1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
|
# -*- coding: utf-8 -*-
cimport pcl_defs as cpp
cimport pcl_kdtree as pclkdt
cdef class KdTreeFLANN:
"""
Finds k nearest neighbours from points in another pointcloud to points in
a reference pointcloud.
Must be constructed from the reference point cloud, which is copied, so
changed to pc are not reflected in KdTreeFLANN(pc).
"""
cdef pclkdt.KdTreeFLANN_t *me
def __cinit__(self, PointCloud pc not None):
self.me = new pclkdt.KdTreeFLANN_t()
self.me.setInputCloud(pc.thisptr_shared)
def __dealloc__(self):
del self.me
def nearest_k_search_for_cloud(self, PointCloud pc not None, int k=1):
"""
Find the k nearest neighbours and squared distances for all points
in the pointcloud. Results are in ndarrays, size (pc.size, k)
Returns: (k_indices, k_sqr_distances)
"""
cdef cnp.npy_intp n_points = pc.size
cdef cnp.ndarray[float, ndim=2] sqdist = np.zeros((n_points, k),
dtype=np.float32)
cdef cnp.ndarray[int, ndim=2] ind = np.zeros((n_points, k),
dtype=np.int32)
for i in range(n_points):
self._nearest_k(pc, i, k, ind[i], sqdist[i])
return ind, sqdist
def nearest_k_search_for_point(self, PointCloud pc not None, int index,
int k=1):
"""
Find the k nearest neighbours and squared distances for the point
at pc[index]. Results are in ndarrays, size (k)
Returns: (k_indices, k_sqr_distances)
"""
cdef cnp.ndarray[float] sqdist = np.zeros(k, dtype=np.float32)
cdef cnp.ndarray[int] ind = np.zeros(k, dtype=np.int32)
self._nearest_k(pc, index, k, ind, sqdist)
return ind, sqdist
@cython.boundscheck(False)
cdef void _nearest_k(self, PointCloud pc, int index, int k,
cnp.ndarray[ndim=1, dtype=int, mode='c'] ind,
cnp.ndarray[ndim=1, dtype=float, mode='c'] sqdist
) except +:
# k nearest neighbors query for a single point.
cdef vector[int] k_indices
cdef vector[float] k_sqr_distances
k_indices.resize(k)
k_sqr_distances.resize(k)
self.me.nearestKSearch(pc.thisptr()[0], index, k, k_indices,
k_sqr_distances)
for i in range(k):
sqdist[i] = k_sqr_distances[i]
ind[i] = k_indices[i]
def radius_search_for_cloud(self, PointCloud pc not None, double radius, unsigned int max_nn = 0):
"""
Find the radius and squared distances for all points
in the pointcloud. Results are in ndarrays, size (pc.size, k)
Returns: (radius_indices, radius_distances)
"""
k = max_nn
cdef cnp.npy_intp n_points = pc.size
cdef cnp.ndarray[float, ndim=2] sqdist = np.zeros((n_points, k),
dtype=np.float32)
cdef cnp.ndarray[int, ndim=2] ind = np.zeros((n_points, k),
dtype=np.int32)
for i in range(n_points):
self._search_radius(pc, i, k, radius, ind[i], sqdist[i])
return ind, sqdist
@cython.boundscheck(False)
cdef void _search_radius(self, PointCloud pc, int index, int k, double radius,
cnp.ndarray[ndim=1, dtype=int, mode='c'] ind,
cnp.ndarray[ndim=1, dtype=float, mode='c'] sqdist
) except +:
# radius query for a single point.
cdef vector[int] radius_indices
cdef vector[float] radius_distances
radius_indices.resize(k)
radius_distances.resize(k)
self.me.radiusSearch(pc.thisptr()[0], index, radius, radius_indices, radius_distances)
for i in range(k):
sqdist[i] = radius_distances[i]
ind[i] = radius_indices[i]
cdef class KdTreeFLANN_PointXYZI:
"""
Finds k nearest neighbours from points in another pointcloud to points in
a reference pointcloud.
Must be constructed from the reference point cloud, which is copied, so
changed to pc are not reflected in KdTreeFLANN(pc).
"""
cdef pclkdt.KdTreeFLANN_PointXYZI_t *me
def __cinit__(self, PointCloud_PointXYZI pc not None):
self.me = new pclkdt.KdTreeFLANN_PointXYZI_t()
self.me.setInputCloud(pc.thisptr_shared)
def __dealloc__(self):
del self.me
def nearest_k_search_for_cloud(self, PointCloud_PointXYZI pc not None, int k=1):
"""
Find the k nearest neighbours and squared distances for all points
in the pointcloud. Results are in ndarrays, size (pc.size, k)
Returns: (k_indices, k_sqr_distances)
"""
cdef cnp.npy_intp n_points = pc.size
cdef cnp.ndarray[float, ndim=2] sqdist = np.zeros((n_points, k),
dtype=np.float32)
cdef cnp.ndarray[int, ndim=2] ind = np.zeros((n_points, k),
dtype=np.int32)
for i in range(n_points):
self._nearest_k(pc, i, k, ind[i], sqdist[i])
return ind, sqdist
def nearest_k_search_for_point(self, PointCloud_PointXYZI pc not None, int index,
int k=1):
"""
Find the k nearest neighbours and squared distances for the point
at pc[index]. Results are in ndarrays, size (k)
Returns: (k_indices, k_sqr_distances)
"""
cdef cnp.ndarray[float] sqdist = np.zeros(k, dtype=np.float32)
cdef cnp.ndarray[int] ind = np.zeros(k, dtype=np.int32)
self._nearest_k(pc, index, k, ind, sqdist)
return ind, sqdist
@cython.boundscheck(False)
cdef void _nearest_k(self, PointCloud_PointXYZI pc, int index, int k,
cnp.ndarray[ndim=1, dtype=int, mode='c'] ind,
cnp.ndarray[ndim=1, dtype=float, mode='c'] sqdist
) except +:
# k nearest neighbors query for a single point.
cdef vector[int] k_indices
cdef vector[float] k_sqr_distances
k_indices.resize(k)
k_sqr_distances.resize(k)
self.me.nearestKSearch(pc.thisptr()[0], index, k, k_indices,
k_sqr_distances)
for i in range(k):
sqdist[i] = k_sqr_distances[i]
ind[i] = k_indices[i]
cdef class KdTreeFLANN_PointXYZRGB:
"""
Finds k nearest neighbours from points in another pointcloud to points in
a reference pointcloud.
Must be constructed from the reference point cloud, which is copied, so
changed to pc are not reflected in KdTreeFLANN(pc).
"""
cdef pclkdt.KdTreeFLANN_PointXYZRGB_t *me
def __cinit__(self, PointCloud_PointXYZRGB pc not None):
self.me = new pclkdt.KdTreeFLANN_PointXYZRGB_t()
self.me.setInputCloud(pc.thisptr_shared)
def __dealloc__(self):
del self.me
def nearest_k_search_for_cloud(self, PointCloud_PointXYZRGB pc not None, int k=1):
"""
Find the k nearest neighbours and squared distances for all points
in the pointcloud. Results are in ndarrays, size (pc.size, k)
Returns: (k_indices, k_sqr_distances)
"""
cdef cnp.npy_intp n_points = pc.size
cdef cnp.ndarray[float, ndim=2] sqdist = np.zeros((n_points, k),
dtype=np.float32)
cdef cnp.ndarray[int, ndim=2] ind = np.zeros((n_points, k),
dtype=np.int32)
for i in range(n_points):
self._nearest_k(pc, i, k, ind[i], sqdist[i])
return ind, sqdist
def nearest_k_search_for_point(self, PointCloud_PointXYZRGB pc not None, int index,
int k=1):
"""
Find the k nearest neighbours and squared distances for the point
at pc[index]. Results are in ndarrays, size (k)
Returns: (k_indices, k_sqr_distances)
"""
cdef cnp.ndarray[float] sqdist = np.zeros(k, dtype=np.float32)
cdef cnp.ndarray[int] ind = np.zeros(k, dtype=np.int32)
self._nearest_k(pc, index, k, ind, sqdist)
return ind, sqdist
@cython.boundscheck(False)
cdef void _nearest_k(self, PointCloud_PointXYZRGB pc, int index, int k,
cnp.ndarray[ndim=1, dtype=int, mode='c'] ind,
cnp.ndarray[ndim=1, dtype=float, mode='c'] sqdist
) except +:
# k nearest neighbors query for a single point.
cdef vector[int] k_indices
cdef vector[float] k_sqr_distances
k_indices.resize(k)
k_sqr_distances.resize(k)
self.me.nearestKSearch(pc.thisptr()[0], index, k, k_indices,
k_sqr_distances)
for i in range(k):
sqdist[i] = k_sqr_distances[i]
ind[i] = k_indices[i]
cdef class KdTreeFLANN_PointXYZRGBA:
"""
Finds k nearest neighbours from points in another pointcloud to points in
a reference pointcloud.
Must be constructed from the reference point cloud, which is copied, so
changed to pc are not reflected in KdTreeFLANN(pc).
"""
cdef pclkdt.KdTreeFLANN_PointXYZRGBA_t *me
def __cinit__(self, PointCloud_PointXYZRGBA pc not None):
self.me = new pclkdt.KdTreeFLANN_PointXYZRGBA_t()
self.me.setInputCloud(pc.thisptr_shared)
def __dealloc__(self):
del self.me
def nearest_k_search_for_cloud(self, PointCloud_PointXYZRGBA pc not None, int k=1):
"""
Find the k nearest neighbours and squared distances for all points
in the pointcloud. Results are in ndarrays, size (pc.size, k)
Returns: (k_indices, k_sqr_distances)
"""
cdef cnp.npy_intp n_points = pc.size
cdef cnp.ndarray[float, ndim=2] sqdist = np.zeros((n_points, k),
dtype=np.float32)
cdef cnp.ndarray[int, ndim=2] ind = np.zeros((n_points, k),
dtype=np.int32)
for i in range(n_points):
self._nearest_k(pc, i, k, ind[i], sqdist[i])
return ind, sqdist
def nearest_k_search_for_point(self, PointCloud_PointXYZRGBA pc not None, int index,
int k=1):
"""
Find the k nearest neighbours and squared distances for the point
at pc[index]. Results are in ndarrays, size (k)
Returns: (k_indices, k_sqr_distances)
"""
cdef cnp.ndarray[float] sqdist = np.zeros(k, dtype=np.float32)
cdef cnp.ndarray[int] ind = np.zeros(k, dtype=np.int32)
self._nearest_k(pc, index, k, ind, sqdist)
return ind, sqdist
@cython.boundscheck(False)
cdef void _nearest_k(self, PointCloud_PointXYZRGBA pc, int index, int k,
cnp.ndarray[ndim=1, dtype=int, mode='c'] ind,
cnp.ndarray[ndim=1, dtype=float, mode='c'] sqdist
) except +:
# k nearest neighbors query for a single point.
cdef vector[int] k_indices
cdef vector[float] k_sqr_distances
k_indices.resize(k)
k_sqr_distances.resize(k)
self.me.nearestKSearch(pc.thisptr()[0], index, k, k_indices,
k_sqr_distances)
for i in range(k):
sqdist[i] = k_sqr_distances[i]
ind[i] = k_indices[i]
|