        #   * \param[in] normals the const boost shared pointer to a PointCloud message
        #   */
        # inline void setInputNormals (const PointCloudNConstPtr &normals) { normals_ = normals; }
        # 
        # /** \brief Get a pointer to the normals of the input XYZ point cloud dataset. */
        # inline PointCloudNConstPtr getInputNormals () const { return (normals_); }
        # 
        # /** \brief Set the relative weight (between 0 and 1) to give to the angular 
        #   * distance (0 to pi/2) between point normals and the plane normal.
        #   * \param[in] distance_weight the distance/angular weight
        #   */
        # inline void setNormalDistanceWeight (double distance_weight) { distance_weight_ = distance_weight; }
        # 
        # /** \brief Get the relative weight (between 0 and 1) to give to the angular distance (0 to pi/2) between point
        #   * normals and the plane normal. */
        # inline double getNormalDistanceWeight () const { return (distance_weight_); }
        # 
        # /** \brief Set the minimum opning angle for a cone model.
        #   * \param oa the opening angle which we need minumum to validate a cone model.
        #   */
        # inline void setMinMaxOpeningAngle (const double &min_angle, const double &max_angle)
        # 
        # /** \brief Get the opening angle which we need minumum to validate a cone model. */
        # inline void getMinMaxOpeningAngle (double &min_angle, double &max_angle)
        # 
        # /** \brief Set the distance we expect a plane model to be from the origin
        #   * \param[in] d distance from the template plane modl to the origin
        #   */
        # inline void setDistanceFromOrigin (const double d) { distance_from_origin_ = d; }
        # 
        # /** \brief Get the distance of a plane model from the origin. */
        # inline double getDistanceFromOrigin () const { return (distance_from_origin_); }


ctypedef SACSegmentationFromNormals[PointXYZ,Normal] SACSegmentationFromNormals_t
ctypedef SACSegmentationFromNormals[PointXYZI,Normal] SACSegmentationFromNormals_PointXYZI_t
ctypedef SACSegmentationFromNormals[PointXYZRGB,Normal] SACSegmentationFromNormals_PointXYZRGB_t
ctypedef SACSegmentationFromNormals[PointXYZRGBA,Normal] SACSegmentationFromNormals_PointXYZRGBA_t
###

# comparator.h
# namespace pcl
# brief Comparator is the base class for comparators that compare two points given some function.
# Currently intended for use with OrganizedConnectedComponentSegmentation
# author Alex Trevor
# template <typename PointT> class Comparator
cdef extern from "pcl/segmentation/comparator.h" namespace "pcl":
    cdef cppclass Comparator[T]:
        Comparator()
        # public:
        # typedef pcl::PointCloud<PointT> PointCloud;
        # typedef typename PointCloud::Ptr PointCloudPtr;
        # typedef typename PointCloud::ConstPtr PointCloudConstPtr;
        # typedef boost::shared_ptr<Comparator<PointT> > Ptr;
        # typedef boost::shared_ptr<const Comparator<PointT> > ConstPtr;
        # 
        # /** \brief Set the input cloud for the comparator.
        #   * \param[in] cloud the point cloud this comparator will operate on
        #   */
        # virtual void setInputCloud (const PointCloudConstPtr& cloud)
        # 
        # /** \brief Get the input cloud this comparator operates on. */
        # virtual PointCloudConstPtr getInputCloud () const
        # 
        # /** \brief Compares the two points in the input cloud designated by these two indices.
        #   * This is pure virtual and must be implemented by subclasses with some comparison function.
        #   * \param[in] idx1 the index of the first point.
        #   * \param[in] idx2 the index of the second point.
        #   */
        # virtual bool compare (int idx1, int idx2) const = 0;


###

# plane_coefficient_comparator.h
# namespace pcl
# brief PlaneCoefficientComparator is a Comparator that operates on plane coefficients, for use in planar segmentation.
# In conjunction with OrganizedConnectedComponentSegmentation, this allows planes to be segmented from organized data.
# author Alex Trevor
# template<typename PointT, typename PointNT> class PlaneCoefficientComparator: public Comparator<PointT>
cdef extern from "pcl/segmentation/plane_coefficient_comparator.h" namespace "pcl":
    cdef cppclass PlaneCoefficientComparator[T, NT](Comparator[T]):
        PlaneCoefficientComparator()
        # PlaneCoefficientComparator (boost::shared_ptr<std::vector<float> >& plane_coeff_d)
        # public:
        # typedef typename Comparator<PointT>::PointCloud PointCloud;
        # typedef typename Comparator<PointT>::PointCloudConstPtr PointCloudConstPtr;
        # typedef typename pcl::PointCloud<PointNT> PointCloudN;
        # typedef typename PointCloudN::Ptr PointCloudNPtr;
        # typedef typename PointCloudN::ConstPtr PointCloudNConstPtr;
        # typedef boost::shared_ptr<PlaneCoefficientComparator<PointT, PointNT> > Ptr;
        # typedef boost::shared_ptr<const PlaneCoefficientComparator<PointT, PointNT> > ConstPtr;
        # using pcl::Comparator<PointT>::input_;
        # 
        # virtual void setInputCloud (const PointCloudConstPtr& cloud)
        
        # /** \brief Provide a pointer to the input normals.
        #   * \param[in] normals the input normal cloud
        # inline void setInputNormals (const PointCloudNConstPtr &normals)
        
        # /** \brief Get the input normals. */
        # inline PointCloudNConstPtr getInputNormals () const
        
        # /** \brief Provide a pointer to a vector of the d-coefficient of the planes' hessian normal form.  a, b, and c are provided by the normal cloud.
        #   * \param[in] plane_coeff_d a pointer to the plane coefficients.
        # void setPlaneCoeffD (boost::shared_ptr<std::vector<float> >& plane_coeff_d)
        
        # /** \brief Provide a pointer to a vector of the d-coefficient of the planes' hessian normal form.  a, b, and c are provided by the normal cloud.
        #   * \param[in] plane_coeff_d a pointer to the plane coefficients.
        # void setPlaneCoeffD (std::vector<float>& plane_coeff_d)
        
        # /** \brief Get a pointer to the vector of the d-coefficient of the planes' hessian normal form. */
        # const std::vector<float>& getPlaneCoeffD () const
        
        # /** \brief Set the tolerance in radians for difference in normal direction between neighboring points, to be considered part of the same plane.
        #   * \param[in] angular_threshold the tolerance in radians
        # virtual void setAngularThreshold (float angular_threshold)
        
        # /** \brief Get the angular threshold in radians for difference in normal direction between neighboring points, to be considered part of the same plane. */
        # inline float getAngularThreshold () const
        float getAngularThreshold ()
        
        # /** \brief Set the tolerance in meters for difference in perpendicular distance (d component of plane equation) to the plane between neighboring points, to be considered part of the same plane.
        #   * \param[in] distance_threshold the tolerance in meters (at 1m)
        #   * \param[in] depth_dependent whether to scale the threshold based on range from the sensor (default: false)
        # void setDistanceThreshold (float distance_threshold, bool depth_dependent = false)
        void setDistanceThreshold (float distance_threshold, bool depth_dependent)
        
        # /** \brief Get the distance threshold in meters (d component of plane equation) between neighboring points, to be considered part of the same plane. */
        # inline float getDistanceThreshold () const
        float getDistanceThreshold ()
        
        # /** \brief Compare points at two indices by their plane equations.  True if the angle between the normals is less than the angular threshold,
        #   * and the difference between the d component of the normals is less than distance threshold, else false
        #   * \param idx1 The first index for the comparison
        #   * \param idx2 The second index for the comparison
        # virtual bool compare (int idx1, int idx2) const


###

### Inheritance class ###

# edge_aware_plane_comparator.h
# namespace pcl
# /** \brief EdgeAwarePlaneComparator is a Comparator that operates on plane coefficients, 
#   * for use in planar segmentation.
#   * In conjunction with OrganizedConnectedComponentSegmentation, this allows planes to be segmented from organized data.
#   * \author Stefan Holzer, Alex Trevor
#   */
# template<typename PointT, typename PointNT>
# class EdgeAwarePlaneComparator: public PlaneCoefficientComparator<PointT, PointNT>
cdef extern from "pcl/segmentation/edge_aware_plane_comparator.h" namespace "pcl":
    cdef cppclass EdgeAwarePlaneComparator[T, NT](PlaneCoefficientComparator[T, NT]):
        EdgeAwarePlaneComparator()
        # EdgeAwarePlaneComparator (const float *distance_map)
        # public:
        # typedef typename Comparator<PointT>::PointCloud PointCloud;
        # typedef typename Comparator<PointT>::PointCloudConstPtr PointCloudConstPtr;
        # typedef typename pcl::PointCloud<PointNT> PointCloudN;
        # typedef typename PointCloudN::Ptr PointCloudNPtr;
        # typedef typename PointCloudN::ConstPtr PointCloudNConstPtr;
        # typedef boost::shared_ptr<EdgeAwarePlaneComparator<PointT, PointNT> > Ptr;
        # typedef boost::shared_ptr<const EdgeAwarePlaneComparator<PointT, PointNT> > ConstPtr;
        # using pcl::PlaneCoefficientComparator<PointT, PointNT>::input_;
        # using pcl::PlaneCoefficientComparator<PointT, PointNT>::normals_;
        # using pcl::PlaneCoefficientComparator<PointT, PointNT>::plane_coeff_d_;
        # using pcl::PlaneCoefficientComparator<PointT, PointNT>::angular_threshold_;
        # using pcl::PlaneCoefficientComparator<PointT, PointNT>::distance_threshold_;
        # 
        # /** \brief Set a distance map to use. For an example of a valid distance map see 
        #   * \ref OrganizedIntegralImageNormalEstimation
        #   * \param[in] distance_map the distance map to use
        #   */
        # inline void setDistanceMap (const float *distance_map)
        # /** \brief Return the distance map used. */
        # const float* getDistanceMap () const


###

# euclidean_cluster_comparator.h
# namespace pcl
# /** \brief EuclideanClusterComparator is a comparator used for finding clusters supported by planar surfaces.
#   * This needs to be run as a second pass after extracting planar surfaces, using MultiPlaneSegmentation for example.
#   * \author Alex Trevor
# template<typename PointT, typename PointNT, typename PointLT>
# class EuclideanClusterComparator: public Comparator<PointT>
cdef extern from "pcl/segmentation/euclidean_cluster_comparator.h" namespace "pcl":
    cdef cppclass EuclideanClusterComparator[T, NT, LT](Comparator[T]):
        EuclideanClusterComparator()
        # public:
        # typedef typename Comparator<PointT>::PointCloud PointCloud;
        # typedef typename Comparator<PointT>::PointCloudConstPtr PointCloudConstPtr;
        # typedef typename pcl::PointCloud<PointNT> PointCloudN;
        # typedef typename PointCloudN::Ptr PointCloudNPtr;
        # typedef typename PointCloudN::ConstPtr PointCloudNConstPtr;
        # typedef typename pcl::PointCloud<PointLT> PointCloudL;
        # typedef typename PointCloudL::Ptr PointCloudLPtr;
        # typedef typename PointCloudL::ConstPtr PointCloudLConstPtr;
        # typedef boost::shared_ptr<EuclideanClusterComparator<PointT, PointNT, PointLT> > Ptr;
        # typedef boost::shared_ptr<const EuclideanClusterComparator<PointT, PointNT, PointLT> > ConstPtr;
        # using pcl::Comparator<PointT>::input_;
        # 
        # virtual void setInputCloud (const PointCloudConstPtr& cloud)
        
        # /** \brief Provide a pointer to the input normals.
        #   * \param[in] normals the input normal cloud
        # inline void setInputNormals (const PointCloudNConstPtr &normals)
        void setInputNormals (const shared_ptr[PointCloud[NT]] &normals)
        
        # /** \brief Get the input normals. */
        # inline PointCloudNConstPtr getInputNormals () const
        const shared_ptr[PointCloud[NT]] getInputNormals ()
        
        # /** \brief Set the tolerance in radians for difference in normal direction between neighboring points, to be considered part of the same plane.
        #   * \param[in] angular_threshold the tolerance in radians
        # virtual inline void setAngularThreshold (float angular_threshold)
        # 
        # /** \brief Get the angular threshold in radians for difference in normal direction between neighboring points, to be considered part of the same plane. */
        # inline float getAngularThreshold () const
        float getAngularThreshold ()
        
        # /** \brief Set the tolerance in meters for difference in perpendicular distance (d component of plane equation) to the plane between neighboring points, to be considered part of the same plane.
        #   * \param[in] distance_threshold the tolerance in meters
        # inline void setDistanceThreshold (float distance_threshold, bool depth_dependent)
        void setDistanceThreshold (float distance_threshold, bool depth_dependent)
        
        # /** \brief Get the distance threshold in meters (d component of plane equation) between neighboring points, to be considered part of the same plane. */
        # inline float getDistanceThreshold () const
        float getDistanceThreshold ()
        
        # /** \brief Set label cloud
        #   * \param[in] labels The label cloud
        # void setLabels (PointCloudLPtr& labels)
        void setLabels (shared_ptr[PointCloud[LT]] &labels)
        
        # 
        # /** \brief Set labels in the label cloud to exclude.
        #   * \param exclude_labels a vector of bools corresponding to whether or not a given label should be considered
        # void setExcludeLabels (std::vector<bool>& exclude_labels)
        void setExcludeLabels (vector[bool]& exclude_labels)
        
        # /** \brief Compare points at two indices by their plane equations.  True if the angle between the normals is less than the angular threshold,
        #   * and the difference between the d component of the normals is less than distance threshold, else false
        #   * \param idx1 The first index for the comparison
        #   * \param idx2 The second index for the comparison
        # virtual bool compare (int idx1, int idx2) const


ctypedef EuclideanClusterComparator[PointXYZ, Normal, PointXYZ] EuclideanClusterComparator_t
ctypedef EuclideanClusterComparator[PointXYZI, Normal, PointXYZ] EuclideanClusterComparator_PointXYZI_t
ctypedef EuclideanClusterComparator[PointXYZRGB, Normal, PointXYZ] EuclideanClusterComparator_PointXYZRGB_t
ctypedef EuclideanClusterComparator[PointXYZRGBA, Normal, PointXYZ] EuclideanClusterComparator_PointXYZRGBA_t
ctypedef shared_ptr[EuclideanClusterComparator[PointXYZ, Normal, PointXYZ]] EuclideanClusterComparatorPtr_t
ctypedef shared_ptr[EuclideanClusterComparator[PointXYZI, Normal, PointXYZ]] EuclideanClusterComparator_PointXYZI_Ptr_t
ctypedef shared_ptr[EuclideanClusterComparator[PointXYZRGB, Normal, PointXYZ]] EuclideanClusterComparator_PointXYZRGB_Ptr_t
ctypedef shared_ptr[EuclideanClusterComparator[PointXYZRGBA, Normal, PointXYZ]] EuclideanClusterComparator_PointXYZRGBA_Ptr_t
###

# euclidean_plane_coefficient_comparator.h
# namespace pcl
# /** \brief EuclideanPlaneCoefficientComparator is a Comparator that operates on plane coefficients, 
#   * for use in planar segmentation.
#   * In conjunction with OrganizedConnectedComponentSegmentation, this allows planes to be segmented from organized data.
#   * \author Alex Trevor
# template<typename PointT, typename PointNT>
# class EuclideanPlaneCoefficientComparator: public PlaneCoefficientComparator<PointT, PointNT>
cdef extern from "pcl/segmentation/euclidean_plane_coefficient_comparator.h" namespace "pcl":
    cdef cppclass EuclideanPlaneCoefficientComparator[T, NT](PlaneCoefficientComparator[T, NT]):
        EuclideanPlaneCoefficientComparator()
        # public:
        # typedef typename Comparator<PointT>::PointCloud PointCloud;
        # typedef typename Comparator<PointT>::PointCloudConstPtr PointCloudConstPtr;
        # typedef typename pcl::PointCloud<PointNT> PointCloudN;
        # typedef typename PointCloudN::Ptr PointCloudNPtr;
        # typedef typename PointCloudN::ConstPtr PointCloudNConstPtr;
        # typedef boost::shared_ptr<EuclideanPlaneCoefficientComparator<PointT, PointNT> > Ptr;
        # typedef boost::shared_ptr<const EuclideanPlaneCoefficientComparator<PointT, PointNT> > ConstPtr;
        # using pcl::Comparator<PointT>::input_;
        # using pcl::PlaneCoefficientComparator<PointT, PointNT>::normals_;
        # using pcl::PlaneCoefficientComparator<PointT, PointNT>::angular_threshold_;
        # using pcl::PlaneCoefficientComparator<PointT, PointNT>::distance_threshold_;
        # 
        # /** \brief Compare two neighboring points, by using normal information, and euclidean distance information.
        #   * \param[in] idx1 The index of the first point.
        #   * \param[in] idx2 The index of the second point.
        #   */
        # virtual bool compare (int idx1, int idx2) const


###

# extract_clusters.h
# namespace pcl
# brief Decompose a region of space into clusters based on the Euclidean distance between points
# param cloud the point cloud message
# param tree the spatial locator (e.g., kd-tree) used for nearest neighbors searching
# note the tree has to be created as a spatial locator on \a cloud
# param tolerance the spatial cluster tolerance as a measure in L2 Euclidean space
# param clusters the resultant clusters containing point indices (as a vector of PointIndices)
# param min_pts_per_cluster minimum number of points that a cluster may contain (default: 1)
# param max_pts_per_cluster maximum number of points that a cluster may contain (default: max int)
# ingroup segmentation
# template <typename PointT> void extractEuclideanClusters (
#       const PointCloud<PointT> &cloud, const boost::shared_ptr<search::Search<PointT> > &tree, 
#       float tolerance, std::vector<PointIndices> &clusters, 
#       unsigned int min_pts_per_cluster = 1, unsigned int max_pts_per_cluster = (std::numeric_limits<int>::max) ());
###

# extract_clusters.h
# namespace pcl
# /** \brief Decompose a region of space into clusters based on the Euclidean distance between points
#   * \param cloud the point cloud message
#   * \param indices a list of point indices to use from \a cloud
#   * \param tree the spatial locator (e.g., kd-tree) used for nearest neighbors searching
#   * \note the tree has to be created as a spatial locator on \a cloud and \a indices
#   * \param tolerance the spatial cluster tolerance as a measure in L2 Euclidean space
#   * \param clusters the resultant clusters containing point indices (as a vector of PointIndices)
#   * \param min_pts_per_cluster minimum number of points that a cluster may contain (default: 1)
#   * \param max_pts_per_cluster maximum number of points that a cluster may contain (default: max int)
#   * \ingroup segmentation
#   */
# template <typename PointT> void 
# extractEuclideanClusters (
#       const PointCloud<PointT> &cloud, const std::vector<int> &indices, 
#       const boost::shared_ptr<search::Search<PointT> > &tree, float tolerance, std::vector<PointIndices> &clusters, 
#       unsigned int min_pts_per_cluster = 1, unsigned int max_pts_per_cluster = (std::numeric_limits<int>::max) ());
###

# extract_clusters.h
# namespace pcl
# /** \brief Decompose a region of space into clusters based on the euclidean distance between points, and the normal
#   * angular deviation
#   * \param cloud the point cloud message
#   * \param normals the point cloud message containing normal information
#   * \param tree the spatial locator (e.g., kd-tree) used for nearest neighbors searching
#   * \note the tree has to be created as a spatial locator on \a cloud
#   * \param tolerance the spatial cluster tolerance as a measure in the L2 Euclidean space
#   * \param clusters the resultant clusters containing point indices (as a vector of PointIndices)
#   * \param eps_angle the maximum allowed difference between normals in radians for cluster/region growing
#   * \param min_pts_per_cluster minimum number of points that a cluster may contain (default: 1)
#   * \param max_pts_per_cluster maximum number of points that a cluster may contain (default: max int)
#   * \ingroup segmentation
#   */
# template <typename PointT, typename Normal> void 
# extractEuclideanClusters (
#       const PointCloud<PointT> &cloud, const PointCloud<Normal> &normals, 
#       float tolerance, const boost::shared_ptr<KdTree<PointT> > &tree, 
#       std::vector<PointIndices> &clusters, double eps_angle, 
#       unsigned int min_pts_per_cluster = 1, 
#       unsigned int max_pts_per_cluster = (std::numeric_limits<int>::max) ())
###

# extract_clusters.h
# namespace pcl
# /** \brief Decompose a region of space into clusters based on the euclidean distance between points, and the normal
#   * angular deviation
#   * \param cloud the point cloud message
#   * \param normals the point cloud message containing normal information
#   * \param indices a list of point indices to use from \a cloud
#   * \param tree the spatial locator (e.g., kd-tree) used for nearest neighbors searching
#   * \note the tree has to be created as a spatial locator on \a cloud
#   * \param tolerance the spatial cluster tolerance as a measure in the L2 Euclidean space
#   * \param clusters the resultant clusters containing point indices (as PointIndices)
#   * \param eps_angle the maximum allowed difference between normals in degrees for cluster/region growing
#   * \param min_pts_per_cluster minimum number of points that a cluster may contain (default: 1)
#   * \param max_pts_per_cluster maximum number of points that a cluster may contain (default: max int)
#   * \ingroup segmentation
#   */
# template <typename PointT, typename Normal> 
# void extractEuclideanClusters (
#     const PointCloud<PointT> &cloud, const PointCloud<Normal> &normals, 
#     const std::vector<int> &indices, const boost::shared_ptr<KdTree<PointT> > &tree, 
#     float tolerance, std::vector<PointIndices> &clusters, double eps_angle, 
#     unsigned int min_pts_per_cluster = 1, 
#     unsigned int max_pts_per_cluster = (std::numeric_limits<int>::max) ())
###

# extract_clusters.h
# namespace pcl
# EuclideanClusterExtraction represents a segmentation class for cluster extraction in an Euclidean sense.
# author Radu Bogdan Rusu
# ingroup segmentation
# template <typename PointT>
# class EuclideanClusterExtraction: public PCLBase<PointT>
cdef extern from "pcl/segmentation/extract_clusters.h" namespace "pcl":
    cdef cppclass EuclideanClusterExtraction[T](PCLBase[T]):
        EuclideanClusterExtraction()
        # public:
        # EuclideanClusterExtraction () : tree_ (), 
        #                                 cluster_tolerance_ (0),
        #                                 min_pts_per_cluster_ (1), 
        #                                 max_pts_per_cluster_ (std::numeric_limits<int>::max ())
        
        # brief Provide a pointer to the search object.
        # param[in] tree a pointer to the spatial search object.
        # inline void setSearchMethod (const KdTreePtr &tree) 
        void setSearchMethod (const pclkdt.KdTreePtr_t &tree)
        
        # brief Get a pointer to the search method used. 
        # @todo fix this for a generic search tree
        # inline KdTreePtr getSearchMethod () const 
        pclkdt.KdTreePtr_t getSearchMethod ()
        
        # brief Set the spatial cluster tolerance as a measure in the L2 Euclidean space
        # param[in] tolerance the spatial cluster tolerance as a measure in the L2 Euclidean space
        # inline void setClusterTolerance (double tolerance) 
        void setClusterTolerance (double tolerance) 
        
        # brief Get the spatial cluster tolerance as a measure in the L2 Euclidean space.
        # inline double getClusterTolerance () const 
        double getClusterTolerance ()
        
        # brief Set the minimum number of points that a cluster needs to contain in order to be considered valid.
        # param[in] min_cluster_size the minimum cluster size
        # inline void setMinClusterSize (int min_cluster_size) 
        void setMinClusterSize (int min_cluster_size) 
        
        # brief Get the minimum number of points that a cluster needs to contain in order to be considered valid.
        # inline int getMinClusterSize () const 
        int getMinClusterSize ()
        
        # brief Set the maximum number of points that a cluster needs to contain in order to be considered valid.
        # param[in] max_cluster_size the maximum cluster size
        # inline void setMaxClusterSize (int max_cluster_size) 
        void setMaxClusterSize (int max_cluster_size) 
        
        # brief Get the maximum number of points that a cluster needs to contain in order to be considered valid.
        # inline int getMaxClusterSize () const 
        int getMaxClusterSize ()
        
        # brief Cluster extraction in a PointCloud given by <setInputCloud (), setIndices ()>
        # param[out] clusters the resultant point clusters
        # void extract (std::vector<PointIndices> &clusters);
        void extract (vector[PointIndices] &clusters)


ctypedef EuclideanClusterExtraction[PointXYZ] EuclideanClusterExtraction_t
ctypedef EuclideanClusterExtraction[PointXYZI] EuclideanClusterExtraction_PointXYZI_t
ctypedef EuclideanClusterExtraction[PointXYZRGB] EuclideanClusterExtraction_PointXYZRGB_t
ctypedef EuclideanClusterExtraction[PointXYZRGBA] EuclideanClusterExtraction_PointXYZRGBA_t
###


# extract_labeled_clusters.h
# namespace pcl
# /** \brief Decompose a region of space into clusters based on the Euclidean distance between points
#   * \param[in] cloud the point cloud message
#   * \param[in] tree the spatial locator (e.g., kd-tree) used for nearest neighbors searching
#   * \note the tree has to be created as a spatial locator on \a cloud
#   * \param[in] tolerance the spatial cluster tolerance as a measure in L2 Euclidean space
#   * \param[out] labeled_clusters the resultant clusters containing point indices (as a vector of PointIndices)
#   * \param[in] min_pts_per_cluster minimum number of points that a cluster may contain (default: 1)
#   * \param[in] max_pts_per_cluster maximum number of points that a cluster may contain (default: max int)
#   * \param[in] max_label
#   * \ingroup segmentation
#   */
# template <typename PointT> void 
# extractLabeledEuclideanClusters (
#     const PointCloud<PointT> &cloud, const boost::shared_ptr<search::Search<PointT> > &tree, 
#     float tolerance, std::vector<std::vector<PointIndices> > &labeled_clusters, 
#     unsigned int min_pts_per_cluster = 1, unsigned int max_pts_per_cluster = (std::numeric_limits<int>::max) (), 
#     unsigned int max_label = (std::numeric_limits<int>::max));


# extract_labeled_clusters.h
# namespace pcl
# brief @b LabeledEuclideanClusterExtraction represents a segmentation class for cluster extraction in an Euclidean sense, with label info.
# author Koen Buys
# ingroup segmentation
# template <typename PointT>
# class LabeledEuclideanClusterExtraction: public PCLBase<PointT>
cdef extern from "pcl/segmentation/extract_labeled_clusters.h" namespace "pcl":
    cdef cppclass LabeledEuclideanClusterExtraction[T](PCLBase[T]):
        LabeledEuclideanClusterExtraction()
        # typedef PCLBase<PointT> BasePCLBase;
        # 
        # public:
        # typedef pcl::PointCloud<PointT> PointCloud;
        # typedef typename PointCloud::Ptr PointCloudPtr;
        # typedef typename PointCloud::ConstPtr PointCloudConstPtr;
        # typedef typename pcl::search::Search<PointT> KdTree;
        # typedef typename pcl::search::Search<PointT>::Ptr KdTreePtr;
        # typedef PointIndices::Ptr PointIndicesPtr;
        # typedef PointIndices::ConstPtr PointIndicesConstPtr;
        # 
        # /** \brief Empty constructor. */
        # LabeledEuclideanClusterExtraction () : 
        #   tree_ (), 
        #   cluster_tolerance_ (0),
        #   min_pts_per_cluster_ (1), 
        #   max_pts_per_cluster_ (std::numeric_limits<int>::max ()),
        #   max_label_ (std::numeric_limits<int>::max ())
        # {};
        # 
        # /** \brief Provide a pointer to the search object.
        #   * \param[in] tree a pointer to the spatial search object.
        #   */
        # inline void setSearchMethod (const KdTreePtr &tree) { tree_ = tree; }
        # 
        # /** \brief Get a pointer to the search method used. */
        # inline KdTreePtr getSearchMethod () const { return (tree_); }
        # 
        # /** \brief Set the spatial cluster tolerance as a measure in the L2 Euclidean space
        #   * \param[in] tolerance the spatial cluster tolerance as a measure in the L2 Euclidean space
        #   */
        # inline void setClusterTolerance (double tolerance) { cluster_tolerance_ = tolerance; }
        # 
        # /** \brief Get the spatial cluster tolerance as a measure in the L2 Euclidean space. */
        # inline double getClusterTolerance () const { return (cluster_tolerance_); }
        # 
        # /** \brief Set the minimum number of points that a cluster needs to contain in order to be considered valid.
        #   * \param[in] min_cluster_size the minimum cluster size
        #   */
        # inline void setMinClusterSize (int min_cluster_size) { min_pts_per_cluster_ = min_cluster_size; }
        # 
        # /** \brief Get the minimum number of points that a cluster needs to contain in order to be considered valid. */
        # inline int getMinClusterSize () const { return (min_pts_per_cluster_); }
        # 
        # /** \brief Set the maximum number of points that a cluster needs to contain in order to be considered valid.
        #   * \param[in] max_cluster_size the maximum cluster size
        #   */
        # inline void setMaxClusterSize (int max_cluster_size) { max_pts_per_cluster_ = max_cluster_size; }
        # 
        # /** \brief Get the maximum number of points that a cluster needs to contain in order to be considered valid. */
        # inline int getMaxClusterSize () const { return (max_pts_per_cluster_); }
        # 
        # /** \brief Set the maximum number of labels in the cloud.
        #   * \param[in] max_label the maximum
        #   */
        # inline void setMaxLabels (unsigned int max_label) { max_label_ = max_label; }
        # 
        # /** \brief Get the maximum number of labels */
        # inline unsigned int getMaxLabels () const { return (max_label_); }
        # 
        # /** \brief Cluster extraction in a PointCloud given by <setInputCloud (), setIndices ()>
        #   * \param[out] labeled_clusters the resultant point clusters
        #   */
        # void extract (std::vector<std::vector<PointIndices> > &labeled_clusters);
        # 
        # protected:
        #     // Members derived from the base class
        #     using BasePCLBase::input_;
        #     using BasePCLBase::indices_;
        #     using BasePCLBase::initCompute;
        #     using BasePCLBase::deinitCompute;
        # 
        # /** \brief A pointer to the spatial search object. */
        # KdTreePtr tree_;
        # /** \brief The spatial cluster tolerance as a measure in the L2 Euclidean space. */
        # double cluster_tolerance_;
        # /** \brief The minimum number of points that a cluster needs to contain in order to be considered valid (default = 1). */
        # int min_pts_per_cluster_;
        # /** \brief The maximum number of points that a cluster needs to contain in order to be considered valid (default = MAXINT). */
        # int max_pts_per_cluster_;
        # /** \brief The maximum number of labels we can find in this pointcloud (default = MAXINT)*/
        # unsigned int max_label_;
        # /** \brief Class getName method. */
        # virtual std::string getClassName () const { return ("LabeledEuclideanClusterExtraction"); }
        # 

        #   brief Sort clusters method (for std::sort). 
        #   ingroup segmentation
        #   inline bool compareLabeledPointClusters (const pcl::PointIndices &a, const pcl::PointIndices &b)
        #   {
        #     return (a.indices.size () < b.indices.size ());
        #   }
###

# extract_polygonal_prism_data.h
# namespace pcl
# /** \brief General purpose method for checking if a 3D point is inside or
#   * outside a given 2D polygon. 
#   * \note this method accepts any general 3D point that is projected onto the
#   * 2D polygon, but performs an internal XY projection of both the polygon and the point. 
#   * \param point a 3D point projected onto the same plane as the polygon
#   * \param polygon a polygon
#   * \ingroup segmentation
#   */
# template <typename PointT> bool isPointIn2DPolygon (const PointT &point, const pcl::PointCloud<PointT> &polygon);
###

# extract_polygonal_prism_data.h
# namespace pcl
# /** \brief Check if a 2d point (X and Y coordinates considered only!) is
#   * inside or outside a given polygon. This method assumes that both the point
#   * and the polygon are projected onto the XY plane.
#   *
#   * \note (This is highly optimized code taken from http://www.visibone.com/inpoly/)
#   *       Copyright (c) 1995-1996 Galacticomm, Inc.  Freeware source code.
#   * \param point a 3D point projected onto the same plane as the polygon
#   * \param polygon a polygon
#   * \ingroup segmentation
#   */
# template <typename PointT> bool 
# isXYPointIn2DXYPolygon (const PointT &point, const pcl::PointCloud<PointT> &polygon);
###

# extract_polygonal_prism_data.h
# namespace pcl
# /** \brief @b ExtractPolygonalPrismData uses a set of point indices that
#   * represent a planar model, and together with a given height, generates a 3D
#   * polygonal prism. The polygonal prism is then used to segment all points
#   * lying inside it.
#   * An example of its usage is to extract the data lying within a set of 3D
#   * boundaries (e.g., objects supported by a plane).
#   * \author Radu Bogdan Rusu
#   * \ingroup segmentation
#   */
# template <typename PointT>
# class ExtractPolygonalPrismData : public PCLBase<PointT>
cdef extern from "pcl/segmentation/extract_polygonal_prism_data.h" namespace "pcl":
    cdef cppclass ExtractPolygonalPrismData[T](PCLBase[T]):
        ExtractPolygonalPrismData()
        # public:
        # typedef pcl::PointCloud<PointT> PointCloud;
        # typedef typename PointCloud::Ptr PointCloudPtr;
        # typedef typename PointCloud::ConstPtr PointCloudConstPtr;
        # typedef PointIndices::Ptr PointIndicesPtr;
        # typedef PointIndices::ConstPtr PointIndicesConstPtr;
        # 
        # brief Empty constructor.
        # ExtractPolygonalPrismData () : planar_hull_ (), min_pts_hull_ (3), 
        #                                height_limit_min_ (0), height_limit_max_ (FLT_MAX),
        #                                vpx_ (0), vpy_ (0), vpz_ (0)
        # {};
        # 
        # brief Provide a pointer to the input planar hull dataset.
        # param[in] hull the input planar hull dataset
        # inline void setInputPlanarHull (const PointCloudConstPtr &hull) { planar_hull_ = hull; }
        # 
        # brief Get a pointer the input planar hull dataset.
        # inline PointCloudConstPtr getInputPlanarHull () const { return (planar_hull_); }
        # 
        # brief Set the height limits. All points having distances to the
        # model outside this interval will be discarded.
        # param[in] height_min the minimum allowed distance to the plane model value
        # param[in] height_max the maximum allowed distance to the plane model value
        # inline void setHeightLimits (double height_min, double height_max)
        # 
        # brief Get the height limits (min/max) as set by the user. The
        # default values are -FLT_MAX, FLT_MAX. 
        # param[out] height_min the resultant min height limit
        # param[out] height_max the resultant max height limit
        # inline void getHeightLimits (double &height_min, double &height_max) const
        # 
        # brief Set the viewpoint.
        # param[in] vpx the X coordinate of the viewpoint
        # param[in] vpy the Y coordinate of the viewpoint
        # param[in] vpz the Z coordinate of the viewpoint
        # inline void setViewPoint (float vpx, float vpy, float vpz)
        # 
        # brief Get the viewpoint.
        # inline void getViewPoint (float &vpx, float &vpy, float &vpz) const
        # 
        # /** \brief Cluster extraction in a PointCloud given by <setInputCloud (), setIndices ()>
        #   * \param[out] output the resultant point indices that support the model found (inliers)
        # void segment (PointIndices &output);
        # 
        # protected:
        # brief A pointer to the input planar hull dataset.
        # PointCloudConstPtr planar_hull_;
        # 
        # brief The minimum number of points needed on the convex hull.
        # int min_pts_hull_;
        # 
        # brief The minimum allowed height (distance to the model) a point
        # will be considered from. 
        # double height_limit_min_;
        # 
        # brief The maximum allowed height (distance to the model) a point will be considered from. 
        # double height_limit_max_;
        # 
        # brief Values describing the data acquisition viewpoint. Default: 0,0,0.
        # float vpx_, vpy_, vpz_;
        # 
        # brief Class getName method.
        # virtual std::string getClassName () const { return ("ExtractPolygonalPrismData"); }


###

# organized_connected_component_segmentation.h
# namespace pcl
# /** \brief OrganizedConnectedComponentSegmentation allows connected
#   * components to be found within organized point cloud data, given a
#   * comparison function.  Given an input cloud and a comparator, it will
#   * output a PointCloud of labels, giving each connected component a unique
#   * id, along with a vector of PointIndices corresponding to each component.
#   * See OrganizedMultiPlaneSegmentation for an example application.
#   *
#   * \author Alex Trevor, Suat Gedikli
#   */
# template <typename PointT, typename PointLT>
# class OrganizedConnectedComponentSegmentation : public PCLBase<PointT>
#     using PCLBase<PointT>::input_;
#     using PCLBase<PointT>::indices_;
#     using PCLBase<PointT>::initCompute;
#     using PCLBase<PointT>::deinitCompute;
# 
#     public:
#       typedef typename pcl::PointCloud<PointT> PointCloud;
#       typedef typename PointCloud::Ptr PointCloudPtr;
#       typedef typename PointCloud::ConstPtr PointCloudConstPtr;
#       
#       typedef typename pcl::PointCloud<PointLT> PointCloudL;
#       typedef typename PointCloudL::Ptr PointCloudLPtr;
#       typedef typename PointCloudL::ConstPtr PointCloudLConstPtr;
# 
#       typedef typename pcl::Comparator<PointT> Comparator;
#       typedef typename Comparator::Ptr ComparatorPtr;
#       typedef typename Comparator::ConstPtr ComparatorConstPtr;
#       
#       /** \brief Constructor for OrganizedConnectedComponentSegmentation
#         * \param[in] compare A pointer to the comparator to be used for segmentation.  Must be an instance of pcl::Comparator.
#         */
#       OrganizedConnectedComponentSegmentation (const ComparatorConstPtr& compare)
#         : compare_ (compare)
#       {
#       }
# 
#       /** \brief Destructor for OrganizedConnectedComponentSegmentation. */
#       virtual
#       ~OrganizedConnectedComponentSegmentation ()
#       {
#       }
# 
#       /** \brief Provide a pointer to the comparator to be used for segmentation.
#         * \param[in] compare the comparator
#         */
#       void
#       setComparator (const ComparatorConstPtr& compare)
#       {
#         compare_ = compare;
#       }
#       
#       /** \brief Get the comparator.*/
#       ComparatorConstPtr
#       getComparator () const { return (compare_); }
# 
#       /** \brief Perform the connected component segmentation.
#         * \param[out] labels a PointCloud of labels: each connected component will have a unique id.
#         * \param[out] label_indices a vector of PointIndices corresponding to each label / component id.
#         */
#       void
#       segment (pcl::PointCloud<PointLT>& labels, std::vector<pcl::PointIndices>& label_indices) const;
#       
#       /** \brief Find the boundary points / contour of a connected component
#         * \param[in] start_idx the first (lowest) index of the connected component for which a boundary shoudl be returned
#         * \param[in] labels the Label cloud produced by segmentation
#         * \param[out] boundary_indices the indices of the boundary points for the label corresponding to start_idx
#         */
#       static void
#       findLabeledRegionBoundary (int start_idx, PointCloudLPtr labels, pcl::PointIndices& boundary_indices);      
#       
# 
#     protected:
#       ComparatorConstPtr compare_;
#       
#       inline unsigned
#       findRoot (const std::vector<unsigned>& runs, unsigned index) const
#       {
#         register unsigned idx = index;
#         while (runs[idx] != idx)
#           idx = runs[idx];
# 
#         return (idx);
#       }
###

# organized_multi_plane_segmentation.h
# namespace pcl
# /** \brief OrganizedMultiPlaneSegmentation finds all planes present in the
#   * input cloud, and outputs a vector of plane equations, as well as a vector
#   * of point clouds corresponding to the inliers of each detected plane.  Only
#   * planes with more than min_inliers points are detected.
#   * Templated on point type, normal type, and label type
#   *
#   * \author Alex Trevor, Suat Gedikli
#   */
# template<typename PointT, typename PointNT, typename PointLT>
# class OrganizedMultiPlaneSegmentation : public PCLBase<PointT>
#     using PCLBase<PointT>::input_;
#     using PCLBase<PointT>::indices_;
#     using PCLBase<PointT>::initCompute;
#     using PCLBase<PointT>::deinitCompute;
# 
#     public:
#       typedef pcl::PointCloud<PointT> PointCloud;
#       typedef typename PointCloud::Ptr PointCloudPtr;
#       typedef typename PointCloud::ConstPtr PointCloudConstPtr;
# 
#       typedef typename pcl::PointCloud<PointNT> PointCloudN;
#       typedef typename PointCloudN::Ptr PointCloudNPtr;
#       typedef typename PointCloudN::ConstPtr PointCloudNConstPtr;
# 
#       typedef typename pcl::PointCloud<PointLT> PointCloudL;
#       typedef typename PointCloudL::Ptr PointCloudLPtr;
#       typedef typename PointCloudL::ConstPtr PointCloudLConstPtr;
# 
#       typedef typename pcl::PlaneCoefficientComparator<PointT, PointNT> PlaneComparator;
#       typedef typename PlaneComparator::Ptr PlaneComparatorPtr;
#       typedef typename PlaneComparator::ConstPtr PlaneComparatorConstPtr;
# 
#       typedef typename pcl::PlaneRefinementComparator<PointT, PointNT, PointLT> PlaneRefinementComparator;
#       typedef typename PlaneRefinementComparator::Ptr PlaneRefinementComparatorPtr;
#       typedef typename PlaneRefinementComparator::ConstPtr PlaneRefinementComparatorConstPtr;
# 
#       /** \brief Constructor for OrganizedMultiPlaneSegmentation. */
#       OrganizedMultiPlaneSegmentation () :
#         normals_ (), 
#         min_inliers_ (1000), 
#         angular_threshold_ (pcl::deg2rad (3.0)), 
#         distance_threshold_ (0.02),
#         maximum_curvature_ (0.001),
#         project_points_ (false), 
#         compare_ (new PlaneComparator ()), refinement_compare_ (new PlaneRefinementComparator ())
#       {
#       }
# 
#       /** \brief Destructor for OrganizedMultiPlaneSegmentation. */
#       virtual
#       ~OrganizedMultiPlaneSegmentation ()
#       {
#       }
# 
#       /** \brief Provide a pointer to the input normals.
#         * \param[in] normals the input normal cloud
#         */
#       inline void
#       setInputNormals (const PointCloudNConstPtr &normals) 
#       {
#         normals_ = normals;
#       }
# 
#       /** \brief Get the input normals. */
#       inline PointCloudNConstPtr
#       getInputNormals () const
#       {
#         return (normals_);
#       }
# 
#       /** \brief Set the minimum number of inliers required for a plane
#         * \param[in] min_inliers the minimum number of inliers required per plane
#         */
#       inline void
#       setMinInliers (unsigned min_inliers)
#       {
#         min_inliers_ = min_inliers;
#       }
# 
#       /** \brief Get the minimum number of inliers required per plane. */
#       inline unsigned
#       getMinInliers () const
#       {
#         return (min_inliers_);
#       }
# 
#       /** \brief Set the tolerance in radians for difference in normal direction between neighboring points, to be considered part of the same plane.
#         * \param[in] angular_threshold the tolerance in radians
#         */
#       inline void
#       setAngularThreshold (double angular_threshold)
#       {
#         angular_threshold_ = angular_threshold;
#       }
# 
#       /** \brief Get the angular threshold in radians for difference in normal direction between neighboring points, to be considered part of the same plane. */
#       inline double
#       getAngularThreshold () const
#       {
#         return (angular_threshold_);
#       }
# 
#       /** \brief Set the tolerance in meters for difference in perpendicular distance (d component of plane equation) to the plane between neighboring points, to be considered part of the same plane.
#         * \param[in] distance_threshold the tolerance in meters
#         */
#       inline void
#       setDistanceThreshold (double distance_threshold)
#       {
#         distance_threshold_ = distance_threshold;
#       }
# 
#       /** \brief Get the distance threshold in meters (d component of plane equation) between neighboring points, to be considered part of the same plane. */
#       inline double
#       getDistanceThreshold () const
#       {
#         return (distance_threshold_);
#       }
# 
#       /** \brief Set the maximum curvature allowed for a planar region.
#         * \param[in] maximum_curvature the maximum curvature
#         */
#       inline void
#       setMaximumCurvature (double maximum_curvature)
#       {
#         maximum_curvature_ = maximum_curvature;
#       }
# 
#       /** \brief Get the maximum curvature allowed for a planar region. */
#       inline double
#       getMaximumCurvature () const
#       {
#         return (maximum_curvature_);
#       }
# 
#       /** \brief Provide a pointer to the comparator to be used for segmentation.
#         * \param[in] compare A pointer to the comparator to be used for segmentation.
#         */
#       void
#       setComparator (const PlaneComparatorPtr& compare)
#       {
#         compare_ = compare;
#       }
# 
#       /** \brief Provide a pointer to the comparator to be used for refinement.
#         * \param[in] compare A pointer to the comparator to be used for refinement.
#         */
#       void
#       setRefinementComparator (const PlaneRefinementComparatorPtr& compare)
#       {
#         refinement_compare_ = compare;
#       }
# 
#       /** \brief Set whether or not to project boundary points to the plane, or leave them in the original 3D space.
#         * \param[in] project_points true if points should be projected, false if not.
#         */
#       void
#       setProjectPoints (bool project_points)
#       {
#         project_points_ = project_points;
#       }
# 
#       /** \brief Segmentation of all planes in a point cloud given by setInputCloud(), setIndices()
#         * \param[out] model_coefficients a vector of model_coefficients for each plane found in the input cloud
#         * \param[out] inlier_indices a vector of inliers for each detected plane
#         * \param[out] centroids a vector of centroids for each plane
#         * \param[out] covariances a vector of covariance matricies for the inliers of each plane
#         * \param[out] labels a point cloud for the connected component labels of each pixel
#         * \param[out] label_indices a vector of PointIndices for each labeled component
#         */
#       void
#       segment (std::vector<ModelCoefficients>& model_coefficients, 
#                std::vector<PointIndices>& inlier_indices,
#                std::vector<Eigen::Vector4f, Eigen::aligned_allocator<Eigen::Vector4f> >& centroids,
#                std::vector <Eigen::Matrix3f, Eigen::aligned_allocator<Eigen::Matrix3f> >& covariances,
#                pcl::PointCloud<PointLT>& labels, 
#                std::vector<pcl::PointIndices>& label_indices);
# 
#       /** \brief Segmentation of all planes in a point cloud given by setInputCloud(), setIndices()
#         * \param[out] model_coefficients a vector of model_coefficients for each plane found in the input cloud
#         * \param[out] inlier_indices a vector of inliers for each detected plane
#         */
#       void
#       segment (std::vector<ModelCoefficients>& model_coefficients, 
#                std::vector<PointIndices>& inlier_indices);
# 
#       /** \brief Segmentation of all planes in a point cloud given by setInputCloud(), setIndices()
#         * \param[out] regions a list of resultant planar polygonal regions
#         */
#       void
#       segment (std::vector<PlanarRegion<PointT>, Eigen::aligned_allocator<PlanarRegion<PointT> > >& regions);
#       
#       /** \brief Perform a segmentation, as well as an additional refinement step.  This helps with including points whose normals may not match neighboring points well, but may match the planar model well.
#         * \param[out] regions A list of regions generated by segmentation and refinement.
#         */
#       void
#       segmentAndRefine (std::vector<PlanarRegion<PointT>, Eigen::aligned_allocator<PlanarRegion<PointT> > >& regions);
# 
#       /** \brief Perform a segmentation, as well as additional refinement step.  Returns intermediate data structures for use in
#         * subsequent processing.
#         * \param[out] regions A vector of PlanarRegions generated by segmentation
#         * \param[out] model_coefficients A vector of model coefficients for each segmented plane
#         * \param[out] inlier_indices A vector of PointIndices, indicating the inliers to each segmented plane
#         * \param[out] labels A PointCloud<PointLT> corresponding to the resulting segmentation.
#         * \param[out] label_indices A vector of PointIndices for each label
#         * \param[out] boundary_indices A vector of PointIndices corresponding to the outer boundary / contour of each label
#         */
#       void
#       segmentAndRefine (std::vector<PlanarRegion<PointT>, Eigen::aligned_allocator<PlanarRegion<PointT> > >& regions,
#                         std::vector<ModelCoefficients>& model_coefficients,
#                         std::vector<PointIndices>& inlier_indices,
#                         PointCloudLPtr& labels,
#                         std::vector<pcl::PointIndices>& label_indices,
#                         std::vector<pcl::PointIndices>& boundary_indices);
#       
#       /** \brief Perform a refinement of an initial segmentation, by comparing points to adjacent regions detected by the initial segmentation.
#         * \param [in] model_coefficients The list of segmented model coefficients
#         * \param [in] inlier_indices The list of segmented inlier indices, corresponding to each model
#         * \param [in] centroids The list of centroids corresponding to each segmented plane
#         * \param [in] covariances The list of covariances corresponding to each segemented plane
#         * \param [in] labels The labels produced by the initial segmentation
#         * \param [in] label_indices The list of indices corresponding to each label
#         */
#       void
#       refine (std::vector<ModelCoefficients>& model_coefficients, 
#               std::vector<PointIndices>& inlier_indices,
#               std::vector<Eigen::Vector4f, Eigen::aligned_allocator<Eigen::Vector4f> >& centroids,
#               std::vector <Eigen::Matrix3f, Eigen::aligned_allocator<Eigen::Matrix3f> >& covariances,
#               PointCloudLPtr& labels,
#               std::vector<pcl::PointIndices>& label_indices);


###

# planar_polygon_fusion.h
# namespace pcl
# /** \brief PlanarPolygonFusion takes a list of 2D planar polygons and
#   * attempts to reduce them to a minimum set that best represents the scene,
#   * based on various given comparators.
#   */
# template <typename PointT>
# class PlanarPolygonFusion
#     public:
#       /** \brief Constructor */
#       PlanarPolygonFusion () : regions_ () {}
#      
#       /** \brief Destructor */
#       virtual ~PlanarPolygonFusion () {}
# 
#       /** \brief Reset the state (clean the list of planar models). */
#       void 
#       reset ()
#       {
#         regions_.clear ();
#       }
#       
#       /** \brief Set the list of 2D planar polygons to refine.
#         * \param[in] input the list of 2D planar polygons to refine
#         */
#       void
#       addInputPolygons (const std::vector<PlanarRegion<PointT>, Eigen::aligned_allocator<PlanarRegion<PointT> > > &input)
#       {
#         int start = static_cast<int> (regions_.size ());
#         regions_.resize (regions_.size () + input.size ());
#         for(size_t i = 0; i < input.size (); i++)
#           regions_[start+i] = input[i];
#       }


###

# planar_region.h
# namespace pcl
# /** \brief PlanarRegion represents a set of points that lie in a plane.  Inherits summary statistics about these points from Region3D, and  summary statistics of a 3D collection of points.
#   * \author Alex Trevor
#   */
# template <typename PointT>
# class PlanarRegion : public pcl::Region3D<PointT>, public pcl::PlanarPolygon<PointT>
#     protected:
#       using Region3D<PointT>::centroid_;
#       using Region3D<PointT>::covariance_; 
#       using Region3D<PointT>::count_;
#       using PlanarPolygon<PointT>::contour_;
#       using PlanarPolygon<PointT>::coefficients_;
# 
#     public:
#       /** \brief Empty constructor for PlanarRegion. */
#       PlanarRegion () : contour_labels_ ()
#       {}
# 
#       /** \brief Constructor for Planar region from a Region3D and a PlanarPolygon. 
#         * \param[in] region a Region3D for the input data
#         * \param[in] polygon a PlanarPolygon for the input region
#         */
#       PlanarRegion (const pcl::Region3D<PointT>& region, const pcl::PlanarPolygon<PointT>& polygon) :
#         contour_labels_ ()
#       {
#         centroid_ = region.centroid;
#         covariance_ = region.covariance;
#         count_ = region.count;
#         contour_ = polygon.contour;
#         coefficients_ = polygon.coefficients;
#       }
#       
#       /** \brief Destructor. */
#       virtual ~PlanarRegion () {}
# 
#       /** \brief Constructor for PlanarRegion.
#         * \param[in] centroid the centroid of the region.
#         * \param[in] covariance the covariance of the region.
#         * \param[in] count the number of points in the region.
#         * \param[in] contour the contour / boudnary for the region
#         * \param[in] coefficients the model coefficients (a,b,c,d) for the plane
#         */
#       PlanarRegion (const Eigen::Vector3f& centroid, const Eigen::Matrix3f& covariance, unsigned count,
#                     const typename pcl::PointCloud<PointT>::VectorType& contour,
#                     const Eigen::Vector4f& coefficients) :
#         contour_labels_ ()
#       {
#         centroid_ = centroid;
#         covariance_ = covariance;
#         count_ = count;
#         contour_ = contour;
#         coefficients_ = coefficients;
#       }


###

# plane_refinement_comparator.h
# namespace pcl
# /** \brief PlaneRefinementComparator is a Comparator that operates on plane coefficients, 
#   * for use in planar segmentation.
#   * In conjunction with OrganizedConnectedComponentSegmentation, this allows planes to be segmented from organized data.
#   *
#   * \author Alex Trevor, Suat Gedikli
#   */
# template<typename PointT, typename PointNT, typename PointLT>
# class PlaneRefinementComparator: public PlaneCoefficientComparator<PointT, PointNT>
#     public:
#       typedef typename Comparator<PointT>::PointCloud PointCloud;
#       typedef typename Comparator<PointT>::PointCloudConstPtr PointCloudConstPtr;
#       typedef typename pcl::PointCloud<PointNT> PointCloudN;
#       typedef typename PointCloudN::Ptr PointCloudNPtr;
#       typedef typename PointCloudN::ConstPtr PointCloudNConstPtr;
#       typedef typename pcl::PointCloud<PointLT> PointCloudL;
#       typedef typename PointCloudL::Ptr PointCloudLPtr;
#       typedef typename PointCloudL::ConstPtr PointCloudLConstPtr;
#       typedef boost::shared_ptr<PlaneRefinementComparator<PointT, PointNT, PointLT> > Ptr;
#       typedef boost::shared_ptr<const PlaneRefinementComparator<PointT, PointNT, PointLT> > ConstPtr;
#       using pcl::PlaneCoefficientComparator<PointT, PointNT>::input_;
#       using pcl::PlaneCoefficientComparator<PointT, PointNT>::normals_;
#       using pcl::PlaneCoefficientComparator<PointT, PointNT>::distance_threshold_;
#       using pcl::PlaneCoefficientComparator<PointT, PointNT>::plane_coeff_d_;
# 
#       /** \brief Empty constructor for PlaneCoefficientComparator. */
#      PlaneRefinementComparator ()
#         : models_ ()
#         , labels_ ()
#         , refine_labels_ ()
#         , label_to_model_ ()
#         , depth_dependent_ (false)
#       
#       /** \brief Empty constructor for PlaneCoefficientComparator. 
#         * \param[in] models
#         * \param[in] refine_labels
#         */
#       PlaneRefinementComparator (boost::shared_ptr<std::vector<pcl::ModelCoefficients> >& models,
#                                  boost::shared_ptr<std::vector<bool> >& refine_labels)
#         : models_ (models)
#         , labels_ ()
#         , refine_labels_ (refine_labels)
#         , label_to_model_ ()
#         , depth_dependent_ (false)
#       
#       /** \brief Destructor for PlaneCoefficientComparator. */
#       virtual
#       ~PlaneRefinementComparator ()
#       
#       /** \brief Set the vector of model coefficients to which we will compare.
#         * \param[in] models a vector of model coefficients produced by the initial segmentation step.
#         */
#       void setModelCoefficients (boost::shared_ptr<std::vector<pcl::ModelCoefficients> >& models)
#       
#       /** \brief Set the vector of model coefficients to which we will compare.
#         * \param[in] models a vector of model coefficients produced by the initial segmentation step.
#         */
#       void setModelCoefficients (std::vector<pcl::ModelCoefficients>& models)
#       
#       /** \brief Set which labels should be refined.  This is a vector of bools 0-max_label, true if the label should be refined.
#         * \param[in] refine_labels A vector of bools 0-max_label, true if the label should be refined.
#         */
#       void setRefineLabels (boost::shared_ptr<std::vector<bool> >& refine_labels)
#       
#       /** \brief Set which labels should be refined.  This is a vector of bools 0-max_label, true if the label should be refined.
#         * \param[in] refine_labels A vector of bools 0-max_label, true if the label should be refined.
#         */
#       void setRefineLabels (std::vector<bool>& refine_labels)
#       
#       /** \brief A mapping from label to index in the vector of models, allowing the model coefficients of a label to be accessed.
#         * \param[in] label_to_model A vector of size max_label, with the index of each corresponding model in models
#         */
#       inline void setLabelToModel (boost::shared_ptr<std::vector<int> >& label_to_model)
#       
#       /** \brief A mapping from label to index in the vector of models, allowing the model coefficients of a label to be accessed.
#         * \param[in] label_to_model A vector of size max_label, with the index of each corresponding model in models
#         */
#       inline void setLabelToModel (std::vector<int>& label_to_model)
#       
#       /** \brief Get the vector of model coefficients to which we will compare. */
#       inline boost::shared_ptr<std::vector<pcl::ModelCoefficients> > getModelCoefficients () const
#       
#       /** \brief ...
#         * \param[in] labels
#         */
#       inline void setLabels (PointCloudLPtr& labels)
#       
#       /** \brief Compare two neighboring points
#         * \param[in] idx1 The index of the first point.
#         * \param[in] idx2 The index of the second point.
#         */
#       virtual bool compare (int idx1, int idx2) const


###

# region_3d.h
# namespace pcl
# /** \brief Region3D represents summary statistics of a 3D collection of points.
#   * \author Alex Trevor
#   */
# template <typename PointT>
# class Region3D
#     public:
#       /** \brief Empty constructor for Region3D. */
#       Region3D () : centroid_ (Eigen::Vector3f::Zero ()), covariance_ (Eigen::Matrix3f::Identity ()), count_ (0)
#       {
#       }
#       
#       /** \brief Constructor for Region3D. 
#         * \param[in] centroid The centroid of the region.
#         * \param[in] covariance The covariance of the region.
#         * \param[in] count The number of points in the region.
#         */
#       Region3D (Eigen::Vector3f& centroid, Eigen::Matrix3f& covariance, unsigned count) 
#         : centroid_ (centroid), covariance_ (covariance), count_ (count)
#       {
#       }
#      
#       /** \brief Destructor. */
#       virtual ~Region3D () {}
# 
#       /** \brief Get the centroid of the region. */
#       inline Eigen::Vector3f getCentroid () const
#       
#       /** \brief Get the covariance of the region. */
#       inline Eigen::Matrix3f getCovariance () const
#       
#       /** \brief Get the number of points in the region. */
#       unsigned getCount () const


###

# rgb_plane_coefficient_comparator.h
# namespace pcl
# /** \brief RGBPlaneCoefficientComparator is a Comparator that operates on plane coefficients, 
#   * for use in planar segmentation.  Also takes into account RGB, so we can segmented different colored co-planar regions.
#   * In conjunction with OrganizedConnectedComponentSegmentation, this allows planes to be segmented from organized data.
#   * \author Alex Trevor
#   */
# template<typename PointT, typename PointNT>
# class RGBPlaneCoefficientComparator: public PlaneCoefficientComparator<PointT, PointNT>
#     public:
#       typedef typename Comparator<PointT>::PointCloud PointCloud;
#       typedef typename Comparator<PointT>::PointCloudConstPtr PointCloudConstPtr;
#       
#       typedef typename pcl::PointCloud<PointNT> PointCloudN;
#       typedef typename PointCloudN::Ptr PointCloudNPtr;
#       typedef typename PointCloudN::ConstPtr PointCloudNConstPtr;
#       
#       typedef boost::shared_ptr<RGBPlaneCoefficientComparator<PointT, PointNT> > Ptr;
#       typedef boost::shared_ptr<const RGBPlaneCoefficientComparator<PointT, PointNT> > ConstPtr;
# 
#       using pcl::Comparator<PointT>::input_;
#       using pcl::PlaneCoefficientComparator<PointT, PointNT>::normals_;
#       using pcl::PlaneCoefficientComparator<PointT, PointNT>::angular_threshold_;
#       using pcl::PlaneCoefficientComparator<PointT, PointNT>::distance_threshold_;
# 
#       /** \brief Empty constructor for RGBPlaneCoefficientComparator. */
#       RGBPlaneCoefficientComparator ()
#         : color_threshold_ (50.0f)
#       {
#       }
# 
#       /** \brief Constructor for RGBPlaneCoefficientComparator.
#         * \param[in] plane_coeff_d a reference to a vector of d coefficients of plane equations.  Must be the same size as the input cloud and input normals.  a, b, and c coefficients are in the input normals.
#         */
#       RGBPlaneCoefficientComparator (boost::shared_ptr<std::vector<float> >& plane_coeff_d) 
#         : PlaneCoefficientComparator<PointT, PointNT> (plane_coeff_d), color_threshold_ (50.0f)
#       {
#       }
#       
#       /** \brief Destructor for RGBPlaneCoefficientComparator. */
#       virtual
#       ~RGBPlaneCoefficientComparator ()
#       {
#       }
# 
#       /** \brief Set the tolerance in color space between neighboring points, to be considered part of the same plane.
#         * \param[in] color_threshold The distance in color space
#         */
#       inline void
#       setColorThreshold (float color_threshold)
#       {
#         color_threshold_ = color_threshold * color_threshold;
#       }
# 
#       /** \brief Get the color threshold between neighboring points, to be considered part of the same plane. */
#       inline float
#       getColorThreshold () const
#       {
#         return (color_threshold_);
#       }
# 
#       /** \brief Compare two neighboring points, by using normal information, euclidean distance, and color information.
#         * \param[in] idx1 The index of the first point.
#         * \param[in] idx2 The index of the second point.
#         */
#       bool
#       compare (int idx1, int idx2) const
#       {
#         float dx = input_->points[idx1].x - input_->points[idx2].x;
#         float dy = input_->points[idx1].y - input_->points[idx2].y;
#         float dz = input_->points[idx1].z - input_->points[idx2].z;
#         float dist = sqrtf (dx*dx + dy*dy + dz*dz);
#         int dr = input_->points[idx1].r - input_->points[idx2].r;
#         int dg = input_->points[idx1].g - input_->points[idx2].g;
#         int db = input_->points[idx1].b - input_->points[idx2].b;
#         //Note: This is not the best metric for color comparisons, we should probably use HSV space.
#         float color_dist = static_cast<float> (dr*dr + dg*dg + db*db);
#         return ( (dist < distance_threshold_)
#                  && (normals_->points[idx1].getNormalVector3fMap ().dot (normals_->points[idx2].getNormalVector3fMap () ) > angular_threshold_ )
#                  && (color_dist < color_threshold_));
#       }


###

# segment_differences.h
# namespace pcl
# /** \brief Obtain the difference between two aligned point clouds as another point cloud, given a distance threshold.
#   * \param src the input point cloud source
#   * \param tgt the input point cloud target we need to obtain the difference against
#   * \param threshold the distance threshold (tolerance) for point correspondences. (e.g., check if f a point p1 from 
#   * src has a correspondence > threshold than a point p2 from tgt)
#   * \param tree the spatial locator (e.g., kd-tree) used for nearest neighbors searching built over \a tgt
#   * \param output the resultant output point cloud difference
#   * \ingroup segmentation
#   */
# template <typename PointT> 
# void getPointCloudDifference (
#     const pcl::PointCloud<PointT> &src, const pcl::PointCloud<PointT> &tgt, 
#     double threshold, const boost::shared_ptr<pcl::search::Search<PointT> > &tree,
#     pcl::PointCloud<PointT> &output);

# segment_differences.h
# namespace pcl
# /** \brief @b SegmentDifferences obtains the difference between two spatially
#   * aligned point clouds and returns the difference between them for a maximum
#   * given distance threshold.
#   * \author Radu Bogdan Rusu
#   * \ingroup segmentation
#   */
# template <typename PointT>
# class SegmentDifferences: public PCLBase<PointT>
#     typedef PCLBase<PointT> BasePCLBase;
# 
#     public:
#       typedef pcl::PointCloud<PointT> PointCloud;
#       typedef typename PointCloud::Ptr PointCloudPtr;
#       typedef typename PointCloud::ConstPtr PointCloudConstPtr;
# 
#       typedef typename pcl::search::Search<PointT> KdTree;
#       typedef typename pcl::search::Search<PointT>::Ptr KdTreePtr;
# 
#       typedef PointIndices::Ptr PointIndicesPtr;
#       typedef PointIndices::ConstPtr PointIndicesConstPtr;
# 
#       /** \brief Empty constructor. */
#       SegmentDifferences ()
# 
#       /** \brief Provide a pointer to the target dataset against which we
#         * compare the input cloud given in setInputCloud
#         * \param cloud the target PointCloud dataset
#       inline void setTargetCloud (const PointCloudConstPtr &cloud)
# 
#       /** \brief Get a pointer to the input target point cloud dataset. */
#       inline PointCloudConstPtr const getTargetCloud ()
#       /** \brief Provide a pointer to the search object.
#         * \param tree a pointer to the spatial search object.
#       inline void setSearchMethod (const KdTreePtr &tree)
#       /** \brief Get a pointer to the search method used. */
#       inline KdTreePtr getSearchMethod ()
#       /** \brief Set the maximum distance tolerance (squared) between corresponding
#         * points in the two input datasets.
#         * \param sqr_threshold the squared distance tolerance as a measure in L2 Euclidean space
#       inline void setDistanceThreshold (double sqr_threshold)
#       /** \brief Get the squared distance tolerance between corresponding points as a
#         * measure in the L2 Euclidean space.
#       inline double getDistanceThreshold ()
# 
#       /** \brief Segment differences between two input point clouds.
#         * \param output the resultant difference between the two point clouds as a PointCloud
#         */
#       void segment (PointCloud &output);
#       protected:
#       // Members derived from the base class
#       using BasePCLBase::input_;
#       using BasePCLBase::indices_;
#       using BasePCLBase::initCompute;
#       using BasePCLBase::deinitCompute;
#       /** \brief A pointer to the spatial search object. */
#       KdTreePtr tree_;
#       /** \brief The input target point cloud dataset. */
#       PointCloudConstPtr target_;
#       /** \brief The distance tolerance (squared) as a measure in the L2
#         * Euclidean space between corresponding points. 
#         */
#       double distance_threshold_;
#       /** \brief Class getName method. */
#       virtual std::string getClassName () const { return ("SegmentDifferences"); }
###

###############################################################################
# Enum
###############################################################################

###############################################################################
# Activation
###############################################################################


### pcl 1.7.2 ###
# approximate_progressive_morphological_filter.h
# namespace pcl
# /** \brief
# * Implements the Progressive Morphological Filter for segmentation of ground points.
# * Description can be found in the article
# * "A Progressive Morphological Filter for Removing Nonground Measurements from
# * Airborne LIDAR Data"
# * by K. Zhang, S. Chen, D. Whitman, M. Shyu, J. Yan, and C. Zhang.
# */
# template <typename PointT>
# class PCL_EXPORTS ApproximateProgressiveMorphologicalFilter : public pcl::PCLBase<PointT>
        # public:
        # typedef pcl::PointCloud <PointT> PointCloud;
        # using PCLBase <PointT>::input_;
        # using PCLBase <PointT>::indices_;
        # using PCLBase <PointT>::initCompute;
        # using PCLBase <PointT>::deinitCompute;
        # public:
        # /** \brief Constructor that sets default values for member variables. */
        # ApproximateProgressiveMorphologicalFilter ();
        # 
        # virtual ~ApproximateProgressiveMorphologicalFilter ();
        # 
        # /** \brief Get the maximum window size to be used in filtering ground returns. */
        # inline int getMaxWindowSize () const { return (max_window_size_); }
        # 
        # /** \brief Set the maximum window size to be used in filtering ground returns. */
        # inline void setMaxWindowSize (int max_window_size) { max_window_size_ = max_window_size; }
        # 
        # /** \brief Get the slope value to be used in computing the height threshold. */
        # inline float getSlope () const { return (slope_); }
        # 
        # /** \brief Set the slope value to be used in computing the height threshold. */
        # inline void setSlope (float slope) { slope_ = slope; }
        # 
        # /** \brief Get the maximum height above the parameterized ground surface to be considered a ground return. */
        # inline float getMaxDistance () const { return (max_distance_); }
        # 
        # /** \brief Set the maximum height above the parameterized ground surface to be considered a ground return. */
        # inline void setMaxDistance (float max_distance) { max_distance_ = max_distance; }
        # 
        # /** \brief Get the initial height above the parameterized ground surface to be considered a ground return. */
        # inline float getInitialDistance () const { return (initial_distance_); }
        # 
        # /** \brief Set the initial height above the parameterized ground surface to be considered a ground return. */
        # inline void setInitialDistance (float initial_distance) { initial_distance_ = initial_distance; }
        # 
        # /** \brief Get the cell size. */
        # inline float getCellSize () const { return (cell_size_); }
        # 
        # /** \brief Set the cell size. */
        # inline void setCellSize (float cell_size) { cell_size_ = cell_size; }
        # 
        # /** \brief Get the base to be used in computing progressive window sizes. */
        # inline float getBase () const { return (base_); }
        # 
        # /** \brief Set the base to be used in computing progressive window sizes. */
        # inline void setBase (float base) { base_ = base; }
        # 
        # /** \brief Get flag indicating whether or not to exponentially grow window sizes? */
        # inline bool getExponential () const { return (exponential_); }
        # 
        # /** \brief Set flag indicating whether or not to exponentially grow window sizes? */
        # inline void setExponential (bool exponential) { exponential_ = exponential; }
        # 
        # /** \brief Initialize the scheduler and set the number of threads to use.
        # * \param nr_threads the number of hardware threads to use (0 sets the value back to automatic)
        # */
        # inline void setNumberOfThreads (unsigned int nr_threads = 0) { threads_ = nr_threads; }
        # 
        # /** \brief This method launches the segmentation algorithm and returns indices of
        # * points determined to be ground returns.
        # * \param[out] ground indices of points determined to be ground returns.
        # */
        # virtual void extract (std::vector<int>& ground);


###

# boost.h
###

# conditional_euclidean_clustering.h
# namespace pcl
# typedef std::vector<pcl::PointIndices> IndicesClusters;
# typedef boost::shared_ptr<std::vector<pcl::PointIndices> > IndicesClustersPtr;
# 
# /** \brief @b ConditionalEuclideanClustering performs segmentation based on Euclidean distance and a user-defined clustering condition.
#   * \details The condition that need to hold is currently passed using a function pointer.
#   * For more information check the documentation of setConditionFunction() or the usage example below:
#   * \code
#   * bool
#   * enforceIntensitySimilarity (const pcl::PointXYZI& point_a, const pcl::PointXYZI& point_b, float squared_distance)
#   * {
#   *   if (fabs (point_a.intensity - point_b.intensity) < 0.1f)
#   *     return (true);
#   *   else
#   *     return (false);
#   * }
#   * // ...
#   * // Somewhere down to the main code
#   * // ...
#   * pcl::ConditionalEuclideanClustering<pcl::PointXYZI> cec (true);
#   * cec.setInputCloud (cloud_in);
#   * cec.setConditionFunction (&enforceIntensitySimilarity);
#   * // Points within this distance from one another are going to need to validate the enforceIntensitySimilarity function to be part of the same cluster:
#   * cec.setClusterTolerance (0.09f);
#   * // Size constraints for the clusters:
#   * cec.setMinClusterSize (5);
#   * cec.setMaxClusterSize (30);
#   * // The resulting clusters (an array of pointindices):
#   * cec.segment (*clusters);
#   * // The clusters that are too small or too large in size can also be extracted separately:
#   * cec.getRemovedClusters (small_clusters, large_clusters);
#   * \endcode
#   * \author Frits Florentinus
#   * \ingroup segmentation
#   */
# template<typename PointT>
# class ConditionalEuclideanClustering : public PCLBase<PointT>
        # protected:
        # typedef typename pcl::search::Search<PointT>::Ptr SearcherPtr;
        # using PCLBase<PointT>::input_;
        # using PCLBase<PointT>::indices_;
        # using PCLBase<PointT>::initCompute;
        # using PCLBase<PointT>::deinitCompute;
        # 
        # public:
        # /** \brief Constructor.
        # * \param[in] extract_removed_clusters Set to true if you want to be able to extract the clusters that are too large or too small (default = false)
        # */
        # ConditionalEuclideanClustering (bool extract_removed_clusters = false) :
        #   searcher_ (),
        #   condition_function_ (),
        #   cluster_tolerance_ (0.0f),
        #   min_cluster_size_ (1),
        #   max_cluster_size_ (std::numeric_limits<int>::max ()),
        #   extract_removed_clusters_ (extract_removed_clusters),
        #   small_clusters_ (new pcl::IndicesClusters),
        #   large_clusters_ (new pcl::IndicesClusters)
		# 
        # 
        # /** \brief Set the condition that needs to hold for neighboring points to be considered part of the same cluster.
        # * \details Any two points within a certain distance from one another will need to evaluate this condition in order to be made part of the same cluster.
        # * The distance can be set using setClusterTolerance().
        # * <br>
        # * Note that for a point to be part of a cluster, the condition only needs to hold for at least 1 point pair.
        # * To clarify, the following statement is false:
        # * Any two points within a cluster always evaluate this condition function to true.
        # * <br><br>
        # * The input arguments of the condition function are:
        # * <ul>
        # *  <li>PointT The first point of the point pair</li>
        # *  <li>PointT The second point of the point pair</li>
        # *  <li>float The squared distance between the points</li>
        # * </ul>
        # * The output argument is a boolean, returning true will merge the second point into the cluster of the first point.
        # * \param[in] condition_function The condition function that needs to hold for clustering
        # */
        # inline void setConditionFunction (bool (*condition_function) (const PointT&, const PointT&, float)) 
        # 
        # /** \brief Set the spatial tolerance for new cluster candidates.
        # * \details Any two points within this distance from one another will need to evaluate a certain condition in order to be made part of the same cluster.
        # * The condition can be set using setConditionFunction().
        # * \param[in] cluster_tolerance The distance to scan for cluster candidates (default = 0.0)
        # */
        # inline void setClusterTolerance (float cluster_tolerance)
        # 
        # /** \brief Get the spatial tolerance for new cluster candidates.*/
        # inline float getClusterTolerance ()
        # 
        # /** \brief Set the minimum number of points that a cluster needs to contain in order to be considered valid.
        # * \param[in] min_cluster_size The minimum cluster size (default = 1)
        # */
        # inline void setMinClusterSize (int min_cluster_size)
        # 
        # /** \brief Get the minimum number of points that a cluster needs to contain in order to be considered valid.*/
        # inline int getMinClusterSize ()
        # 
        # /** \brief Set the maximum number of points that a cluster needs to contain in order to be considered valid.
        # * \param[in] max_cluster_size The maximum cluster size (default = unlimited)
        # */
        # inline void setMaxClusterSize (int max_cluster_size)
        # 
        # /** \brief Get the maximum number of points that a cluster needs to contain in order to be considered valid.*/
        # inline int getMaxClusterSize ()
        # 
        # /** \brief Segment the input into separate clusters.
        # * \details The input can be set using setInputCloud() and setIndices().
        # * <br>
        # * The size constraints for the resulting clusters can be set using setMinClusterSize() and setMaxClusterSize().
        # * <br>
        # * The region growing parameters can be set using setConditionFunction() and setClusterTolerance().
        # * <br>
        # * \param[out] clusters The resultant set of indices, indexing the points of the input cloud that correspond to the clusters
        # */
        # void segment (IndicesClusters &clusters);
        # 
        # /** \brief Get the clusters that are invalidated due to size constraints.
        # * \note The constructor of this class needs to be initialized with true, and the segment method needs to have been called prior to using this method.
        # * \param[out] small_clusters The resultant clusters that contain less than min_cluster_size points
        # * \param[out] large_clusters The resultant clusters that contain more than max_cluster_size points
        # */
        # inline void getRemovedClusters (IndicesClustersPtr &small_clusters, IndicesClustersPtr &large_clusters)


###

# crf_normal_segmentation.h
# namespace pcl
# /** \brief
# * \author Christian Potthast
# * 
# */
# template <typename PointT>
# class PCL_EXPORTS CrfNormalSegmentation
        # public:
        # 
        # /** \brief Constructor that sets default values for member variables. */
        # CrfNormalSegmentation ();
        # 
        # /** \brief Destructor that frees memory. */
        # ~CrfNormalSegmentation ();
        # 
        # /** \brief This method sets the input cloud.
        # * \param[in] input_cloud input point cloud
        # */
        # void setCloud (typename pcl::PointCloud<PointT>::Ptr input_cloud);
        # 
        # /** \brief This method simply launches the segmentation algorithm */
        # void segmentPoints ();


###

# grabcut_segmentation.h
# namespace pcl
# namespace segmentation
# namespace grabcut
# /** boost implementation of Boykov and Kolmogorov's maxflow algorithm doesn't support
# * negative flows which makes it inappropriate for this conext.
# * This implementation of Boykov and Kolmogorov's maxflow algorithm by Stephen Gould
# * <stephen.gould@anu.edu.au> in DARWIN under BSD does the trick however solwer than original
# * implementation.
# */
# class PCL_EXPORTS BoykovKolmogorov
        # public:
        # typedef int vertex_descriptor;
        # typedef double edge_capacity_type;
        # 
        # /// construct a maxflow/mincut problem with estimated max_nodes
        # BoykovKolmogorov (std::size_t max_nodes = 0);
        # 
        # /// destructor
        # virtual ~BoykovKolmogorov () {}
        # 
        # /// get number of nodes in the graph
        # size_t numNodes () const { return nodes_.size (); }
        # 
        # /// reset all edge capacities to zero (but don't free the graph)
        # void reset ();
        # 
        # /// clear the graph and internal datastructures
        # void clear ();
        # 
        # /// add nodes to the graph (returns the id of the first node added)
        # int addNodes (std::size_t n = 1);
        # 
        # /// add constant flow to graph
        # void addConstant (double c) { flow_value_ += c; }
        # 
        # /// add edge from s to nodeId
        # void addSourceEdge (int u, double cap);
        # 
        # /// add edge from nodeId to t
        # void addTargetEdge (int u, double cap);
        # 
        # /// add edge from u to v and edge from v to u
        # /// (requires cap_uv + cap_vu >= 0)
        # void addEdge (int u, int v, double cap_uv, double cap_vu = 0.0);
        # 
        # /// solve the max-flow problem and return the flow
        # double solve ();
        # 
        # /// return true if \p u is in the s-set after calling \ref solve.
        # bool inSourceTree (int u) const { return (cut_[u] == SOURCE); }
        # 
        # /// return true if \p u is in the t-set after calling \ref solve
        # bool inSinkTree (int u) const { return (cut_[u] == TARGET); }
        # 
        # /// returns the residual capacity for an edge (use -1 for terminal (-1,-1) is the current flow
        # double operator() (int u, int v) const;
        # 
        # double getSourceEdgeCapacity (int u) const;
        # 
        # double getTargetEdgeCapacity (int u) const;


###

# grabcut_segmentation.h
# namespace pcl
# namespace segmentation
# namespace grabcut
      	# /**\brief Structure to save RGB colors into floats */
      	# struct Color
      	# {
      	#   Color () : r (0), g (0), b (0) {}
      	#   Color (float _r, float _g, float _b) : r(_r), g(_g), b(_b) {}
      	#   Color (const pcl::RGB& color) : r (color.r), g (color.g), b (color.b) {}
		# 
        # template<typename PointT> Color (const PointT& p);
		# 
        # template<typename PointT> operator PointT () const;
		# 
        # float r, g, b;
      	# };

# grabcut_segmentation.h
# namespace pcl
# namespace segmentation
# namespace grabcut
        # /// An Image is a point cloud of Color
        # typedef pcl::PointCloud<Color> Image;
        # 
        # /** \brief Compute squared distance between two colors
        # * \param[in] c1 first color
        # * \param[in] c2 second color
        # * \return the squared distance measure in RGB space
        # */
        # float colorDistance (const Color& c1, const Color& c2);
        # 
        # /// User supplied Trimap values
        # enum TrimapValue { TrimapUnknown = -1, TrimapForeground, TrimapBackground };
        # 
        # /// Grabcut derived hard segementation values
        # enum SegmentationValue { SegmentationForeground = 0, SegmentationBackground };
        # 
        # /// Gaussian structure
        # struct Gaussian
        # {
        #     Gaussian () {}
        #     /// mean of the gaussian
        #     Color mu;
        #     /// covariance matrix of the gaussian
        #     Eigen::Matrix3f covariance;
        #     /// determinant of the covariance matrix
        #     float determinant;
        #     /// inverse of the covariance matrix
        #     Eigen::Matrix3f inverse;
        #     /// weighting of this gaussian in the GMM.
        #     float pi;
        #     /// heighest eigenvalue of covariance matrix
        #     float eigenvalue;
        #     /// eigenvector corresponding to the heighest eigenvector
        #     Eigen::Vector3f eigenvector;
        # };


###

# grabcut_segmentation.h
# namespace pcl
# namespace segmentation
# namespace grabcut
# class PCL_EXPORTS GMM
        # public:
        #   /// Initialize GMM with ddesired number of gaussians.
        #   GMM () : gaussians_ (0) {}
        #   /// Initialize GMM with ddesired number of gaussians.
        #   GMM (std::size_t K) : gaussians_ (K) {}
        #   /// Destructor
        #   ~GMM () {}
        # 
        # /// \return K
        # std::size_t getK () const { return gaussians_.size (); }
        # 
        #   /// resize gaussians
        #   void resize (std::size_t K) { gaussians_.resize (K); }
        #   
        #   /// \return a reference to the gaussian at a given position
        #   Gaussian& operator[] (std::size_t pos) { return (gaussians_[pos]); }
        # 
        #   /// \return a const reference to the gaussian at a given position
        #   const Gaussian& operator[] (std::size_t pos) const { return (gaussians_[pos]); }
        # 
        #   /// \brief \return the computed probability density of a color in this GMM
        #   float probabilityDensity (const Color &c);
        # 
        #   /// \brief \return the computed probability density of a color in just one Gaussian
        #   float probabilityDensity(std::size_t i, const Color &c);


###

# grabcut_segmentation.h
# namespace pcl
# namespace segmentation
# namespace grabcut
# /** Helper class that fits a single Gaussian to color samples */
# class GaussianFitter
        # public:
        # GaussianFitter (float epsilon = 0.0001)
        #   : sum_ (Eigen::Vector3f::Zero ())
        #   , accumulator_ (Eigen::Matrix3f::Zero ())
        #   , count_ (0)
        #   , epsilon_ (epsilon)
        # { }
		# 
        # /// Add a color sample
        # void add (const Color &c);
        # 
        # /// Build the gaussian out of all the added color samples
        # void fit (Gaussian& g, std::size_t total_count, bool compute_eigens = false) const;
        # 
        # /// \return epsilon
        # float getEpsilon () { return (epsilon_); }
        # 
        # /** set epsilon which will be added to the covariance matrix diagonal which avoids singular
        #   * covariance matrix
        #   * \param[in] epsilon user defined epsilon
        #   */
        # void setEpsilon (float epsilon) { epsilon_ = epsilon; }


###

# grabcut_segmentation.h
# namespace pcl
# namespace segmentation
# namespace grabcut
      	# /** Build the initial GMMs using the Orchard and Bouman color clustering algorithm */
      	# PCL_EXPORTS void buildGMMs (const Image &image,
        #          const std::vector<int>& indices,
        #          const std::vector<SegmentationValue> &hardSegmentation,
        #          std::vector<std::size_t> &components,
        #          GMM &background_GMM, GMM &foreground_GMM);


###

# grabcut_segmentation.h
# namespace pcl
# namespace segmentation
# namespace grabcut
		# /** Iteratively learn GMMs using GrabCut updating algorithm */
      	# PCL_EXPORTS void learnGMMs (const Image& image,
        #          				const std::vector<int>& indices,
        #          				const std::vector<SegmentationValue>& hard_segmentation,
        #          				std::vector<std::size_t>& components,
        #          				GMM& background_GMM, GMM& foreground_GMM);


###

# grabcut_segmentation.h
# namespace pcl
# namespace segmentation
# /** \brief Implementation of the GrabCut segmentation in
# * "GrabCut - Interactive Foreground Extraction using Iterated Graph Cuts" by
# * Carsten Rother, Vladimir Kolmogorov and Andrew Blake.
# * \author Justin Talbot, jtalbot@stanford.edu placed in Public Domain, 2010
# * \author Nizar Sallem port to PCL and adaptation of original code.
# * \ingroup segmentation
# */
# template <typename PointT>
# class GrabCut : public pcl::PCLBase<PointT>
        # public:
        # typedef typename pcl::search::Search<PointT> KdTree;
        # typedef typename pcl::search::Search<PointT>::Ptr KdTreePtr;
        # typedef typename PCLBase<PointT>::PointCloudConstPtr PointCloudConstPtr;
        # typedef typename PCLBase<PointT>::PointCloudPtr PointCloudPtr;
        # using PCLBase<PointT>::input_;
        # using PCLBase<PointT>::indices_;
        # using PCLBase<PointT>::fake_indices_;
        # 
        # /// Constructor
        # GrabCut (uint32_t K = 5, float lambda = 50.f)
        # : K_ (K)
        # , lambda_ (lambda)
        # , nb_neighbours_ (9)
        # , initialized_ (false)
        # {}
        # 
        # /// Desctructor
        # virtual ~GrabCut () {};
        # 
        # // /// Set input cloud
        # void setInputCloud (const PointCloudConstPtr& cloud);
        # 
        # /// Set background points, foreground points = points \ background points
        # void setBackgroundPoints (const PointCloudConstPtr& background_points);
        # 
        # /// Set background indices, foreground indices = indices \ background indices
        # void setBackgroundPointsIndices (int x1, int y1, int x2, int y2);
        # 
        # /// Set background indices, foreground indices = indices \ background indices
        # void setBackgroundPointsIndices (const PointIndicesConstPtr& indices);
        # 
        # /// Run Grabcut refinement on the hard segmentation
        # virtual void refine ();
        # 
        # /// \return the number of pixels that have changed from foreground to background or vice versa
        # virtual int refineOnce ();
        # 
        # /// \return lambda
        # float getLambda () { return (lambda_); }
        # 
        # /** Set lambda parameter to user given value. Suggested value by the authors is 50
        # * \param[in] lambda
        # */
        # void setLambda (float lambda) { lambda_ = lambda; }
        # 
        # /// \return the number of components in the GMM
        # uint32_t getK () { return (K_); }
        # 
        # /** Set K parameter to user given value. Suggested value by the authors is 5
        # * \param[in] K the number of components used in GMM
        # */
        # void setK (uint32_t K) { K_ = K; }
        # 
        # /** \brief Provide a pointer to the search object.
        # * \param tree a pointer to the spatial search object.
        # */
        # inline void setSearchMethod (const KdTreePtr &tree) { tree_ = tree; }
        # 
        # /** \brief Get a pointer to the search method used. */
        # inline KdTreePtr getSearchMethod () { return (tree_); }
        # 
        # /** \brief Allows to set the number of neighbours to find.
        # * \param[in] nb_neighbours new number of neighbours
        # */
        # void setNumberOfNeighbours (int nb_neighbours) { nb_neighbours_ = nb_neighbours; }
        # 
        # /** \brief Returns the number of neighbours to find. */
        # int getNumberOfNeighbours () const { return (nb_neighbours_); }
        # 
        # /** \brief This method launches the segmentation algorithm and returns the clusters that were
        # * obtained during the segmentation. The indices of points belonging to the object will be stored
        # * in the cluster with index 1, other indices will be stored in the cluster with index 0.
        # * \param[out] clusters clusters that were obtained. Each cluster is an array of point indices.
        # */
        # void extract (std::vector<pcl::PointIndices>& clusters);


###

# ground_plane_comparator.h
# namespace pcl
# /** \brief GroundPlaneComparator is a Comparator for detecting smooth surfaces suitable for driving.
# * In conjunction with OrganizedConnectedComponentSegmentation, this allows smooth groundplanes / road surfaces to be segmented from point clouds.
# * \author Alex Trevor
# */
# template<typename PointT, typename PointNT>
# class GroundPlaneComparator: public Comparator<PointT>
        # public:
        # typedef typename Comparator<PointT>::PointCloud PointCloud;
        # typedef typename Comparator<PointT>::PointCloudConstPtr PointCloudConstPtr;
        # typedef typename pcl::PointCloud<PointNT> PointCloudN;
        # typedef typename PointCloudN::Ptr PointCloudNPtr;
        # typedef typename PointCloudN::ConstPtr PointCloudNConstPtr;
        # typedef boost::shared_ptr<GroundPlaneComparator<PointT, PointNT> > Ptr;
        # typedef boost::shared_ptr<const GroundPlaneComparator<PointT, PointNT> > ConstPtr;
        # 
        # using pcl::Comparator<PointT>::input_;
        # 
        # /** \brief Empty constructor for GroundPlaneComparator. */
        # GroundPlaneComparator ()
        # : normals_ ()
        # , plane_coeff_d_ ()
        # , angular_threshold_ (cosf (pcl::deg2rad (2.0f)))
        # , road_angular_threshold_ ( cosf(pcl::deg2rad (10.0f)))
        # , distance_threshold_ (0.1f)
        # , depth_dependent_ (true)
        # , z_axis_ (Eigen::Vector3f (0.0, 0.0, 1.0) )
        # , desired_road_axis_ (Eigen::Vector3f(0.0, -1.0, 0.0))
        # 
        # /** \brief Constructor for GroundPlaneComparator.
        # * \param[in] plane_coeff_d a reference to a vector of d coefficients of plane equations.  Must be the same size as the input cloud and input normals.  a, b, and c coefficients are in the input normals.
        # */
        # GroundPlaneComparator (boost::shared_ptr<std::vector<float> >& plane_coeff_d) 
        # : normals_ ()
        # , plane_coeff_d_ (plane_coeff_d)
        # , angular_threshold_ (cosf (pcl::deg2rad (3.0f)))
        # , distance_threshold_ (0.1f)
        # , depth_dependent_ (true)
        # , z_axis_ (Eigen::Vector3f (0.0f, 0.0f, 1.0f))
        # , road_angular_threshold_ ( cosf(pcl::deg2rad (40.0f)))
        # , desired_road_axis_ (Eigen::Vector3f(0.0, -1.0, 0.0))
        # 
        # /** \brief Destructor for GroundPlaneComparator. */
        # virtual ~GroundPlaneComparator ()
        # 
        # /** \brief Provide the input cloud.
        # * \param[in] cloud the input point cloud.
        # */
        # virtual void setInputCloud (const PointCloudConstPtr& cloud)
        # 
        # /** \brief Provide a pointer to the input normals.
        # * \param[in] normals the input normal cloud.
        # */
        # inline void setInputNormals (const PointCloudNConstPtr &normals)
        # 
        # /** \brief Get the input normals. */
        # inline PointCloudNConstPtr getInputNormals () const
        # 
        # /** \brief Provide a pointer to a vector of the d-coefficient of the planes' hessian normal form.  a, b, and c are provided by the normal cloud.
        # * \param[in] plane_coeff_d a pointer to the plane coefficients.
        # */
        # void setPlaneCoeffD (boost::shared_ptr<std::vector<float> >& plane_coeff_d)
        # 
        # /** \brief Provide a pointer to a vector of the d-coefficient of the planes' hessian normal form.  a, b, and c are provided by the normal cloud.
        # * \param[in] plane_coeff_d a pointer to the plane coefficients.
        # */
        # void setPlaneCoeffD (std::vector<float>& plane_coeff_d)
        # 
        # /** \brief Get a pointer to the vector of the d-coefficient of the planes' hessian normal form. */
        # const std::vector<float>& getPlaneCoeffD () const
        # 
        # /** \brief Set the tolerance in radians for difference in normal direction between neighboring points, to be considered part of the same plane.
        # * \param[in] angular_threshold the tolerance in radians
        # */
        # virtual void setAngularThreshold (float angular_threshold)
        # 
        # /** \brief Set the tolerance in radians for difference in normal direction between a point and the expected ground normal.
        # * \param[in] angular_threshold the
        # */
        # virtual void setGroundAngularThreshold (float angular_threshold)
        # 
        # /** \brief Set the expected ground plane normal with respect to the sensor.  Pixels labeled as ground must be within ground_angular_threshold radians of this normal to be labeled as ground.
        # * \param[in] normal The normal direction of the expected ground plane.
        # */
        # void setExpectedGroundNormal (Eigen::Vector3f normal)
        # 
        # /** \brief Get the angular threshold in radians for difference in normal direction between neighboring points, to be considered part of the same plane. */
        # inline float getAngularThreshold () const
        # 
        # /** \brief Set the tolerance in meters for difference in perpendicular distance (d component of plane equation) to the plane between neighboring points, to be considered part of the same plane.
        # * \param[in] distance_threshold the tolerance in meters (at 1m)
        # * \param[in] depth_dependent whether to scale the threshold based on range from the sensor (default: false)
        # */
        # void setDistanceThreshold (float distance_threshold, bool depth_dependent = false)
        # 
        # /** \brief Get the distance threshold in meters (d component of plane equation) between neighboring points, to be considered part of the same plane. */
        # inline float getDistanceThreshold () const
        # 
        # /** \brief Compare points at two indices by their plane equations.  True if the angle between the normals is less than the angular threshold,
        # * and the difference between the d component of the normals is less than distance threshold, else false
        # * \param idx1 The first index for the comparison
        # * \param idx2 The second index for the comparison
        # */
        # virtual bool compare (int idx1, int idx2) const


###

# min_cut_segmentation.h
# namespace pcl
# template <typename PointT>
# class PCL_EXPORTS MinCutSegmentation : public pcl::PCLBase<PointT>
cdef extern from "pcl/segmentation/min_cut_segmentation.h" namespace "pcl":
    cdef cppclass MinCutSegmentation[T](PCLBase[T]):
        MinCutSegmentation()
        # public:
        # typedef pcl::search::Search <PointT> KdTree;
        # typedef typename KdTree::Ptr KdTreePtr;
        # typedef pcl::PointCloud< PointT > PointCloud;
        # typedef typename PointCloud::ConstPtr PointCloudConstPtr;
        # using PCLBase <PointT>::input_;
        # using PCLBase <PointT>::indices_;
        # using PCLBase <PointT>::initCompute;
        # using PCLBase <PointT>::deinitCompute;
        # public:
        # typedef boost::adjacency_list_traits< boost::vecS, boost::vecS, boost::directedS > Traits;
        # typedef boost::adjacency_list< boost::vecS, boost::vecS, boost::directedS,
        #                              boost::property< boost::vertex_name_t, std::string,
        #                                boost::property< boost::vertex_index_t, long,
        #                                  boost::property< boost::vertex_color_t, boost::default_color_type,
        #                                    boost::property< boost::vertex_distance_t, long,
        #                                      boost::property< boost::vertex_predecessor_t, Traits::edge_descriptor > > > > >,
        #                              boost::property< boost::edge_capacity_t, double,
        #                                boost::property< boost::edge_residual_capacity_t, double,
        #                                  boost::property< boost::edge_reverse_t, Traits::edge_descriptor > > > > mGraph;
        # typedef boost::property_map< mGraph, boost::edge_capacity_t >::type CapacityMap;
        # typedef boost::property_map< mGraph, boost::edge_reverse_t>::type ReverseEdgeMap;
        # typedef Traits::vertex_descriptor VertexDescriptor;
        # typedef boost::graph_traits< mGraph >::edge_descriptor EdgeDescriptor;
        # typedef boost::graph_traits< mGraph >::out_edge_iterator OutEdgeIterator;
        # typedef boost::graph_traits< mGraph >::vertex_iterator VertexIterator;
        # typedef boost::property_map< mGraph, boost::edge_residual_capacity_t >::type ResidualCapacityMap;
        # typedef boost::property_map< mGraph, boost::vertex_index_t >::type IndexMap;
        # typedef boost::graph_traits< mGraph >::in_edge_iterator InEdgeIterator;
        # public:
        # /** \brief This method simply sets the input point cloud.
        #   * \param[in] cloud the const boost shared pointer to a PointCloud
        # virtual void setInputCloud (const PointCloudConstPtr &cloud);
        # /** \brief Returns normalization value for binary potentials. For more information see the article. */
        double getSigma ()
        # /** \brief Allows to set the normalization value for the binary potentials as described in the article.
        #   * \param[in] sigma new normalization value
        void setSigma (double sigma)
        # /** \brief Returns radius to the background. */
        double getRadius ()
        # /** \brief Allows to set the radius to the background.
        #   * \param[in] radius new radius to the background
        void setRadius (double radius)
        # /** \brief Returns weight that every edge from the source point has. */
        double getSourceWeight ()
        # /** \brief Allows to set weight for source edges. Every edge that comes from the source point will have that weight.
        #   * \param[in] weight new weight
        void setSourceWeight (double weight)
        # /** \brief Returns search method that is used for finding KNN.
        #   * The graph is build such way that it contains the edges that connect point and its KNN.
        # KdTreePtr getSearchMethod () const;
        # /** \brief Allows to set search method for finding KNN.
        #   * The graph is build such way that it contains the edges that connect point and its KNN.
        #   * \param[in] search search method that will be used for finding KNN.
        # void setSearchMethod (const KdTreePtr& tree);
        # /** \brief Returns the number of neighbours to find. */
        unsigned int getNumberOfNeighbours ()
        # /** \brief Allows to set the number of neighbours to find.
        #   * \param[in] number_of_neighbours new number of neighbours
        void setNumberOfNeighbours (unsigned int neighbour_number)
        # /** \brief Returns the points that must belong to foreground. */
        # std::vector<PointT, Eigen::aligned_allocator<PointT> > getForegroundPoints () const;
        # /** \brief Allows to specify points which are known to be the points of the object.
        #   * \param[in] foreground_points point cloud that contains foreground points. At least one point must be specified.
        # void setForegroundPoints (typename pcl::PointCloud<PointT>::Ptr foreground_points);
        # /** \brief Returns the points that must belong to background. */
        # std::vector<PointT, Eigen::aligned_allocator<PointT> > getBackgroundPoints () const;
        # /** \brief Allows to specify points which are known to be the points of the background.
        #   * \param[in] background_points point cloud that contains background points.
        # void setBackgroundPoints (typename pcl::PointCloud<PointT>::Ptr background_points);
        # /** \brief This method launches the segmentation algorithm and returns the clusters that were
        #   * obtained during the segmentation. The indices of points that belong to the object will be stored
        #   * in the cluster with index 1, other indices will be stored in the cluster with index 0.
        #   * \param[out] clusters clusters that were obtained. Each cluster is an array of point indices.
        # void extract (vector <pcl::PointIndices>& clusters);
        # /** \brief Returns that flow value that was calculated during the segmentation. */
        double getMaxFlow ()
        # /** \brief Returns the graph that was build for finding the minimum cut. */
        # typename boost::shared_ptr<typename pcl::MinCutSegmentation<PointT>::mGraph> getGraph () const;
        # /** \brief Returns the colored cloud. Points that belong to the object have the same color. */
        # pcl::PointCloud<pcl::PointXYZRGB>::Ptr getColoredCloud ();
        # protected:
        # /** \brief This method simply builds the graph that will be used during the segmentation. */
        bool buildGraph ()
        # /** \brief Returns unary potential(data cost) for the given point index.
        #   * In other words it calculates weights for (source, point) and (point, sink) edges.
        #   * \param[in] point index of the point for which weights will be calculated
        #   * \param[out] source_weight calculated weight for the (source, point) edge
        #   * \param[out] sink_weight calculated weight for the (point, sink) edge
        void calculateUnaryPotential (int point, double& source_weight, double& sink_weight)
        # /** \brief This method simply adds the edge from the source point to the target point with a given weight.
        #   * \param[in] source index of the source point of the edge
        #   * \param[in] target index of the target point of the edge
        #   * \param[in] weight weight that will be assigned to the (source, target) edge
        bool addEdge (int source, int target, double weight)
        # /** \brief Returns the binary potential(smooth cost) for the given indices of points.
        #   * In other words it returns weight that must be assigned to the edge from source to target point.
        #   * \param[in] source index of the source point of the edge
        #   * \param[in] target index of the target point of the edge
        double calculateBinaryPotential (int source, int target)
        # brief This method recalculates unary potentials(data cost) if some changes were made, instead of creating new graph. */
        bool recalculateUnaryPotentials ()
        # brief This method recalculates binary potentials(smooth cost) if some changes were made, instead of creating new graph. */
        bool recalculateBinaryPotentials ()
        # /** \brief This method analyzes the residual network and assigns a label to every point in the cloud.
        #   * \param[in] residual_capacity residual network that was obtained during the segmentation
        # void assembleLabels (ResidualCapacityMap& residual_capacity);
        # protected:
        # /** \brief Stores the sigma coefficient. It is used for finding smooth costs. More information can be found in the article. */
        # double inverse_sigma_;
        # /** \brief Signalizes if the binary potentials are valid. */
        # bool binary_potentials_are_valid_;
        # /** \brief Used for comparison of the floating point numbers. */
        # double epsilon_;
        # /** \brief Stores the distance to the background. */
        # double radius_;
        # /** \brief Signalizes if the unary potentials are valid. */
        # bool unary_potentials_are_valid_;
        # /** \brief Stores the weight for every edge that comes from source point. */
        # double source_weight_;
        # /** \brief Stores the search method that will be used for finding K nearest neighbors. Neighbours are used for building the graph. */
        # KdTreePtr search_;
        # /** \brief Stores the number of neighbors to find. */
        # unsigned int number_of_neighbours_;
        # /** \brief Signalizes if the graph is valid. */
        # bool graph_is_valid_;
        # /** \brief Stores the points that are known to be in the foreground. */
        # std::vector<PointT, Eigen::aligned_allocator<PointT> > foreground_points_;
        # /** \brief Stores the points that are known to be in the background. */
        # std::vector<PointT, Eigen::aligned_allocator<PointT> > background_points_;
        # /** \brief After the segmentation it will contain the segments. */
        # std::vector <pcl::PointIndices> clusters_;
        # /** \brief Stores the graph for finding the maximum flow. */
        # boost::shared_ptr<mGraph> graph_;
        # /** \brief Stores the capacity of every edge in the graph. */
        # boost::shared_ptr<CapacityMap> capacity_;
        # /** \brief Stores reverse edges for every edge in the graph. */
        # boost::shared_ptr<ReverseEdgeMap> reverse_edges_;
        # /** \brief Stores the vertices of the graph. */
        # std::vector< VertexDescriptor > vertices_;
        # /** \brief Stores the information about the edges that were added to the graph. It is used to avoid the duplicate edges. */
        # std::vector< std::set<int> > edge_marker_;
        # /** \brief Stores the vertex that serves as source. */
        # VertexDescriptor source_;
        # /** \brief Stores the vertex that serves as sink. */
        # VertexDescriptor sink_;
        # /** \brief Stores the maximum flow value that was calculated during the segmentation. */
        # double max_flow_;
        # public:
        # EIGEN_MAKE_ALIGNED_OPERATOR_NEW
###


# organized_connected_component_segmentation.h
# namespace pcl
# /** \brief OrganizedConnectedComponentSegmentation allows connected
#   * components to be found within organized point cloud data, given a
#   * comparison function.  Given an input cloud and a comparator, it will
#   * output a PointCloud of labels, giving each connected component a unique
#   * id, along with a vector of PointIndices corresponding to each component.
#   * See OrganizedMultiPlaneSegmentation for an example application.
#   * \author Alex Trevor, Suat Gedikli
#   */
# template <typename PointT, typename PointLT>
# class OrganizedConnectedComponentSegmentation : public PCLBase<PointT>
# {
cdef extern from "pcl/segmentation/organized_connected_component_segmentation.h" namespace "pcl":
    cdef cppclass OrganizedConnectedComponentSegmentation[T, LT](PCLBase[T]):
        OrganizedConnectedComponentSegmentation()
        # using PCLBase<PointT>::input_;
        # using PCLBase<PointT>::indices_;
        # using PCLBase<PointT>::initCompute;
        # using PCLBase<PointT>::deinitCompute;
        # 
        # public:
        # typedef typename pcl::PointCloud<PointT> PointCloud;
        # typedef typename PointCloud::Ptr PointCloudPtr;
        # typedef typename PointCloud::ConstPtr PointCloudConstPtr;
        # 
        # typedef typename pcl::PointCloud<PointLT> PointCloudL;
        # typedef typename PointCloudL::Ptr PointCloudLPtr;
        # typedef typename PointCloudL::ConstPtr PointCloudLConstPtr;
        # typedef typename pcl::Comparator<PointT> Comparator;
        # typedef typename Comparator::Ptr ComparatorPtr;
        # typedef typename Comparator::ConstPtr ComparatorConstPtr;
        # 
        # /** \brief Constructor for OrganizedConnectedComponentSegmentation
        #  * \param[in] compare A pointer to the comparator to be used for segmentation.  Must be an instance of pcl::Comparator.
        # */
        # OrganizedConnectedComponentSegmentation (const ComparatorConstPtr& compare) : compare_ (compare)
        # /** \brief Destructor for OrganizedConnectedComponentSegmentation. */
        # virtual ~OrganizedConnectedComponentSegmentation ()
        # 
        # /** \brief Provide a pointer to the comparator to be used for segmentation.
        #  * \param[in] compare the comparator
        # */
        # void setComparator (const ComparatorConstPtr& compare)
        # 
        # /** \brief Get the comparator.*/
        # ComparatorConstPtr getComparator () const { return (compare_); }
        # 
        # /** \brief Perform the connected component segmentation.
        #  * \param[out] labels a PointCloud of labels: each connected component will have a unique id.
        #  * \param[out] label_indices a vector of PointIndices corresponding to each label / component id.
        # */
        # void segment (pcl::PointCloud<PointLT>& labels, std::vector<pcl::PointIndices>& label_indices) const;
        # 
        # /** \brief Find the boundary points / contour of a connected component
        #  * \param[in] start_idx the first (lowest) index of the connected component for which a boundary shoudl be returned
        #  * \param[in] labels the Label cloud produced by segmentation
        #  * \param[out] boundary_indices the indices of the boundary points for the label corresponding to start_idx
        # */
        # static void findLabeledRegionBoundary (int start_idx, PointCloudLPtr labels, pcl::PointIndices& boundary_indices);      


###

# organized_multi_plane_segmentation.h
# namespace pcl
# {
# /** \brief OrganizedMultiPlaneSegmentation finds all planes present in the
# * input cloud, and outputs a vector of plane equations, as well as a vector
# * of point clouds corresponding to the inliers of each detected plane.  Only
# * planes with more than min_inliers points are detected.
# * Templated on point type, normal type, and label type
# *
# * \author Alex Trevor, Suat Gedikli
# */
# template<typename PointT, typename PointNT, typename PointLT>
# class OrganizedMultiPlaneSegmentation : public PCLBase<PointT>
        # using PCLBase<PointT>::input_;
        # using PCLBase<PointT>::indices_;
        # using PCLBase<PointT>::initCompute;
        # using PCLBase<PointT>::deinitCompute;
        # 
        # public:
        # typedef pcl::PointCloud<PointT> PointCloud;
        # typedef typename PointCloud::Ptr PointCloudPtr;
        # typedef typename PointCloud::ConstPtr PointCloudConstPtr;
        # typedef typename pcl::PointCloud<PointNT> PointCloudN;
        # typedef typename PointCloudN::Ptr PointCloudNPtr;
        # typedef typename PointCloudN::ConstPtr PointCloudNConstPtr;
        # typedef typename pcl::PointCloud<PointLT> PointCloudL;
        # typedef typename PointCloudL::Ptr PointCloudLPtr;
        # typedef typename PointCloudL::ConstPtr PointCloudLConstPtr;
        # typedef typename pcl::PlaneCoefficientComparator<PointT, PointNT> PlaneComparator;
        # typedef typename PlaneComparator::Ptr PlaneComparatorPtr;
        # typedef typename PlaneComparator::ConstPtr PlaneComparatorConstPtr;
        # typedef typename pcl::PlaneRefinementComparator<PointT, PointNT, PointLT> PlaneRefinementComparator;
        # typedef typename PlaneRefinementComparator::Ptr PlaneRefinementComparatorPtr;
        # typedef typename PlaneRefinementComparator::ConstPtr PlaneRefinementComparatorConstPtr;
        # 
        # /** \brief Constructor for OrganizedMultiPlaneSegmentation. */
        # OrganizedMultiPlaneSegmentation () :
        # normals_ (), 
        # min_inliers_ (1000), 
        # angular_threshold_ (pcl::deg2rad (3.0)), 
        # distance_threshold_ (0.02),
        # maximum_curvature_ (0.001),
        # project_points_ (false), 
        # compare_ (new PlaneComparator ()), refinement_compare_ (new PlaneRefinementComparator ())
        # 
        # /** \brief Destructor for OrganizedMultiPlaneSegmentation. */
        # virtual ~OrganizedMultiPlaneSegmentation ()
        # 
        # /** \brief Provide a pointer to the input normals.
        # * \param[in] normals the input normal cloud
        # */
        # inline void setInputNormals (const PointCloudNConstPtr &normals) 
        # 
        # /** \brief Get the input normals. */
        # inline PointCloudNConstPtr getInputNormals () const
        # 
        # /** \brief Set the minimum number of inliers required for a plane
        # * \param[in] min_inliers the minimum number of inliers required per plane
        # */
        # inline void setMinInliers (unsigned min_inliers)
        # 
        # /** \brief Get the minimum number of inliers required per plane. */
        # inline unsigned getMinInliers () const
        # 
        # /** \brief Set the tolerance in radians for difference in normal direction between neighboring points, to be considered part of the same plane.
        # * \param[in] angular_threshold the tolerance in radians
        # */
        # inline void setAngularThreshold (double angular_threshold)
        # 
        # /** \brief Get the angular threshold in radians for difference in normal direction between neighboring points, to be considered part of the same plane. */
        # inline double getAngularThreshold () const
        # 
        # /** \brief Set the tolerance in meters for difference in perpendicular distance (d component of plane equation) to the plane between neighboring points, to be considered part of the same plane.
        # * \param[in] distance_threshold the tolerance in meters
        # */
        # inline void setDistanceThreshold (double distance_threshold)
        # 
        # /** \brief Get the distance threshold in meters (d component of plane equation) between neighboring points, to be considered part of the same plane. */
        # inline double getDistanceThreshold () const
        # 
        # /** \brief Set the maximum curvature allowed for a planar region.
        # * \param[in] maximum_curvature the maximum curvature
        # */
        # inline void setMaximumCurvature (double maximum_curvature)
        # 
        # /** \brief Get the maximum curvature allowed for a planar region. */
        # inline double getMaximumCurvature () const
        # 
        # /** \brief Provide a pointer to the comparator to be used for segmentation.
        # * \param[in] compare A pointer to the comparator to be used for segmentation.
        # */
        # void setComparator (const PlaneComparatorPtr& compare)
        # 
        # /** \brief Provide a pointer to the comparator to be used for refinement.
        # * \param[in] compare A pointer to the comparator to be used for refinement.
        # */
        # void setRefinementComparator (const PlaneRefinementComparatorPtr& compare)
        # 
        # /** \brief Set whether or not to project boundary points to the plane, or leave them in the original 3D space.
        # * \param[in] project_points true if points should be projected, false if not.
        # */
        # void setProjectPoints (bool project_points)
        # 
        # /** \brief Segmentation of all planes in a point cloud given by setInputCloud(), setIndices()
        # * \param[out] model_coefficients a vector of model_coefficients for each plane found in the input cloud
        # * \param[out] inlier_indices a vector of inliers for each detected plane
        # * \param[out] centroids a vector of centroids for each plane
        # * \param[out] covariances a vector of covariance matricies for the inliers of each plane
        # * \param[out] labels a point cloud for the connected component labels of each pixel
        # * \param[out] label_indices a vector of PointIndices for each labeled component
        # */
        # void segment (
        #         std::vector<ModelCoefficients>& model_coefficients, 
        #         std::vector<PointIndices>& inlier_indices,
        #         std::vector<Eigen::Vector4f, Eigen::aligned_allocator<Eigen::Vector4f> >& centroids,
        #         std::vector <Eigen::Matrix3f, Eigen::aligned_allocator<Eigen::Matrix3f> >& covariances,
        #         pcl::PointCloud<PointLT>& labels, 
        #         std::vector<pcl::PointIndices>& label_indices);
        # 
        # /** \brief Segmentation of all planes in a point cloud given by setInputCloud(), setIndices()
        # * \param[out] model_coefficients a vector of model_coefficients for each plane found in the input cloud
        # * \param[out] inlier_indices a vector of inliers for each detected plane
        # */
        # void segment (
        #         std::vector<ModelCoefficients>& model_coefficients, 
        #         std::vector<PointIndices>& inlier_indices);
        # 
        # /** \brief Segmentation of all planes in a point cloud given by setInputCloud(), setIndices()
        # * \param[out] regions a list of resultant planar polygonal regions
        # */
        # void segment (std::vector<PlanarRegion<PointT>, Eigen::aligned_allocator<PlanarRegion<PointT> > >& regions);
        # 
        # /** \brief Perform a segmentation, as well as an additional refinement step.  This helps with including points whose normals may not match neighboring points well, but may match the planar model well.
        # * \param[out] regions A list of regions generated by segmentation and refinement.
        # */
        # void segmentAndRefine (std::vector<PlanarRegion<PointT>, Eigen::aligned_allocator<PlanarRegion<PointT> > >& regions);
        # 
        # /** \brief Perform a segmentation, as well as additional refinement step.  Returns intermediate data structures for use in
        # * subsequent processing.
        # * \param[out] regions A vector of PlanarRegions generated by segmentation
        # * \param[out] model_coefficients A vector of model coefficients for each segmented plane
        # * \param[out] inlier_indices A vector of PointIndices, indicating the inliers to each segmented plane
        # * \param[out] labels A PointCloud<PointLT> corresponding to the resulting segmentation.
        # * \param[out] label_indices A vector of PointIndices for each label
        # * \param[out] boundary_indices A vector of PointIndices corresponding to the outer boundary / contour of each label
        # */
        # void segmentAndRefine (
        #                 std::vector<PlanarRegion<PointT>, Eigen::aligned_allocator<PlanarRegion<PointT> > >& regions,
        #                 std::vector<ModelCoefficients>& model_coefficients,
        #                 std::vector<PointIndices>& inlier_indices,
        #                 PointCloudLPtr& labels,
        #                 std::vector<pcl::PointIndices>& label_indices,
        #                 std::vector<pcl::PointIndices>& boundary_indices);
        # 
        # /** \brief Perform a refinement of an initial segmentation, by comparing points to adjacent regions detected by the initial segmentation.
        # * \param [in] model_coefficients The list of segmented model coefficients
        # * \param [in] inlier_indices The list of segmented inlier indices, corresponding to each model
        # * \param [in] centroids The list of centroids corresponding to each segmented plane
        # * \param [in] covariances The list of covariances corresponding to each segemented plane
        # * \param [in] labels The labels produced by the initial segmentation
        # * \param [in] label_indices The list of indices corresponding to each label
        # */
        # void refine (std::vector<ModelCoefficients>& model_coefficients, 
        #       std::vector<PointIndices>& inlier_indices,
        #       std::vector<Eigen::Vector4f, Eigen::aligned_allocator<Eigen::Vector4f> >& centroids,
        #       std::vector <Eigen::Matrix3f, Eigen::aligned_allocator<Eigen::Matrix3f> >& covariances,
        #       PointCloudLPtr& labels,
        #       std::vector<pcl::PointIndices>& label_indices);


###

#ifdef PCL_NO_PRECOMPILE
#include <pcl/segmentation/impl/organized_multi_plane_segmentation.hpp>
#endif

#endif //#ifndef PCL_SEGMENTATION_ORGANIZED_MULTI_PLANE_SEGMENTATION_H_
###

# planar_polygon_fusion.h
# namespace pcl
# /** \brief PlanarPolygonFusion takes a list of 2D planar polygons and
# * attempts to reduce them to a minimum set that best represents the scene,
# * based on various given comparators.
# */
# template <typename PointT>
# class PlanarPolygonFusion
        # public:
        # /** \brief Constructor */
        # PlanarPolygonFusion () : regions_ () {}
        # 
        # /** \brief Destructor */
        # virtual ~PlanarPolygonFusion () {}
        # 
        # /** \brief Reset the state (clean the list of planar models). */
        # void reset ()
        # 
        # /** \brief Set the list of 2D planar polygons to refine.
        # * \param[in] input the list of 2D planar polygons to refine
        # */
        # void addInputPolygons (const std::vector<PlanarRegion<PointT>, Eigen::aligned_allocator<PlanarRegion<PointT> > > &input)


###

# planar_region.h
# namespace pcl
# /** \brief PlanarRegion represents a set of points that lie in a plane.  Inherits summary statistics about these points from Region3D, and  summary statistics of a 3D collection of points.
# * \author Alex Trevor
# */
# template <typename PointT>
# class PlanarRegion : public pcl::Region3D<PointT>, public pcl::PlanarPolygon<PointT>
        # protected:
        # using Region3D<PointT>::centroid_;
        # using Region3D<PointT>::covariance_; 
        # using Region3D<PointT>::count_;
        # using PlanarPolygon<PointT>::contour_;
        # using PlanarPolygon<PointT>::coefficients_;
        # 
        # public:
        # /** \brief Empty constructor for PlanarRegion. */
        # PlanarRegion () : contour_labels_ ()
        # 
        # /** \brief Constructor for Planar region from a Region3D and a PlanarPolygon. 
        # * \param[in] region a Region3D for the input data
        # * \param[in] polygon a PlanarPolygon for the input region
        # */
        # PlanarRegion (const pcl::Region3D<PointT>& region, const pcl::PlanarPolygon<PointT>& polygon) :
        # 
        # /** \brief Destructor. */
        # virtual ~PlanarRegion () {}
        # 
        # /** \brief Constructor for PlanarRegion.
        # * \param[in] centroid the centroid of the region.
        # * \param[in] covariance the covariance of the region.
        # * \param[in] count the number of points in the region.
        # * \param[in] contour the contour / boudnary for the region
        # * \param[in] coefficients the model coefficients (a,b,c,d) for the plane
        # */
        # PlanarRegion (const Eigen::Vector3f& centroid, const Eigen::Matrix3f& covariance, unsigned count,
        #             const typename pcl::PointCloud<PointT>::VectorType& contour,
        #             const Eigen::Vector4f& coefficients) :


###


# plane_coefficient_comparator.h
# namespace pcl
# /** \brief PlaneCoefficientComparator is a Comparator that operates on plane coefficients, for use in planar segmentation.
#  * In conjunction with OrganizedConnectedComponentSegmentation, this allows planes to be segmented from organized data.
#  * \author Alex Trevor
#  */
# template<typename PointT, typename PointNT>
# class PlaneCoefficientComparator: public Comparator<PointT>
        # public:
        # typedef typename Comparator<PointT>::PointCloud PointCloud;
        # typedef typename Comparator<PointT>::PointCloudConstPtr PointCloudConstPtr;
        # typedef typename pcl::PointCloud<PointNT> PointCloudN;
        # typedef typename PointCloudN::Ptr PointCloudNPtr;
        # typedef typename PointCloudN::ConstPtr PointCloudNConstPtr;
        # typedef boost::shared_ptr<PlaneCoefficientComparator<PointT, PointNT> > Ptr;
        # typedef boost::shared_ptr<const PlaneCoefficientComparator<PointT, PointNT> > ConstPtr;
        # using pcl::Comparator<PointT>::input_;
        # 
        # /** \brief Empty constructor for PlaneCoefficientComparator. */
        # PlaneCoefficientComparator ()
        # : normals_ ()
        # , plane_coeff_d_ ()
        # , angular_threshold_ (pcl::deg2rad (2.0f))
        # , distance_threshold_ (0.02f)
        # , depth_dependent_ (true)
        # , z_axis_ (Eigen::Vector3f (0.0, 0.0, 1.0) )
        # 
        # /** \brief Constructor for PlaneCoefficientComparator.
        #   * \param[in] plane_coeff_d a reference to a vector of d coefficients of plane equations.  Must be the same size as the input cloud and input normals.  a, b, and c coefficients are in the input normals.
        #   */
        # PlaneCoefficientComparator (boost::shared_ptr<std::vector<float> >& plane_coeff_d) 
        # : normals_ ()
        # , plane_coeff_d_ (plane_coeff_d)
        # , angular_threshold_ (pcl::deg2rad (2.0f))
        # , distance_threshold_ (0.02f)
        # , depth_dependent_ (true)
        # , z_axis_ (Eigen::Vector3f (0.0f, 0.0f, 1.0f) )
        # 
        # /** \brief Destructor for PlaneCoefficientComparator. */
        # virtual ~PlaneCoefficientComparator ()
        # 
        # virtual void setInputCloud (const PointCloudConstPtr& cloud)
        # 
        # /** \brief Provide a pointer to the input normals.
        #  * \param[in] normals the input normal cloud
        #  */
        # inline void setInputNormals (const PointCloudNConstPtr &normals)
        # 
        # /** \brief Get the input normals. */
        # inline PointCloudNConstPtr getInputNormals () const
        # 
        # /** \brief Provide a pointer to a vector of the d-coefficient of the planes' hessian normal form.  a, b, and c are provided by the normal cloud.
        #   * \param[in] plane_coeff_d a pointer to the plane coefficients.
        #   */
        # void setPlaneCoeffD (boost::shared_ptr<std::vector<float> >& plane_coeff_d)
        # 
        # /** \brief Provide a pointer to a vector of the d-coefficient of the planes' hessian normal form.  a, b, and c are provided by the normal cloud.
        #  * \param[in] plane_coeff_d a pointer to the plane coefficients.
        #  */
        # void setPlaneCoeffD (std::vector<float>& plane_coeff_d)
        # 
        # /** \brief Get a pointer to the vector of the d-coefficient of the planes' hessian normal form. */
        # const std::vector<float>& getPlaneCoeffD () const
        # 
        # /** \brief Set the tolerance in radians for difference in normal direction between neighboring points, to be considered part of the same plane.
        #  * \param[in] angular_threshold the tolerance in radians
        #  */
        # virtual void setAngularThreshold (float angular_threshold)
        # 
        # /** \brief Get the angular threshold in radians for difference in normal direction between neighboring points, to be considered part of the same plane. */
        # inline float getAngularThreshold () const
        # 
        # /** \brief Set the tolerance in meters for difference in perpendicular distance (d component of plane equation) to the plane between neighboring points, to be considered part of the same plane.
        #   * \param[in] distance_threshold the tolerance in meters (at 1m)
        #   * \param[in] depth_dependent whether to scale the threshold based on range from the sensor (default: false)
        #   */
        # void setDistanceThreshold (float distance_threshold, bool depth_dependent = false)
        # 
        # /** \brief Get the distance threshold in meters (d component of plane equation) between neighboring points, to be considered part of the same plane. */
        # inline float getDistanceThreshold () const
        # 
        # /** \brief Compare points at two indices by their plane equations.  True if the angle between the normals is less than the angular threshold,
        #   * and the difference between the d component of the normals is less than distance threshold, else false
        #   * \param idx1 The first index for the comparison
        #   * \param idx2 The second index for the comparison
        #   */
        # virtual bool compare (int idx1, int idx2) const


###


# plane_refinement_comparator.h
# namespace pcl
# /** \brief PlaneRefinementComparator is a Comparator that operates on plane coefficients, 
#  * for use in planar segmentation.
#  * In conjunction with OrganizedConnectedComponentSegmentation, this allows planes to be segmented from organized data.
#  *
#  * \author Alex Trevor, Suat Gedikli
#  */
# template<typename PointT, typename PointNT, typename PointLT>
# class PlaneRefinementComparator: public PlaneCoefficientComparator<PointT, PointNT>
        # public:
        # typedef typename Comparator<PointT>::PointCloud PointCloud;
        # typedef typename Comparator<PointT>::PointCloudConstPtr PointCloudConstPtr;
        # typedef typename pcl::PointCloud<PointNT> PointCloudN;
        # typedef typename PointCloudN::Ptr PointCloudNPtr;
        # typedef typename PointCloudN::ConstPtr PointCloudNConstPtr;
        # typedef typename pcl::PointCloud<PointLT> PointCloudL;
        # typedef typename PointCloudL::Ptr PointCloudLPtr;
        # typedef typename PointCloudL::ConstPtr PointCloudLConstPtr;
        # 
        # typedef boost::shared_ptr<PlaneRefinementComparator<PointT, PointNT, PointLT> > Ptr;
        # typedef boost::shared_ptr<const PlaneRefinementComparator<PointT, PointNT, PointLT> > ConstPtr;
        # 
        # using pcl::PlaneCoefficientComparator<PointT, PointNT>::input_;
        # using pcl::PlaneCoefficientComparator<PointT, PointNT>::normals_;
        # using pcl::PlaneCoefficientComparator<PointT, PointNT>::distance_threshold_;
        # using pcl::PlaneCoefficientComparator<PointT, PointNT>::plane_coeff_d_;
        # 
        # /** \brief Empty constructor for PlaneCoefficientComparator. */
        # PlaneRefinementComparator ()
        # : models_ ()
        # , labels_ ()
        # , refine_labels_ ()
        # , label_to_model_ ()
        # , depth_dependent_ (false)
        # 
        # /** \brief Empty constructor for PlaneCoefficientComparator. 
        #   * \param[in] models
        #   * \param[in] refine_labels
        #   */
        # PlaneRefinementComparator (boost::shared_ptr<std::vector<pcl::ModelCoefficients> >& models,
        #                          boost::shared_ptr<std::vector<bool> >& refine_labels)
        # : models_ (models)
        # , labels_ ()
        # , refine_labels_ (refine_labels)
        # , label_to_model_ ()
        # , depth_dependent_ (false)
        # 
        # /** \brief Destructor for PlaneCoefficientComparator. */
        # virtual ~PlaneRefinementComparator ()
        # 
        # /** \brief Set the vector of model coefficients to which we will compare.
        #   * \param[in] models a vector of model coefficients produced by the initial segmentation step.
        #   */
        # void setModelCoefficients (boost::shared_ptr<std::vector<pcl::ModelCoefficients> >& models)
        # 
        # /** \brief Set the vector of model coefficients to which we will compare.
        #   * \param[in] models a vector of model coefficients produced by the initial segmentation step.
        #   */
        # void setModelCoefficients (std::vector<pcl::ModelCoefficients>& models)
        # 
        # /** \brief Set which labels should be refined.  This is a vector of bools 0-max_label, true if the label should be refined.
        #   * \param[in] refine_labels A vector of bools 0-max_label, true if the label should be refined.
        #   */
        # void setRefineLabels (boost::shared_ptr<std::vector<bool> >& refine_labels)
        # 
        # /** \brief Set which labels should be refined.  This is a vector of bools 0-max_label, true if the label should be refined.
        #   * \param[in] refine_labels A vector of bools 0-max_label, true if the label should be refined.
        #   */
        # void setRefineLabels (std::vector<bool>& refine_labels)
        # 
        # /** \brief A mapping from label to index in the vector of models, allowing the model coefficients of a label to be accessed.
        #   * \param[in] label_to_model A vector of size max_label, with the index of each corresponding model in models
        #   */
        # inline void setLabelToModel (boost::shared_ptr<std::vector<int> >& label_to_model)
        # 
        # /** \brief A mapping from label to index in the vector of models, allowing the model coefficients of a label to be accessed.
        #   * \param[in] label_to_model A vector of size max_label, with the index of each corresponding model in models
        #   */
        # inline void setLabelToModel (std::vector<int>& label_to_model)
        # 
        # /** \brief Get the vector of model coefficients to which we will compare. */
        # inline boost::shared_ptr<std::vector<pcl::ModelCoefficients> > getModelCoefficients () const
        # 
        # /** \brief ...
        #   * \param[in] labels
        # */
        # inline void setLabels (PointCloudLPtr& labels)
        # 
        # /** \brief Compare two neighboring points
        #   * \param[in] idx1 The index of the first point.
        #   * \param[in] idx2 The index of the second point.
        #   */
        # virtual bool compare (int idx1, int idx2) const


###

# 1.7.2 NG
# progressive_morphological_filter.h
# namespace pcl
# /** \brief
#  * Implements the Progressive Morphological Filter for segmentation of ground points.
#  * Description can be found in the article
#  * "A Progressive Morphological Filter for Removing Nonground Measurements from
#  * Airborne LIDAR Data"
#  * by K. Zhang, S. Chen, D. Whitman, M. Shyu, J. Yan, and C. Zhang.
#  */
# template <typename PointT>
# class PCL_EXPORTS ProgressiveMorphologicalFilter : public pcl::PCLBase<PointT>
# cdef extern from "pcl/segmentation/progressive_morphological_filter.h" namespace "pcl":
#     cdef cppclass ProgressiveMorphologicalFilter[PointT](PCLBase[PointT]):
#         ProgressiveMorphologicalFilter()
        # public:
        # typedef pcl::PointCloud <PointT> PointCloud;
        # 
        # using PCLBase <PointT>::input_;
        # using PCLBase <PointT>::indices_;
        # using PCLBase <PointT>::initCompute;
        # using PCLBase <PointT>::deinitCompute;
        # public:
        # /** \brief Constructor that sets default values for member variables. */
        # ProgressiveMorphologicalFilter ();
        # virtual ~ProgressiveMorphologicalFilter ();
        # 
        # /** \brief Get the maximum window size to be used in filtering ground returns. */
        # inline int getMaxWindowSize () const { return (max_window_size_); }
        # int getMaxWindowSize ()
        # 
        # /** \brief Set the maximum window size to be used in filtering ground returns. */
        # inline void setMaxWindowSize (int max_window_size) { max_window_size_ = max_window_size; }
        # void setMaxWindowSize (int max_window_size)
        # 
        # /** \brief Get the slope value to be used in computing the height threshold. */
        # inline float getSlope () const { return (slope_); }
        # float getSlope ()
        # 
        # /** \brief Set the slope value to be used in computing the height threshold. */
        # inline void setSlope (float slope) { slope_ = slope; }
        # void setSlope (float slope)
        # 
        # /** \brief Get the maximum height above the parameterized ground surface to be considered a ground return. */
        # inline float getMaxDistance () const { return (max_distance_); }
        # float getMaxDistance ()
        # 
        # /** \brief Set the maximum height above the parameterized ground surface to be considered a ground return. */
        # inline void setMaxDistance (float max_distance) { max_distance_ = max_distance; }
        # void setMaxDistance (float max_distance)
        # 
        # /** \brief Get the initial height above the parameterized ground surface to be considered a ground return. */
        # inline float getInitialDistance () const { return (initial_distance_); }
        # float getInitialDistance ()
        # 
        # /** \brief Set the initial height above the parameterized ground surface to be considered a ground return. */
        # inline void setInitialDistance (float initial_distance) { initial_distance_ = initial_distance; }
        # void setInitialDistance (float initial_distance)
        # 
        # /** \brief Get the cell size. */
        # inline float getCellSize () const { return (cell_size_); }
        # float getCellSize ()
        # 
        # /** \brief Set the cell size. */
        # inline void setCellSize (float cell_size) { cell_size_ = cell_size; }
        # void setCellSize (float cell_size)
        # 
        # /** \brief Get the base to be used in computing progressive window sizes. */
        # inline float getBase () const { return (base_); }
        # float getBase ()
        # 
        # /** \brief Set the base to be used in computing progressive window sizes. */
        # inline void setBase (float base) { base_ = base; }
        # setBase (float base)
        # 
        # /** \brief Get flag indicating whether or not to exponentially grow window sizes? */
        # inline bool getExponential () const { return (exponential_); }
        # bool getExponential ()
        # 
        # /** \brief Set flag indicating whether or not to exponentially grow window sizes? */
        # inline void setExponential (bool exponential) { exponential_ = exponential; }
        # void setExponential (bool exponential)
        # 
        # /** \brief This method launches the segmentation algorithm and returns indices of
        #   * points determined to be ground returns.
        #   * \param[out] ground indices of points determined to be ground returns.
        #   */
        # virtual void extract (std::vector<int>& ground);
        # void extract (vector[int]& ground)


# ctypedef ProgressiveMorphologicalFilter[PointXYZ] ProgressiveMorphologicalFilter_t
# ctypedef ProgressiveMorphologicalFilter[PointXYZI] ProgressiveMorphologicalFilter_PointXYZI_t
# ctypedef ProgressiveMorphologicalFilter[PointXYZRGB] ProgressiveMorphologicalFilter_PointXYZRGB_t
# ctypedef ProgressiveMorphologicalFilter[PointXYZRGBA] ProgressiveMorphologicalFilter_PointXYZRGBA_t
###

# region_3d.h
# namespace pcl
# /** \brief Region3D represents summary statistics of a 3D collection of points.
#  * \author Alex Trevor
#  */
# template <typename PointT>
# class Region3D
        # public:
        # /** \brief Empty constructor for Region3D. */
        # Region3D () : centroid_ (Eigen::Vector3f::Zero ()), covariance_ (Eigen::Matrix3f::Identity ()), count_ (0)
        # 
        # /** \brief Constructor for Region3D. 
        # * \param[in] centroid The centroid of the region.
        # * \param[in] covariance The covariance of the region.
        # * \param[in] count The number of points in the region.
        # */
        # Region3D (Eigen::Vector3f& centroid, Eigen::Matrix3f& covariance, unsigned count) 
        # : centroid_ (centroid), covariance_ (covariance), count_ (count)
        # 
        # /** \brief Destructor. */
        # virtual ~Region3D () {}
        # 
        # /** \brief Get the centroid of the region. */
        # inline Eigen::Vector3f getCentroid () const
        # 
        # /** \brief Get the covariance of the region. */
        # inline Eigen::Matrix3f getCovariance () const
        # 
        # /** \brief Get the number of points in the region. */
        # unsigned getCount () const
        # 
        # /** \brief Get the curvature of the region. */
        # float getCurvature () const
        # 
        # /** \brief Set the curvature of the region. */
        # void setCurvature (float curvature)


###

# region_growing.h
# namespace pcl
# /** \brief
#  * Implements the well known Region Growing algorithm used for segmentation.
#  * Description can be found in the article
#  * "Segmentation of point clouds using smoothness constraint"
#  * by T. Rabbania, F. A. van den Heuvelb, G. Vosselmanc.
#  * In addition to residual test, the possibility to test curvature is added.
#  */
# template <typename PointT, typename NormalT>
# class PCL_EXPORTS RegionGrowing : public pcl::PCLBase<PointT>
        # public:
        # typedef pcl::search::Search <PointT> KdTree;
        # typedef typename KdTree::Ptr KdTreePtr;
        # typedef pcl::PointCloud <NormalT> Normal;
        # typedef typename Normal::Ptr NormalPtr;
        # typedef pcl::PointCloud <PointT> PointCloud;
        # using PCLBase <PointT>::input_;
        # using PCLBase <PointT>::indices_;
        # using PCLBase <PointT>::initCompute;
        # using PCLBase <PointT>::deinitCompute;
        # public:
        # /** \brief Constructor that sets default values for member variables. */
        # RegionGrowing ();
        # 
        # /** \brief This destructor destroys the cloud, normals and search method used for
        #  * finding KNN. In other words it frees memory.
        #  */
        # virtual ~RegionGrowing ();
        # 
        # /** \brief Get the minimum number of points that a cluster needs to contain in order to be considered valid. */
        # int getMinClusterSize ();
        # 
        # /** \brief Set the minimum number of points that a cluster needs to contain in order to be considered valid. */
        # void setMinClusterSize (int min_cluster_size);
        # 
        # /** \brief Get the maximum number of points that a cluster needs to contain in order to be considered valid. */
        # int getMaxClusterSize ();
        # 
        # /** \brief Set the maximum number of points that a cluster needs to contain in order to be considered valid. */
        # void setMaxClusterSize (int max_cluster_size);
        # 
        # /** \brief Returns the flag value. This flag signalizes which mode of algorithm will be used.
        #  * If it is set to true than it will work as said in the article. This means that
        #  * it will be testing the angle between normal of the current point and it's neighbours normal.
        #  * Otherwise, it will be testing the angle between normal of the current point
        #  * and normal of the initial point that was chosen for growing new segment.
        #  */
        # bool getSmoothModeFlag () const;
        # 
        # /** \brief This function allows to turn on/off the smoothness constraint.
        #   * \param[in] value new mode value, if set to true then the smooth version will be used.
        #   */
        # void setSmoothModeFlag (bool value);
        # 
        # /** \brief Returns the flag that signalize if the curvature test is turned on/off. */
        # bool getCurvatureTestFlag () const;
        # 
        # /** \brief Allows to turn on/off the curvature test. Note that at least one test
        #   * (residual or curvature) must be turned on. If you are turning curvature test off
        #   * then residual test will be turned on automatically.
        #   *  \param[in] value new value for curvature test. If set to true then the test will be turned on
        #   */
        # virtual void setCurvatureTestFlag (bool value);
        # 
        # /** \brief Returns the flag that signalize if the residual test is turned on/off. */
        # bool getResidualTestFlag () const;
        # 
        # /** \brief
        # * Allows to turn on/off the residual test. Note that at least one test
        # * (residual or curvature) must be turned on. If you are turning residual test off
        # * then curvature test will be turned on automatically.
        # * \param[in] value new value for residual test. If set to true then the test will be turned on
        # */
        # virtual void setResidualTestFlag (bool value);
        # 
        # /** \brief Returns smoothness threshold. */
        # float getSmoothnessThreshold () const;
        # 
        # /** \brief Allows to set smoothness threshold used for testing the points.
        #   * \param[in] theta new threshold value for the angle between normals
        #   */
        # void setSmoothnessThreshold (float theta);
        # 
        # /** \brief Returns residual threshold. */
        # float getResidualThreshold () const;
        # 
        # /** \brief Allows to set residual threshold used for testing the points.
        # * \param[in] residual new threshold value for residual testing
        # */
        # void setResidualThreshold (float residual);
        # 
        # /** \brief Returns curvature threshold. */
        # float getCurvatureThreshold () const;
        # 
        # /** \brief Allows to set curvature threshold used for testing the points.
        #  * \param[in] curvature new threshold value for curvature testing
        #  */
        # void setCurvatureThreshold (float curvature);
        # 
        # /** \brief Returns the number of nearest neighbours used for KNN. */
        # unsigned int getNumberOfNeighbours () const;
        # 
        # /** \brief Allows to set the number of neighbours. For more information check the article.
        #  * \param[in] neighbour_number number of neighbours to use
        #  */
        # void setNumberOfNeighbours (unsigned int neighbour_number);
        # 
        # /** \brief Returns the pointer to the search method that is used for KNN. */
        # KdTreePtr getSearchMethod () const;
        # 
        # /** \brief Allows to set search method that will be used for finding KNN.
        #  * \param[in] tree pointer to a KdTree
        #  */
        # void setSearchMethod (const KdTreePtr& tree);
        # 
        # /** \brief Returns normals. */
        # NormalPtr getInputNormals () const;
        # 
        # /** \brief This method sets the normals. They are needed for the algorithm, so if
        #  * no normals will be set, the algorithm would not be able to segment the points.
        #  * \param[in] norm normals that will be used in the algorithm
        #  */
        # void setInputNormals (const NormalPtr& norm);
        # 
        # /** \brief This method launches the segmentation algorithm and returns the clusters that were
        #   * obtained during the segmentation.
        #   * \param[out] clusters clusters that were obtained. Each cluster is an array of point indices.
        #   */
        # virtual void extract (std::vector <pcl::PointIndices>& clusters);
        # 
        # /** \brief For a given point this function builds a segment to which it belongs and returns this segment.
        #  * \param[in] index index of the initial point which will be the seed for growing a segment.
        #  * \param[out] cluster cluster to which the point belongs.
        #  */
        # virtual void getSegmentFromPoint (int index, pcl::PointIndices& cluster);
        # 
        # /** \brief If the cloud was successfully segmented, then function
        #  * returns colored cloud. Otherwise it returns an empty pointer.
        #  * Points that belong to the same segment have the same color.
        #  * But this function doesn't guarantee that different segments will have different
        #  * color(it all depends on RNG). Points that were not listed in the indices array will have red color.
        #  */
        # pcl::PointCloud<pcl::PointXYZRGB>::Ptr getColoredCloud ();
        # 
        # /** \brief If the cloud was successfully segmented, then function
        # * returns colored cloud. Otherwise it returns an empty pointer.
        # * Points that belong to the same segment have the same color.
        # * But this function doesn't guarantee that different segments will have different
        # * color(it all depends on RNG). Points that were not listed in the indices array will have red color.
        # */
        # pcl::PointCloud<pcl::PointXYZRGBA>::Ptr getColoredCloudRGBA ();


###

# region_growing_rgb.h
# namespace pcl
# /** \brief
# * Implements the well known Region Growing algorithm used for segmentation.
# * Description can be found in the article
# * "Segmentation of point clouds using smoothness constraint"
# * by T. Rabbania, F. A. van den Heuvelb, G. Vosselmanc.
# * In addition to residual test, the possibility to test curvature is added.
# */
# template <typename PointT, typename NormalT>
# class PCL_EXPORTS RegionGrowing : public pcl::PCLBase<PointT>
        # public:
        # typedef pcl::search::Search <PointT> KdTree;
        # typedef typename KdTree::Ptr KdTreePtr;
        # typedef pcl::PointCloud <NormalT> Normal;
        # typedef typename Normal::Ptr NormalPtr;
        # typedef pcl::PointCloud <PointT> PointCloud;
        # using PCLBase <PointT>::input_;
        # using PCLBase <PointT>::indices_;
        # using PCLBase <PointT>::initCompute;
        # using PCLBase <PointT>::deinitCompute;
        # public:
        # 
        # /** \brief Constructor that sets default values for member variables. */
        # RegionGrowing ();
        # 
        # /** \brief This destructor destroys the cloud, normals and search method used for
        # * finding KNN. In other words it frees memory.
        # */
        # virtual ~RegionGrowing ();
        # 
        # /** \brief Get the minimum number of points that a cluster needs to contain in order to be considered valid. */
        # int getMinClusterSize ();
        # 
        # /** \brief Set the minimum number of points that a cluster needs to contain in order to be considered valid. */
        # void setMinClusterSize (int min_cluster_size);
        # 
        # /** \brief Get the maximum number of points that a cluster needs to contain in order to be considered valid. */
        # int getMaxClusterSize ();
        # 
        # /** \brief Set the maximum number of points that a cluster needs to contain in order to be considered valid. */
        # void setMaxClusterSize (int max_cluster_size);
        # 
        # /** \brief Returns the flag value. This flag signalizes which mode of algorithm will be used.
        # * If it is set to true than it will work as said in the article. This means that
        # * it will be testing the angle between normal of the current point and it's neighbours normal.
        # * Otherwise, it will be testing the angle between normal of the current point
        # * and normal of the initial point that was chosen for growing new segment.
        # */
        # bool getSmoothModeFlag () const;
        # 
        # /** \brief This function allows to turn on/off the smoothness constraint.
        # * \param[in] value new mode value, if set to true then the smooth version will be used.
        # */
        # void setSmoothModeFlag (bool value);
        # 
        # /** \brief Returns the flag that signalize if the curvature test is turned on/off. */
        # bool getCurvatureTestFlag () const;
        # 
        # /** \brief Allows to turn on/off the curvature test. Note that at least one test
        # * (residual or curvature) must be turned on. If you are turning curvature test off
        # * then residual test will be turned on automatically.
        # * \param[in] value new value for curvature test. If set to true then the test will be turned on
        # */
        # virtual void setCurvatureTestFlag (bool value);
        # 
        # /** \brief Returns the flag that signalize if the residual test is turned on/off. */
        # bool getResidualTestFlag () const;
        # 
        # /** \brief
        # * Allows to turn on/off the residual test. Note that at least one test
        # * (residual or curvature) must be turned on. If you are turning residual test off
        # * then curvature test will be turned on automatically.
        # * \param[in] value new value for residual test. If set to true then the test will be turned on
        # */
        # virtual void setResidualTestFlag (bool value);
        # 
        # /** \brief Returns smoothness threshold. */
        # float getSmoothnessThreshold () const;
        # 
        # /** \brief Allows to set smoothness threshold used for testing the points.
        # * \param[in] theta new threshold value for the angle between normals
        # */
        # void setSmoothnessThreshold (float theta);
        # 
        # /** \brief Returns residual threshold. */
        # float getResidualThreshold () const;
        # 
        # /** \brief Allows to set residual threshold used for testing the points.
        # * \param[in] residual new threshold value for residual testing
        # */
        # void setResidualThreshold (float residual);
        # 
        # /** \brief Returns curvature threshold. */
        # float getCurvatureThreshold () const;
        # 
        # /** \brief Allows to set curvature threshold used for testing the points.
        # * \param[in] curvature new threshold value for curvature testing
        # */
        # void setCurvatureThreshold (float curvature);
        # 
        # /** \brief Returns the number of nearest neighbours used for KNN. */
        # unsigned int getNumberOfNeighbours () const;
        # 
        # /** \brief Allows to set the number of neighbours. For more information check the article.
        # * \param[in] neighbour_number number of neighbours to use
        # */
        # void setNumberOfNeighbours (unsigned int neighbour_number);
        # 
        # /** \brief Returns the pointer to the search method that is used for KNN. */
        # KdTreePtr getSearchMethod () const;
        # 
        # /** \brief Allows to set search method that will be used for finding KNN.
        # * \param[in] tree pointer to a KdTree
        # */
        # void setSearchMethod (const KdTreePtr& tree);
        # 
        # /** \brief Returns normals. */
        # NormalPtr getInputNormals () const;
        # 
        # /** \brief This method sets the normals. They are needed for the algorithm, so if
        # * no normals will be set, the algorithm would not be able to segment the points.
        # * \param[in] norm normals that will be used in the algorithm
        # */
        # void setInputNormals (const NormalPtr& norm);
        # 
        # /** \brief This method launches the segmentation algorithm and returns the clusters that were
        # * obtained during the segmentation.
        # * \param[out] clusters clusters that were obtained. Each cluster is an array of point indices.
        # */
        # virtual void extract (std::vector <pcl::PointIndices>& clusters);
        # 
        # /** \brief For a given point this function builds a segment to which it belongs and returns this segment.
        # * \param[in] index index of the initial point which will be the seed for growing a segment.
        # * \param[out] cluster cluster to which the point belongs.
        # */
        # virtual void getSegmentFromPoint (int index, pcl::PointIndices& cluster);
        # 
        # /** \brief If the cloud was successfully segmented, then function
        # * returns colored cloud. Otherwise it returns an empty pointer.
        # * Points that belong to the same segment have the same color.
        # * But this function doesn't guarantee that different segments will have different
        # * color(it all depends on RNG). Points that were not listed in the indices array will have red color.
        # */
        # pcl::PointCloud<pcl::PointXYZRGB>::Ptr getColoredCloud ();
        # 
        # /** \brief If the cloud was successfully segmented, then function
        # * returns colored cloud. Otherwise it returns an empty pointer.
        # * Points that belong to the same segment have the same color.
        # * But this function doesn't guarantee that different segments will have different
        # * color(it all depends on RNG). Points that were not listed in the indices array will have red color.
        # */
        # pcl::PointCloud<pcl::PointXYZRGBA>::Ptr getColoredCloudRGBA ();
        # 
        # /** \brief This function is used as a comparator for sorting. */
        # inline bool comparePair (std::pair<float, int> i, std::pair<float, int> j)


###


# rgb_plane_coefficient_comparator.h
# namespace pcl
# /** \brief RGBPlaneCoefficientComparator is a Comparator that operates on plane coefficients, 
#  * for use in planar segmentation.  Also takes into account RGB, so we can segmented different colored co-planar regions.
#  * In conjunction with OrganizedConnectedComponentSegmentation, this allows planes to be segmented from organized data.
#  *
#  * \author Alex Trevor
#  */
# template<typename PointT, typename PointNT>
# class RGBPlaneCoefficientComparator: public PlaneCoefficientComparator<PointT, PointNT>
        # public:
        # typedef typename Comparator<PointT>::PointCloud PointCloud;
        # typedef typename Comparator<PointT>::PointCloudConstPtr PointCloudConstPtr;
        # typedef typename pcl::PointCloud<PointNT> PointCloudN;
        # typedef typename PointCloudN::Ptr PointCloudNPtr;
        # typedef typename PointCloudN::ConstPtr PointCloudNConstPtr;
        # typedef boost::shared_ptr<RGBPlaneCoefficientComparator<PointT, PointNT> > Ptr;
        # typedef boost::shared_ptr<const RGBPlaneCoefficientComparator<PointT, PointNT> > ConstPtr;
        # 
        # using pcl::Comparator<PointT>::input_;
        # using pcl::PlaneCoefficientComparator<PointT, PointNT>::normals_;
        # using pcl::PlaneCoefficientComparator<PointT, PointNT>::angular_threshold_;
        # using pcl::PlaneCoefficientComparator<PointT, PointNT>::distance_threshold_;
        # 
        # /** \brief Empty constructor for RGBPlaneCoefficientComparator. */
        # RGBPlaneCoefficientComparator ()
        # : color_threshold_ (50.0f)
        # 
        # /** \brief Constructor for RGBPlaneCoefficientComparator.
        # * \param[in] plane_coeff_d a reference to a vector of d coefficients of plane equations.  Must be the same size as the input cloud and input normals.  a, b, and c coefficients are in the input normals.
        # */
        # RGBPlaneCoefficientComparator (boost::shared_ptr<std::vector<float> >& plane_coeff_d) 
        # : PlaneCoefficientComparator<PointT, PointNT> (plane_coeff_d), color_threshold_ (50.0f)
        # 
        # /** \brief Destructor for RGBPlaneCoefficientComparator. */
        # virtual ~RGBPlaneCoefficientComparator ()
        # 
        # /** \brief Set the tolerance in color space between neighboring points, to be considered part of the same plane.
        # * \param[in] color_threshold The distance in color space
        # */
        # inline void setColorThreshold (float color_threshold)
        # 
        # /** \brief Get the color threshold between neighboring points, to be considered part of the same plane. */
        # inline float getColorThreshold () const
        # 
        # /** \brief Compare two neighboring points, by using normal information, euclidean distance, and color information.
        # * \param[in] idx1 The index of the first point.
        # * \param[in] idx2 The index of the second point.
        # */
        # bool compare (int idx1, int idx2) const


###

# sac_segmentation.h
# namespace pcl
# /** \brief @b SACSegmentation represents the Nodelet segmentation class for
#  * Sample Consensus methods and models, in the sense that it just creates a
#  * Nodelet wrapper for generic-purpose SAC-based segmentation.
#  * \author Radu Bogdan Rusu
#  * \ingroup segmentation
#  */
# template <typename PointT>
# class SACSegmentation : public PCLBase<PointT>
        # using PCLBase<PointT>::initCompute;
        # using PCLBase<PointT>::deinitCompute;
        # public:
        # using PCLBase<PointT>::input_;
        # using PCLBase<PointT>::indices_;
        # typedef pcl::PointCloud<PointT> PointCloud;
        # typedef typename PointCloud::Ptr PointCloudPtr;
        # typedef typename PointCloud::ConstPtr PointCloudConstPtr;
        # typedef typename pcl::search::Search<PointT>::Ptr SearchPtr;
        # typedef typename SampleConsensus<PointT>::Ptr SampleConsensusPtr;
        # typedef typename SampleConsensusModel<PointT>::Ptr SampleConsensusModelPtr;
        # 
        # /** \brief Empty constructor. 
        # * \param[in] random if true set the random seed to the current time, else set to 12345 (default: false)
        # */
        # SACSegmentation (bool random = false) 
        # : model_ ()
        # , sac_ ()
        # , model_type_ (-1)
        # , method_type_ (0)
        # , threshold_ (0)
        # , optimize_coefficients_ (true)
        # , radius_min_ (-std::numeric_limits<double>::max ())
        # , radius_max_ (std::numeric_limits<double>::max ())
        # , samples_radius_ (0.0)
        # , samples_radius_search_ ()
        # , eps_angle_ (0.0)
        # , axis_ (Eigen::Vector3f::Zero ())
        # , max_iterations_ (50)
        # , probability_ (0.99)
        # , random_ (random)
        # 
        # /** \brief Empty destructor. */
        # virtual ~SACSegmentation () { /*srv_.reset ();*/ };
        # 
        # /** \brief The type of model to use (user given parameter).
        # * \param[in] model the model type (check \a model_types.h)
        # */
        # inline void setModelType (int model) { model_type_ = model; }
        # 
        # /** \brief Get the type of SAC model used. */
        # inline int getModelType () const { return (model_type_); }
        # 
        # /** \brief Get a pointer to the SAC method used. */
        # inline SampleConsensusPtr getMethod () const { return (sac_); }
        # 
        # /** \brief Get a pointer to the SAC model used. */
        # inline SampleConsensusModelPtr getModel () const { return (model_); }
        # 
        # /** \brief The type of sample consensus method to use (user given parameter).
        # * \param[in] method the method type (check \a method_types.h)
        # */
        # inline void setMethodType (int method) { method_type_ = method; }
        # 
        # /** \brief Get the type of sample consensus method used. */
        # inline int getMethodType () const { return (method_type_); }
        # 
        # /** \brief Distance to the model threshold (user given parameter).
        # * \param[in] threshold the distance threshold to use
        # */
        # inline void setDistanceThreshold (double threshold) { threshold_ = threshold; }
        # 
        # /** \brief Get the distance to the model threshold. */
        # inline double getDistanceThreshold () const { return (threshold_); }
        # 
        # /** \brief Set the maximum number of iterations before giving up.
        # * \param[in] max_iterations the maximum number of iterations the sample consensus method will run
        # */
        # inline void setMaxIterations (int max_iterations) { max_iterations_ = max_iterations; }
        # 
        # /** \brief Get maximum number of iterations before giving up. */
        # inline int getMaxIterations () const { return (max_iterations_); }
        # 
        # /** \brief Set the probability of choosing at least one sample free from outliers.
        # * \param[in] probability the model fitting probability
        # */
        # inline void setProbability (double probability) { probability_ = probability; }
        # 
        # /** \brief Get the probability of choosing at least one sample free from outliers. */
        # inline double getProbability () const { return (probability_); }
        # 
        # /** \brief Set to true if a coefficient refinement is required.
        # * \param[in] optimize true for enabling model coefficient refinement, false otherwise
        # */
        # inline void setOptimizeCoefficients (bool optimize) { optimize_coefficients_ = optimize; }
        # 
        # /** \brief Get the coefficient refinement internal flag. */
        # inline bool getOptimizeCoefficients () const { return (optimize_coefficients_); }
        # 
        # /** \brief Set the minimum and maximum allowable radius limits for the model (applicable to models that estimate
        # * a radius)
        # * \param[in] min_radius the minimum radius model
        # * \param[in] max_radius the maximum radius model
        # */
        # inline void setRadiusLimits (const double &min_radius, const double &max_radius)
        # 
        # /** \brief Get the minimum and maximum allowable radius limits for the model as set by the user.
        # * \param[out] min_radius the resultant minimum radius model
        # * \param[out] max_radius the resultant maximum radius model
        # */
        # inline void getRadiusLimits (double &min_radius, double &max_radius)
        # 
        # /** \brief Set the maximum distance allowed when drawing random samples
        # * \param[in] radius the maximum distance (L2 norm)
        # * \param search
        # */
        # inline void setSamplesMaxDist (const double &radius, SearchPtr search)
        # 
        # /** \brief Get maximum distance allowed when drawing random samples
        # *
        # * \param[out] radius the maximum distance (L2 norm)
        # */
        # inline void getSamplesMaxDist (double &radius)
        # 
        # /** \brief Set the axis along which we need to search for a model perpendicular to.
        # * \param[in] ax the axis along which we need to search for a model perpendicular to
        # */
        # inline void setAxis (const Eigen::Vector3f &ax) { axis_ = ax; }
        # 
        # /** \brief Get the axis along which we need to search for a model perpendicular to. */
        # inline Eigen::Vector3f getAxis () const { return (axis_); }
        # 
        # /** \brief Set the angle epsilon (delta) threshold.
        # * \param[in] ea the maximum allowed difference between the model normal and the given axis in radians.
        # */
        # inline void setEpsAngle (double ea) { eps_angle_ = ea; }
        # 
        # /** \brief Get the epsilon (delta) model angle threshold in radians. */
        # inline double getEpsAngle () const { return (eps_angle_); }
        # 
        # /** \brief Base method for segmentation of a model in a PointCloud given by <setInputCloud (), setIndices ()>
        # * \param[in] inliers the resultant point indices that support the model found (inliers)
        # * \param[out] model_coefficients the resultant model coefficients
        # */
        # virtual void segment (PointIndices &inliers, ModelCoefficients &model_coefficients);


###

# sac_segmentation.h
# namespace pcl
# /** \brief @b SACSegmentationFromNormals represents the PCL nodelet segmentation class for Sample Consensus methods and
#  * models that require the use of surface normals for estimation.
#  * \ingroup segmentation
#  */
# template <typename PointT, typename PointNT>
# class SACSegmentationFromNormals: public SACSegmentation<PointT>
        # using SACSegmentation<PointT>::model_;
        # using SACSegmentation<PointT>::model_type_;
        # using SACSegmentation<PointT>::radius_min_;
        # using SACSegmentation<PointT>::radius_max_;
        # using SACSegmentation<PointT>::eps_angle_;
        # using SACSegmentation<PointT>::axis_;
        # using SACSegmentation<PointT>::random_;
        # 
        # public:
        # using PCLBase<PointT>::input_;
        # using PCLBase<PointT>::indices_;
        # typedef typename SACSegmentation<PointT>::PointCloud PointCloud;
        # typedef typename PointCloud::Ptr PointCloudPtr;
        # typedef typename PointCloud::ConstPtr PointCloudConstPtr;
        # typedef typename pcl::PointCloud<PointNT> PointCloudN;
        # typedef typename PointCloudN::Ptr PointCloudNPtr;
        # typedef typename PointCloudN::ConstPtr PointCloudNConstPtr;
        # typedef typename SampleConsensus<PointT>::Ptr SampleConsensusPtr;
        # typedef typename SampleConsensusModel<PointT>::Ptr SampleConsensusModelPtr;
        # typedef typename SampleConsensusModelFromNormals<PointT, PointNT>::Ptr SampleConsensusModelFromNormalsPtr;
        # 
        # /** \brief Empty constructor.
        # * \param[in] random if true set the random seed to the current time, else set to 12345 (default: false)
        # */
        # SACSegmentationFromNormals (bool random = false) 
        # : SACSegmentation<PointT> (random)
        # , normals_ ()
        # , distance_weight_ (0.1)
        # , distance_from_origin_ (0)
        # , min_angle_ ()
        # , max_angle_ ()
        # 
        # /** \brief Provide a pointer to the input dataset that contains the point normals of 
        # * the XYZ dataset.
        # * \param[in] normals the const boost shared pointer to a PointCloud message
        # */
        # inline void setInputNormals (const PointCloudNConstPtr &normals) { normals_ = normals; }
        # 
        # /** \brief Get a pointer to the normals of the input XYZ point cloud dataset. */
        # inline PointCloudNConstPtr getInputNormals () const { return (normals_); }
        # 
        # /** \brief Set the relative weight (between 0 and 1) to give to the angular 
        # * distance (0 to pi/2) between point normals and the plane normal.
        # * \param[in] distance_weight the distance/angular weight
        # */
        # inline void setNormalDistanceWeight (double distance_weight) { distance_weight_ = distance_weight; }
        # 
        # /** \brief Get the relative weight (between 0 and 1) to give to the angular distance (0 to pi/2) between point
        # * normals and the plane normal. */
        # inline double getNormalDistanceWeight () const { return (distance_weight_); }
        # 
        # /** \brief Set the minimum opning angle for a cone model.
        # * \param min_angle the opening angle which we need minumum to validate a cone model.
        # * \param max_angle the opening angle which we need maximum to validate a cone model.
        # */
        # inline void setMinMaxOpeningAngle (const double &min_angle, const double &max_angle)
        # 
        # /** \brief Get the opening angle which we need minumum to validate a cone model. */
        # inline void getMinMaxOpeningAngle (double &min_angle, double &max_angle)
        # 
        # /** \brief Set the distance we expect a plane model to be from the origin
        # * \param[in] d distance from the template plane modl to the origin
        # */
        # inline void setDistanceFromOrigin (const double d) { distance_from_origin_ = d; }
        # 
        # /** \brief Get the distance of a plane model from the origin. */
        # inline double getDistanceFromOrigin () const { return (distance_from_origin_); }


###

# seeded_hue_segmentation.h
# namespace pcl
# /** \brief Decompose a region of space into clusters based on the Euclidean distance between points
#  * \param[in] cloud the point cloud message
#  * \param[in] tree the spatial locator (e.g., kd-tree) used for nearest neighbors searching
#  * \note the tree has to be created as a spatial locator on \a cloud
#  * \param[in] tolerance the spatial cluster tolerance as a measure in L2 Euclidean space
#  * \param[in] indices_in the cluster containing the seed point indices (as a vector of PointIndices)
#  * \param[out] indices_out 
#  * \param[in] delta_hue
#  * \todo look how to make this templated!
#  * \ingroup segmentation
#  */
# void seededHueSegmentation (
#                       const PointCloud<PointXYZRGB>                           &cloud, 
#                         const boost::shared_ptr<search::Search<PointXYZRGB> >   &tree, 
#                         float                                                   tolerance, 
#                         PointIndices                                            &indices_in, 
#                         PointIndices                                            &indices_out, 
#                         float                                                   delta_hue = 0.0);
###

# seeded_hue_segmentation.h
# namespace pcl
#   /** \brief Decompose a region of space into clusters based on the Euclidean distance between points
#     * \param[in] cloud the point cloud message
#     * \param[in] tree the spatial locator (e.g., kd-tree) used for nearest neighbors searching
#     * \note the tree has to be created as a spatial locator on \a cloud
#     * \param[in] tolerance the spatial cluster tolerance as a measure in L2 Euclidean space
#     * \param[in] indices_in the cluster containing the seed point indices (as a vector of PointIndices)
#     * \param[out] indices_out 
#     * \param[in] delta_hue
#     * \todo look how to make this templated!
#     * \ingroup segmentation
#     */
#   void 
#   seededHueSegmentation (const PointCloud<PointXYZRGB>                           &cloud, 
#                          const boost::shared_ptr<search::Search<PointXYZRGBL> >  &tree, 
#                          float                                                   tolerance, 
#                          PointIndices                                            &indices_in, 
#                          PointIndices                                            &indices_out, 
#                          float                                                   delta_hue = 0.0);
# 
###

# seeded_hue_segmentation.h
# namespace pcl
#   /** \brief SeededHueSegmentation 
#     * \author Koen Buys
#     * \ingroup segmentation
#     */
#   class SeededHueSegmentation: public PCLBase<PointXYZRGB>
#   {
#     typedef PCLBase<PointXYZRGB> BasePCLBase;
# 
#     public:
#       typedef pcl::PointCloud<PointXYZRGB> PointCloud;
#       typedef PointCloud::Ptr PointCloudPtr;
#       typedef PointCloud::ConstPtr PointCloudConstPtr;
# 
#       typedef pcl::search::Search<PointXYZRGB> KdTree;
#       typedef pcl::search::Search<PointXYZRGB>::Ptr KdTreePtr;
# 
#       typedef PointIndices::Ptr PointIndicesPtr;
#       typedef PointIndices::ConstPtr PointIndicesConstPtr;
# 
#       //////////////////////////////////////////////////////////////////////////////////////////////////////////////////
#       /** \brief Empty constructor. */
#       SeededHueSegmentation () : tree_ (), cluster_tolerance_ (0), delta_hue_ (0.0)
#       {};
# 
#       /** \brief Provide a pointer to the search object.
#         * \param[in] tree a pointer to the spatial search object.
#         */
#       inline void 
#       setSearchMethod (const KdTreePtr &tree) { tree_ = tree; }
# 
#       /** \brief Get a pointer to the search method used. */
#       inline KdTreePtr 
#       getSearchMethod () const { return (tree_); }
# 
#       /** \brief Set the spatial cluster tolerance as a measure in the L2 Euclidean space
#         * \param[in] tolerance the spatial cluster tolerance as a measure in the L2 Euclidean space
#         */
#       inline void 
#       setClusterTolerance (double tolerance) { cluster_tolerance_ = tolerance; }
# 
#       /** \brief Get the spatial cluster tolerance as a measure in the L2 Euclidean space. */
#       inline double 
#       getClusterTolerance () const { return (cluster_tolerance_); }
# 
#       /** \brief Set the tollerance on the hue
#         * \param[in] delta_hue the new delta hue
#         */
#       inline void setDeltaHue (float delta_hue) { delta_hue_ = delta_hue; }
#       
#       /** \brief Get the tolerance on the hue */
#       inline float getDeltaHue () const { return (delta_hue_); }
#       
#       /** \brief Cluster extraction in a PointCloud given by <setInputCloud (), setIndices ()>
#         * \param[in] indices_in
#         * \param[out] indices_out
#         */
#       void segment (PointIndices &indices_in, PointIndices &indices_out);


###

# segment_differences.h
# namespace pcl
# /** \brief Obtain the difference between two aligned point clouds as another point cloud, given a distance threshold.
#   * \param src the input point cloud source
#   * \param tgt the input point cloud target we need to obtain the difference against
#   * \param threshold the distance threshold (tolerance) for point correspondences. (e.g., check if f a point p1 from 
#   * src has a correspondence > threshold than a point p2 from tgt)
#   * \param tree the spatial locator (e.g., kd-tree) used for nearest neighbors searching built over \a tgt
#   * \param output the resultant output point cloud difference
#   * \ingroup segmentation
#   */
# template <typename PointT> 
# void getPointCloudDifference (
#     const pcl::PointCloud<PointT> &src, const pcl::PointCloud<PointT> &tgt, 
#     double threshold, const boost::shared_ptr<pcl::search::Search<PointT> > &tree,
#     pcl::PointCloud<PointT> &output);
###

# segment_differences.h
# namespace pcl
# /** \brief @b SegmentDifferences obtains the difference between two spatially
#   * aligned point clouds and returns the difference between them for a maximum
#   * given distance threshold.
#   * \author Radu Bogdan Rusu
#   * \ingroup segmentation
#   */
# template <typename PointT>
# class SegmentDifferences: public PCLBase<PointT>
#       typedef PCLBase<PointT> BasePCLBase;
#       
#       public:
#       typedef pcl::PointCloud<PointT> PointCloud;
#       typedef typename PointCloud::Ptr PointCloudPtr;
#       typedef typename PointCloud::ConstPtr PointCloudConstPtr;
#       typedef typename pcl::search::Search<PointT> KdTree;
#       typedef typename pcl::search::Search<PointT>::Ptr KdTreePtr;
#       typedef PointIndices::Ptr PointIndicesPtr;
#       typedef PointIndices::ConstPtr PointIndicesConstPtr;
#       
#       /** \brief Empty constructor. */
#       SegmentDifferences () : 
#         tree_ (), target_ (), distance_threshold_ (0)
#       {};
#       
#       /** \brief Provide a pointer to the target dataset against which we
#         * compare the input cloud given in setInputCloud
#         *
#         * \param cloud the target PointCloud dataset
#         */
#       inline void setTargetCloud (const PointCloudConstPtr &cloud) { target_ = cloud; }
#       
#       /** \brief Get a pointer to the input target point cloud dataset. */
#       inline PointCloudConstPtr const getTargetCloud () { return (target_); }
#       
#       /** \brief Provide a pointer to the search object.
#         * \param tree a pointer to the spatial search object.
#         */
#       inline void setSearchMethod (const KdTreePtr &tree) { tree_ = tree; }
#       
#       /** \brief Get a pointer to the search method used. */
#       inline KdTreePtr getSearchMethod () { return (tree_); }
#       
#       /** \brief Set the maximum distance tolerance (squared) between corresponding
#         * points in the two input datasets.
#         * \param sqr_threshold the squared distance tolerance as a measure in L2 Euclidean space
#         */
#       inline void setDistanceThreshold (double sqr_threshold) { distance_threshold_ = sqr_threshold; }
#       
#       /** \brief Get the squared distance tolerance between corresponding points as a
#         * measure in the L2 Euclidean space.
#         */
#       inline double getDistanceThreshold () { return (distance_threshold_); }
#       
#       /** \brief Segment differences between two input point clouds.
#         * \param output the resultant difference between the two point clouds as a PointCloud
#         */
#       void segment (PointCloud &output);


###

# supervoxel_clustering.h
# namespace pcl
# /** \brief Supervoxel container class - stores a cluster extracted using supervoxel clustering 
#  */
# template <typename PointT>
# class Supervoxel
#       public:
#       Supervoxel () :
#         voxels_ (new pcl::PointCloud<PointT> ()),
#         normals_ (new pcl::PointCloud<Normal> ())
#       
#       typedef boost::shared_ptr<Supervoxel<PointT> > Ptr;
#       typedef boost::shared_ptr<const Supervoxel<PointT> > ConstPtr;
#       
#       /** \brief Gets the centroid of the supervoxel
#        *  \param[out] centroid_arg centroid of the supervoxel
#        */ 
#       void getCentroidPoint (PointXYZRGBA &centroid_arg)
#       
#       /** \brief Gets the point normal for the supervoxel 
#        * \param[out] normal_arg Point normal of the supervoxel
#        * \note This isn't an average, it is a normal computed using all of the voxels in the supervoxel as support
#        */ 
#       void getCentroidPointNormal (PointNormal &normal_arg)


###

# # supervoxel_clustering.h
# namespace pcl
#   /** \brief Implements a supervoxel algorithm based on voxel structure, normals, and rgb values
#    *   \note Supervoxels are oversegmented volumetric patches (usually surfaces) 
#    *   \note Usually, color isn't needed (and can be detrimental)- spatial structure is mainly used
#     * - J. Papon, A. Abramov, M. Schoeler, F. Woergoetter
#     *   Voxel Cloud Connectivity Segmentation - Supervoxels from PointClouds
#     *   In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2013 
#     *  \author Jeremie Papon (jpapon@gmail.com)
#     */
#   template <typename PointT>
#   class PCL_EXPORTS SupervoxelClustering : public pcl::PCLBase<PointT>
#   {
#     //Forward declaration of friended helper class
#     class SupervoxelHelper;
#     friend class SupervoxelHelper;
#     public:
#       /** \brief VoxelData is a structure used for storing data within a pcl::octree::OctreePointCloudAdjacencyContainer
#        *  \note It stores xyz, rgb, normal, distance, an index, and an owner.
#        */
#       class VoxelData
#       {
#         public:
#           VoxelData ():
#             xyz_ (0.0f, 0.0f, 0.0f),
#             rgb_ (0.0f, 0.0f, 0.0f),
#             normal_ (0.0f, 0.0f, 0.0f, 0.0f),
#             curvature_ (0.0f),
#             owner_ (0)
#             {}
#             
#           /** \brief Gets the data of in the form of a point
#            *  \param[out] point_arg Will contain the point value of the voxeldata
#            */  
#           void
#           getPoint (PointT &point_arg) const;
#           
#           /** \brief Gets the data of in the form of a normal
#            *  \param[out] normal_arg Will contain the normal value of the voxeldata
#            */            
#           void
#           getNormal (Normal &normal_arg) const;
#           
#           Eigen::Vector3f xyz_;
#           Eigen::Vector3f rgb_;
#           Eigen::Vector4f normal_;
#           float curvature_;
#           float distance_;
#           int idx_;
#           SupervoxelHelper* owner_;
#           
#         public:
#           EIGEN_MAKE_ALIGNED_OPERATOR_NEW
#       };
#       
#       typedef pcl::octree::OctreePointCloudAdjacencyContainer<PointT, VoxelData> LeafContainerT;
#       typedef std::vector <LeafContainerT*> LeafVectorT;
#       typedef typename pcl::PointCloud<PointT> PointCloudT;
#       typedef typename pcl::PointCloud<Normal> NormalCloudT;
#       typedef typename pcl::octree::OctreePointCloudAdjacency<PointT, LeafContainerT> OctreeAdjacencyT;
#       typedef typename pcl::octree::OctreePointCloudSearch <PointT> OctreeSearchT;
#       typedef typename pcl::search::KdTree<PointT> KdTreeT;
#       typedef boost::shared_ptr<std::vector<int> > IndicesPtr;
#       
#       using PCLBase <PointT>::initCompute;
#       using PCLBase <PointT>::deinitCompute;
#       using PCLBase <PointT>::input_;
#       
#       typedef boost::adjacency_list<boost::setS, boost::setS, boost::undirectedS, uint32_t, float> VoxelAdjacencyList;
#       typedef VoxelAdjacencyList::vertex_descriptor VoxelID;
#       typedef VoxelAdjacencyList::edge_descriptor EdgeID;
#       
#       
#       public:
#       
#       /** \brief Constructor that sets default values for member variables. 
#        *  \param[in] voxel_resolution The resolution (in meters) of voxels used
#        *  \param[in] seed_resolution The average size (in meters) of resulting supervoxels
#        *  \param[in] use_single_camera_transform Set to true if point density in cloud falls off with distance from origin (such as with a cloud coming from one stationary camera), set false if input cloud is from multiple captures from multiple locations.
#        */
#       SupervoxelClustering (float voxel_resolution, float seed_resolution, bool use_single_camera_transform = true);
#       
#       /** \brief This destructor destroys the cloud, normals and search method used for
#         * finding neighbors. In other words it frees memory.
#         */
#       virtual
#       ~SupervoxelClustering ();
#       
#       /** \brief Set the resolution of the octree voxels */
#       void
#       setVoxelResolution (float resolution);
#       
#       /** \brief Get the resolution of the octree voxels */
#       float 
#       getVoxelResolution () const;
#       
#       /** \brief Set the resolution of the octree seed voxels */
#       void
#       setSeedResolution (float seed_resolution);
#       
#       /** \brief Get the resolution of the octree seed voxels */
#       float 
#       getSeedResolution () const;
#         
#       /** \brief Set the importance of color for supervoxels */
#       void
#       setColorImportance (float val);
#       
#       /** \brief Set the importance of spatial distance for supervoxels */
#       void
#       setSpatialImportance (float val);
#             
#       /** \brief Set the importance of scalar normal product for supervoxels */
#       void
#       setNormalImportance (float val);
#       
#       /** \brief This method launches the segmentation algorithm and returns the supervoxels that were
#        * obtained during the segmentation.
#        * \param[out] supervoxel_clusters A map of labels to pointers to supervoxel structures
#        */
#       virtual void
#       extract (std::map<uint32_t,typename Supervoxel<PointT>::Ptr > &supervoxel_clusters);
#       
#       /** \brief This method sets the cloud to be supervoxelized
#        * \param[in] cloud The cloud to be supervoxelize
#        */
#       virtual void
#       setInputCloud (const typename pcl::PointCloud<PointT>::ConstPtr& cloud);
#       
#       /** \brief This method sets the normals to be used for supervoxels (should be same size as input cloud)
#       * \param[in] normal_cloud The input normals                         
#       */
#       virtual void
#       setNormalCloud (typename NormalCloudT::ConstPtr normal_cloud);
#       
#       /** \brief This method refines the calculated supervoxels - may only be called after extract
#        * \param[in] num_itr The number of iterations of refinement to be done (2 or 3 is usually sufficient)
#        * \param[out] supervoxel_clusters The resulting refined supervoxels
#        */
#       virtual void
#       refineSupervoxels (int num_itr, std::map<uint32_t,typename Supervoxel<PointT>::Ptr > &supervoxel_clusters);
#       
#       ////////////////////////////////////////////////////////////
#       /** \brief Returns an RGB colorized cloud showing superpixels
#         * Otherwise it returns an empty pointer.
#         * Points that belong to the same supervoxel have the same color.
#         * But this function doesn't guarantee that different segments will have different
#         * color(it's random). Points that are unlabeled will be black
#         * \note This will expand the label_colors_ vector so that it can accomodate all labels
#         */
#       typename pcl::PointCloud<PointXYZRGBA>::Ptr
#       getColoredCloud () const;
#       
#       /** \brief Returns a deep copy of the voxel centroid cloud */
#       typename pcl::PointCloud<PointT>::Ptr
#       getVoxelCentroidCloud () const;
#       
#       /** \brief Returns labeled cloud
#         * Points that belong to the same supervoxel have the same label.
#         * Labels for segments start from 1, unlabled points have label 0
#         */
#       typename pcl::PointCloud<PointXYZL>::Ptr
#       getLabeledCloud () const;
#       
#       /** \brief Returns an RGB colorized voxelized cloud showing superpixels
#        * Otherwise it returns an empty pointer.
#        * Points that belong to the same supervoxel have the same color.
#        * But this function doesn't guarantee that different segments will have different
#        * color(it's random). Points that are unlabeled will be black
#        * \note This will expand the label_colors_ vector so that it can accomodate all labels
#        */
#       pcl::PointCloud<pcl::PointXYZRGBA>::Ptr
#       getColoredVoxelCloud () const;
#       
#       /** \brief Returns labeled voxelized cloud
#        * Points that belong to the same supervoxel have the same label.
#        * Labels for segments start from 1, unlabled points have label 0
#        */      
#       pcl::PointCloud<pcl::PointXYZL>::Ptr
#       getLabeledVoxelCloud () const;
# 
#       /** \brief Gets the adjacency list (Boost Graph library) which gives connections between supervoxels
#        *  \param[out] adjacency_list_arg BGL graph where supervoxel labels are vertices, edges are touching relationships
#        */
#       void
#       getSupervoxelAdjacencyList (VoxelAdjacencyList &adjacency_list_arg) const;
#       
#       /** \brief Get a multimap which gives supervoxel adjacency
#        *  \param[out] label_adjacency Multi-Map which maps a supervoxel label to all adjacent supervoxel labels
#        */
#       void getSupervoxelAdjacency (std::multimap<uint32_t, uint32_t> &label_adjacency) const;
#             
#       /** \brief Static helper function which returns a pointcloud of normals for the input supervoxels 
#        *  \param[in] supervoxel_clusters Supervoxel cluster map coming from this class
#        *  \returns Cloud of PointNormals of the supervoxels
#        * 
#        */
#       static pcl::PointCloud<pcl::PointNormal>::Ptr
#       makeSupervoxelNormalCloud (std::map<uint32_t,typename Supervoxel<PointT>::Ptr > &supervoxel_clusters);
#       
#       /** \brief Returns the current maximum (highest) label */
#       int getMaxLabel () const;
#   };
# 
# }


###