1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
|
# -*- coding: utf-8 -*-
# main
cimport pcl_defs as cpp
import numpy as np
cimport numpy as cnp
cnp.import_array()
# parts
cimport pcl_features as pclftr
cimport pcl_filters as pclfil
cimport pcl_io as pclio
cimport pcl_kdtree as pclkdt
cimport pcl_octree as pcloct
cimport pcl_sample_consensus as pcl_sc
# cimport pcl_search as pcl_sch
cimport pcl_segmentation as pclseg
cimport pcl_surface as pclsf
cimport pcl_range_image as pcl_r_img
from libcpp cimport bool
cimport indexing as idx
from boost_shared_ptr cimport sp_assign
cdef extern from "minipcl.h":
void mpcl_compute_normals(cpp.PointCloud_t, int ksearch,
double searchRadius,
cpp.PointCloud_Normal_t) except +
void mpcl_extract(cpp.PointCloudPtr_t, cpp.PointCloud_t *,
cpp.PointIndices_t *, bool) except +
## void mpcl_extract_HarrisKeypoint3D(cpp.PointCloudPtr_t, cpp.PointCloud_PointXYZ *) except +
# void mpcl_extract_HarrisKeypoint3D(cpp.PointCloudPtr_t, cpp.PointCloud_t *) except +
cdef extern from "ProjectInliers.h":
void mpcl_ProjectInliers_setModelCoefficients(pclfil.ProjectInliers_t);
# Empirically determine strides, for buffer support.
# XXX Is there a more elegant way to get these?
cdef Py_ssize_t _strides[2]
cdef PointCloud2 _pc_tmp = PointCloud(np.array([[1, 2, 3],
[4, 5, 6]], dtype=np.float32))
cdef cpp.PointCloud2[cpp.PointXYZ] *p = _pc_tmp.thisptr()
_strides[0] = ( <Py_ssize_t><void *>idx.getptr(p, 1)
- <Py_ssize_t><void *>idx.getptr(p, 0))
_strides[1] = ( <Py_ssize_t><void *>&(idx.getptr(p, 0).y)
- <Py_ssize_t><void *>&(idx.getptr(p, 0).x))
_pc_tmp = None
cdef class PointCloud2:
"""Represents a cloud of points in 3-d space.
A point cloud can be initialized from either a NumPy ndarray of shape
(n_points, 3), from a list of triples, or from an integer n to create an
"empty" cloud of n points.
To load a point cloud from disk, use pcl.load.
"""
def __cinit__(self, init=None):
cdef PointCloud2 other
self._view_count = 0
# TODO: NG --> import pcl --> pyd Error(python shapedptr/C++ shard ptr collusion?)
# sp_assign(<cpp.shared_ptr[cpp.PointCloud2[cpp.PointXYZ]]> self.thisptr_shared, new cpp.PointCloud2[cpp.PointXYZ]())
sp_assign(self.thisptr_shared, new cpp.PointCloud2[cpp.PointXYZ]())
if init is None:
return
elif isinstance(init, (numbers.Integral, np.integer)):
self.resize(init)
elif isinstance(init, np.ndarray):
self.from_array(init)
elif isinstance(init, Sequence):
self.from_list(init)
elif isinstance(init, type(self)):
other = init
self.thisptr()[0] = other.thisptr()[0]
else:
raise TypeError("Can't initialize a PointCloud2 from a %s"
% type(init))
property width:
""" property containing the width of the point cloud """
def __get__(self): return self.thisptr().width
property height:
""" property containing the height of the point cloud """
def __get__(self): return self.thisptr().height
property size:
""" property containing the number of points in the point cloud """
def __get__(self): return self.thisptr().size()
property is_dense:
""" property containing whether the cloud is dense or not """
def __get__(self): return self.thisptr().is_dense
def __repr__(self):
return "<PointCloud2 of %d points>" % self.size
# Buffer protocol support. Taking a view locks the PointCloud2 for
# resizing, because that can move it around in memory.
def __getbuffer__(self, Py_buffer *buffer, int flags):
# TODO parse flags
cdef Py_ssize_t npoints = self.thisptr().size()
if self._view_count == 0:
self._shape[0] = npoints
self._shape[1] = 3
self._view_count += 1
buffer.buf = <char *>&(idx.getptr_at(self.thisptr(), 0).x)
buffer.format = 'f'
buffer.internal = NULL
buffer.itemsize = sizeof(float)
buffer.len = npoints * 3 * sizeof(float)
buffer.ndim = 2
buffer.obj = self
buffer.readonly = 0
buffer.shape = self._shape
buffer.strides = _strides
buffer.suboffsets = NULL
def __releasebuffer__(self, Py_buffer *buffer):
self._view_count -= 1
# Pickle support. XXX this copies the entire PointCloud2; it would be nice
# to have an asarray member that returns a view, or even better, implement
# the buffer protocol (https://docs.python.org/c-api/buffer.html).
def __reduce__(self):
return type(self), (self.to_array(),)
property sensor_origin:
def __get__(self):
cdef cpp.Vector4f origin = self.thisptr().sensor_origin_
cdef float *data = origin.data()
return np.array([data[0], data[1], data[2], data[3]],
dtype=np.float32)
property sensor_orientation:
def __get__(self):
# NumPy doesn't have a quaternion type, so we return a 4-vector.
cdef cpp.Quaternionf o = self.thisptr().sensor_orientation_
return np.array([o.w(), o.x(), o.y(), o.z()])
# cdef inline PointCloud2[PointXYZ] *thisptr(self) nogil:
# # Shortcut to get raw pointer to underlying PointCloud2
# return self.thisptr_shared.get()
@cython.boundscheck(False)
def from_array(self, cnp.ndarray[cnp.float32_t, ndim=2] arr not None):
"""
Fill this object from a 2D numpy array (float32)
"""
assert arr.shape[1] == 3
cdef cnp.npy_intp npts = arr.shape[0]
self.resize(npts)
self.thisptr().width = npts
self.thisptr().height = 1
cdef cpp.PointXYZ *p
for i in range(npts):
p = idx.getptr(self.thisptr(), i)
p.x, p.y, p.z = arr[i, 0], arr[i, 1], arr[i, 2]
@cython.boundscheck(False)
def to_array(self):
"""
Return this object as a 2D numpy array (float32)
"""
cdef float x,y,z
cdef cnp.npy_intp n = self.thisptr().size()
cdef cnp.ndarray[cnp.float32_t, ndim=2, mode="c"] result
cdef cpp.PointXYZ *p
result = np.empty((n, 3), dtype=np.float32)
for i in range(n):
p = idx.getptr(self.thisptr(), i)
result[i, 0] = p.x
result[i, 1] = p.y
result[i, 2] = p.z
return result
def from_list(self, _list):
"""
Fill this PointCloud2 from a list of 3-tuples
"""
cdef Py_ssize_t npts = len(_list)
self.resize(npts)
self.thisptr().width = npts
self.thisptr().height = 1
cdef cpp.PointXYZ* p
# OK
# p = idx.getptr(self.thisptr(), 1)
# enumerate ? -> i -> type unknown
for i, l in enumerate(_list):
p = idx.getptr(self.thisptr(), <int> i)
p.x, p.y, p.z = l
def to_list(self):
"""
Return this object as a list of 3-tuples
"""
return self.to_array().tolist()
def resize(self, cnp.npy_intp x):
if self._view_count > 0:
raise ValueError("can't resize PointCloud2 while there are"
" arrays/memoryviews referencing it")
self.thisptr().resize(x)
def get_point(self, cnp.npy_intp row, cnp.npy_intp col):
"""
Return a point (3-tuple) at the given row/column
"""
cdef cpp.PointXYZ *p = idx.getptr_at2(self.thisptr(), row, col)
return p.x, p.y, p.z
def __getitem__(self, cnp.npy_intp nmidx):
cdef cpp.PointXYZ *p = idx.getptr_at(self.thisptr(), nmidx)
return p.x, p.y, p.z
def from_file(self, char *f):
"""
Fill this PointCloud2 from a file (a local path).
Only pcd files supported currently.
Deprecated; use pcl.load instead.
"""
return self._from_pcd_file(f)
def _from_pcd_file(self, const char *s):
cdef int error = 0
with nogil:
# NG
# error = pclio.loadPCDFile(string(s), <cpp.PointCloud2[cpp.PointXYZ]> deref(self.thisptr()))
error = pclio.loadPCDFile(string(s), deref(self.thisptr()))
return error
def _from_ply_file(self, const char *s):
cdef int ok = 0
with nogil:
# NG
# ok = pclio.loadPLYFile(string(s), <cpp.PointCloud2[cpp.PointXYZ]> deref(self.thisptr()))
ok = pclio.loadPLYFile(string(s), deref(self.thisptr()))
return ok
def to_file(self, const char *fname, bool ascii=True):
"""Save PointCloud2 to a file in PCD format.
Deprecated: use pcl.save instead.
"""
return self._to_pcd_file(fname, not ascii)
def _to_pcd_file(self, const char *f, bool binary=False):
cdef int error = 0
cdef string s = string(f)
with nogil:
# NG
# error = pclio.savePCDFile(s, <cpp.PointCloud2[cpp.PointXYZ]> deref(self.thisptr()), binary)
# OK
error = pclio.savePCDFile(s, deref(self.thisptr()), binary)
# pclio.PointCloud2[cpp.PointXYZ] *p = self.thisptr()
# error = pclio.savePCDFile(s, p, binary)
return error
def _to_ply_file(self, const char *f, bool binary=False):
cdef int error = 0
cdef string s = string(f)
with nogil:
# NG
# error = pclio.savePLYFile(s, <cpp.PointCloud2[cpp.PointXYZ]> deref(self.thisptr()), binary)
error = pclio.savePLYFile(s, deref(self.thisptr()), binary)
return error
def make_segmenter(self):
"""
Return a pcl.Segmentation object with this object set as the input-cloud
"""
seg = Segmentation()
cdef pclseg.SACSegmentation_t *cseg = <pclseg.SACSegmentation_t *>seg.me
cseg.setInputCloud(self.thisptr_shared)
return seg
def make_segmenter_normals(self, int ksearch=-1, double searchRadius=-1.0):
"""
Return a pcl.SegmentationNormal object with this object set as the input-cloud
"""
cdef cpp.PointCloud_Normal_t normals
mpcl_compute_normals(<cpp.PointCloud2[cpp.PointXYZ]> deref(self.thisptr()), ksearch, searchRadius, normals)
# p = self.thisptr()
# mpcl_compute_normals(deref(p), ksearch, searchRadius, normals)
seg = SegmentationNormal()
cdef pclseg.SACSegmentationNormal_t *cseg = <pclseg.SACSegmentationNormal_t *>seg.me
cseg.setInputCloud(self.thisptr_shared)
cseg.setInputNormals (normals.makeShared());
return seg
def make_statistical_outlier_filter(self):
"""
Return a pcl.StatisticalOutlierRemovalFilter object with this object set as the input-cloud
"""
fil = StatisticalOutlierRemovalFilter()
cdef pclfil.StatisticalOutlierRemoval_t *cfil = <pclfil.StatisticalOutlierRemoval_t *>fil.me
cfil.setInputCloud(<cpp.shared_ptr[cpp.PointCloud2[cpp.PointXYZ]]> self.thisptr_shared)
return fil
def make_voxel_grid_filter(self):
"""
Return a pcl.VoxelGridFilter object with this object set as the input-cloud
"""
fil = VoxelGridFilter()
cdef pclfil.VoxelGrid_t *cfil = <pclfil.VoxelGrid_t *>fil.me
cfil.setInputCloud(<cpp.shared_ptr[cpp.PointCloud2[cpp.PointXYZ]]> self.thisptr_shared)
return fil
def make_passthrough_filter(self):
"""
Return a pcl.PassThroughFilter object with this object set as the input-cloud
"""
fil = PassThroughFilter()
cdef pclfil.PassThrough_t *cfil = <pclfil.PassThrough_t *>fil.me
cfil.setInputCloud(<cpp.shared_ptr[cpp.PointCloud2[cpp.PointXYZ]]> self.thisptr_shared)
return fil
def make_moving_least_squares(self):
"""
Return a pcl.MovingLeastSquares object with this object as input cloud.
"""
mls = MovingLeastSquares()
cdef pclsf.MovingLeastSquares_t *cmls = <pclsf.MovingLeastSquares_t *>mls.me
cmls.setInputCloud(<cpp.shared_ptr[cpp.PointCloud2[cpp.PointXYZ]]> self.thisptr_shared)
return mls
def make_kdtree(self):
"""
Return a pcl.kdTree object with this object set as the input-cloud
Deprecated: use the pcl.KdTree constructor on this cloud.
"""
return KdTree(self)
def make_kdtree_flann(self):
"""
Return a pcl.kdTreeFLANN object with this object set as the input-cloud
Deprecated: use the pcl.KdTreeFLANN constructor on this cloud.
"""
return KdTreeFLANN(self)
def make_octree(self, double resolution):
"""
Return a pcl.octree object with this object set as the input-cloud
"""
octree = OctreePointCloud(resolution)
octree.set_input_cloud(self)
return octree
def make_octreeSearch(self, double resolution):
"""
Return a pcl.make_octreeSearch object with this object set as the input-cloud
"""
octreeSearch = OctreePointCloudSearch(resolution)
octreeSearch.set_input_cloud(self)
return octreeSearch
# pcl 1.6.0 use ok
# cpl 1.7.2, 1.8.0 use ng(octree_pointcloud_changedetector.h(->octree_pointcloud.h) include headerfile comment octree2buf_base.h)
# def make_octreeChangeDetector(self, double resolution):
# """
# Return a pcl.make_octreeSearch object with this object set as the input-cloud
# """
# octreeChangeDetector = OctreePointCloudChangeDetector(resolution)
# octreeChangeDetector.set_input_cloud(self)
# return octreeChangeDetector
def make_crophull(self):
"""
Return a pcl.CropHull object with this object set as the input-cloud
Deprecated: use the pcl.Vertices constructor on this cloud.
"""
return CropHull(self)
def make_cropbox(self):
"""
Return a pcl.CropBox object with this object set as the input-cloud
Deprecated: use the pcl.Vertices constructor on this cloud.
"""
return CropBox(self)
def make_IntegralImageNormalEstimation(self):
"""
Return a pcl.IntegralImageNormalEstimation object with this object set as the input-cloud
Deprecated: use the pcl.Vertices constructor on this cloud.
"""
return IntegralImageNormalEstimation(self)
def extract(self, pyindices, bool negative=False):
"""
Given a list of indices of points in the PointCloud2, return a
new PointCloud2 containing only those points.
"""
cdef PointCloud2 result
cdef cpp.PointIndices_t *ind = new cpp.PointIndices_t()
for i in pyindices:
ind.indices.push_back(i)
result = PointCloud2()
# result = ExtractIndices()
# (<cpp.PointCloud2[cpp.PointXYZ]> deref(self.thisptr())
mpcl_extract(self.thisptr_shared, result.thisptr(), ind, negative)
# XXX are we leaking memory here? del ind causes a double free...
return result
def make_ProjectInliers(self):
"""
Return a pclfil.ProjectInliers object with this object set as the input-cloud
"""
# proj = ProjectInliers()
# cdef pclfil.ProjectInliers_t *cproj = <pclfil.ProjectInliers_t *>proj.me
# cproj.setInputCloud(self.thisptr_shared)
# return proj
# # cdef pclfil.ProjectInliers_t* projInliers
# # mpcl_ProjectInliers_setModelCoefficients(projInliers)
# mpcl_ProjectInliers_setModelCoefficients(deref(projInliers))
# # proj = ProjectInliers()
# cdef pclfil.ProjectInliers_t *cproj = <pclfil.ProjectInliers_t *>projInliers
# cproj.setInputCloud(self.thisptr_shared)
# return proj
# # NG
# cdef pclfil.ProjectInliers_t* projInliers
# # mpcl_ProjectInliers_setModelCoefficients(projInliers)
# mpcl_ProjectInliers_setModelCoefficients(deref(projInliers))
# projInliers.setInputCloud(self.thisptr_shared)
# proj = ProjectInliers()
# proj.me = projInliers
# return proj
proj = ProjectInliers()
cdef pclfil.ProjectInliers_t *cproj = <pclfil.ProjectInliers_t *>proj.me
# mpcl_ProjectInliers_setModelCoefficients(cproj)
mpcl_ProjectInliers_setModelCoefficients(deref(cproj))
cproj.setInputCloud(<cpp.shared_ptr[cpp.PointCloud2[cpp.PointXYZ]]> self.thisptr_shared)
return proj
def make_RadiusOutlierRemoval(self):
"""
Return a pclfil.RadiusOutlierRemoval object with this object set as the input-cloud
"""
fil = RadiusOutlierRemoval()
cdef pclfil.RadiusOutlierRemoval_t *cfil = <pclfil.RadiusOutlierRemoval_t *>fil.me
cfil.setInputCloud(<cpp.shared_ptr[cpp.PointCloud2[cpp.PointXYZ]]> self.thisptr_shared)
return fil
def make_ConditionAnd(self):
"""
Return a pcl.ConditionAnd object with this object set as the input-cloud
"""
condAnd = ConditionAnd()
cdef pclfil.ConditionAnd_t *cCondAnd = <pclfil.ConditionAnd_t *>condAnd.me
return condAnd
def make_ConditionalRemoval(self):
"""
Return a pcl.ConditionalRemoval object with this object set as the input-cloud
"""
condRemoval = ConditionalRemoval()
cdef pclfil.ConditionalRemoval_t *cCondRemoval = <pclfil.ConditionalRemoval_t *>condRemoval.me
cCondRemoval.setInputCloud(<cpp.shared_ptr[cpp.PointCloud2[cpp.PointXYZ]]> self.thisptr_shared)
return condRemoval
def make_ConditionalRemoval(self, ConditionAnd range_conf):
"""
Return a pcl.ConditionalRemoval object with this object set as the input-cloud
"""
warn("constructor with condition is deprecated, use setCondition()",
DeprecationWarning)
condRemoval = ConditionalRemoval(range_conf)
cdef pclfil.ConditionalRemoval_t *cCondRemoval = <pclfil.ConditionalRemoval_t *>condRemoval.me
cCondRemoval.setInputCloud(<cpp.shared_ptr[cpp.PointCloud2[cpp.PointXYZ]]> self.thisptr_shared)
return condRemoval
def make_ConcaveHull(self):
"""
Return a pcl.ConditionalRemoval object with this object set as the input-cloud
"""
concaveHull = ConcaveHull()
cdef pclsf.ConcaveHull_t *cConcaveHull = <pclsf.ConcaveHull_t *>concaveHull.me
cConcaveHull.setInputCloud(<cpp.shared_ptr[cpp.PointCloud2[cpp.PointXYZ]]> self.thisptr_shared)
return concaveHull
def make_HarrisKeypoint3D(self):
"""
Return a pcl.PointCloud2 object with this object set as the input-cloud
"""
cdef PointCloud2 result
result = PointCloud_PointXYZI()
# # harris = HarrisKeypoint3D()
# mpcl_extract_HarrisKeypoint3D(self.thisptr_shared, result.thisptr())
# # mpcl_extract_HarrisKeypoint3D(self.thisptr_shared, result.thisptr_shared)
# # cdef keypt.HarrisKeypoint3DPtr_t *cseg = <pclseg.SACSegmentationNormal_t *>harris.me
# # charris.setInputCloud(<cpp.shared_ptr[cpp.PointCloud[cpp.PointXYZ]]> self.thisptr_shared)
# # charris.setNonMaxSupression (true)
# # charris.setRadius (1.0)
# # charris.setRadiusSearch (searchRadius)
# # charris.compare(<cpp.shared_ptr[cpp.PointCloud[cpp.PointXYZ]]> result.thisptr())
return result
def make_NormalEstimation(self):
normalEstimation = NormalEstimation()
cdef pclftr.NormalEstimation_t *cNormalEstimation = <pclftr.NormalEstimation_t *>normalEstimation.me
cNormalEstimation.setInputCloud(<cpp.shared_ptr[cpp.PointCloud[cpp.PointXYZ]]> self.thisptr_shared)
return normalEstimation
def make_VFHEstimation(self):
vfhEstimation = VFHEstimation()
cdef pclftr.VFHEstimation_t *cVFHEstimation = <pclftr.VFHEstimation_t *>vfhEstimation.me
cVFHEstimation.setInputCloud(<cpp.shared_ptr[cpp.PointCloud[cpp.PointXYZ]]> self.thisptr_shared)
return vfhEstimation
def make_RangeImage(self):
rangeImages = RangeImages(self)
# cdef pcl_r_img.RangeImage_t *cRangeImage = <pcl_r_img.RangeImage_t *>rangeImages.me
return rangeImages
def make_EuclideanClusterExtraction(self):
euclideanclusterextraction = EuclideanClusterExtraction(self)
cdef pclseg.EuclideanClusterExtraction_t *cEuclideanClusterExtraction = <pclseg.EuclideanClusterExtraction_t *>euclideanclusterextraction.me
cEuclideanClusterExtraction.setInputCloud(<cpp.shared_ptr[cpp.PointCloud[cpp.PointXYZ]]> self.thisptr_shared)
return euclideanclusterextraction
# registration - icp?
# def make_IterativeClosestPoint():
# iterativeClosestPoint = IterativeClosestPoint(self)
# cdef pclseg.IterativeClosestPoint *cEuclideanClusterExtraction = <pclseg.IterativeClosestPoint *>euclideanclusterextraction.me
#
# cEuclideanClusterExtraction.setInputCloud(<cpp.shared_ptr[cpp.PointCloud[cpp.PointXYZ]]> self.thisptr_shared)
# # icp.setInputCloud(cloud_in);
# # icp.setInputTarget(cloud_out);
# return euclideanclusterextraction
###
### include ###
include "Segmentation/Segmentation.pxi"
include "Segmentation/SegmentationNormal.pxi"
include "Segmentation/EuclideanClusterExtraction.pxi"
include "Filters/StatisticalOutlierRemovalFilter.pxi"
include "Filters/VoxelGridFilter.pxi"
include "Filters/PassThroughFilter.pxi"
include "Surface/MovingLeastSquares.pxi"
# include "KdTree/KdTree.pxi"
include "KdTree/KdTree_FLANN.pxi"
# Octree
include "Octree/OctreePointCloud.pxi"
include "Octree/OctreePointCloudSearch.pxi"
include "Vertices.pxi"
include "Filters/CropHull.pxi"
include "Filters/CropBox.pxi"
include "Filters/ProjectInliers.pxi"
include "Filters/RadiusOutlierRemoval.pxi"
include "Filters/ConditionAnd.pxi"
include "Filters/ConditionalRemoval.pxi"
include "Surface/ConcaveHull.pxi"
include "Common/RangeImage/RangeImages.pxi"
# include "Visualization/PointCloudColorHandlerCustoms.pxi"
# Features
include "Features/NormalEstimation.pxi"
include "Features/VFHEstimation.pxi"
include "Features/IntegralImageNormalEstimation.pxi"
# keyPoint
# include "KeyPoint/UniformSampling.pxi"
include "KeyPoint/HarrisKeypoint3D.pxi"
|