1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
|
# -*- coding: utf-8 -*-
# How to incrementally register pairs of clouds
# http://pointclouds.org/documentation/tutorials/pairwise_incremental_registration.php#pairwise-incremental-registration
import pcl
# using pcl::visualization::PointCloudColorHandlerGenericField;
# using pcl::visualization::PointCloudColorHandlerCustom;
#
# //convenient typedefs
# typedef pcl::PointXYZ PointT;
# typedef pcl::PointCloud<PointT> PointCloud;
# typedef pcl::PointNormal PointNormalT;
# typedef pcl::PointCloud<PointNormalT> PointCloudWithNormals;
#
# // This is a tutorial so we can afford having global variables
# //our visualizer
# pcl::visualization::PCLVisualizer *p;
# //its left and right viewports
# int vp_1, vp_2;
#
# //convenient structure to handle our pointclouds
# struct PCD
# {
# PointCloud::Ptr cloud;
# std::string f_name;
#
# PCD() : cloud (new PointCloud) {};
# };
#
# struct PCDComparator
# {
# bool operator () (const PCD& p1, const PCD& p2)
# {
# return (p1.f_name < p2.f_name);
# }
# };
# // Define a new point representation for < x, y, z, curvature >
# class MyPointRepresentation : public pcl::PointRepresentation <PointNormalT>
# {
# using pcl::PointRepresentation<PointNormalT>::nr_dimensions_;
# public:
# MyPointRepresentation ()
# {
# // Define the number of dimensions
# nr_dimensions_ = 4;
# }
#
# // Override the copyToFloatArray method to define our feature vector
# virtual void copyToFloatArray (const PointNormalT &p, float * out) const
# {
# // < x, y, z, curvature >
# out[0] = p.x;
# out[1] = p.y;
# out[2] = p.z;
# out[3] = p.curvature;
# }
# };
# ////////////////////////////////////////////////////////////////////////////////
# /** \brief Display source and target on the first viewport of the visualizer
# *
# */
# void showCloudsLeft(const PointCloud::Ptr cloud_target, const PointCloud::Ptr cloud_source)
# {
# p->removePointCloud ("vp1_target");
# p->removePointCloud ("vp1_source");
#
# PointCloudColorHandlerCustom<PointT> tgt_h (cloud_target, 0, 255, 0);
# PointCloudColorHandlerCustom<PointT> src_h (cloud_source, 255, 0, 0);
# p->addPointCloud (cloud_target, tgt_h, "vp1_target", vp_1);
# p->addPointCloud (cloud_source, src_h, "vp1_source", vp_1);
#
# PCL_INFO ("Press q to begin the registration.\n");
# p-> spin();
# }
# ////////////////////////////////////////////////////////////////////////////////
# /** \brief Display source and target on the second viewport of the visualizer
# *
# */
# void showCloudsRight(const PointCloudWithNormals::Ptr cloud_target, const PointCloudWithNormals::Ptr cloud_source)
# {
# p->removePointCloud ("source");
# p->removePointCloud ("target");
#
#
# PointCloudColorHandlerGenericField<PointNormalT> tgt_color_handler (cloud_target, "curvature");
# if (!tgt_color_handler.isCapable ())
# PCL_WARN ("Cannot create curvature color handler!");
#
# PointCloudColorHandlerGenericField<PointNormalT> src_color_handler (cloud_source, "curvature");
# if (!src_color_handler.isCapable ())
# PCL_WARN ("Cannot create curvature color handler!");
#
#
# p->addPointCloud (cloud_target, tgt_color_handler, "target", vp_2);
# p->addPointCloud (cloud_source, src_color_handler, "source", vp_2);
#
# p->spinOnce();
# }
# ////////////////////////////////////////////////////////////////////////////////
# /** \brief Load a set of PCD files that we want to register together
# * \param argc the number of arguments (pass from main ())
# * \param argv the actual command line arguments (pass from main ())
# * \param models the resultant vector of point cloud datasets
# */
# void loadData (int argc, char **argv, std::vector<PCD, Eigen::aligned_allocator<PCD> > &models)
# {
# std::string extension (".pcd");
# // Suppose the first argument is the actual test model
# for (int i = 1; i < argc; i++)
# {
# std::string fname = std::string (argv[i]);
# // Needs to be at least 5: .plot
# if (fname.size () <= extension.size ())
# continue;
#
# std::transform (fname.begin (), fname.end (), fname.begin (), (int(*)(int))tolower);
#
# //check that the argument is a pcd file
# if (fname.compare (fname.size () - extension.size (), extension.size (), extension) == 0)
# {
# // Load the cloud and saves it into the global list of models
# PCD m;
# m.f_name = argv[i];
# pcl::io::loadPCDFile (argv[i], *m.cloud);
# //remove NAN points from the cloud
# std::vector<int> indices;
# pcl::removeNaNFromPointCloud(*m.cloud,*m.cloud, indices);
#
# models.push_back (m);
# }
# }
# }
# ////////////////////////////////////////////////////////////////////////////////
# /** \brief Align a pair of PointCloud datasets and return the result
# * \param cloud_src the source PointCloud
# * \param cloud_tgt the target PointCloud
# * \param output the resultant aligned source PointCloud
# * \param final_transform the resultant transform between source and target
# */
# void pairAlign (const PointCloud::Ptr cloud_src, const PointCloud::Ptr cloud_tgt, PointCloud::Ptr output, Eigen::Matrix4f &final_transform, bool downsample = false)
# {
# //
# // Downsample for consistency and speed
# // \note enable this for large datasets
# PointCloud::Ptr src (new PointCloud);
# PointCloud::Ptr tgt (new PointCloud);
# pcl::VoxelGrid<PointT> grid;
# if (downsample)
# {
# grid.setLeafSize (0.05, 0.05, 0.05);
# grid.setInputCloud (cloud_src);
# grid.filter (*src);
#
# grid.setInputCloud (cloud_tgt);
# grid.filter (*tgt);
# }
# else
# {
# src = cloud_src;
# tgt = cloud_tgt;
# }
#
#
# // Compute surface normals and curvature
# PointCloudWithNormals::Ptr points_with_normals_src (new PointCloudWithNormals);
# PointCloudWithNormals::Ptr points_with_normals_tgt (new PointCloudWithNormals);
#
# pcl::NormalEstimation<PointT, PointNormalT> norm_est;
# pcl::search::KdTree<pcl::PointXYZ>::Ptr tree (new pcl::search::KdTree<pcl::PointXYZ> ());
# norm_est.setSearchMethod (tree);
# norm_est.setKSearch (30);
#
# norm_est.setInputCloud (src);
# norm_est.compute (*points_with_normals_src);
# pcl::copyPointCloud (*src, *points_with_normals_src);
#
# norm_est.setInputCloud (tgt);
# norm_est.compute (*points_with_normals_tgt);
# pcl::copyPointCloud (*tgt, *points_with_normals_tgt);
#
# //
# // Instantiate our custom point representation (defined above) ...
# MyPointRepresentation point_representation;
# // ... and weight the 'curvature' dimension so that it is balanced against x, y, and z
# float alpha[4] = {1.0, 1.0, 1.0, 1.0};
# point_representation.setRescaleValues (alpha);
#
# //
# // Align
# pcl::IterativeClosestPointNonLinear<PointNormalT, PointNormalT> reg;
# reg.setTransformationEpsilon (1e-6);
# // Set the maximum distance between two correspondences (src<->tgt) to 10cm
# // Note: adjust this based on the size of your datasets
# reg.setMaxCorrespondenceDistance (0.1);
# // Set the point representation
# reg.setPointRepresentation (boost::make_shared<const MyPointRepresentation> (point_representation));
#
# reg.setInputSource (points_with_normals_src);
# reg.setInputTarget (points_with_normals_tgt);
#
#
#
# //
# // Run the same optimization in a loop and visualize the results
# Eigen::Matrix4f Ti = Eigen::Matrix4f::Identity (), prev, targetToSource;
# PointCloudWithNormals::Ptr reg_result = points_with_normals_src;
# reg.setMaximumIterations (2);
# for (int i = 0; i < 30; ++i)
# {
# PCL_INFO ("Iteration Nr. %d.\n", i);
#
# // save cloud for visualization purpose
# points_with_normals_src = reg_result;
#
# // Estimate
# reg.setInputSource (points_with_normals_src);
# reg.align (*reg_result);
#
# //accumulate transformation between each Iteration
# Ti = reg.getFinalTransformation () * Ti;
#
# //if the difference between this transformation and the previous one
# //is smaller than the threshold, refine the process by reducing
# //the maximal correspondence distance
# if (fabs ((reg.getLastIncrementalTransformation () - prev).sum ()) < reg.getTransformationEpsilon ())
# reg.setMaxCorrespondenceDistance (reg.getMaxCorrespondenceDistance () - 0.001);
#
# prev = reg.getLastIncrementalTransformation ();
#
# // visualize current state
# showCloudsRight(points_with_normals_tgt, points_with_normals_src);
# }
#
# //
# // Get the transformation from target to source
# targetToSource = Ti.inverse();
#
# //
# // Transform target back in source frame
# pcl::transformPointCloud (*cloud_tgt, *output, targetToSource);
#
# p->removePointCloud ("source");
# p->removePointCloud ("target");
#
# PointCloudColorHandlerCustom<PointT> cloud_tgt_h (output, 0, 255, 0);
# PointCloudColorHandlerCustom<PointT> cloud_src_h (cloud_src, 255, 0, 0);
# p->addPointCloud (output, cloud_tgt_h, "target", vp_2);
# p->addPointCloud (cloud_src, cloud_src_h, "source", vp_2);
#
# PCL_INFO ("Press q to continue the registration.\n");
# p->spin ();
#
# p->removePointCloud ("source");
# p->removePointCloud ("target");
#
# //add the source to the transformed target
# *output += *cloud_src;
#
# final_transform = targetToSource;
# }
# main
# // Load data
# std::vector<PCD, Eigen::aligned_allocator<PCD> > data;
# loadData (argc, argv, data);
#
# // Check user input
# if (data.empty ())
# {
# PCL_ERROR ("Syntax is: %s <source.pcd> <target.pcd> [*]", argv[0]);
# PCL_ERROR ("[*] - multiple files can be added. The registration results of (i, i+1) will be registered against (i+2), etc");
# return (-1);
# }
# PCL_INFO ("Loaded %d datasets.", (int)data.size ());
#
# // Create a PCLVisualizer object
# p = new pcl::visualization::PCLVisualizer (argc, argv, "Pairwise Incremental Registration example");
# p->createViewPort (0.0, 0, 0.5, 1.0, vp_1);
# p->createViewPort (0.5, 0, 1.0, 1.0, vp_2);
#
# PointCloud::Ptr result (new PointCloud), source, target;
# Eigen::Matrix4f GlobalTransform = Eigen::Matrix4f::Identity (), pairTransform;
#
# for (size_t i = 1; i < data.size (); ++i)
# {
# source = data[i-1].cloud;
# target = data[i].cloud;
#
# // Add visualization data
# showCloudsLeft(source, target);
#
# PointCloud::Ptr temp (new PointCloud);
# PCL_INFO ("Aligning %s (%d) with %s (%d).\n", data[i-1].f_name.c_str (), source->points.size (), data[i].f_name.c_str (), target->points.size ());
# pairAlign (source, target, temp, pairTransform, true);
#
# //transform current pair into the global transform
# pcl::transformPointCloud (*temp, *result, GlobalTransform);
#
# //update the global transform
# GlobalTransform = GlobalTransform * pairTransform;
#
# //save aligned pair, transformed into the first cloud's frame
# std::stringstream ss;
# ss << i << ".pcd";
# pcl::io::savePCDFile (ss.str (), *result, true);
#
# }
# }
|