1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
|
# -*- coding: utf-8 -*-
cimport pcl_segmentation as pclseg
cimport pcl_defs as cpp
cimport pcl_sample_consensus as pcl_sc
cimport eigen as eigen3
#yeah, I can't be bothered making this inherit from SACSegmentation, I forget the rules
#for how this works in cython templated extension types anyway
cdef class SegmentationNormal:
"""
Segmentation class for Sample Consensus methods and models that require the
use of surface normals for estimation.
Due to Cython limitations this should derive from pcl.Segmentation, but
is currently unable to do so.
"""
cdef pclseg.SACSegmentationFromNormals_t *me
def __cinit__(self):
self.me = new pclseg.SACSegmentationFromNormals_t()
def __dealloc__(self):
del self.me
def segment(self):
cdef cpp.PointIndices ind
cdef cpp.ModelCoefficients coeffs
self.me.segment (ind, coeffs)
return [ind.indices[i] for i in range(ind.indices.size())],\
[coeffs.values[i] for i in range(coeffs.values.size())]
def set_optimize_coefficients(self, bool b):
self.me.setOptimizeCoefficients(b)
def set_model_type(self, pcl_sc.SacModel m):
self.me.setModelType(m)
def set_method_type(self, int m):
self.me.setMethodType (m)
def set_distance_threshold(self, float d):
self.me.setDistanceThreshold (d)
def set_optimize_coefficients(self, bool b):
self.me.setOptimizeCoefficients (b)
def set_normal_distance_weight(self, float f):
self.me.setNormalDistanceWeight (f)
def set_max_iterations(self, int i):
self.me.setMaxIterations (i)
def set_radius_limits(self, float f1, float f2):
self.me.setRadiusLimits (f1, f2)
def set_eps_angle(self, double ea):
(<pclseg.SACSegmentation_t*>self.me).setEpsAngle (ea)
def get_eps_angle(self):
return (<pclseg.SACSegmentation_PointXYZRGB_t*>self.me).getEpsAngle()
def set_axis(self, double ax1, double ax2, double ax3):
cdef eigen3.Vector3f* vec = new eigen3.Vector3f(ax1, ax2, ax3)
(<pclseg.SACSegmentation_t*>self.me).setAxis(deref(vec))
def get_axis(self):
vec = (<pclseg.SACSegmentation_t*>self.me).getAxis()
cdef float *data = vec.data()
return np.array([data[0], data[1], data[2]], dtype=np.float32)
def set_min_max_opening_angle(self, double min_angle, double max_angle):
"""
Set the minimum and maximum cone opening angles in radians for a cone model.
"""
self.me.setMinMaxOpeningAngle(min_angle, max_angle)
def get_min_max_opening_angle(self):
min_angle = 0.0
max_angle = 0.0
self.me.getMinMaxOpeningAngle(min_angle, max_angle)
return min_angle, max_angle
cdef class Segmentation_PointXYZI_Normal:
"""
Segmentation class for Sample Consensus methods and models that require the
use of surface normals for estimation.
Due to Cython limitations this should derive from pcl.Segmentation, but
is currently unable to do so.
"""
cdef pclseg.SACSegmentationFromNormals_PointXYZI_t *me
def __cinit__(self):
self.me = new pclseg.SACSegmentationFromNormals_PointXYZI_t()
def __dealloc__(self):
del self.me
def segment(self):
cdef cpp.PointIndices ind
cdef cpp.ModelCoefficients coeffs
self.me.segment (ind, coeffs)
return [ind.indices[i] for i in range(ind.indices.size())],\
[coeffs.values[i] for i in range(coeffs.values.size())]
def set_optimize_coefficients(self, bool b):
self.me.setOptimizeCoefficients(b)
def set_model_type(self, pcl_sc.SacModel m):
self.me.setModelType(m)
def set_method_type(self, int m):
self.me.setMethodType (m)
def set_distance_threshold(self, float d):
self.me.setDistanceThreshold (d)
def set_optimize_coefficients(self, bool b):
self.me.setOptimizeCoefficients (b)
def set_normal_distance_weight(self, float f):
self.me.setNormalDistanceWeight (f)
def set_max_iterations(self, int i):
self.me.setMaxIterations (i)
def set_radius_limits(self, float f1, float f2):
self.me.setRadiusLimits (f1, f2)
def set_eps_angle(self, double ea):
self.me.setEpsAngle (ea)
def get_eps_angle(self):
return (<pclseg.SACSegmentation_PointXYZRGB_t*>self.me).getEpsAngle()
def set_axis(self, double ax1, double ax2, double ax3):
cdef eigen3.Vector3f* vec = new eigen3.Vector3f(ax1, ax2, ax3)
(<pclseg.SACSegmentation_PointXYZI_t*>self.me).setAxis(deref(vec))
def get_axis(self):
vec = (<pclseg.SACSegmentation_t*>self.me).getAxis()
cdef float *data = vec.data()
return np.array([data[0], data[1], data[2]], dtype=np.float32)
def set_min_max_opening_angle(self, double min_angle, double max_angle):
"""
Set the minimum and maximum cone opening angles in radians for a cone model.
"""
self.me.setMinMaxOpeningAngle(min_angle, max_angle)
def get_min_max_opening_angle(self):
min_angle = 0.0
max_angle = 0.0
self.me.getMinMaxOpeningAngle(min_angle, max_angle)
return min_angle, max_angle
cdef class Segmentation_PointXYZRGB_Normal:
"""
Segmentation class for Sample Consensus methods and models that require the
use of surface normals for estimation.
Due to Cython limitations this should derive from pcl.Segmentation, but
is currently unable to do so.
"""
cdef pclseg.SACSegmentationFromNormals_PointXYZRGB_t *me
def __cinit__(self):
self.me = new pclseg.SACSegmentationFromNormals_PointXYZRGB_t()
def __dealloc__(self):
del self.me
def segment(self):
cdef cpp.PointIndices ind
cdef cpp.ModelCoefficients coeffs
self.me.segment (ind, coeffs)
return [ind.indices[i] for i in range(ind.indices.size())],\
[coeffs.values[i] for i in range(coeffs.values.size())]
def set_optimize_coefficients(self, bool b):
self.me.setOptimizeCoefficients(b)
def set_model_type(self, pcl_sc.SacModel m):
self.me.setModelType(m)
def set_method_type(self, int m):
self.me.setMethodType (m)
def set_distance_threshold(self, float d):
self.me.setDistanceThreshold (d)
def set_optimize_coefficients(self, bool b):
self.me.setOptimizeCoefficients (b)
def set_normal_distance_weight(self, float f):
self.me.setNormalDistanceWeight (f)
def set_max_iterations(self, int i):
self.me.setMaxIterations (i)
def set_radius_limits(self, float f1, float f2):
self.me.setRadiusLimits (f1, f2)
def set_eps_angle(self, double ea):
self.me.setEpsAngle (ea)
def get_eps_angle(self):
return (<pclseg.SACSegmentation_PointXYZRGB_t*>self.me).getEpsAngle()
def set_axis(self, double ax1, double ax2, double ax3):
cdef eigen3.Vector3f* vec = new eigen3.Vector3f(ax1, ax2, ax3)
(<pclseg.SACSegmentation_PointXYZRGB_t*>self.me).setAxis(deref(vec))
def get_axis(self):
vec = (<pclseg.SACSegmentation_t*>self.me).getAxis()
cdef float *data = vec.data()
return np.array([data[0], data[1], data[2]], dtype=np.float32)
def set_min_max_opening_angle(self, double min_angle, double max_angle):
"""
Set the minimum and maximum cone opening angles in radians for a cone model.
"""
self.me.setMinMaxOpeningAngle(min_angle, max_angle)
def get_min_max_opening_angle(self):
min_angle = 0.0
max_angle = 0.0
self.me.getMinMaxOpeningAngle(min_angle, max_angle)
return min_angle, max_angle
cdef class Segmentation_PointXYZRGBA_Normal:
"""
Segmentation class for Sample Consensus methods and models that require the
use of surface normals for estimation.
Due to Cython limitations this should derive from pcl.Segmentation, but
is currently unable to do so.
"""
cdef pclseg.SACSegmentationFromNormals_PointXYZRGBA_t *me
def __cinit__(self):
self.me = new pclseg.SACSegmentationFromNormals_PointXYZRGBA_t()
def __dealloc__(self):
del self.me
def segment(self):
cdef cpp.PointIndices ind
cdef cpp.ModelCoefficients coeffs
self.me.segment (ind, coeffs)
return [ind.indices[i] for i in range(ind.indices.size())],\
[coeffs.values[i] for i in range(coeffs.values.size())]
def set_optimize_coefficients(self, bool b):
self.me.setOptimizeCoefficients(b)
def set_model_type(self, pcl_sc.SacModel m):
self.me.setModelType(m)
def set_method_type(self, int m):
self.me.setMethodType (m)
def set_distance_threshold(self, float d):
self.me.setDistanceThreshold (d)
def set_optimize_coefficients(self, bool b):
self.me.setOptimizeCoefficients (b)
def set_normal_distance_weight(self, float f):
self.me.setNormalDistanceWeight (f)
def set_max_iterations(self, int i):
self.me.setMaxIterations (i)
def set_radius_limits(self, float f1, float f2):
self.me.setRadiusLimits (f1, f2)
def set_eps_angle(self, double ea):
vec = (<pclseg.SACSegmentation_PointXYZRGBA_t*>self.me).setEpsAngle(ea)
def get_eps_angle(self):
return (<pclseg.SACSegmentation_PointXYZRGBA_t*>self.me).getEpsAngle()
def set_axis(self, double ax1, double ax2, double ax3):
cdef eigen3.Vector3f* vec = new eigen3.Vector3f(ax1, ax2, ax3)
(<pclseg.SACSegmentation_PointXYZRGBA_t*>self.me).setAxis(deref(vec))
def get_axis(self):
vec = (<pclseg.SACSegmentation_PointXYZRGBA_t*>self.me).getAxis()
cdef float *data = vec.data()
return np.array([data[0], data[1], data[2]], dtype=np.float32)
def set_min_max_opening_angle(self, double min_angle, double max_angle):
"""
Set the minimum and maximum cone opening angles in radians for a cone model.
"""
self.me.setMinMaxOpeningAngle(min_angle, max_angle)
def get_min_max_opening_angle(self):
min_angle = 0.0
max_angle = 0.0
self.me.getMinMaxOpeningAngle(min_angle, max_angle)
return min_angle, max_angle
|