1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
|
# -*- coding: utf-8 -*-
cimport pcl_defs as cpp
cimport pcl_filters as pclfil
cdef class StatisticalOutlierRemovalFilter:
"""
Filter class uses point neighborhood statistics to filter outlier data.
"""
cdef pclfil.StatisticalOutlierRemoval_t *me
def __cinit__(self, PointCloud pc not None):
self.me = new pclfil.StatisticalOutlierRemoval_t()
(<cpp.PCLBase_t*>self.me).setInputCloud (pc.thisptr_shared)
def __dealloc__(self):
del self.me
property mean_k:
def __get__(self):
return self.me.getMeanK()
def __set__(self, int k):
self.me.setMeanK(k)
property negative:
def __get__(self):
return (<pclfil.FilterIndices[cpp.PointXYZ]*>self.me).getNegative()
def __set__(self, bool neg):
(<pclfil.FilterIndices[cpp.PointXYZ]*>self.me).setNegative(neg)
property stddev_mul_thresh:
def __get__(self):
return self.me.getStddevMulThresh()
def __set__(self, double thresh):
self.me.setStddevMulThresh(thresh)
def set_InputCloud(self, PointCloud pc not None):
(<cpp.PCLBase_t*>self.me).setInputCloud (pc.thisptr_shared)
def set_mean_k(self, int k):
"""
Set the number of points (k) to use for mean distance estimation.
"""
self.me.setMeanK(k)
def set_std_dev_mul_thresh(self, double std_mul):
"""
Set the standard deviation multiplier threshold.
"""
self.me.setStddevMulThresh(std_mul)
def set_negative(self, bool negative):
"""
Set whether the indices should be returned, or all points except the indices.
"""
(<pclfil.FilterIndices[cpp.PointXYZ]*>self.me).setNegative(negative)
def filter(self):
"""
Apply the filter according to the previously set parameters and return
a new pointcloud
"""
cdef PointCloud pc = PointCloud()
self.me.filter(pc.thisptr()[0])
return pc
cdef class StatisticalOutlierRemovalFilter_PointXYZI:
"""
Filter class uses point neighborhood statistics to filter outlier data.
"""
cdef pclfil.StatisticalOutlierRemoval_PointXYZI_t *me
def __cinit__(self, PointCloud_PointXYZI pc not None):
self.me = new pclfil.StatisticalOutlierRemoval_PointXYZI_t()
(<cpp.PCLBase_PointXYZI_t*>self.me).setInputCloud (pc.thisptr_shared)
def __dealloc__(self):
del self.me
property mean_k:
def __get__(self):
return self.me.getMeanK()
def __set__(self, int k):
self.me.setMeanK(k)
property negative:
def __get__(self):
return (<pclfil.FilterIndices[cpp.PointXYZI]*>self.me).getNegative()
def __set__(self, bool neg):
(<pclfil.FilterIndices[cpp.PointXYZI]*>self.me).setNegative(neg)
property stddev_mul_thresh:
def __get__(self):
return self.me.getStddevMulThresh()
def __set__(self, double thresh):
self.me.setStddevMulThresh(thresh)
def set_InputCloud(self, PointCloud_PointXYZI pc not None):
(<cpp.PCLBase_PointXYZI_t*>self.me).setInputCloud (pc.thisptr_shared)
def set_mean_k(self, int k):
"""
Set the number of points (k) to use for mean distance estimation.
"""
self.me.setMeanK(k)
def set_std_dev_mul_thresh(self, double std_mul):
"""
Set the standard deviation multiplier threshold.
"""
self.me.setStddevMulThresh(std_mul)
def set_negative(self, bool negative):
"""
Set whether the indices should be returned, or all points except the indices.
"""
(<pclfil.FilterIndices[cpp.PointXYZ]*>self.me).setNegative(negative)
def filter(self):
"""
Apply the filter according to the previously set parameters and return
a new pointcloud
"""
cdef PointCloud_PointXYZI pc = PointCloud_PointXYZI()
self.me.filter(pc.thisptr()[0])
return pc
cdef class StatisticalOutlierRemovalFilter_PointXYZRGB:
"""
Filter class uses point neighborhood statistics to filter outlier data.
"""
cdef pclfil.StatisticalOutlierRemoval_PointXYZRGB_t *me
def __cinit__(self, PointCloud_PointXYZRGB pc not None):
self.me = new pclfil.StatisticalOutlierRemoval_PointXYZRGB_t()
(<cpp.PCLBase_PointXYZRGB_t*>self.me).setInputCloud (pc.thisptr_shared)
def __dealloc__(self):
del self.me
property mean_k:
def __get__(self):
return self.me.getMeanK()
def __set__(self, int k):
self.me.setMeanK(k)
property negative:
def __get__(self):
return (<pclfil.FilterIndices[cpp.PointXYZRGB]*>self.me).getNegative()
def __set__(self, bool neg):
(<pclfil.FilterIndices[cpp.PointXYZRGB]*>self.me).setNegative(neg)
property stddev_mul_thresh:
def __get__(self):
return self.me.getStddevMulThresh()
def __set__(self, double thresh):
self.me.setStddevMulThresh(thresh)
def set_InputCloud(self, PointCloud_PointXYZRGB pc not None):
(<cpp.PCLBase_PointXYZRGB_t*>self.me).setInputCloud (pc.thisptr_shared)
def set_mean_k(self, int k):
"""
Set the number of points (k) to use for mean distance estimation.
"""
self.me.setMeanK(k)
def set_std_dev_mul_thresh(self, double std_mul):
"""
Set the standard deviation multiplier threshold.
"""
self.me.setStddevMulThresh(std_mul)
def set_negative(self, bool negative):
"""
Set whether the indices should be returned, or all points except the indices.
"""
(<pclfil.FilterIndices[cpp.PointXYZRGB]*>self.me).setNegative(negative)
def filter(self):
"""
Apply the filter according to the previously set parameters and return
a new pointcloud
"""
cdef PointCloud_PointXYZRGB pc = PointCloud_PointXYZRGB()
self.me.filter(pc.thisptr()[0])
return pc
cdef class StatisticalOutlierRemovalFilter_PointXYZRGBA:
"""
Filter class uses point neighborhood statistics to filter outlier data.
"""
cdef pclfil.StatisticalOutlierRemoval_PointXYZRGBA_t *me
def __cinit__(self, PointCloud_PointXYZRGBA pc not None):
self.me = new pclfil.StatisticalOutlierRemoval_PointXYZRGBA_t()
(<cpp.PCLBase_PointXYZRGBA_t*>self.me).setInputCloud (pc.thisptr_shared)
def __dealloc__(self):
del self.me
property mean_k:
def __get__(self):
return self.me.getMeanK()
def __set__(self, int k):
self.me.setMeanK(k)
property negative:
def __get__(self):
return (<pclfil.FilterIndices[cpp.PointXYZRGBA]*>self.me).getNegative()
def __set__(self, bool neg):
(<pclfil.FilterIndices[cpp.PointXYZRGBA]*>self.me).setNegative(neg)
property stddev_mul_thresh:
def __get__(self):
return self.me.getStddevMulThresh()
def __set__(self, double thresh):
self.me.setStddevMulThresh(thresh)
def set_InputCloud(self, PointCloud_PointXYZRGBA pc not None):
(<cpp.PCLBase_PointXYZRGBA_t*>self.me).setInputCloud (pc.thisptr_shared)
def set_mean_k(self, int k):
"""
Set the number of points (k) to use for mean distance estimation.
"""
self.me.setMeanK(k)
def set_std_dev_mul_thresh(self, double std_mul):
"""
Set the standard deviation multiplier threshold.
"""
self.me.setStddevMulThresh(std_mul)
def set_negative(self, bool negative):
"""
Set whether the indices should be returned, or all points except the indices.
"""
self.me.setNegative(negative)
def filter(self):
"""
Apply the filter according to the previously set parameters and return
a new pointcloud
"""
cdef PointCloud_PointXYZRGBA pc = PointCloud_PointXYZRGBA()
self.me.filter(pc.thisptr()[0])
return pc
|