File: pairwise_incremental_registration.txt

package info (click to toggle)
python-pcl 0.3.0~rc1%2Bdfsg-7
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 28,324 kB
  • sloc: python: 3,100; cpp: 292; makefile: 181; sh: 24; ansic: 12
file content (318 lines) | stat: -rw-r--r-- 10,998 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
# -*- coding: utf-8 -*-
# How to incrementally register pairs of clouds
# http://pointclouds.org/documentation/tutorials/pairwise_incremental_registration.php#pairwise-incremental-registration

import pcl

# using pcl::visualization::PointCloudColorHandlerGenericField;
# using pcl::visualization::PointCloudColorHandlerCustom;
# 
# //convenient typedefs
# typedef pcl::PointXYZ PointT;
# typedef pcl::PointCloud<PointT> PointCloud;
# typedef pcl::PointNormal PointNormalT;
# typedef pcl::PointCloud<PointNormalT> PointCloudWithNormals;
# 
# // This is a tutorial so we can afford having global variables 
# 	//our visualizer
# 	pcl::visualization::PCLVisualizer *p;
# 	//its left and right viewports
# 	int vp_1, vp_2;
# 
# //convenient structure to handle our pointclouds
# struct PCD
# {
#   PointCloud::Ptr cloud;
#   std::string f_name;
# 
#   PCD() : cloud (new PointCloud) {};
# };
# 
# struct PCDComparator
# {
#   bool operator () (const PCD& p1, const PCD& p2)
#   {
#     return (p1.f_name < p2.f_name);
#   }
# };


# // Define a new point representation for < x, y, z, curvature >
# class MyPointRepresentation : public pcl::PointRepresentation <PointNormalT>
# {
#   using pcl::PointRepresentation<PointNormalT>::nr_dimensions_;
# public:
#   MyPointRepresentation ()
#   {
#     // Define the number of dimensions
#     nr_dimensions_ = 4;
#   }
# 
#   // Override the copyToFloatArray method to define our feature vector
#   virtual void copyToFloatArray (const PointNormalT &p, float * out) const
#   {
#     // < x, y, z, curvature >
#     out[0] = p.x;
#     out[1] = p.y;
#     out[2] = p.z;
#     out[3] = p.curvature;
#   }
# };


# ////////////////////////////////////////////////////////////////////////////////
# /** \brief Display source and target on the first viewport of the visualizer
#  *
#  */
# void showCloudsLeft(const PointCloud::Ptr cloud_target, const PointCloud::Ptr cloud_source)
# {
#   p->removePointCloud ("vp1_target");
#   p->removePointCloud ("vp1_source");
# 
#   PointCloudColorHandlerCustom<PointT> tgt_h (cloud_target, 0, 255, 0);
#   PointCloudColorHandlerCustom<PointT> src_h (cloud_source, 255, 0, 0);
#   p->addPointCloud (cloud_target, tgt_h, "vp1_target", vp_1);
#   p->addPointCloud (cloud_source, src_h, "vp1_source", vp_1);
# 
#   PCL_INFO ("Press q to begin the registration.\n");
#   p-> spin();
# }


# ////////////////////////////////////////////////////////////////////////////////
# /** \brief Display source and target on the second viewport of the visualizer
#  *
#  */
# void showCloudsRight(const PointCloudWithNormals::Ptr cloud_target, const PointCloudWithNormals::Ptr cloud_source)
# {
#   p->removePointCloud ("source");
#   p->removePointCloud ("target");
# 
# 
#   PointCloudColorHandlerGenericField<PointNormalT> tgt_color_handler (cloud_target, "curvature");
#   if (!tgt_color_handler.isCapable ())
#       PCL_WARN ("Cannot create curvature color handler!");
# 
#   PointCloudColorHandlerGenericField<PointNormalT> src_color_handler (cloud_source, "curvature");
#   if (!src_color_handler.isCapable ())
#       PCL_WARN ("Cannot create curvature color handler!");
# 
# 
#   p->addPointCloud (cloud_target, tgt_color_handler, "target", vp_2);
#   p->addPointCloud (cloud_source, src_color_handler, "source", vp_2);
# 
#   p->spinOnce();
# }

# ////////////////////////////////////////////////////////////////////////////////
# /** \brief Load a set of PCD files that we want to register together
#   * \param argc the number of arguments (pass from main ())
#   * \param argv the actual command line arguments (pass from main ())
#   * \param models the resultant vector of point cloud datasets
#   */
# void loadData (int argc, char **argv, std::vector<PCD, Eigen::aligned_allocator<PCD> > &models)
# {
#   std::string extension (".pcd");
#   // Suppose the first argument is the actual test model
#   for (int i = 1; i < argc; i++)
#   {
#     std::string fname = std::string (argv[i]);
#     // Needs to be at least 5: .plot
#     if (fname.size () <= extension.size ())
#       continue;
# 
#     std::transform (fname.begin (), fname.end (), fname.begin (), (int(*)(int))tolower);
# 
#     //check that the argument is a pcd file
#     if (fname.compare (fname.size () - extension.size (), extension.size (), extension) == 0)
#     {
#       // Load the cloud and saves it into the global list of models
#       PCD m;
#       m.f_name = argv[i];
#       pcl::io::loadPCDFile (argv[i], *m.cloud);
#       //remove NAN points from the cloud
#       std::vector<int> indices;
#       pcl::removeNaNFromPointCloud(*m.cloud,*m.cloud, indices);
# 
#       models.push_back (m);
#     }
#   }
# }


# ////////////////////////////////////////////////////////////////////////////////
# /** \brief Align a pair of PointCloud datasets and return the result
#   * \param cloud_src the source PointCloud
#   * \param cloud_tgt the target PointCloud
#   * \param output the resultant aligned source PointCloud
#   * \param final_transform the resultant transform between source and target
#   */
# void pairAlign (const PointCloud::Ptr cloud_src, const PointCloud::Ptr cloud_tgt, PointCloud::Ptr output, Eigen::Matrix4f &final_transform, bool downsample = false)
# {
#   //
#   // Downsample for consistency and speed
#   // \note enable this for large datasets
#   PointCloud::Ptr src (new PointCloud);
#   PointCloud::Ptr tgt (new PointCloud);
#   pcl::VoxelGrid<PointT> grid;
#   if (downsample)
#   {
#     grid.setLeafSize (0.05, 0.05, 0.05);
#     grid.setInputCloud (cloud_src);
#     grid.filter (*src);
# 
#     grid.setInputCloud (cloud_tgt);
#     grid.filter (*tgt);
#   }
#   else
#   {
#     src = cloud_src;
#     tgt = cloud_tgt;
#   }
# 
# 
#   // Compute surface normals and curvature
#   PointCloudWithNormals::Ptr points_with_normals_src (new PointCloudWithNormals);
#   PointCloudWithNormals::Ptr points_with_normals_tgt (new PointCloudWithNormals);
# 
#   pcl::NormalEstimation<PointT, PointNormalT> norm_est;
#   pcl::search::KdTree<pcl::PointXYZ>::Ptr tree (new pcl::search::KdTree<pcl::PointXYZ> ());
#   norm_est.setSearchMethod (tree);
#   norm_est.setKSearch (30);
#   
#   norm_est.setInputCloud (src);
#   norm_est.compute (*points_with_normals_src);
#   pcl::copyPointCloud (*src, *points_with_normals_src);
# 
#   norm_est.setInputCloud (tgt);
#   norm_est.compute (*points_with_normals_tgt);
#   pcl::copyPointCloud (*tgt, *points_with_normals_tgt);
# 
#   //
#   // Instantiate our custom point representation (defined above) ...
#   MyPointRepresentation point_representation;
#   // ... and weight the 'curvature' dimension so that it is balanced against x, y, and z
#   float alpha[4] = {1.0, 1.0, 1.0, 1.0};
#   point_representation.setRescaleValues (alpha);
# 
#   //
#   // Align
#   pcl::IterativeClosestPointNonLinear<PointNormalT, PointNormalT> reg;
#   reg.setTransformationEpsilon (1e-6);
#   // Set the maximum distance between two correspondences (src<->tgt) to 10cm
#   // Note: adjust this based on the size of your datasets
#   reg.setMaxCorrespondenceDistance (0.1);  
#   // Set the point representation
#   reg.setPointRepresentation (boost::make_shared<const MyPointRepresentation> (point_representation));
# 
#   reg.setInputSource (points_with_normals_src);
#   reg.setInputTarget (points_with_normals_tgt);
# 
# 
# 
#   //
#   // Run the same optimization in a loop and visualize the results
#   Eigen::Matrix4f Ti = Eigen::Matrix4f::Identity (), prev, targetToSource;
#   PointCloudWithNormals::Ptr reg_result = points_with_normals_src;
#   reg.setMaximumIterations (2);
#   for (int i = 0; i < 30; ++i)
#   {
#     PCL_INFO ("Iteration Nr. %d.\n", i);
# 
#     // save cloud for visualization purpose
#     points_with_normals_src = reg_result;
# 
#     // Estimate
#     reg.setInputSource (points_with_normals_src);
#     reg.align (*reg_result);
# 
# 		//accumulate transformation between each Iteration
#     Ti = reg.getFinalTransformation () * Ti;
# 
# 		//if the difference between this transformation and the previous one
# 		//is smaller than the threshold, refine the process by reducing
# 		//the maximal correspondence distance
#     if (fabs ((reg.getLastIncrementalTransformation () - prev).sum ()) < reg.getTransformationEpsilon ())
#       reg.setMaxCorrespondenceDistance (reg.getMaxCorrespondenceDistance () - 0.001);
#     
#     prev = reg.getLastIncrementalTransformation ();
# 
#     // visualize current state
#     showCloudsRight(points_with_normals_tgt, points_with_normals_src);
#   }
# 
# 	//
#   // Get the transformation from target to source
#   targetToSource = Ti.inverse();
# 
#   //
#   // Transform target back in source frame
#   pcl::transformPointCloud (*cloud_tgt, *output, targetToSource);
# 
#   p->removePointCloud ("source");
#   p->removePointCloud ("target");
# 
#   PointCloudColorHandlerCustom<PointT> cloud_tgt_h (output, 0, 255, 0);
#   PointCloudColorHandlerCustom<PointT> cloud_src_h (cloud_src, 255, 0, 0);
#   p->addPointCloud (output, cloud_tgt_h, "target", vp_2);
#   p->addPointCloud (cloud_src, cloud_src_h, "source", vp_2);
# 
# 	PCL_INFO ("Press q to continue the registration.\n");
#   p->spin ();
# 
#   p->removePointCloud ("source"); 
#   p->removePointCloud ("target");
# 
#   //add the source to the transformed target
#   *output += *cloud_src;
#   
#   final_transform = targetToSource;
#  }

# main
# // Load data
# std::vector<PCD, Eigen::aligned_allocator<PCD> > data;
# loadData (argc, argv, data);
# 
# // Check user input
# if (data.empty ())
# {
# PCL_ERROR ("Syntax is: %s <source.pcd> <target.pcd> [*]", argv[0]);
# PCL_ERROR ("[*] - multiple files can be added. The registration results of (i, i+1) will be registered against (i+2), etc");
# return (-1);
# }
# PCL_INFO ("Loaded %d datasets.", (int)data.size ());
# 
# // Create a PCLVisualizer object
# p = new pcl::visualization::PCLVisualizer (argc, argv, "Pairwise Incremental Registration example");
# p->createViewPort (0.0, 0, 0.5, 1.0, vp_1);
# p->createViewPort (0.5, 0, 1.0, 1.0, vp_2);
# 
# PointCloud::Ptr result (new PointCloud), source, target;
# Eigen::Matrix4f GlobalTransform = Eigen::Matrix4f::Identity (), pairTransform;
# 
# for (size_t i = 1; i < data.size (); ++i)
# {
# source = data[i-1].cloud;
# target = data[i].cloud;
# 
# // Add visualization data
# showCloudsLeft(source, target);
# 
# PointCloud::Ptr temp (new PointCloud);
# PCL_INFO ("Aligning %s (%d) with %s (%d).\n", data[i-1].f_name.c_str (), source->points.size (), data[i].f_name.c_str (), target->points.size ());
# pairAlign (source, target, temp, pairTransform, true);
# 
# //transform current pair into the global transform
# pcl::transformPointCloud (*temp, *result, GlobalTransform);
# 
# //update the global transform
# GlobalTransform = GlobalTransform * pairTransform;
# 
# 	//save aligned pair, transformed into the first cloud's frame
# std::stringstream ss;
# ss << i << ".pcd";
# pcl::io::savePCDFile (ss.str (), *result, true);
# 
# }
# }