1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192
|
from libc.stddef cimport size_t
from libcpp.vector cimport vector
from libcpp.string cimport string
from libcpp cimport bool
# main
cimport pcl_defs as cpp
# boost
from boost_shared_ptr cimport shared_ptr
###############################################################################
# Types
###############################################################################
### base class ###
# quantizable_modality.h
# namespace pcl
# {
# /** \brief Interface for a quantizable modality.
# * \author Stefan Holzer
# */
# class PCL_EXPORTS QuantizableModality
cdef extern from "pcl/Recognition/quantizable_modality.h" namespace "pcl":
cdef cppclass Feature[In, Out](cpp.PCLBase[In]):
QuantizableModality ()
# /** \brief Destructor. */
# virtual ~QuantizableModality ();
# /** \brief Returns a reference to the internally computed quantized map. */
# virtual QuantizedMap & getQuantizedMap () = 0;
# /** \brief Returns a reference to the internally computed spreaded quantized map. */
# virtual QuantizedMap & getSpreadedQuantizedMap () = 0;
# /** \brief Extracts features from this modality within the specified mask.
# * \param[in] mask defines the areas where features are searched in.
# * \param[in] nr_features defines the number of features to be extracted
# * (might be less if not sufficient information is present in the modality).
# * \param[in] modality_index the index which is stored in the extracted features.
# * \param[out] features the destination for the extracted features.
# */
# virtual void extractFeatures (
# const MaskMap & mask, size_t nr_features, size_t modality_index,
# std::vector<QuantizedMultiModFeature> & features) const = 0;
#
# /** \brief Extracts all possible features from the modality within the specified mask.
# * \param[in] mask defines the areas where features are searched in.
# * \param[in] nr_features IGNORED (TODO: remove this parameter).
# * \param[in] modality_index the index which is stored in the extracted features.
# * \param[out] features the destination for the extracted features.
# */
# virtual void extractAllFeatures (const MaskMap & mask, size_t nr_features, size_t modality_index,
# std::vector<QuantizedMultiModFeature> & features) const = 0;
###
### Inheritance class ###
# auxiliary.h
# #include <pcl/recognition/ransac_based/auxiliary.h>
###
# boost.h
# #include <boost/unordered_map.hpp>
# #include <boost/graph/graph_traits.hpp>
###
# bvh.h
# #include <pcl/recognition/ransac_based/bvh.h>
###
# color_gradient_dot_modality.h
# namespace pcl
# {
#
# /** \brief A point structure for representing RGB color
# * \ingroup common
# */
# struct EIGEN_ALIGN16 PointRGB
# {
# union
# {
# union
# {
# struct
# {
# uint8_t b;
# uint8_t g;
# uint8_t r;
# uint8_t _unused;
# };
# float rgb;
# };
# uint32_t rgba;
# };
#
# inline PointRGB ()
# {}
#
# inline PointRGB (const uint8_t b, const uint8_t g, const uint8_t r)
# : b (b), g (g), r (r), _unused (0)
# {}
#
# EIGEN_MAKE_ALIGNED_OPERATOR_NEW
# };
#
#
# /** \brief A point structure representing Euclidean xyz coordinates, and the intensity value.
# * \ingroup common
# */
# struct EIGEN_ALIGN16 GradientXY
# {
# union
# {
# struct
# {
# float x;
# float y;
# float angle;
# float magnitude;
# };
# float data[4];
# };
# EIGEN_MAKE_ALIGNED_OPERATOR_NEW
#
# inline bool operator< (const GradientXY & rhs)
# {
# return (magnitude > rhs.magnitude);
# }
# };
# inline std::ostream & operator << (std::ostream & os, const GradientXY & p)
# {
# os << "(" << p.x << "," << p.y << " - " << p.magnitude << ")";
# return (os);
# }
#
# // --------------------------------------------------------------------------
# template <typename PointInT>
# class ColorGradientDOTModality : public DOTModality, public PCLBase<PointInT>
# {
# protected:
# using PCLBase<PointInT>::input_;
#
# struct Candidate
# {
# GradientXY gradient;
#
# int x;
# int y;
#
# bool operator< (const Candidate & rhs)
# {
# return (gradient.magnitude > rhs.gradient.magnitude);
# }
# };
#
# public:
# typedef typename pcl::PointCloud<PointInT> PointCloudIn;
#
# ColorGradientDOTModality (size_t bin_size);
#
# virtual ~ColorGradientDOTModality ();
#
# inline void
# setGradientMagnitudeThreshold (const float threshold)
# {
# gradient_magnitude_threshold_ = threshold;
# }
#
# //inline QuantizedMap &
# //getDominantQuantizedMap ()
# //{
# // return (dominant_quantized_color_gradients_);
# //}
#
# inline QuantizedMap &
# getDominantQuantizedMap ()
# {
# return (dominant_quantized_color_gradients_);
# }
#
# QuantizedMap
# computeInvariantQuantizedMap (const MaskMap & mask,
# const RegionXY & region);
#
# /** \brief Provide a pointer to the input dataset (overwrites the PCLBase::setInputCloud method)
# * \param cloud the const boost shared pointer to a PointCloud message
# */
# virtual void
# setInputCloud (const typename PointCloudIn::ConstPtr & cloud)
# {
# input_ = cloud;
# //processInputData ();
# }
#
# virtual void
# processInputData ();
#
# protected:
#
# void
# computeMaxColorGradients ();
#
# void
# computeDominantQuantizedGradients ();
#
# //void
# //computeInvariantQuantizedGradients ();
#
# private:
# size_t bin_size_;
#
# float gradient_magnitude_threshold_;
# pcl::PointCloud<pcl::GradientXY> color_gradients_;
#
# pcl::QuantizedMap dominant_quantized_color_gradients_;
# //pcl::QuantizedMap invariant_quantized_color_gradients_;
#
# };
#
# }
# template <typename PointInT>
# pcl::ColorGradientDOTModality<PointInT>::ColorGradientDOTModality (const size_t bin_size)
# : bin_size_ (bin_size), gradient_magnitude_threshold_ (80.0f), color_gradients_ (), dominant_quantized_color_gradients_ ()
# {
# }
#
# //////////////////////////////////////////////////////////////////////////////////////////////
# template <typename PointInT>
# pcl::ColorGradientDOTModality<PointInT>::
# ~ColorGradientDOTModality ()
# {
# }
#
# //////////////////////////////////////////////////////////////////////////////////////////////
# template <typename PointInT>
# void
# pcl::ColorGradientDOTModality<PointInT>::
# processInputData ()
# {
# // extract color gradients
# computeMaxColorGradients ();
#
# // compute dominant quantized gradient map
# computeDominantQuantizedGradients ();
#
# // compute invariant quantized gradient map
# //computeInvariantQuantizedGradients ();
# }
#
# //////////////////////////////////////////////////////////////////////////////////////////////
# template <typename PointInT>
# void
# pcl::ColorGradientDOTModality<PointInT>::
# computeMaxColorGradients ()
# {
# const int width = input_->width;
# const int height = input_->height;
#
# color_gradients_.points.resize (width*height);
# color_gradients_.width = width;
# color_gradients_.height = height;
#
# const float pi = tan(1.0f)*4;
# for (int row_index = 0; row_index < height-2; ++row_index)
# {
# for (int col_index = 0; col_index < width-2; ++col_index)
# {
# const int index0 = row_index*width+col_index;
# const int index_c = row_index*width+col_index+2;
# const int index_r = (row_index+2)*width+col_index;
#
# //const int index_d = (row_index+1)*width+col_index+1;
#
# const unsigned char r0 = input_->points[index0].r;
# const unsigned char g0 = input_->points[index0].g;
# const unsigned char b0 = input_->points[index0].b;
#
# const unsigned char r_c = input_->points[index_c].r;
# const unsigned char g_c = input_->points[index_c].g;
# const unsigned char b_c = input_->points[index_c].b;
#
# const unsigned char r_r = input_->points[index_r].r;
# const unsigned char g_r = input_->points[index_r].g;
# const unsigned char b_r = input_->points[index_r].b;
#
# const float r_dx = static_cast<float> (r_c) - static_cast<float> (r0);
# const float g_dx = static_cast<float> (g_c) - static_cast<float> (g0);
# const float b_dx = static_cast<float> (b_c) - static_cast<float> (b0);
#
# const float r_dy = static_cast<float> (r_r) - static_cast<float> (r0);
# const float g_dy = static_cast<float> (g_r) - static_cast<float> (g0);
# const float b_dy = static_cast<float> (b_r) - static_cast<float> (b0);
#
# const float sqr_mag_r = r_dx*r_dx + r_dy*r_dy;
# const float sqr_mag_g = g_dx*g_dx + g_dy*g_dy;
# const float sqr_mag_b = b_dx*b_dx + b_dy*b_dy;
#
# GradientXY gradient;
# gradient.x = col_index;
# gradient.y = row_index;
# if (sqr_mag_r > sqr_mag_g && sqr_mag_r > sqr_mag_b)
# {
# gradient.magnitude = sqrt (sqr_mag_r);
# gradient.angle = atan2 (r_dy, r_dx) * 180.0f / pi;
# }
# else if (sqr_mag_g > sqr_mag_b)
# {
# //GradientXY gradient;
# gradient.magnitude = sqrt (sqr_mag_g);
# gradient.angle = atan2 (g_dy, g_dx) * 180.0f / pi;
# //gradient.x = col_index;
# //gradient.y = row_index;
#
# //color_gradients_ (col_index+1, row_index+1) = gradient;
# }
# else
# {
# //GradientXY gradient;
# gradient.magnitude = sqrt (sqr_mag_b);
# gradient.angle = atan2 (b_dy, b_dx) * 180.0f / pi;
# //gradient.x = col_index;
# //gradient.y = row_index;
#
# //color_gradients_ (col_index+1, row_index+1) = gradient;
# }
#
# assert (color_gradients_ (col_index+1, row_index+1).angle >= -180 &&
# color_gradients_ (col_index+1, row_index+1).angle <= 180);
#
# color_gradients_ (col_index+1, row_index+1) = gradient;
# }
# }
#
# return;
# }
# //////////////////////////////////////////////////////////////////////////////////////////////
# template <typename PointInT>
# void
# pcl::ColorGradientDOTModality<PointInT>::
# computeDominantQuantizedGradients ()
# {
# const size_t input_width = input_->width;
# const size_t input_height = input_->height;
#
# const size_t output_width = input_width / bin_size_;
# const size_t output_height = input_height / bin_size_;
#
# dominant_quantized_color_gradients_.resize (output_width, output_height);
#
# //size_t offset_x = 0;
# //size_t offset_y = 0;
#
# const size_t num_gradient_bins = 7;
# const size_t max_num_of_gradients = 1;
#
# const float divisor = 180.0f / (num_gradient_bins - 1.0f);
#
# float global_max_gradient = 0.0f;
# float local_max_gradient = 0.0f;
#
# unsigned char * peak_pointer = dominant_quantized_color_gradients_.getData ();
# memset (peak_pointer, 0, output_width*output_height);
#
# //int tmpCounter = 0;
# for (size_t row_bin_index = 0; row_bin_index < output_height; ++row_bin_index)
# {
# for (size_t col_bin_index = 0; col_bin_index < output_width; ++col_bin_index)
# {
# const size_t x_position = col_bin_index * bin_size_;
# const size_t y_position = row_bin_index * bin_size_;
#
# //std::vector<int> x_coordinates;
# //std::vector<int> y_coordinates;
# //std::vector<float> values;
#
# // iteratively search for the largest gradients, set it to -1, search the next largest ... etc.
# //while (counter < max_num_of_gradients)
# {
# float max_gradient;
# size_t max_gradient_pos_x;
# size_t max_gradient_pos_y;
#
# // find next location and value of maximum gradient magnitude in current region
# {
# max_gradient = 0.0f;
# for (size_t row_sub_index = 0; row_sub_index < bin_size_; ++row_sub_index)
# {
# for (size_t col_sub_index = 0; col_sub_index < bin_size_; ++col_sub_index)
# {
# const float magnitude = color_gradients_ (col_sub_index + x_position, row_sub_index + y_position).magnitude;
#
# if (magnitude > max_gradient)
# {
# max_gradient = magnitude;
# max_gradient_pos_x = col_sub_index;
# max_gradient_pos_y = row_sub_index;
# }
# }
# }
# }
#
# if (max_gradient >= gradient_magnitude_threshold_)
# {
# const size_t angle = static_cast<size_t> (180 + color_gradients_ (max_gradient_pos_x + x_position, max_gradient_pos_y + y_position).angle + 0.5f);
# const size_t bin_index = static_cast<size_t> ((angle >= 180 ? angle-180 : angle)/divisor);
#
# *peak_pointer |= 1 << bin_index;
# }
#
# //++counter;
#
# //x_coordinates.push_back (max_gradient_pos_x + x_position);
# //y_coordinates.push_back (max_gradient_pos_y + y_position);
# //values.push_back (max_gradient);
#
# //color_gradients_ (max_gradient_pos_x + x_position, max_gradient_pos_y + y_position).magnitude = -1.0f;
# }
#
# //// reset values which have been set to -1
# //for (size_t value_index = 0; value_index < values.size (); ++value_index)
# //{
# // color_gradients_ (x_coordinates[value_index], y_coordinates[value_index]).magnitude = values[value_index];
# //}
#
#
# if (*peak_pointer == 0)
# {
# *peak_pointer |= 1 << 7;
# }
#
# //if (*peakPointer != 0)
# //{
# // ++tmpCounter;
# //}
#
# //++stringPointer;
# ++peak_pointer;
#
# //offset_x += bin_size;
# }
#
# //offset_y += bin_size;
# //offset_x = bin_size/2+1;
# }
# }
# //////////////////////////////////////////////////////////////////////////////////////////////
# template <typename PointInT>
# pcl::QuantizedMap
# pcl::ColorGradientDOTModality<PointInT>::
# computeInvariantQuantizedMap (const MaskMap & mask,
# const RegionXY & region)
# {
# const size_t input_width = input_->width;
# const size_t input_height = input_->height;
#
# const size_t output_width = input_width / bin_size_;
# const size_t output_height = input_height / bin_size_;
#
# const size_t sub_start_x = region.x / bin_size_;
# const size_t sub_start_y = region.y / bin_size_;
# const size_t sub_width = region.width / bin_size_;
# const size_t sub_height = region.height / bin_size_;
#
# QuantizedMap map;
# map.resize (sub_width, sub_height);
#
# //size_t offset_x = 0;
# //size_t offset_y = 0;
#
# const size_t num_gradient_bins = 7;
# const size_t max_num_of_gradients = 7;
#
# const float divisor = 180.0f / (num_gradient_bins - 1.0f);
#
# float global_max_gradient = 0.0f;
# float local_max_gradient = 0.0f;
#
# unsigned char * peak_pointer = map.getData ();
#
# //int tmpCounter = 0;
# for (size_t row_bin_index = 0; row_bin_index < sub_height; ++row_bin_index)
# {
# for (size_t col_bin_index = 0; col_bin_index < sub_width; ++col_bin_index)
# {
# std::vector<size_t> x_coordinates;
# std::vector<size_t> y_coordinates;
# std::vector<float> values;
#
# for (int row_pixel_index = -static_cast<int> (bin_size_)/2;
# row_pixel_index <= static_cast<int> (bin_size_)/2;
# row_pixel_index += static_cast<int> (bin_size_)/2)
# {
# const size_t y_position = /*offset_y +*/ row_pixel_index + (sub_start_y + row_bin_index)*bin_size_;
#
# if (y_position < 0 || y_position >= input_height)
# continue;
#
# for (int col_pixel_index = -static_cast<int> (bin_size_)/2;
# col_pixel_index <= static_cast<int> (bin_size_)/2;
# col_pixel_index += static_cast<int> (bin_size_)/2)
# {
# const size_t x_position = /*offset_x +*/ col_pixel_index + (sub_start_x + col_bin_index)*bin_size_;
# size_t counter = 0;
#
# if (x_position < 0 || x_position >= input_width)
# continue;
#
# // find maximum gradient magnitude in current bin
# {
# local_max_gradient = 0.0f;
# for (size_t row_sub_index = 0; row_sub_index < bin_size_; ++row_sub_index)
# {
# for (size_t col_sub_index = 0; col_sub_index < bin_size_; ++col_sub_index)
# {
# const float magnitude = color_gradients_ (col_sub_index + x_position, row_sub_index + y_position).magnitude;
#
# if (magnitude > local_max_gradient)
# local_max_gradient = magnitude;
# }
# }
# }
#
# //*stringPointer += localMaxGradient;
#
# if (local_max_gradient > global_max_gradient)
# {
# global_max_gradient = local_max_gradient;
# }
#
# // iteratively search for the largest gradients, set it to -1, search the next largest ... etc.
# while (true)
# {
# float max_gradient;
# size_t max_gradient_pos_x;
# size_t max_gradient_pos_y;
#
# // find next location and value of maximum gradient magnitude in current region
# {
# max_gradient = 0.0f;
# for (size_t row_sub_index = 0; row_sub_index < bin_size_; ++row_sub_index)
# {
# for (size_t col_sub_index = 0; col_sub_index < bin_size_; ++col_sub_index)
# {
# const float magnitude = color_gradients_ (col_sub_index + x_position, row_sub_index + y_position).magnitude;
#
# if (magnitude > max_gradient)
# {
# max_gradient = magnitude;
# max_gradient_pos_x = col_sub_index;
# max_gradient_pos_y = row_sub_index;
# }
# }
# }
# }
#
# // TODO: really localMaxGradient and not maxGradient???
# if (local_max_gradient < gradient_magnitude_threshold_)
# {
# //*peakPointer |= 1 << (numOfGradientBins-1);
# break;
# }
#
# // TODO: replace gradient_magnitude_threshold_ here by a fixed ratio?
# if (/*max_gradient < (local_max_gradient * gradient_magnitude_threshold_) ||*/
# counter >= max_num_of_gradients)
# {
# break;
# }
#
# ++counter;
#
# const size_t angle = static_cast<size_t> (180 + color_gradients_ (max_gradient_pos_x + x_position, max_gradient_pos_y + y_position).angle + 0.5f);
# const size_t bin_index = static_cast<size_t> ((angle >= 180 ? angle-180 : angle)/divisor);
#
# *peak_pointer |= 1 << bin_index;
#
# x_coordinates.push_back (max_gradient_pos_x + x_position);
# y_coordinates.push_back (max_gradient_pos_y + y_position);
# values.push_back (max_gradient);
#
# color_gradients_ (max_gradient_pos_x + x_position, max_gradient_pos_y + y_position).magnitude = -1.0f;
# }
#
# // reset values which have been set to -1
# for (size_t value_index = 0; value_index < values.size (); ++value_index)
# {
# color_gradients_ (x_coordinates[value_index], y_coordinates[value_index]).magnitude = values[value_index];
# }
#
# x_coordinates.clear ();
# y_coordinates.clear ();
# values.clear ();
# }
# }
#
# if (*peak_pointer == 0)
# {
# *peak_pointer |= 1 << 7;
# }
#
# //if (*peakPointer != 0)
# //{
# // ++tmpCounter;
# //}
#
# //++stringPointer;
# ++peak_pointer;
#
# //offset_x += bin_size;
# }
#
# //offset_y += bin_size;
# //offset_x = bin_size/2+1;
# }
#
# return map;
# }
#
# #endif
# color_gradient_modality.h
# namespace pcl
#
# /** \brief Modality based on max-RGB gradients.
# * \author Stefan Holzer
# */
# template <typename PointInT>
# class ColorGradientModality : public QuantizableModality, public PCLBase<PointInT>
{
protected:
using PCLBase<PointInT>::input_;
/** \brief Candidate for a feature (used in feature extraction methods). */
struct Candidate
{
/** \brief The gradient. */
GradientXY gradient;
/** \brief The x-position. */
int x;
/** \brief The y-position. */
int y;
/** \brief Operator for comparing to candidates (by magnitude of the gradient).
* \param[in] rhs the candidate to compare with.
*/
bool operator< (const Candidate & rhs) const
{
return (gradient.magnitude > rhs.gradient.magnitude);
}
};
public:
typedef typename pcl::PointCloud<PointInT> PointCloudIn;
/** \brief Different methods for feature selection/extraction. */
enum FeatureSelectionMethod
{
MASK_BORDER_HIGH_GRADIENTS,
MASK_BORDER_EQUALLY, // this gives templates most equally to the OpenCV implementation
DISTANCE_MAGNITUDE_SCORE
};
/** \brief Constructor. */
ColorGradientModality ();
/** \brief Destructor. */
virtual ~ColorGradientModality ();
/** \brief Sets the threshold for the gradient magnitude which is used when quantizing the data.
* Gradients with a smaller magnitude are ignored.
* \param[in] threshold the new gradient magnitude threshold.
*/
inline void
setGradientMagnitudeThreshold (const float threshold)
{
gradient_magnitude_threshold_ = threshold;
}
/** \brief Sets the threshold for the gradient magnitude which is used for feature extraction.
* Gradients with a smaller magnitude are ignored.
* \param[in] threshold the new gradient magnitude threshold.
*/
inline void
setGradientMagnitudeThresholdForFeatureExtraction (const float threshold)
{
gradient_magnitude_threshold_feature_extraction_ = threshold;
}
/** \brief Sets the feature selection method.
* \param[in] method the feature selection method.
*/
inline void
setFeatureSelectionMethod (const FeatureSelectionMethod method)
{
feature_selection_method_ = method;
}
/** \brief Sets the spreading size for spreading the quantized data. */
inline void
setSpreadingSize (const size_t spreading_size)
{
spreading_size_ = spreading_size;
}
/** \brief Sets whether variable feature numbers for feature extraction is enabled.
* \param[in] enabled enables/disables variable feature numbers for feature extraction.
*/
inline void
setVariableFeatureNr (const bool enabled)
{
variable_feature_nr_ = enabled;
}
/** \brief Returns a reference to the internally computed quantized map. */
inline QuantizedMap &
getQuantizedMap ()
{
return (filtered_quantized_color_gradients_);
}
/** \brief Returns a reference to the internally computed spreaded quantized map. */
inline QuantizedMap &
getSpreadedQuantizedMap ()
{
return (spreaded_filtered_quantized_color_gradients_);
}
/** \brief Returns a point cloud containing the max-RGB gradients. */
inline pcl::PointCloud<pcl::GradientXY> &
getMaxColorGradients ()
{
return (color_gradients_);
}
/** \brief Extracts features from this modality within the specified mask.
* \param[in] mask defines the areas where features are searched in.
* \param[in] nr_features defines the number of features to be extracted
* (might be less if not sufficient information is present in the modality).
* \param[in] modalityIndex the index which is stored in the extracted features.
* \param[out] features the destination for the extracted features.
*/
void
extractFeatures (const MaskMap & mask, size_t nr_features, size_t modalityIndex,
std::vector<QuantizedMultiModFeature> & features) const;
/** \brief Extracts all possible features from the modality within the specified mask.
* \param[in] mask defines the areas where features are searched in.
* \param[in] nr_features IGNORED (TODO: remove this parameter).
* \param[in] modalityIndex the index which is stored in the extracted features.
* \param[out] features the destination for the extracted features.
*/
void
extractAllFeatures (const MaskMap & mask, size_t nr_features, size_t modalityIndex,
std::vector<QuantizedMultiModFeature> & features) const;
/** \brief Provide a pointer to the input dataset (overwrites the PCLBase::setInputCloud method)
* \param cloud the const boost shared pointer to a PointCloud message
*/
virtual void
setInputCloud (const typename PointCloudIn::ConstPtr & cloud)
{
input_ = cloud;
}
/** \brief Processes the input data (smoothing, computing gradients, quantizing, filtering, spreading). */
virtual void
processInputData ();
/** \brief Processes the input data assuming that everything up to filtering is already done/available
* (so only spreading is performed). */
virtual void
processInputDataFromFiltered ();
protected:
/** \brief Computes the Gaussian kernel used for smoothing.
* \param[in] kernel_size the size of the Gaussian kernel.
* \param[in] sigma the sigma.
* \param[out] kernel_values the destination for the values of the kernel. */
void
computeGaussianKernel (const size_t kernel_size, const float sigma, std::vector <float> & kernel_values);
/** \brief Computes the max-RGB gradients for the specified cloud.
* \param[in] cloud the cloud for which the gradients are computed.
*/
void
computeMaxColorGradients (const typename pcl::PointCloud<pcl::RGB>::ConstPtr & cloud);
/** \brief Computes the max-RGB gradients for the specified cloud using sobel.
* \param[in] cloud the cloud for which the gradients are computed.
*/
void
computeMaxColorGradientsSobel (const typename pcl::PointCloud<pcl::RGB>::ConstPtr & cloud);
/** \brief Quantizes the color gradients. */
void
quantizeColorGradients ();
/** \brief Filters the quantized gradients. */
void
filterQuantizedColorGradients ();
/** \brief Erodes a mask.
* \param[in] mask_in the mask which will be eroded.
* \param[out] mask_out the destination for the eroded mask.
*/
static void
erode (const pcl::MaskMap & mask_in, pcl::MaskMap & mask_out);
private:
/** \brief Determines whether variable numbers of features are extracted or not. */
bool variable_feature_nr_;
/** \brief Stores a smoothed verion of the input cloud. */
pcl::PointCloud<pcl::RGB>::Ptr smoothed_input_;
/** \brief Defines which feature selection method is used. */
FeatureSelectionMethod feature_selection_method_;
/** \brief The threshold applied on the gradient magnitudes (for quantization). */
float gradient_magnitude_threshold_;
/** \brief The threshold applied on the gradient magnitudes for feature extraction. */
float gradient_magnitude_threshold_feature_extraction_;
/** \brief The point cloud which holds the max-RGB gradients. */
pcl::PointCloud<pcl::GradientXY> color_gradients_;
/** \brief The spreading size. */
size_t spreading_size_;
/** \brief The map which holds the quantized max-RGB gradients. */
pcl::QuantizedMap quantized_color_gradients_;
/** \brief The map which holds the filtered quantized data. */
pcl::QuantizedMap filtered_quantized_color_gradients_;
/** \brief The map which holds the spreaded quantized data. */
pcl::QuantizedMap spreaded_filtered_quantized_color_gradients_;
};
}
//////////////////////////////////////////////////////////////////////////////////////////////
template <typename PointInT>
pcl::ColorGradientModality<PointInT>::
ColorGradientModality ()
: variable_feature_nr_ (false)
, smoothed_input_ (new pcl::PointCloud<pcl::RGB> ())
, feature_selection_method_ (DISTANCE_MAGNITUDE_SCORE)
, gradient_magnitude_threshold_ (10.0f)
, gradient_magnitude_threshold_feature_extraction_ (55.0f)
, color_gradients_ ()
, spreading_size_ (8)
, quantized_color_gradients_ ()
, filtered_quantized_color_gradients_ ()
, spreaded_filtered_quantized_color_gradients_ ()
{
}
//////////////////////////////////////////////////////////////////////////////////////////////
template <typename PointInT>
pcl::ColorGradientModality<PointInT>::
~ColorGradientModality ()
{
}
//////////////////////////////////////////////////////////////////////////////////////////////
template <typename PointInT> void
pcl::ColorGradientModality<PointInT>::
computeGaussianKernel (const size_t kernel_size, const float sigma, std::vector <float> & kernel_values)
{
// code taken from OpenCV
const int n = int (kernel_size);
const int SMALL_GAUSSIAN_SIZE = 7;
static const float small_gaussian_tab[][SMALL_GAUSSIAN_SIZE] =
{
{1.f},
{0.25f, 0.5f, 0.25f},
{0.0625f, 0.25f, 0.375f, 0.25f, 0.0625f},
{0.03125f, 0.109375f, 0.21875f, 0.28125f, 0.21875f, 0.109375f, 0.03125f}
};
const float* fixed_kernel = n % 2 == 1 && n <= SMALL_GAUSSIAN_SIZE && sigma <= 0 ?
small_gaussian_tab[n>>1] : 0;
//CV_Assert( ktype == CV_32F || ktype == CV_64F );
/*Mat kernel(n, 1, ktype);*/
kernel_values.resize (n);
float* cf = &(kernel_values[0]);
//double* cd = (double*)kernel.data;
double sigmaX = sigma > 0 ? sigma : ((n-1)*0.5 - 1)*0.3 + 0.8;
double scale2X = -0.5/(sigmaX*sigmaX);
double sum = 0;
int i;
for( i = 0; i < n; i++ )
{
double x = i - (n-1)*0.5;
double t = fixed_kernel ? double (fixed_kernel[i]) : std::exp (scale2X*x*x);
cf[i] = float (t);
sum += cf[i];
}
sum = 1./sum;
for (i = 0; i < n; i++ )
{
cf[i] = float (cf[i]*sum);
}
}
//////////////////////////////////////////////////////////////////////////////////////////////
template <typename PointInT>
void
pcl::ColorGradientModality<PointInT>::
processInputData ()
{
// compute gaussian kernel values
const size_t kernel_size = 7;
std::vector<float> kernel_values;
computeGaussianKernel (kernel_size, 0.0f, kernel_values);
// smooth input
pcl::filters::Convolution<pcl::RGB, pcl::RGB> convolution;
Eigen::ArrayXf gaussian_kernel(kernel_size);
//gaussian_kernel << 1.f/16, 1.f/8, 3.f/16, 2.f/8, 3.f/16, 1.f/8, 1.f/16;
//gaussian_kernel << 16.f/1600.f, 32.f/1600.f, 64.f/1600.f, 128.f/1600.f, 256.f/1600.f, 128.f/1600.f, 64.f/1600.f, 32.f/1600.f, 16.f/1600.f;
gaussian_kernel << kernel_values[0], kernel_values[1], kernel_values[2], kernel_values[3], kernel_values[4], kernel_values[5], kernel_values[6];
pcl::PointCloud<pcl::RGB>::Ptr rgb_input_ (new pcl::PointCloud<pcl::RGB>());
const uint32_t width = input_->width;
const uint32_t height = input_->height;
rgb_input_->resize (width*height);
rgb_input_->width = width;
rgb_input_->height = height;
rgb_input_->is_dense = input_->is_dense;
for (size_t row_index = 0; row_index < height; ++row_index)
{
for (size_t col_index = 0; col_index < width; ++col_index)
{
(*rgb_input_) (col_index, row_index).r = (*input_) (col_index, row_index).r;
(*rgb_input_) (col_index, row_index).g = (*input_) (col_index, row_index).g;
(*rgb_input_) (col_index, row_index).b = (*input_) (col_index, row_index).b;
}
}
convolution.setInputCloud (rgb_input_);
convolution.setKernel (gaussian_kernel);
convolution.convolve (*smoothed_input_);
// extract color gradients
computeMaxColorGradientsSobel (smoothed_input_);
// quantize gradients
quantizeColorGradients ();
// filter quantized gradients to get only dominants one + thresholding
filterQuantizedColorGradients ();
// spread filtered quantized gradients
//spreadFilteredQunatizedColorGradients ();
pcl::QuantizedMap::spreadQuantizedMap (filtered_quantized_color_gradients_,
spreaded_filtered_quantized_color_gradients_,
spreading_size_);
}
//////////////////////////////////////////////////////////////////////////////////////////////
template <typename PointInT>
void
pcl::ColorGradientModality<PointInT>::
processInputDataFromFiltered ()
{
// spread filtered quantized gradients
//spreadFilteredQunatizedColorGradients ();
pcl::QuantizedMap::spreadQuantizedMap (filtered_quantized_color_gradients_,
spreaded_filtered_quantized_color_gradients_,
spreading_size_);
}
//////////////////////////////////////////////////////////////////////////////////////////////
template <typename PointInT>
void pcl::ColorGradientModality<PointInT>::
extractFeatures (const MaskMap & mask, const size_t nr_features, const size_t modality_index,
std::vector<QuantizedMultiModFeature> & features) const
{
const size_t width = mask.getWidth ();
const size_t height = mask.getHeight ();
std::list<Candidate> list1;
std::list<Candidate> list2;
if (feature_selection_method_ == DISTANCE_MAGNITUDE_SCORE)
{
for (size_t row_index = 0; row_index < height; ++row_index)
{
for (size_t col_index = 0; col_index < width; ++col_index)
{
if (mask (col_index, row_index) != 0)
{
const GradientXY & gradient = color_gradients_ (col_index, row_index);
if (gradient.magnitude > gradient_magnitude_threshold_feature_extraction_
&& filtered_quantized_color_gradients_ (col_index, row_index) != 0)
{
Candidate candidate;
candidate.gradient = gradient;
candidate.x = static_cast<int> (col_index);
candidate.y = static_cast<int> (row_index);
list1.push_back (candidate);
}
}
}
}
list1.sort();
if (variable_feature_nr_)
{
list2.push_back (*(list1.begin ()));
//while (list2.size () != nr_features)
bool feature_selection_finished = false;
while (!feature_selection_finished)
{
float best_score = 0.0f;
typename std::list<Candidate>::iterator best_iter = list1.end ();
for (typename std::list<Candidate>::iterator iter1 = list1.begin (); iter1 != list1.end (); ++iter1)
{
// find smallest distance
float smallest_distance = std::numeric_limits<float>::max ();
for (typename std::list<Candidate>::iterator iter2 = list2.begin (); iter2 != list2.end (); ++iter2)
{
const float dx = static_cast<float> (iter1->x) - static_cast<float> (iter2->x);
const float dy = static_cast<float> (iter1->y) - static_cast<float> (iter2->y);
const float distance = dx*dx + dy*dy;
if (distance < smallest_distance)
{
smallest_distance = distance;
}
}
const float score = smallest_distance * iter1->gradient.magnitude;
if (score > best_score)
{
best_score = score;
best_iter = iter1;
}
}
float min_min_sqr_distance = std::numeric_limits<float>::max ();
float max_min_sqr_distance = 0;
for (typename std::list<Candidate>::iterator iter2 = list2.begin (); iter2 != list2.end (); ++iter2)
{
float min_sqr_distance = std::numeric_limits<float>::max ();
for (typename std::list<Candidate>::iterator iter3 = list2.begin (); iter3 != list2.end (); ++iter3)
{
if (iter2 == iter3)
continue;
const float dx = static_cast<float> (iter2->x) - static_cast<float> (iter3->x);
const float dy = static_cast<float> (iter2->y) - static_cast<float> (iter3->y);
const float sqr_distance = dx*dx + dy*dy;
if (sqr_distance < min_sqr_distance)
{
min_sqr_distance = sqr_distance;
}
//std::cerr << min_sqr_distance;
}
//std::cerr << std::endl;
// check current feature
{
const float dx = static_cast<float> (iter2->x) - static_cast<float> (best_iter->x);
const float dy = static_cast<float> (iter2->y) - static_cast<float> (best_iter->y);
const float sqr_distance = dx*dx + dy*dy;
if (sqr_distance < min_sqr_distance)
{
min_sqr_distance = sqr_distance;
}
}
if (min_sqr_distance < min_min_sqr_distance)
min_min_sqr_distance = min_sqr_distance;
if (min_sqr_distance > max_min_sqr_distance)
max_min_sqr_distance = min_sqr_distance;
//std::cerr << min_sqr_distance << ", " << min_min_sqr_distance << ", " << max_min_sqr_distance << std::endl;
}
if (best_iter != list1.end ())
{
//std::cerr << "feature_index: " << list2.size () << std::endl;
//std::cerr << "min_min_sqr_distance: " << min_min_sqr_distance << std::endl;
//std::cerr << "max_min_sqr_distance: " << max_min_sqr_distance << std::endl;
if (min_min_sqr_distance < 50)
{
feature_selection_finished = true;
break;
}
list2.push_back (*best_iter);
}
}
}
else
{
if (list1.size () <= nr_features)
{
for (typename std::list<Candidate>::iterator iter1 = list1.begin (); iter1 != list1.end (); ++iter1)
{
QuantizedMultiModFeature feature;
feature.x = iter1->x;
feature.y = iter1->y;
feature.modality_index = modality_index;
feature.quantized_value = filtered_quantized_color_gradients_ (iter1->x, iter1->y);
features.push_back (feature);
}
return;
}
list2.push_back (*(list1.begin ()));
while (list2.size () != nr_features)
{
float best_score = 0.0f;
typename std::list<Candidate>::iterator best_iter = list1.end ();
for (typename std::list<Candidate>::iterator iter1 = list1.begin (); iter1 != list1.end (); ++iter1)
{
// find smallest distance
float smallest_distance = std::numeric_limits<float>::max ();
for (typename std::list<Candidate>::iterator iter2 = list2.begin (); iter2 != list2.end (); ++iter2)
{
const float dx = static_cast<float> (iter1->x) - static_cast<float> (iter2->x);
const float dy = static_cast<float> (iter1->y) - static_cast<float> (iter2->y);
const float distance = dx*dx + dy*dy;
if (distance < smallest_distance)
{
smallest_distance = distance;
}
}
const float score = smallest_distance * iter1->gradient.magnitude;
if (score > best_score)
{
best_score = score;
best_iter = iter1;
}
}
if (best_iter != list1.end ())
{
list2.push_back (*best_iter);
}
else
{
break;
}
}
}
}
else if (feature_selection_method_ == MASK_BORDER_HIGH_GRADIENTS || feature_selection_method_ == MASK_BORDER_EQUALLY)
{
MaskMap eroded_mask;
erode (mask, eroded_mask);
MaskMap diff_mask;
MaskMap::getDifferenceMask (mask, eroded_mask, diff_mask);
for (size_t row_index = 0; row_index < height; ++row_index)
{
for (size_t col_index = 0; col_index < width; ++col_index)
{
if (diff_mask (col_index, row_index) != 0)
{
const GradientXY & gradient = color_gradients_ (col_index, row_index);
if ((feature_selection_method_ == MASK_BORDER_EQUALLY || gradient.magnitude > gradient_magnitude_threshold_feature_extraction_)
&& filtered_quantized_color_gradients_ (col_index, row_index) != 0)
{
Candidate candidate;
candidate.gradient = gradient;
candidate.x = static_cast<int> (col_index);
candidate.y = static_cast<int> (row_index);
list1.push_back (candidate);
}
}
}
}
list1.sort();
if (list1.size () <= nr_features)
{
for (typename std::list<Candidate>::iterator iter1 = list1.begin (); iter1 != list1.end (); ++iter1)
{
QuantizedMultiModFeature feature;
feature.x = iter1->x;
feature.y = iter1->y;
feature.modality_index = modality_index;
feature.quantized_value = filtered_quantized_color_gradients_ (iter1->x, iter1->y);
features.push_back (feature);
}
return;
}
size_t distance = list1.size () / nr_features + 1; // ???
while (list2.size () != nr_features)
{
const size_t sqr_distance = distance*distance;
for (typename std::list<Candidate>::iterator iter1 = list1.begin (); iter1 != list1.end (); ++iter1)
{
bool candidate_accepted = true;
for (typename std::list<Candidate>::iterator iter2 = list2.begin (); iter2 != list2.end (); ++iter2)
{
const int dx = iter1->x - iter2->x;
const int dy = iter1->y - iter2->y;
const unsigned int tmp_distance = dx*dx + dy*dy;
//if (tmp_distance < distance)
if (tmp_distance < sqr_distance)
{
candidate_accepted = false;
break;
}
}
if (candidate_accepted)
list2.push_back (*iter1);
if (list2.size () == nr_features)
break;
}
--distance;
}
}
for (typename std::list<Candidate>::iterator iter2 = list2.begin (); iter2 != list2.end (); ++iter2)
{
QuantizedMultiModFeature feature;
feature.x = iter2->x;
feature.y = iter2->y;
feature.modality_index = modality_index;
feature.quantized_value = filtered_quantized_color_gradients_ (iter2->x, iter2->y);
features.push_back (feature);
}
}
//////////////////////////////////////////////////////////////////////////////////////////////
template <typename PointInT> void
pcl::ColorGradientModality<PointInT>::
extractAllFeatures (const MaskMap & mask, const size_t, const size_t modality_index,
std::vector<QuantizedMultiModFeature> & features) const
{
const size_t width = mask.getWidth ();
const size_t height = mask.getHeight ();
std::list<Candidate> list1;
std::list<Candidate> list2;
for (size_t row_index = 0; row_index < height; ++row_index)
{
for (size_t col_index = 0; col_index < width; ++col_index)
{
if (mask (col_index, row_index) != 0)
{
const GradientXY & gradient = color_gradients_ (col_index, row_index);
if (gradient.magnitude > gradient_magnitude_threshold_feature_extraction_
&& filtered_quantized_color_gradients_ (col_index, row_index) != 0)
{
Candidate candidate;
candidate.gradient = gradient;
candidate.x = static_cast<int> (col_index);
candidate.y = static_cast<int> (row_index);
list1.push_back (candidate);
}
}
}
}
list1.sort();
for (typename std::list<Candidate>::iterator iter1 = list1.begin (); iter1 != list1.end (); ++iter1)
{
QuantizedMultiModFeature feature;
feature.x = iter1->x;
feature.y = iter1->y;
feature.modality_index = modality_index;
feature.quantized_value = filtered_quantized_color_gradients_ (iter1->x, iter1->y);
features.push_back (feature);
}
}
//////////////////////////////////////////////////////////////////////////////////////////////
template <typename PointInT>
void
pcl::ColorGradientModality<PointInT>::
computeMaxColorGradients (const typename pcl::PointCloud<pcl::RGB>::ConstPtr & cloud)
{
const int width = cloud->width;
const int height = cloud->height;
color_gradients_.points.resize (width*height);
color_gradients_.width = width;
color_gradients_.height = height;
const float pi = tan (1.0f) * 2;
for (int row_index = 0; row_index < height-2; ++row_index)
{
for (int col_index = 0; col_index < width-2; ++col_index)
{
const int index0 = row_index*width+col_index;
const int index_c = row_index*width+col_index+2;
const int index_r = (row_index+2)*width+col_index;
//const int index_d = (row_index+1)*width+col_index+1;
const unsigned char r0 = cloud->points[index0].r;
const unsigned char g0 = cloud->points[index0].g;
const unsigned char b0 = cloud->points[index0].b;
const unsigned char r_c = cloud->points[index_c].r;
const unsigned char g_c = cloud->points[index_c].g;
const unsigned char b_c = cloud->points[index_c].b;
const unsigned char r_r = cloud->points[index_r].r;
const unsigned char g_r = cloud->points[index_r].g;
const unsigned char b_r = cloud->points[index_r].b;
const float r_dx = static_cast<float> (r_c) - static_cast<float> (r0);
const float g_dx = static_cast<float> (g_c) - static_cast<float> (g0);
const float b_dx = static_cast<float> (b_c) - static_cast<float> (b0);
const float r_dy = static_cast<float> (r_r) - static_cast<float> (r0);
const float g_dy = static_cast<float> (g_r) - static_cast<float> (g0);
const float b_dy = static_cast<float> (b_r) - static_cast<float> (b0);
const float sqr_mag_r = r_dx*r_dx + r_dy*r_dy;
const float sqr_mag_g = g_dx*g_dx + g_dy*g_dy;
const float sqr_mag_b = b_dx*b_dx + b_dy*b_dy;
if (sqr_mag_r > sqr_mag_g && sqr_mag_r > sqr_mag_b)
{
GradientXY gradient;
gradient.magnitude = sqrt (sqr_mag_r);
gradient.angle = atan2 (r_dy, r_dx) * 180.0f / pi;
gradient.x = static_cast<float> (col_index);
gradient.y = static_cast<float> (row_index);
color_gradients_ (col_index+1, row_index+1) = gradient;
}
else if (sqr_mag_g > sqr_mag_b)
{
GradientXY gradient;
gradient.magnitude = sqrt (sqr_mag_g);
gradient.angle = atan2 (g_dy, g_dx) * 180.0f / pi;
gradient.x = static_cast<float> (col_index);
gradient.y = static_cast<float> (row_index);
color_gradients_ (col_index+1, row_index+1) = gradient;
}
else
{
GradientXY gradient;
gradient.magnitude = sqrt (sqr_mag_b);
gradient.angle = atan2 (b_dy, b_dx) * 180.0f / pi;
gradient.x = static_cast<float> (col_index);
gradient.y = static_cast<float> (row_index);
color_gradients_ (col_index+1, row_index+1) = gradient;
}
assert (color_gradients_ (col_index+1, row_index+1).angle >= -180 &&
color_gradients_ (col_index+1, row_index+1).angle <= 180);
}
}
return;
}
//////////////////////////////////////////////////////////////////////////////////////////////
template <typename PointInT>
void
pcl::ColorGradientModality<PointInT>::
computeMaxColorGradientsSobel (const typename pcl::PointCloud<pcl::RGB>::ConstPtr & cloud)
{
const int width = cloud->width;
const int height = cloud->height;
color_gradients_.points.resize (width*height);
color_gradients_.width = width;
color_gradients_.height = height;
const float pi = tanf (1.0f) * 2.0f;
for (int row_index = 1; row_index < height-1; ++row_index)
{
for (int col_index = 1; col_index < width-1; ++col_index)
{
const int r7 = static_cast<int> (cloud->points[(row_index-1)*width + (col_index-1)].r);
const int g7 = static_cast<int> (cloud->points[(row_index-1)*width + (col_index-1)].g);
const int b7 = static_cast<int> (cloud->points[(row_index-1)*width + (col_index-1)].b);
const int r8 = static_cast<int> (cloud->points[(row_index-1)*width + (col_index)].r);
const int g8 = static_cast<int> (cloud->points[(row_index-1)*width + (col_index)].g);
const int b8 = static_cast<int> (cloud->points[(row_index-1)*width + (col_index)].b);
const int r9 = static_cast<int> (cloud->points[(row_index-1)*width + (col_index+1)].r);
const int g9 = static_cast<int> (cloud->points[(row_index-1)*width + (col_index+1)].g);
const int b9 = static_cast<int> (cloud->points[(row_index-1)*width + (col_index+1)].b);
const int r4 = static_cast<int> (cloud->points[(row_index)*width + (col_index-1)].r);
const int g4 = static_cast<int> (cloud->points[(row_index)*width + (col_index-1)].g);
const int b4 = static_cast<int> (cloud->points[(row_index)*width + (col_index-1)].b);
const int r6 = static_cast<int> (cloud->points[(row_index)*width + (col_index+1)].r);
const int g6 = static_cast<int> (cloud->points[(row_index)*width + (col_index+1)].g);
const int b6 = static_cast<int> (cloud->points[(row_index)*width + (col_index+1)].b);
const int r1 = static_cast<int> (cloud->points[(row_index+1)*width + (col_index-1)].r);
const int g1 = static_cast<int> (cloud->points[(row_index+1)*width + (col_index-1)].g);
const int b1 = static_cast<int> (cloud->points[(row_index+1)*width + (col_index-1)].b);
const int r2 = static_cast<int> (cloud->points[(row_index+1)*width + (col_index)].r);
const int g2 = static_cast<int> (cloud->points[(row_index+1)*width + (col_index)].g);
const int b2 = static_cast<int> (cloud->points[(row_index+1)*width + (col_index)].b);
const int r3 = static_cast<int> (cloud->points[(row_index+1)*width + (col_index+1)].r);
const int g3 = static_cast<int> (cloud->points[(row_index+1)*width + (col_index+1)].g);
const int b3 = static_cast<int> (cloud->points[(row_index+1)*width + (col_index+1)].b);
//const int r_tmp1 = - r7 + r3;
//const int r_tmp2 = - r1 + r9;
//const int g_tmp1 = - g7 + g3;
//const int g_tmp2 = - g1 + g9;
//const int b_tmp1 = - b7 + b3;
//const int b_tmp2 = - b1 + b9;
////const int gx = - r7 - (r4<<2) - r1 + r3 + (r6<<2) + r9;
////const int gy = - r7 - (r8<<2) - r9 + r1 + (r2<<2) + r3;
//const int r_dx = r_tmp1 + r_tmp2 - (r4<<2) + (r6<<2);
//const int r_dy = r_tmp1 - r_tmp2 - (r8<<2) + (r2<<2);
//const int g_dx = g_tmp1 + g_tmp2 - (g4<<2) + (g6<<2);
//const int g_dy = g_tmp1 - g_tmp2 - (g8<<2) + (g2<<2);
//const int b_dx = b_tmp1 + b_tmp2 - (b4<<2) + (b6<<2);
//const int b_dy = b_tmp1 - b_tmp2 - (b8<<2) + (b2<<2);
//const int r_tmp1 = - r7 + r3;
//const int r_tmp2 = - r1 + r9;
//const int g_tmp1 = - g7 + g3;
//const int g_tmp2 = - g1 + g9;
//const int b_tmp1 = - b7 + b3;
//const int b_tmp2 = - b1 + b9;
//const int gx = - r7 - (r4<<2) - r1 + r3 + (r6<<2) + r9;
//const int gy = - r7 - (r8<<2) - r9 + r1 + (r2<<2) + r3;
const int r_dx = r9 + 2*r6 + r3 - (r7 + 2*r4 + r1);
const int r_dy = r1 + 2*r2 + r3 - (r7 + 2*r8 + r9);
const int g_dx = g9 + 2*g6 + g3 - (g7 + 2*g4 + g1);
const int g_dy = g1 + 2*g2 + g3 - (g7 + 2*g8 + g9);
const int b_dx = b9 + 2*b6 + b3 - (b7 + 2*b4 + b1);
const int b_dy = b1 + 2*b2 + b3 - (b7 + 2*b8 + b9);
const int sqr_mag_r = r_dx*r_dx + r_dy*r_dy;
const int sqr_mag_g = g_dx*g_dx + g_dy*g_dy;
const int sqr_mag_b = b_dx*b_dx + b_dy*b_dy;
if (sqr_mag_r > sqr_mag_g && sqr_mag_r > sqr_mag_b)
{
GradientXY gradient;
gradient.magnitude = sqrtf (static_cast<float> (sqr_mag_r));
gradient.angle = atan2f (static_cast<float> (r_dy), static_cast<float> (r_dx)) * 180.0f / pi;
if (gradient.angle < -180.0f) gradient.angle += 360.0f;
if (gradient.angle >= 180.0f) gradient.angle -= 360.0f;
gradient.x = static_cast<float> (col_index);
gradient.y = static_cast<float> (row_index);
color_gradients_ (col_index, row_index) = gradient;
}
else if (sqr_mag_g > sqr_mag_b)
{
GradientXY gradient;
gradient.magnitude = sqrtf (static_cast<float> (sqr_mag_g));
gradient.angle = atan2f (static_cast<float> (g_dy), static_cast<float> (g_dx)) * 180.0f / pi;
if (gradient.angle < -180.0f) gradient.angle += 360.0f;
if (gradient.angle >= 180.0f) gradient.angle -= 360.0f;
gradient.x = static_cast<float> (col_index);
gradient.y = static_cast<float> (row_index);
color_gradients_ (col_index, row_index) = gradient;
}
else
{
GradientXY gradient;
gradient.magnitude = sqrtf (static_cast<float> (sqr_mag_b));
gradient.angle = atan2f (static_cast<float> (b_dy), static_cast<float> (b_dx)) * 180.0f / pi;
if (gradient.angle < -180.0f) gradient.angle += 360.0f;
if (gradient.angle >= 180.0f) gradient.angle -= 360.0f;
gradient.x = static_cast<float> (col_index);
gradient.y = static_cast<float> (row_index);
color_gradients_ (col_index, row_index) = gradient;
}
assert (color_gradients_ (col_index, row_index).angle >= -180 &&
color_gradients_ (col_index, row_index).angle <= 180);
}
}
return;
}
//////////////////////////////////////////////////////////////////////////////////////////////
template <typename PointInT>
void
pcl::ColorGradientModality<PointInT>::
quantizeColorGradients ()
{
//std::cerr << "quantize this, bastard!!!" << std::endl;
//unsigned char quantization_map[16] = {0,1,2,3,4,5,6,7,0,1,2,3,4,5,6,7};
//unsigned char quantization_map[16] = {1,2,3,4,5,6,7,8,1,2,3,4,5,6,7,8};
//for (float angle = 0.0f; angle < 360.0f; angle += 1.0f)
//{
// const int quantized_value = quantization_map[static_cast<int> (angle * angleScale)];
// std::cerr << angle << ": " << quantized_value << std::endl;
//}
const size_t width = input_->width;
const size_t height = input_->height;
quantized_color_gradients_.resize (width, height);
const float angleScale = 16.0f/360.0f;
//float min_angle = std::numeric_limits<float>::max ();
//float max_angle = -std::numeric_limits<float>::max ();
for (size_t row_index = 0; row_index < height; ++row_index)
{
for (size_t col_index = 0; col_index < width; ++col_index)
{
if (color_gradients_ (col_index, row_index).magnitude < gradient_magnitude_threshold_)
{
quantized_color_gradients_ (col_index, row_index) = 0;
continue;
}
const float angle = 11.25f + color_gradients_ (col_index, row_index).angle + 180.0f;
const int quantized_value = (static_cast<int> (angle * angleScale)) & 7;
quantized_color_gradients_ (col_index, row_index) = static_cast<unsigned char> (quantized_value + 1);
//const float angle = color_gradients_ (col_index, row_index).angle + 180.0f;
//min_angle = std::min (min_angle, angle);
//max_angle = std::max (max_angle, angle);
//if (angle < 0.0f || angle >= 360.0f)
//{
// std::cerr << "angle shitty: " << angle << std::endl;
//}
//const int quantized_value = quantization_map[static_cast<int> (angle * angleScale)];
//quantized_color_gradients_ (col_index, row_index) = static_cast<unsigned char> (quantized_value);
//assert (0 <= quantized_value && quantized_value < 16);
//quantized_color_gradients_ (col_index, row_index) = quantization_map[quantized_value];
//quantized_color_gradients_ (col_index, row_index) = static_cast<unsigned char> ((quantized_value & 7) + 1); // = (quantized_value % 8) + 1
}
}
//std::cerr << ">>>>> " << min_angle << ", " << max_angle << std::endl;
}
//////////////////////////////////////////////////////////////////////////////////////////////
template <typename PointInT>
void
pcl::ColorGradientModality<PointInT>::
filterQuantizedColorGradients ()
{
const size_t width = input_->width;
const size_t height = input_->height;
filtered_quantized_color_gradients_.resize (width, height);
// filter data
for (size_t row_index = 1; row_index < height-1; ++row_index)
{
for (size_t col_index = 1; col_index < width-1; ++col_index)
{
unsigned char histogram[9] = {0,0,0,0,0,0,0,0,0};
{
const unsigned char * data_ptr = quantized_color_gradients_.getData () + (row_index-1)*width+col_index-1;
assert (data_ptr[0] < 9 && data_ptr[1] < 9 && data_ptr[2] < 9);
++histogram[data_ptr[0]];
++histogram[data_ptr[1]];
++histogram[data_ptr[2]];
}
{
const unsigned char * data_ptr = quantized_color_gradients_.getData () + row_index*width+col_index-1;
assert (data_ptr[0] < 9 && data_ptr[1] < 9 && data_ptr[2] < 9);
++histogram[data_ptr[0]];
++histogram[data_ptr[1]];
++histogram[data_ptr[2]];
}
{
const unsigned char * data_ptr = quantized_color_gradients_.getData () + (row_index+1)*width+col_index-1;
assert (data_ptr[0] < 9 && data_ptr[1] < 9 && data_ptr[2] < 9);
++histogram[data_ptr[0]];
++histogram[data_ptr[1]];
++histogram[data_ptr[2]];
}
unsigned char max_hist_value = 0;
int max_hist_index = -1;
// for (int i = 0; i < 8; ++i)
// {
// if (max_hist_value < histogram[i+1])
// {
// max_hist_index = i;
// max_hist_value = histogram[i+1]
// }
// }
// Unrolled for performance optimization:
if (max_hist_value < histogram[1]) {max_hist_index = 0; max_hist_value = histogram[1];}
if (max_hist_value < histogram[2]) {max_hist_index = 1; max_hist_value = histogram[2];}
if (max_hist_value < histogram[3]) {max_hist_index = 2; max_hist_value = histogram[3];}
if (max_hist_value < histogram[4]) {max_hist_index = 3; max_hist_value = histogram[4];}
if (max_hist_value < histogram[5]) {max_hist_index = 4; max_hist_value = histogram[5];}
if (max_hist_value < histogram[6]) {max_hist_index = 5; max_hist_value = histogram[6];}
if (max_hist_value < histogram[7]) {max_hist_index = 6; max_hist_value = histogram[7];}
if (max_hist_value < histogram[8]) {max_hist_index = 7; max_hist_value = histogram[8];}
if (max_hist_index != -1 && max_hist_value >= 5)
filtered_quantized_color_gradients_ (col_index, row_index) = static_cast<unsigned char> (0x1 << max_hist_index);
else
filtered_quantized_color_gradients_ (col_index, row_index) = 0;
}
}
}
//////////////////////////////////////////////////////////////////////////////////////////////
template <typename PointInT>
void
pcl::ColorGradientModality<PointInT>::
erode (const pcl::MaskMap & mask_in,
pcl::MaskMap & mask_out)
{
const size_t width = mask_in.getWidth ();
const size_t height = mask_in.getHeight ();
mask_out.resize (width, height);
for (size_t row_index = 1; row_index < height-1; ++row_index)
{
for (size_t col_index = 1; col_index < width-1; ++col_index)
{
if (mask_in (col_index, row_index-1) == 0 ||
mask_in (col_index-1, row_index) == 0 ||
mask_in (col_index+1, row_index) == 0 ||
mask_in (col_index, row_index+1) == 0)
{
mask_out (col_index, row_index) = 0;
}
else
{
mask_out (col_index, row_index) = 255;
}
}
}
}
#endif
###
# color_modality.h
namespace pcl
{
// --------------------------------------------------------------------------
template <typename PointInT>
class ColorModality
: public QuantizableModality, public PCLBase<PointInT>
{
protected:
using PCLBase<PointInT>::input_;
struct Candidate
{
float distance;
unsigned char bin_index;
size_t x;
size_t y;
bool
operator< (const Candidate & rhs)
{
return (distance > rhs.distance);
}
};
public:
typedef typename pcl::PointCloud<PointInT> PointCloudIn;
ColorModality ();
virtual ~ColorModality ();
inline QuantizedMap &
getQuantizedMap ()
{
return (filtered_quantized_colors_);
}
inline QuantizedMap &
getSpreadedQuantizedMap ()
{
return (spreaded_filtered_quantized_colors_);
}
void
extractFeatures (const MaskMap & mask, size_t nr_features, size_t modalityIndex,
std::vector<QuantizedMultiModFeature> & features) const;
/** \brief Provide a pointer to the input dataset (overwrites the PCLBase::setInputCloud method)
* \param cloud the const boost shared pointer to a PointCloud message
*/
virtual void
setInputCloud (const typename PointCloudIn::ConstPtr & cloud)
{
input_ = cloud;
}
virtual void
processInputData ();
protected:
void
quantizeColors ();
void
filterQuantizedColors ();
static inline int
quantizeColorOnRGBExtrema (const float r,
const float g,
const float b);
void
computeDistanceMap (const MaskMap & input, DistanceMap & output) const;
private:
float feature_distance_threshold_;
pcl::QuantizedMap quantized_colors_;
pcl::QuantizedMap filtered_quantized_colors_;
pcl::QuantizedMap spreaded_filtered_quantized_colors_;
};
}
//////////////////////////////////////////////////////////////////////////////////////////////
template <typename PointInT>
pcl::ColorModality<PointInT>::ColorModality ()
: feature_distance_threshold_ (1.0f), quantized_colors_ (), filtered_quantized_colors_ (), spreaded_filtered_quantized_colors_ ()
{
}
//////////////////////////////////////////////////////////////////////////////////////////////
template <typename PointInT>
pcl::ColorModality<PointInT>::~ColorModality ()
{
}
//////////////////////////////////////////////////////////////////////////////////////////////
template <typename PointInT>
void
pcl::ColorModality<PointInT>::processInputData ()
{
// quantize gradients
quantizeColors ();
// filter quantized gradients to get only dominants one + thresholding
filterQuantizedColors ();
// spread filtered quantized gradients
//spreadFilteredQunatizedColorGradients ();
const int spreading_size = 8;
pcl::QuantizedMap::spreadQuantizedMap (filtered_quantized_colors_,
spreaded_filtered_quantized_colors_, spreading_size);
}
//////////////////////////////////////////////////////////////////////////////////////////////
template <typename PointInT>
void pcl::ColorModality<PointInT>::extractFeatures (const MaskMap & mask,
const size_t nr_features,
const size_t modality_index,
std::vector<QuantizedMultiModFeature> & features) const
{
const size_t width = mask.getWidth ();
const size_t height = mask.getHeight ();
MaskMap mask_maps[8];
for (size_t map_index = 0; map_index < 8; ++map_index)
mask_maps[map_index].resize (width, height);
unsigned char map[255];
memset(map, 0, 255);
map[0x1<<0] = 0;
map[0x1<<1] = 1;
map[0x1<<2] = 2;
map[0x1<<3] = 3;
map[0x1<<4] = 4;
map[0x1<<5] = 5;
map[0x1<<6] = 6;
map[0x1<<7] = 7;
QuantizedMap distance_map_indices (width, height);
//memset (distance_map_indices.data, 0, sizeof (distance_map_indices.data[0])*width*height);
for (size_t row_index = 0; row_index < height; ++row_index)
{
for (size_t col_index = 0; col_index < width; ++col_index)
{
if (mask (col_index, row_index) != 0)
{
//const unsigned char quantized_value = quantized_surface_normals_ (row_index, col_index);
const unsigned char quantized_value = filtered_quantized_colors_ (col_index, row_index);
if (quantized_value == 0)
continue;
const int dist_map_index = map[quantized_value];
distance_map_indices (col_index, row_index) = dist_map_index;
//distance_maps[dist_map_index].at<unsigned char>(row_index, col_index) = 255;
mask_maps[dist_map_index] (col_index, row_index) = 255;
}
}
}
DistanceMap distance_maps[8];
for (int map_index = 0; map_index < 8; ++map_index)
computeDistanceMap (mask_maps[map_index], distance_maps[map_index]);
std::list<Candidate> list1;
std::list<Candidate> list2;
float weights[8] = {0,0,0,0,0,0,0,0};
const size_t off = 4;
for (size_t row_index = off; row_index < height-off; ++row_index)
{
for (size_t col_index = off; col_index < width-off; ++col_index)
{
if (mask (col_index, row_index) != 0)
{
//const unsigned char quantized_value = quantized_surface_normals_ (row_index, col_index);
const unsigned char quantized_value = filtered_quantized_colors_ (col_index, row_index);
//const float nx = surface_normals_ (col_index, row_index).normal_x;
//const float ny = surface_normals_ (col_index, row_index).normal_y;
//const float nz = surface_normals_ (col_index, row_index).normal_z;
if (quantized_value != 0)
{
const int distance_map_index = map[quantized_value];
//const float distance = distance_maps[distance_map_index].at<float> (row_index, col_index);
const float distance = distance_maps[distance_map_index] (col_index, row_index);
if (distance >= feature_distance_threshold_)
{
Candidate candidate;
candidate.distance = distance;
candidate.x = col_index;
candidate.y = row_index;
candidate.bin_index = distance_map_index;
list1.push_back (candidate);
++weights[distance_map_index];
}
}
}
}
}
for (typename std::list<Candidate>::iterator iter = list1.begin (); iter != list1.end (); ++iter)
iter->distance *= 1.0f / weights[iter->bin_index];
list1.sort ();
if (list1.size () <= nr_features)
{
features.reserve (list1.size ());
for (typename std::list<Candidate>::iterator iter = list1.begin (); iter != list1.end (); ++iter)
{
QuantizedMultiModFeature feature;
feature.x = static_cast<int> (iter->x);
feature.y = static_cast<int> (iter->y);
feature.modality_index = modality_index;
feature.quantized_value = filtered_quantized_colors_ (iter->x, iter->y);
features.push_back (feature);
}
return;
}
int distance = static_cast<int> (list1.size () / nr_features + 1); // ??? @todo:!:!:!:!:!:!
while (list2.size () != nr_features)
{
const int sqr_distance = distance*distance;
for (typename std::list<Candidate>::iterator iter1 = list1.begin (); iter1 != list1.end (); ++iter1)
{
bool candidate_accepted = true;
for (typename std::list<Candidate>::iterator iter2 = list2.begin (); iter2 != list2.end (); ++iter2)
{
const int dx = static_cast<int> (iter1->x) - static_cast<int> (iter2->x);
const int dy = static_cast<int> (iter1->y) - static_cast<int> (iter2->y);
const int tmp_distance = dx*dx + dy*dy;
if (tmp_distance < sqr_distance)
{
candidate_accepted = false;
break;
}
}
if (candidate_accepted)
list2.push_back (*iter1);
if (list2.size () == nr_features) break;
}
--distance;
}
for (typename std::list<Candidate>::iterator iter2 = list2.begin (); iter2 != list2.end (); ++iter2)
{
QuantizedMultiModFeature feature;
feature.x = static_cast<int> (iter2->x);
feature.y = static_cast<int> (iter2->y);
feature.modality_index = modality_index;
feature.quantized_value = filtered_quantized_colors_ (iter2->x, iter2->y);
features.push_back (feature);
}
}
//////////////////////////////////////////////////////////////////////////////////////////////
template <typename PointInT>
void
pcl::ColorModality<PointInT>::quantizeColors ()
{
const size_t width = input_->width;
const size_t height = input_->height;
quantized_colors_.resize (width, height);
for (size_t row_index = 0; row_index < height; ++row_index)
{
for (size_t col_index = 0; col_index < width; ++col_index)
{
const float r = static_cast<float> ((*input_) (col_index, row_index).r);
const float g = static_cast<float> ((*input_) (col_index, row_index).g);
const float b = static_cast<float> ((*input_) (col_index, row_index).b);
quantized_colors_ (col_index, row_index) = quantizeColorOnRGBExtrema (r, g, b);
}
}
}
//////////////////////////////////////////////////////////////////////////////////////////////
template <typename PointInT>
void
pcl::ColorModality<PointInT>::filterQuantizedColors ()
{
const size_t width = input_->width;
const size_t height = input_->height;
filtered_quantized_colors_.resize (width, height);
// filter data
for (size_t row_index = 1; row_index < height-1; ++row_index)
{
for (size_t col_index = 1; col_index < width-1; ++col_index)
{
unsigned char histogram[8] = {0,0,0,0,0,0,0,0};
{
const unsigned char * data_ptr = quantized_colors_.getData () + (row_index-1)*width+col_index-1;
assert (0 <= data_ptr[0] && data_ptr[0] < 9 &&
0 <= data_ptr[1] && data_ptr[1] < 9 &&
0 <= data_ptr[2] && data_ptr[2] < 9);
++histogram[data_ptr[0]];
++histogram[data_ptr[1]];
++histogram[data_ptr[2]];
}
{
const unsigned char * data_ptr = quantized_colors_.getData () + row_index*width+col_index-1;
assert (0 <= data_ptr[0] && data_ptr[0] < 9 &&
0 <= data_ptr[1] && data_ptr[1] < 9 &&
0 <= data_ptr[2] && data_ptr[2] < 9);
++histogram[data_ptr[0]];
++histogram[data_ptr[1]];
++histogram[data_ptr[2]];
}
{
const unsigned char * data_ptr = quantized_colors_.getData () + (row_index+1)*width+col_index-1;
assert (0 <= data_ptr[0] && data_ptr[0] < 9 &&
0 <= data_ptr[1] && data_ptr[1] < 9 &&
0 <= data_ptr[2] && data_ptr[2] < 9);
++histogram[data_ptr[0]];
++histogram[data_ptr[1]];
++histogram[data_ptr[2]];
}
unsigned char max_hist_value = 0;
int max_hist_index = -1;
// for (int i = 0; i < 8; ++i)
// {
// if (max_hist_value < histogram[i+1])
// {
// max_hist_index = i;
// max_hist_value = histogram[i+1]
// }
// }
// Unrolled for performance optimization:
if (max_hist_value < histogram[0]) {max_hist_index = 0; max_hist_value = histogram[0];}
if (max_hist_value < histogram[1]) {max_hist_index = 1; max_hist_value = histogram[1];}
if (max_hist_value < histogram[2]) {max_hist_index = 2; max_hist_value = histogram[2];}
if (max_hist_value < histogram[3]) {max_hist_index = 3; max_hist_value = histogram[3];}
if (max_hist_value < histogram[4]) {max_hist_index = 4; max_hist_value = histogram[4];}
if (max_hist_value < histogram[5]) {max_hist_index = 5; max_hist_value = histogram[5];}
if (max_hist_value < histogram[6]) {max_hist_index = 6; max_hist_value = histogram[6];}
if (max_hist_value < histogram[7]) {max_hist_index = 7; max_hist_value = histogram[7];}
//if (max_hist_index != -1 && max_hist_value >= 5)
filtered_quantized_colors_ (col_index, row_index) = 0x1 << max_hist_index;
//else
// filtered_quantized_color_gradients_ (col_index, row_index) = 0;
}
}
}
//////////////////////////////////////////////////////////////////////////////////////////////
template <typename PointInT>
int
pcl::ColorModality<PointInT>::quantizeColorOnRGBExtrema (const float r,
const float g,
const float b)
{
const float r_inv = 255.0f-r;
const float g_inv = 255.0f-g;
const float b_inv = 255.0f-b;
const float dist_0 = (r*r + g*g + b*b)*2.0f;
const float dist_1 = r*r + g*g + b_inv*b_inv;
const float dist_2 = r*r + g_inv*g_inv+ b*b;
const float dist_3 = r*r + g_inv*g_inv + b_inv*b_inv;
const float dist_4 = r_inv*r_inv + g*g + b*b;
const float dist_5 = r_inv*r_inv + g*g + b_inv*b_inv;
const float dist_6 = r_inv*r_inv + g_inv*g_inv+ b*b;
const float dist_7 = (r_inv*r_inv + g_inv*g_inv + b_inv*b_inv)*1.5f;
const float min_dist = std::min (std::min (std::min (dist_0, dist_1), std::min (dist_2, dist_3)), std::min (std::min (dist_4, dist_5), std::min (dist_6, dist_7)));
if (min_dist == dist_0)
{
return 0;
}
if (min_dist == dist_1)
{
return 1;
}
if (min_dist == dist_2)
{
return 2;
}
if (min_dist == dist_3)
{
return 3;
}
if (min_dist == dist_4)
{
return 4;
}
if (min_dist == dist_5)
{
return 5;
}
if (min_dist == dist_6)
{
return 6;
}
return 7;
}
//////////////////////////////////////////////////////////////////////////////////////////////
template <typename PointInT> void
pcl::ColorModality<PointInT>::computeDistanceMap (const MaskMap & input,
DistanceMap & output) const
{
const size_t width = input.getWidth ();
const size_t height = input.getHeight ();
output.resize (width, height);
// compute distance map
//float *distance_map = new float[input_->points.size ()];
const unsigned char * mask_map = input.getData ();
float * distance_map = output.getData ();
for (size_t index = 0; index < width*height; ++index)
{
if (mask_map[index] == 0)
distance_map[index] = 0.0f;
else
distance_map[index] = static_cast<float> (width + height);
}
// first pass
float * previous_row = distance_map;
float * current_row = previous_row + width;
for (size_t ri = 1; ri < height; ++ri)
{
for (size_t ci = 1; ci < width; ++ci)
{
const float up_left = previous_row [ci - 1] + 1.4f; //distance_map[(ri-1)*input_->width + ci-1] + 1.4f;
const float up = previous_row [ci] + 1.0f; //distance_map[(ri-1)*input_->width + ci] + 1.0f;
const float up_right = previous_row [ci + 1] + 1.4f; //distance_map[(ri-1)*input_->width + ci+1] + 1.4f;
const float left = current_row [ci - 1] + 1.0f; //distance_map[ri*input_->width + ci-1] + 1.0f;
const float center = current_row [ci]; //distance_map[ri*input_->width + ci];
const float min_value = std::min (std::min (up_left, up), std::min (left, up_right));
if (min_value < center)
current_row[ci] = min_value; //distance_map[ri * input_->width + ci] = min_value;
}
previous_row = current_row;
current_row += width;
}
// second pass
float * next_row = distance_map + width * (height - 1);
current_row = next_row - width;
for (int ri = static_cast<int> (height)-2; ri >= 0; --ri)
{
for (int ci = static_cast<int> (width)-2; ci >= 0; --ci)
{
const float lower_left = next_row [ci - 1] + 1.4f; //distance_map[(ri+1)*input_->width + ci-1] + 1.4f;
const float lower = next_row [ci] + 1.0f; //distance_map[(ri+1)*input_->width + ci] + 1.0f;
const float lower_right = next_row [ci + 1] + 1.4f; //distance_map[(ri+1)*input_->width + ci+1] + 1.4f;
const float right = current_row [ci + 1] + 1.0f; //distance_map[ri*input_->width + ci+1] + 1.0f;
const float center = current_row [ci]; //distance_map[ri*input_->width + ci];
const float min_value = std::min (std::min (lower_left, lower), std::min (right, lower_right));
if (min_value < center)
current_row[ci] = min_value; //distance_map[ri*input_->width + ci] = min_value;
}
next_row = current_row;
current_row -= width;
}
}
#endif
###
# crh_alignment.h
namespace pcl
{
/** \brief CRHAlignment uses two Camera Roll Histograms (CRH) to find the
* roll rotation that aligns both views. See:
* - CAD-Model Recognition and 6 DOF Pose Estimation
* A. Aldoma, N. Blodow, D. Gossow, S. Gedikli, R.B. Rusu, M. Vincze and G. Bradski
* ICCV 2011, 3D Representation and Recognition (3dRR11) workshop
* Barcelona, Spain, (2011)
*
* \author Aitor Aldoma
* \ingroup recognition
*/
template<typename PointT, int nbins_>
class PCL_EXPORTS CRHAlignment
{
private:
/** \brief Sorts peaks */
typedef struct
{
bool
operator() (std::pair<float, int> const& a, std::pair<float, int> const& b)
{
return a.first > b.first;
}
} peaks_ordering;
typedef typename pcl::PointCloud<PointT>::Ptr PointTPtr;
/** \brief View of the model to be aligned to input_view_ */
PointTPtr target_view_;
/** \brief View of the input */
PointTPtr input_view_;
/** \brief Centroid of the model_view_ */
Eigen::Vector3f centroid_target_;
/** \brief Centroid of the input_view_ */
Eigen::Vector3f centroid_input_;
/** \brief transforms from model view to input view */
std::vector<Eigen::Matrix4f, Eigen::aligned_allocator<Eigen::Matrix4f> > transforms_;
/** \brief Allowed maximum number of peaks */
int max_peaks_;
/** \brief Quantile of peaks after sorting to be checked */
float quantile_;
/** \brief Threshold for a peak to be accepted.
* If peak_i >= (max_peak * accept_threhsold_) => peak is accepted
*/
float accept_threshold_;
/** \brief computes the transformation to the z-axis
* \param[in] centroid
* \param[out] trasnformation to z-axis
*/
void
computeTransformToZAxes (Eigen::Vector3f & centroid, Eigen::Affine3f & transform)
{
Eigen::Vector3f plane_normal;
plane_normal[0] = -centroid[0];
plane_normal[1] = -centroid[1];
plane_normal[2] = -centroid[2];
Eigen::Vector3f z_vector = Eigen::Vector3f::UnitZ ();
plane_normal.normalize ();
Eigen::Vector3f axis = plane_normal.cross (z_vector);
double rotation = -asin (axis.norm ());
axis.normalize ();
transform = Eigen::Affine3f (Eigen::AngleAxisf (static_cast<float>(rotation), axis));
}
/** \brief computes the roll transformation
* \param[in] centroid input
* \param[in] centroid view
* \param[in] roll_angle
* \param[out] roll transformation
*/
void
computeRollTransform (Eigen::Vector3f & centroidInput, Eigen::Vector3f & centroidResult, double roll_angle, Eigen::Affine3f & final_trans)
{
Eigen::Affine3f transformInputToZ;
computeTransformToZAxes (centroidInput, transformInputToZ);
transformInputToZ = transformInputToZ.inverse ();
Eigen::Affine3f transformRoll (Eigen::AngleAxisf (-static_cast<float>(roll_angle * M_PI / 180), Eigen::Vector3f::UnitZ ()));
Eigen::Affine3f transformDBResultToZ;
computeTransformToZAxes (centroidResult, transformDBResultToZ);
final_trans = transformInputToZ * transformRoll * transformDBResultToZ;
}
public:
/** \brief Constructor. */
CRHAlignment() {
max_peaks_ = 5;
quantile_ = 0.2f;
accept_threshold_ = 0.8f;
}
/** \brief returns the computed transformations
* \param[out] transforms transformations
*/
void getTransforms(std::vector<Eigen::Matrix4f, Eigen::aligned_allocator<Eigen::Matrix4f> > & transforms) {
transforms = transforms_;
}
/** \brief sets model and input views
* \param[in] input_view
* \param[in] target_view
*/
void
setInputAndTargetView (PointTPtr & input_view, PointTPtr & target_view)
{
target_view_ = target_view;
input_view_ = input_view;
}
/** \brief sets model and input centroids
* \param[in] c1 model view centroid
* \param[in] c2 input view centroid
*/
void
setInputAndTargetCentroids (Eigen::Vector3f & c1, Eigen::Vector3f & c2)
{
centroid_target_ = c2;
centroid_input_ = c1;
}
/** \brief Computes the transformation aligning model to input
* \param[in] input_ftt CRH histogram of the input cloud
* \param[in] target_ftt CRH histogram of the target cloud
*/
void
align (pcl::PointCloud<pcl::Histogram<nbins_> > & input_ftt, pcl::PointCloud<pcl::Histogram<nbins_> > & target_ftt)
{
transforms_.clear(); //clear from last round...
std::vector<float> peaks;
computeRollAngle (input_ftt, target_ftt, peaks);
//if the number of peaks is too big, we should try to reduce using siluette matching
for (size_t i = 0; i < peaks.size(); i++)
{
Eigen::Affine3f rollToRot;
computeRollTransform (centroid_input_, centroid_target_, peaks[i], rollToRot);
Eigen::Matrix4f rollHomMatrix = Eigen::Matrix4f ();
rollHomMatrix.setIdentity (4, 4);
rollHomMatrix = rollToRot.matrix ();
Eigen::Matrix4f translation2;
translation2.setIdentity (4, 4);
Eigen::Vector3f centr = rollToRot * centroid_target_;
translation2 (0, 3) = centroid_input_[0] - centr[0];
translation2 (1, 3) = centroid_input_[1] - centr[1];
translation2 (2, 3) = centroid_input_[2] - centr[2];
Eigen::Matrix4f resultHom (translation2 * rollHomMatrix);
transforms_.push_back(resultHom.inverse());
}
}
/** \brief Computes the roll angle that aligns input to modle.
* \param[in] input_ftt CRH histogram of the input cloud
* \param[in] target_ftt CRH histogram of the target cloud
* \param[out] peaks Vector containing angles where the histograms correlate
*/
void
computeRollAngle (pcl::PointCloud<pcl::Histogram<nbins_> > & input_ftt, pcl::PointCloud<pcl::Histogram<nbins_> > & target_ftt,
std::vector<float> & peaks)
{
pcl::PointCloud<pcl::Histogram<nbins_> > input_ftt_negate (input_ftt);
for (int i = 2; i < (nbins_); i += 2)
input_ftt_negate.points[0].histogram[i] = -input_ftt_negate.points[0].histogram[i];
int nr_bins_after_padding = 180;
int peak_distance = 5;
int cutoff = nbins_ - 1;
kiss_fft_cpx * multAB = new kiss_fft_cpx[nr_bins_after_padding];
for (int i = 0; i < nr_bins_after_padding; i++)
multAB[i].r = multAB[i].i = 0.f;
int k = 0;
multAB[k].r = input_ftt_negate.points[0].histogram[0] * target_ftt.points[0].histogram[0];
k++;
float a, b, c, d;
for (int i = 1; i < cutoff; i += 2, k++)
{
a = input_ftt_negate.points[0].histogram[i];
b = input_ftt_negate.points[0].histogram[i + 1];
c = target_ftt.points[0].histogram[i];
d = target_ftt.points[0].histogram[i + 1];
multAB[k].r = a * c - b * d;
multAB[k].i = b * c + a * d;
float tmp = sqrtf (multAB[k].r * multAB[k].r + multAB[k].i * multAB[k].i);
multAB[k].r /= tmp;
multAB[k].i /= tmp;
}
multAB[nbins_ - 1].r = input_ftt_negate.points[0].histogram[nbins_ - 1] * target_ftt.points[0].histogram[nbins_ - 1];
kiss_fft_cfg mycfg = kiss_fft_alloc (nr_bins_after_padding, 1, NULL, NULL);
kiss_fft_cpx * invAB = new kiss_fft_cpx[nr_bins_after_padding];
kiss_fft (mycfg, multAB, invAB);
std::vector < std::pair<float, int> > scored_peaks (nr_bins_after_padding);
for (int i = 0; i < nr_bins_after_padding; i++)
scored_peaks[i] = std::make_pair (invAB[i].r, i);
std::sort (scored_peaks.begin (), scored_peaks.end (), peaks_ordering ());
std::vector<int> peaks_indices;
std::vector<float> peaks_values;
// we look at the upper quantile_
float quantile = quantile_;
int max_inserted= max_peaks_;
int inserted=0;
bool stop=false;
for (int i = 0; (i < static_cast<int> (quantile * static_cast<float> (nr_bins_after_padding))) && !stop; i++)
{
if (scored_peaks[i].first >= scored_peaks[0].first * accept_threshold_)
{
bool insert = true;
for (size_t j = 0; j < peaks_indices.size (); j++)
{ //check inserted peaks, first pick always inserted
if (std::abs (peaks_indices[j] - scored_peaks[i].second) <= peak_distance || std::abs (
peaks_indices[j] - (scored_peaks[i].second
- nr_bins_after_padding)) <= peak_distance)
{
insert = false;
break;
}
}
if (insert)
{
peaks_indices.push_back (scored_peaks[i].second);
peaks_values.push_back (scored_peaks[i].first);
peaks.push_back (static_cast<float> (scored_peaks[i].second * (360 / nr_bins_after_padding)));
inserted++;
if(inserted >= max_inserted)
stop = true;
}
}
}
}
};
}
#endif /* CRH_ALIGNMENT_H_ */
###
# dense_quantized_multi_mod_template.h
namespace pcl
{
struct DenseQuantizedSingleModTemplate
{
std::vector<unsigned char> features;
void
serialize (std::ostream & stream) const
{
const size_t num_of_features = static_cast<size_t> (features.size ());
write (stream, num_of_features);
for (size_t feature_index = 0; feature_index < num_of_features; ++feature_index)
{
write (stream, features[feature_index]);
}
}
void
deserialize (std::istream & stream)
{
features.clear ();
size_t num_of_features;
read (stream, num_of_features);
features.resize (num_of_features);
for (size_t feature_index = 0; feature_index < num_of_features; ++feature_index)
{
read (stream, features[feature_index]);
}
}
};
struct DenseQuantizedMultiModTemplate
{
std::vector<DenseQuantizedSingleModTemplate> modalities;
float response_factor;
RegionXY region;
void
serialize (std::ostream & stream) const
{
const size_t num_of_modalities = static_cast<size_t> (modalities.size ());
write (stream, num_of_modalities);
for (size_t modality_index = 0; modality_index < num_of_modalities; ++modality_index)
{
modalities[modality_index].serialize (stream);
}
region.serialize (stream);
}
void
deserialize (std::istream & stream)
{
modalities.clear ();
size_t num_of_modalities;
read (stream, num_of_modalities);
modalities.resize (num_of_modalities);
for (size_t modality_index = 0; modality_index < num_of_modalities; ++modality_index)
{
modalities[modality_index].deserialize (stream);
}
region.deserialize (stream);
}
};
}
#endif
###
# distance_map.h
namespace pcl
{
/** \brief Represents a distance map obtained from a distance transformation.
* \author Stefan Holzer
*/
class DistanceMap
{
public:
/** \brief Constructor. */
DistanceMap () : data_ (0), width_ (0), height_ (0) {}
/** \brief Destructor. */
virtual ~DistanceMap () {}
/** \brief Returns the width of the map. */
inline size_t
getWidth () const
{
return (width_);
}
/** \brief Returns the height of the map. */
inline size_t
getHeight () const
{
return (height_);
}
/** \brief Returns a pointer to the beginning of map. */
inline float *
getData ()
{
return (&data_[0]);
}
/** \brief Resizes the map to the specified size.
* \param[in] width the new width of the map.
* \param[in] height the new height of the map.
*/
void
resize (const size_t width, const size_t height)
{
data_.resize (width*height);
width_ = width;
height_ = height;
}
/** \brief Operator to access an element of the map.
* \param[in] col_index the column index of the element to access.
* \param[in] row_index the row index of the element to access.
*/
inline float &
operator() (const size_t col_index, const size_t row_index)
{
return (data_[row_index*width_ + col_index]);
}
/** \brief Operator to access an element of the map.
* \param[in] col_index the column index of the element to access.
* \param[in] row_index the row index of the element to access.
*/
inline const float &
operator() (const size_t col_index, const size_t row_index) const
{
return (data_[row_index*width_ + col_index]);
}
protected:
/** \brief The storage for the distance map data. */
std::vector<float> data_;
/** \brief The width of the map. */
size_t width_;
/** \brief The height of the map. */
size_t height_;
};
}
#endif
###
# dotmod.h
namespace pcl
{
class PCL_EXPORTS DOTModality
{
public:
virtual ~DOTModality () {};
//virtual QuantizedMap &
//getDominantQuantizedMap () = 0;
virtual QuantizedMap &
getDominantQuantizedMap () = 0;
virtual QuantizedMap
computeInvariantQuantizedMap (const MaskMap & mask,
const RegionXY & region) = 0;
};
}
#endif // PCL_FEATURES_DOT_MODALITY
###
# dot_modality.h
namespace pcl
{
struct DOTMODDetection
{
size_t bin_x;
size_t bin_y;
size_t template_id;
float score;
};
/**
* \brief Template matching using the DOTMOD approach.
* \author Stefan Holzer, Stefan Hinterstoisser
*/
class PCL_EXPORTS DOTMOD
{
public:
/** \brief Constructor */
DOTMOD (size_t template_width,
size_t template_height);
/** \brief Destructor */
virtual ~DOTMOD ();
/** \brief Creates a template from the specified data and adds it to the matching queue.
* \param modalities
* \param masks
* \param template_anker_x
* \param template_anker_y
* \param region
*/
size_t
createAndAddTemplate (const std::vector<DOTModality*> & modalities,
const std::vector<MaskMap*> & masks,
size_t template_anker_x,
size_t template_anker_y,
const RegionXY & region);
void
detectTemplates (const std::vector<DOTModality*> & modalities,
float template_response_threshold,
std::vector<DOTMODDetection> & detections,
const size_t bin_size) const;
inline const DenseQuantizedMultiModTemplate &
getTemplate (size_t template_id) const
{
return (templates_[template_id]);
}
inline size_t
getNumOfTemplates ()
{
return (templates_.size ());
}
void
saveTemplates (const char * file_name) const;
void
loadTemplates (const char * file_name);
void
serialize (std::ostream & stream) const;
void
deserialize (std::istream & stream);
private:
/** template width */
size_t template_width_;
/** template height */
size_t template_height_;
/** template storage */
std::vector<DenseQuantizedMultiModTemplate> templates_;
};
}
#endif
###
# hypothesis.h
# ransac_based
namespace pcl
{
namespace recognition
{
class HypothesisBase
{
public:
HypothesisBase (const ModelLibrary::Model* obj_model)
: obj_model_ (obj_model)
{}
HypothesisBase (const ModelLibrary::Model* obj_model, const float* rigid_transform)
: obj_model_ (obj_model)
{
memcpy (rigid_transform_, rigid_transform, 12*sizeof (float));
}
virtual ~HypothesisBase (){}
void
setModel (const ModelLibrary::Model* model)
{
obj_model_ = model;
}
public:
float rigid_transform_[12];
const ModelLibrary::Model* obj_model_;
};
class Hypothesis: public HypothesisBase
{
public:
Hypothesis (const ModelLibrary::Model* obj_model = NULL)
: HypothesisBase (obj_model),
match_confidence_ (-1.0f),
linear_id_ (-1)
{
}
Hypothesis (const Hypothesis& src)
: HypothesisBase (src.obj_model_, src.rigid_transform_),
match_confidence_ (src.match_confidence_),
explained_pixels_ (src.explained_pixels_)
{
}
virtual ~Hypothesis (){}
const Hypothesis&
operator =(const Hypothesis& src)
{
memcpy (this->rigid_transform_, src.rigid_transform_, 12*sizeof (float));
this->obj_model_ = src.obj_model_;
this->match_confidence_ = src.match_confidence_;
this->explained_pixels_ = src.explained_pixels_;
return *this;
}
void
setLinearId (int id)
{
linear_id_ = id;
}
int
getLinearId () const
{
return (linear_id_);
}
void
computeBounds (float bounds[6]) const
{
const float *b = obj_model_->getBoundsOfOctreePoints ();
float p[3];
// Initialize 'bounds'
aux::transform (rigid_transform_, b[0], b[2], b[4], p);
bounds[0] = bounds[1] = p[0];
bounds[2] = bounds[3] = p[1];
bounds[4] = bounds[5] = p[2];
// Expand 'bounds' to contain the other 7 points of the octree bounding box
aux::transform (rigid_transform_, b[0], b[2], b[5], p); aux::expandBoundingBoxToContainPoint (bounds, p);
aux::transform (rigid_transform_, b[0], b[3], b[4], p); aux::expandBoundingBoxToContainPoint (bounds, p);
aux::transform (rigid_transform_, b[0], b[3], b[5], p); aux::expandBoundingBoxToContainPoint (bounds, p);
aux::transform (rigid_transform_, b[1], b[2], b[4], p); aux::expandBoundingBoxToContainPoint (bounds, p);
aux::transform (rigid_transform_, b[1], b[2], b[5], p); aux::expandBoundingBoxToContainPoint (bounds, p);
aux::transform (rigid_transform_, b[1], b[3], b[4], p); aux::expandBoundingBoxToContainPoint (bounds, p);
aux::transform (rigid_transform_, b[1], b[3], b[5], p); aux::expandBoundingBoxToContainPoint (bounds, p);
}
void
computeCenterOfMass (float center_of_mass[3]) const
{
aux::transform (rigid_transform_, obj_model_->getOctreeCenterOfMass (), center_of_mass);
}
public:
float match_confidence_;
std::set<int> explained_pixels_;
int linear_id_;
};
} // namespace recognition
} // namespace pcl
#endif /* PCL_RECOGNITION_HYPOTHESIS_H_ */
###
# implicit_shape_model.h
namespace pcl
{
/** \brief This struct is used for storing peak. */
struct ISMPeak
{
/** \brief Point were this peak is located. */
PCL_ADD_POINT4D;
/** \brief Density of this peak. */
double density;
/** \brief Determines which class this peak belongs. */
int class_id;
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
} EIGEN_ALIGN16;
namespace features
{
/** \brief This class is used for storing, analyzing and manipulating votes
* obtained from ISM algorithm. */
template <typename PointT>
class PCL_EXPORTS ISMVoteList
{
public:
/** \brief Empty constructor with member variables initialization. */
ISMVoteList ();
/** \brief virtual descriptor. */
virtual
~ISMVoteList ();
/** \brief This method simply adds another vote to the list.
* \param[in] in_vote vote to add
* \param[in] vote_origin origin of the added vote
* \param[in] in_class class for which this vote is cast
*/
void
addVote (pcl::InterestPoint& in_vote, const PointT &vote_origin, int in_class);
/** \brief Returns the colored cloud that consists of votes for center (blue points) and
* initial point cloud (if it was passed).
* \param[in] cloud cloud that needs to be merged with votes for visualizing. */
typename pcl::PointCloud<pcl::PointXYZRGB>::Ptr
getColoredCloud (typename pcl::PointCloud<PointT>::Ptr cloud = 0);
/** \brief This method finds the strongest peaks (points were density has most higher values).
* It is based on the non maxima supression principles.
* \param[out] out_peaks it will contain the strongest peaks
* \param[in] in_class_id class of interest for which peaks are evaluated
* \param[in] in_non_maxima_radius non maxima supression radius. The shapes radius is recommended for this value.
* \param in_sigma
*/
void
findStrongestPeaks (std::vector<ISMPeak, Eigen::aligned_allocator<ISMPeak> > &out_peaks, int in_class_id, double in_non_maxima_radius, double in_sigma);
/** \brief Returns the density at the specified point.
* \param[in] point point of interest
* \param[in] sigma_dist
*/
double
getDensityAtPoint (const PointT &point, double sigma_dist);
/** \brief This method simply returns the number of votes. */
unsigned int
getNumberOfVotes ();
protected:
/** \brief this method is simply setting up the search tree. */
void
validateTree ();
Eigen::Vector3f
shiftMean (const Eigen::Vector3f& snapPt, const double in_dSigmaDist);
protected:
/** \brief Stores all votes. */
pcl::PointCloud<pcl::InterestPoint>::Ptr votes_;
/** \brief Signalizes if the tree is valid. */
bool tree_is_valid_;
/** \brief Stores the origins of the votes. */
typename pcl::PointCloud<PointT>::Ptr votes_origins_;
/** \brief Stores classes for which every single vote was cast. */
std::vector<int> votes_class_;
/** \brief Stores the search tree. */
pcl::KdTreeFLANN<pcl::InterestPoint>::Ptr tree_;
/** \brief Stores neighbours indices. */
std::vector<int> k_ind_;
/** \brief Stores square distances to the corresponding neighbours. */
std::vector<float> k_sqr_dist_;
};
/** \brief The assignment of this structure is to store the statistical/learned weights and other information
* of the trained Implict Shape Model algorithm.
*/
struct PCL_EXPORTS ISMModel
{
/** \brief Simple constructor that initializes the structure. */
ISMModel ();
/** \brief Copy constructor for deep copy. */
ISMModel (ISMModel const & copy);
/** Destructor that frees memory. */
virtual
~ISMModel ();
/** \brief This method simply saves the trained model for later usage.
* \param[in] file_name path to file for saving model
*/
bool
saveModelToFile (std::string& file_name);
/** \brief This method loads the trained model from file.
* \param[in] file_name path to file which stores trained model
*/
bool
loadModelFromfile (std::string& file_name);
/** \brief this method resets all variables and frees memory. */
void
reset ();
/** Operator overloading for deep copy. */
ISMModel & operator = (const ISMModel& other);
/** \brief Stores statistical weights. */
std::vector<std::vector<float> > statistical_weights_;
/** \brief Stores learned weights. */
std::vector<float> learned_weights_;
/** \brief Stores the class label for every direction. */
std::vector<unsigned int> classes_;
/** \brief Stores the sigma value for each class. This values were used to compute the learned weights. */
std::vector<float> sigmas_;
/** \brief Stores the directions to objects center for each visual word. */
Eigen::MatrixXf directions_to_center_;
/** \brief Stores the centers of the clusters that were obtained during the visual words clusterization. */
Eigen::MatrixXf clusters_centers_;
/** \brief This is an array of clusters. Each cluster stores the indices of the visual words that it contains. */
std::vector<std::vector<unsigned int> > clusters_;
/** \brief Stores the number of classes. */
unsigned int number_of_classes_;
/** \brief Stores the number of visual words. */
unsigned int number_of_visual_words_;
/** \brief Stores the number of clusters. */
unsigned int number_of_clusters_;
/** \brief Stores descriptors dimension. */
unsigned int descriptors_dimension_;
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
};
}
namespace ism
{
/** \brief This class implements Implicit Shape Model algorithm described in
* "Hough Transforms and 3D SURF for robust three dimensional classication"
* by Jan Knopp1, Mukta Prasad, Geert Willems1, Radu Timofte, and Luc Van Gool.
* It has two main member functions. One for training, using the data for which we know
* which class it belongs to. And second for investigating a cloud for the presence
* of the class of interest.
* Implementation of the ISM algorithm described in "Hough Transforms and 3D SURF for robust three dimensional classication"
* by Jan Knopp, Mukta Prasad, Geert Willems, Radu Timofte, and Luc Van Gool
*
* Authors: Roman Shapovalov, Alexander Velizhev, Sergey Ushakov
*/
template <int FeatureSize, typename PointT, typename NormalT = pcl::Normal>
class PCL_EXPORTS ImplicitShapeModelEstimation
{
public:
typedef boost::shared_ptr<pcl::features::ISMModel> ISMModelPtr;
protected:
/** \brief This structure stores the information about the keypoint. */
struct PCL_EXPORTS LocationInfo
{
/** \brief Location info constructor.
* \param[in] model_num number of training model.
* \param[in] dir_to_center expected direction to center
* \param[in] origin initial point
* \param[in] normal normal of the initial point
*/
LocationInfo (unsigned int model_num, const PointT& dir_to_center, const PointT& origin, const NormalT& normal) :
model_num_ (model_num),
dir_to_center_ (dir_to_center),
point_ (origin),
normal_ (normal) {};
/** \brief Tells from which training model this keypoint was extracted. */
unsigned int model_num_;
/** \brief Expected direction to center for this keypoint. */
PointT dir_to_center_;
/** \brief Stores the initial point. */
PointT point_;
/** \brief Stores the normal of the initial point. */
NormalT normal_;
};
/** \brief This structure is used for determining the end of the
* k-means clustering process. */
typedef struct PCL_EXPORTS TC
{
enum
{
COUNT = 1,
EPS = 2
};
/** \brief Termination criteria constructor.
* \param[in] type defines the condition of termination(max iter., desired accuracy)
* \param[in] max_count defines the max number of iterations
* \param[in] epsilon defines the desired accuracy
*/
TC(int type, int max_count, float epsilon) :
type_ (type),
max_count_ (max_count),
epsilon_ (epsilon) {};
/** \brief Flag that determines when the k-means clustering must be stopped.
* If type_ equals COUNT then it must be stopped when the max number of iterations will be
* reached. If type_ eaquals EPS then it must be stopped when the desired accuracy will be reached.
* These flags can be used together, in that case the clustering will be finished when one of these
* conditions will be reached.
*/
int type_;
/** \brief Defines maximum number of iterations for k-means clustering. */
int max_count_;
/** \brief Defines the accuracy for k-means clustering. */
float epsilon_;
} TermCriteria;
/** \brief Structure for storing the visual word. */
struct PCL_EXPORTS VisualWordStat
{
/** \brief Empty constructor with member variables initialization. */
VisualWordStat () :
class_ (-1),
learned_weight_ (0.0f),
dir_to_center_ (0.0f, 0.0f, 0.0f) {};
/** \brief Which class this vote belongs. */
int class_;
/** \brief Weight of the vote. */
float learned_weight_;
/** \brief Expected direction to center. */
pcl::PointXYZ dir_to_center_;
};
public:
/** \brief Simple constructor that initializes everything. */
ImplicitShapeModelEstimation ();
/** \brief Simple destructor. */
virtual
~ImplicitShapeModelEstimation ();
/** \brief This method simply returns the clouds that were set as the training clouds. */
std::vector<typename pcl::PointCloud<PointT>::Ptr>
getTrainingClouds ();
/** \brief Allows to set clouds for training the ISM model.
* \param[in] training_clouds array of point clouds for training
*/
void
setTrainingClouds (const std::vector< typename pcl::PointCloud<PointT>::Ptr >& training_clouds);
/** \brief Returns the array of classes that indicates which class the corresponding training cloud belongs. */
std::vector<unsigned int>
getTrainingClasses ();
/** \brief Allows to set the class labels for the corresponding training clouds.
* \param[in] training_classes array of class labels
*/
void
setTrainingClasses (const std::vector<unsigned int>& training_classes);
/** \brief This method returns the coresponding cloud of normals for every training point cloud. */
std::vector<typename pcl::PointCloud<NormalT>::Ptr>
getTrainingNormals ();
/** \brief Allows to set normals for the training clouds that were passed through setTrainingClouds method.
* \param[in] training_normals array of clouds, each cloud is the cloud of normals
*/
void
setTrainingNormals (const std::vector< typename pcl::PointCloud<NormalT>::Ptr >& training_normals);
/** \brief Returns the sampling size used for cloud simplification. */
float
getSamplingSize ();
/** \brief Changes the sampling size used for cloud simplification.
* \param[in] sampling_size desired size of grid bin
*/
void
setSamplingSize (float sampling_size);
/** \brief Returns the current feature estimator used for extraction of the descriptors. */
boost::shared_ptr<pcl::Feature<PointT, pcl::Histogram<FeatureSize> > >
getFeatureEstimator ();
/** \brief Changes the feature estimator.
* \param[in] feature feature estimator that will be used to extract the descriptors.
* Note that it must be fully initialized and configured.
*/
void
setFeatureEstimator (boost::shared_ptr<pcl::Feature<PointT, pcl::Histogram<FeatureSize> > > feature);
/** \brief Returns the number of clusters used for descriptor clustering. */
unsigned int
getNumberOfClusters ();
/** \brief Changes the number of clusters.
* \param num_of_clusters desired number of clusters
*/
void
setNumberOfClusters (unsigned int num_of_clusters);
/** \brief Returns the array of sigma values. */
std::vector<float>
getSigmaDists ();
/** \brief This method allows to set the value of sigma used for calculating the learned weights for every single class.
* \param[in] training_sigmas new sigmas for every class. If you want these values to be computed automatically,
* just pass the empty array. The automatic regime calculates the maximum distance between the objects points and takes 10% of
* this value as recomended in the article. If there are several objects of the same class,
* then it computes the average maximum distance and takes 10%. Note that each class has its own sigma value.
*/
void
setSigmaDists (const std::vector<float>& training_sigmas);
/** \brief Returns the state of Nvot coeff from [Knopp et al., 2010, (4)],
* if set to false then coeff is taken as 1.0. It is just a kind of heuristic.
* The default behavior is as in the article. So you can ignore this if you want.
*/
bool
getNVotState ();
/** \brief Changes the state of the Nvot coeff from [Knopp et al., 2010, (4)].
* \param[in] state desired state, if false then Nvot is taken as 1.0
*/
void
setNVotState (bool state);
/** \brief This method performs training and forms a visual vocabulary. It returns a trained model that
* can be saved to file for later usage.
* \param[out] trained_model trained model
*/
bool
trainISM (ISMModelPtr& trained_model);
/** \brief This function is searching for the class of interest in a given cloud
* and returns the list of votes.
* \param[in] model trained model which will be used for searching the objects
* \param[in] in_cloud input cloud that need to be investigated
* \param[in] in_normals cloud of normals coresponding to the input cloud
* \param[in] in_class_of_interest class which we are looking for
*/
boost::shared_ptr<pcl::features::ISMVoteList<PointT> >
findObjects (ISMModelPtr model, typename pcl::PointCloud<PointT>::Ptr in_cloud, typename pcl::PointCloud<Normal>::Ptr in_normals, int in_class_of_interest);
protected:
/** \brief Extracts the descriptors from the input clouds.
* \param[out] histograms it will store the descriptors for each key point
* \param[out] locations it will contain the comprehensive information (such as direction, initial keypoint)
* for the corresponding descriptors
*/
bool
extractDescriptors (std::vector<pcl::Histogram<FeatureSize> >& histograms,
std::vector<LocationInfo, Eigen::aligned_allocator<LocationInfo> >& locations);
/** \brief This method performs descriptor clustering.
* \param[in] histograms descriptors to cluster
* \param[out] labels it contains labels for each descriptor
* \param[out] clusters_centers stores the centers of clusters
*/
bool
clusterDescriptors (std::vector< pcl::Histogram<FeatureSize> >& histograms, Eigen::MatrixXi& labels, Eigen::MatrixXf& clusters_centers);
/** \brief This method calculates the value of sigma used for calculating the learned weights for every single class.
* \param[out] sigmas computed sigmas.
*/
void
calculateSigmas (std::vector<float>& sigmas);
/** \brief This function forms a visual vocabulary and evaluates weights
* described in [Knopp et al., 2010, (5)].
* \param[in] locations array containing description of each keypoint: its position, which cloud belongs
* and expected direction to center
* \param[in] labels labels that were obtained during k-means clustering
* \param[in] sigmas array of sigmas for each class
* \param[in] clusters clusters that were obtained during k-means clustering
* \param[out] statistical_weights stores the computed statistical weights
* \param[out] learned_weights stores the computed learned weights
*/
void
calculateWeights (const std::vector< LocationInfo, Eigen::aligned_allocator<LocationInfo> >& locations,
const Eigen::MatrixXi &labels,
std::vector<float>& sigmas,
std::vector<std::vector<unsigned int> >& clusters,
std::vector<std::vector<float> >& statistical_weights,
std::vector<float>& learned_weights);
/** \brief Simplifies the cloud using voxel grid principles.
* \param[in] in_point_cloud cloud that need to be simplified
* \param[in] in_normal_cloud normals of the cloud that need to be simplified
* \param[out] out_sampled_point_cloud simplified cloud
* \param[out] out_sampled_normal_cloud and the corresponding normals
*/
void
simplifyCloud (typename pcl::PointCloud<PointT>::ConstPtr in_point_cloud,
typename pcl::PointCloud<NormalT>::ConstPtr in_normal_cloud,
typename pcl::PointCloud<PointT>::Ptr out_sampled_point_cloud,
typename pcl::PointCloud<NormalT>::Ptr out_sampled_normal_cloud);
/** \brief This method simply shifts the clouds points relative to the passed point.
* \param[in] in_cloud cloud to shift
* \param[in] shift_point point relative to which the cloud will be shifted
*/
void
shiftCloud (typename pcl::PointCloud<PointT>::Ptr in_cloud, Eigen::Vector3f shift_point);
/** \brief This method simply computes the rotation matrix, so that the given normal
* would match the Y axis after the transformation. This is done because the algorithm needs to be invariant
* to the affine transformations.
* \param[in] in_normal normal for which the rotation matrix need to be computed
*/
Eigen::Matrix3f
alignYCoordWithNormal (const NormalT& in_normal);
/** \brief This method applies transform set in in_transform to vector io_vector.
* \param[in] io_vec vector that need to be transformed
* \param[in] in_transform matrix that contains the transformation
*/
void
applyTransform (Eigen::Vector3f& io_vec, const Eigen::Matrix3f& in_transform);
/** \brief This method estimates features for the given point cloud.
* \param[in] sampled_point_cloud sampled point cloud for which the features must be computed
* \param[in] normal_cloud normals for the original point cloud
* \param[out] feature_cloud it will store the computed histograms (features) for the given cloud
*/
void
estimateFeatures (typename pcl::PointCloud<PointT>::Ptr sampled_point_cloud,
typename pcl::PointCloud<NormalT>::Ptr normal_cloud,
typename pcl::PointCloud<pcl::Histogram<FeatureSize> >::Ptr feature_cloud);
/** \brief Performs K-means clustering.
* \param[in] points_to_cluster points to cluster
* \param[in] number_of_clusters desired number of clusters
* \param[out] io_labels output parameter, which stores the label for each point
* \param[in] criteria defines when the computational process need to be finished. For example if the
* desired accuracy is achieved or the iteration number exceeds given value
* \param[in] attempts number of attempts to compute clustering
* \param[in] flags if set to USE_INITIAL_LABELS then initial approximation of labels is taken from io_labels
* \param[out] cluster_centers it will store the cluster centers
*/
double
computeKMeansClustering (const Eigen::MatrixXf& points_to_cluster,
int number_of_clusters,
Eigen::MatrixXi& io_labels,
TermCriteria criteria,
int attempts,
int flags,
Eigen::MatrixXf& cluster_centers);
/** \brief Generates centers for clusters as described in
* Arthur, David and Sergei Vassilvitski (2007) k-means++: The Advantages of Careful Seeding.
* \param[in] data points to cluster
* \param[out] out_centers it will contain generated centers
* \param[in] number_of_clusters defines the number of desired cluster centers
* \param[in] trials number of trials to generate a center
*/
void
generateCentersPP (const Eigen::MatrixXf& data,
Eigen::MatrixXf& out_centers,
int number_of_clusters,
int trials);
/** \brief Generates random center for cluster.
* \param[in] boxes contains min and max values for each dimension
* \param[out] center it will the contain generated center
*/
void
generateRandomCenter (const std::vector<Eigen::Vector2f>& boxes, Eigen::VectorXf& center);
/** \brief Computes the square distance beetween two vectors.
* \param[in] vec_1 first vector
* \param[in] vec_2 second vector
*/
float
computeDistance (Eigen::VectorXf& vec_1, Eigen::VectorXf& vec_2);
/** \brief Forbids the assignment operator. */
ImplicitShapeModelEstimation&
operator= (const ImplicitShapeModelEstimation&);
protected:
/** \brief Stores the clouds used for training. */
std::vector<typename pcl::PointCloud<PointT>::Ptr> training_clouds_;
/** \brief Stores the class number for each cloud from training_clouds_. */
std::vector<unsigned int> training_classes_;
/** \brief Stores the normals for each training cloud. */
std::vector<typename pcl::PointCloud<NormalT>::Ptr> training_normals_;
/** \brief This array stores the sigma values for each training class. If this array has a size equals 0, then
* sigma values will be calculated automatically.
*/
std::vector<float> training_sigmas_;
/** \brief This value is used for the simplification. It sets the size of grid bin. */
float sampling_size_;
/** \brief Stores the feature estimator. */
boost::shared_ptr<pcl::Feature<PointT, pcl::Histogram<FeatureSize> > > feature_estimator_;
/** \brief Number of clusters, is used for clustering descriptors during the training. */
unsigned int number_of_clusters_;
/** \brief If set to false then Nvot coeff from [Knopp et al., 2010, (4)] is equal 1.0. */
bool n_vot_ON_;
/** \brief This const value is used for indicating that for k-means clustering centers must
* be generated as described in
* Arthur, David and Sergei Vassilvitski (2007) k-means++: The Advantages of Careful Seeding. */
static const int PP_CENTERS = 2;
/** \brief This const value is used for indicating that input labels must be taken as the
* initial approximation for k-means clustering. */
static const int USE_INITIAL_LABELS = 1;
};
}
}
POINT_CLOUD_REGISTER_POINT_STRUCT (pcl::ISMPeak,
(float, x, x)
(float, y, y)
(float, z, z)
(float, density, ism_density)
(float, class_id, ism_class_id)
)
#endif //#ifndef PCL_IMPLICIT_SHAPE_MODEL_H_
###
# linemod.h
namespace pcl
{
/** \brief Stores a set of energy maps.
* \author Stefan Holzer
*/
class PCL_EXPORTS EnergyMaps
{
public:
/** \brief Constructor. */
EnergyMaps () : width_ (0), height_ (0), nr_bins_ (0), maps_ ()
{
}
/** \brief Destructor. */
virtual ~EnergyMaps ()
{
}
/** \brief Returns the width of the energy maps. */
inline size_t
getWidth () const
{
return (width_);
}
/** \brief Returns the height of the energy maps. */
inline size_t
getHeight () const
{
return (height_);
}
/** \brief Returns the number of bins used for quantization (which is equal to the number of energy maps). */
inline size_t
getNumOfBins () const
{
return (nr_bins_);
}
/** \brief Initializes the set of energy maps.
* \param[in] width the width of the energy maps.
* \param[in] height the height of the energy maps.
* \param[in] nr_bins the number of bins used for quantization.
*/
void
initialize (const size_t width, const size_t height, const size_t nr_bins)
{
maps_.resize(nr_bins, NULL);
width_ = width;
height_ = height;
nr_bins_ = nr_bins;
const size_t mapsSize = width*height;
for (size_t map_index = 0; map_index < maps_.size (); ++map_index)
{
//maps_[map_index] = new unsigned char[mapsSize];
maps_[map_index] = reinterpret_cast<unsigned char*> (aligned_malloc (mapsSize));
memset (maps_[map_index], 0, mapsSize);
}
}
/** \brief Releases the internal data. */
void
releaseAll ()
{
for (size_t map_index = 0; map_index < maps_.size (); ++map_index)
//if (maps_[map_index] != NULL) delete[] maps_[map_index];
if (maps_[map_index] != NULL) aligned_free (maps_[map_index]);
maps_.clear ();
width_ = 0;
height_ = 0;
nr_bins_ = 0;
}
/** \brief Operator for accessing a specific element in the set of energy maps.
* \param[in] bin_index the quantization bin (states which of the energy maps to access).
* \param[in] col_index the column index within the specified energy map.
* \param[in] row_index the row index within the specified energy map.
*/
inline unsigned char &
operator() (const size_t bin_index, const size_t col_index, const size_t row_index)
{
return (maps_[bin_index][row_index*width_ + col_index]);
}
/** \brief Operator for accessing a specific element in the set of energy maps.
* \param[in] bin_index the quantization bin (states which of the energy maps to access).
* \param[in] index the element index within the specified energy map.
*/
inline unsigned char &
operator() (const size_t bin_index, const size_t index)
{
return (maps_[bin_index][index]);
}
/** \brief Returns a pointer to the data of the specified energy map.
* \param[in] bin_index the index of the energy map to return (== the quantization bin).
*/
inline unsigned char *
operator() (const size_t bin_index)
{
return (maps_[bin_index]);
}
/** \brief Operator for accessing a specific element in the set of energy maps.
* \param[in] bin_index the quantization bin (states which of the energy maps to access).
* \param[in] col_index the column index within the specified energy map.
* \param[in] row_index the row index within the specified energy map.
*/
inline const unsigned char &
operator() (const size_t bin_index, const size_t col_index, const size_t row_index) const
{
return (maps_[bin_index][row_index*width_ + col_index]);
}
/** \brief Operator for accessing a specific element in the set of energy maps.
* \param[in] bin_index the quantization bin (states which of the energy maps to access).
* \param[in] index the element index within the specified energy map.
*/
inline const unsigned char &
operator() (const size_t bin_index, const size_t index) const
{
return (maps_[bin_index][index]);
}
/** \brief Returns a pointer to the data of the specified energy map.
* \param[in] bin_index the index of the energy map to return (== the quantization bin).
*/
inline const unsigned char *
operator() (const size_t bin_index) const
{
return (maps_[bin_index]);
}
private:
/** \brief The width of the energy maps. */
size_t width_;
/** \brief The height of the energy maps. */
size_t height_;
/** \brief The number of quantization bins (== the number of internally stored energy maps). */
size_t nr_bins_;
/** \brief Storage for the energy maps. */
std::vector<unsigned char*> maps_;
};
/** \brief Stores a set of linearized maps.
* \author Stefan Holzer
*/
class PCL_EXPORTS LinearizedMaps
{
public:
/** \brief Constructor. */
LinearizedMaps () : width_ (0), height_ (0), mem_width_ (0), mem_height_ (0), step_size_ (0), maps_ ()
{
}
/** \brief Destructor. */
virtual ~LinearizedMaps ()
{
}
/** \brief Returns the width of the linearized map. */
inline size_t
getWidth () const { return (width_); }
/** \brief Returns the height of the linearized map. */
inline size_t
getHeight () const { return (height_); }
/** \brief Returns the step-size used to construct the linearized map. */
inline size_t
getStepSize () const { return (step_size_); }
/** \brief Returns the size of the memory map. */
inline size_t
getMapMemorySize () const { return (mem_width_ * mem_height_); }
/** \brief Initializes the linearized map.
* \param[in] width the width of the source map.
* \param[in] height the height of the source map.
* \param[in] step_size the step-size used to sample the source map.
*/
void
initialize (const size_t width, const size_t height, const size_t step_size)
{
maps_.resize(step_size*step_size, NULL);
width_ = width;
height_ = height;
mem_width_ = width / step_size;
mem_height_ = height / step_size;
step_size_ = step_size;
const size_t mapsSize = mem_width_ * mem_height_;
for (size_t map_index = 0; map_index < maps_.size (); ++map_index)
{
//maps_[map_index] = new unsigned char[2*mapsSize];
maps_[map_index] = reinterpret_cast<unsigned char*> (aligned_malloc (2*mapsSize));
memset (maps_[map_index], 0, 2*mapsSize);
}
}
/** \brief Releases the internal memory. */
void
releaseAll ()
{
for (size_t map_index = 0; map_index < maps_.size (); ++map_index)
//if (maps_[map_index] != NULL) delete[] maps_[map_index];
if (maps_[map_index] != NULL) aligned_free (maps_[map_index]);
maps_.clear ();
width_ = 0;
height_ = 0;
mem_width_ = 0;
mem_height_ = 0;
step_size_ = 0;
}
/** \brief Operator to access elements of the linearized map by column and row index.
* \param[in] col_index the column index.
* \param[in] row_index the row index.
*/
inline unsigned char *
operator() (const size_t col_index, const size_t row_index)
{
return (maps_[row_index*step_size_ + col_index]);
}
/** \brief Returns a linearized map starting at the specified position.
* \param[in] col_index the column index at which the returned map starts.
* \param[in] row_index the row index at which the returned map starts.
*/
inline unsigned char *
getOffsetMap (const size_t col_index, const size_t row_index)
{
const size_t map_col = col_index % step_size_;
const size_t map_row = row_index % step_size_;
const size_t map_mem_col_index = col_index / step_size_;
const size_t map_mem_row_index = row_index / step_size_;
return (maps_[map_row*step_size_ + map_col] + map_mem_row_index*mem_width_ + map_mem_col_index);
}
private:
/** \brief the original width of the data represented by the map. */
size_t width_;
/** \brief the original height of the data represented by the map. */
size_t height_;
/** \brief the actual width of the linearized map. */
size_t mem_width_;
/** \brief the actual height of the linearized map. */
size_t mem_height_;
/** \brief the step-size used for sampling the original data. */
size_t step_size_;
/** \brief a vector containing all the linearized maps. */
std::vector<unsigned char*> maps_;
};
/** \brief Represents a detection of a template using the LINEMOD approach.
* \author Stefan Holzer
*/
struct PCL_EXPORTS LINEMODDetection
{
/** \brief Constructor. */
LINEMODDetection () : x (0), y (0), template_id (0), score (0.0f), scale (1.0f) {}
/** \brief x-position of the detection. */
int x;
/** \brief y-position of the detection. */
int y;
/** \brief ID of the detected template. */
int template_id;
/** \brief score of the detection. */
float score;
/** \brief scale at which the template was detected. */
float scale;
};
/**
* \brief Template matching using the LINEMOD approach.
* \author Stefan Holzer, Stefan Hinterstoisser
*/
class PCL_EXPORTS LINEMOD
{
public:
/** \brief Constructor */
LINEMOD ();
/** \brief Destructor */
virtual ~LINEMOD ();
/** \brief Creates a template from the specified data and adds it to the matching queue.
* \param[in] modalities the modalities used to create the template.
* \param[in] masks the masks that determine which parts of the modalities are used for creating the template.
* \param[in] region the region which will be associated with the template (can be larger than the actual modality-maps).
*/
int
createAndAddTemplate (const std::vector<QuantizableModality*> & modalities,
const std::vector<MaskMap*> & masks,
const RegionXY & region);
/** \brief Adds the specified template to the matching queue.
* \param[in] linemod_template the template to add.
*/
int
addTemplate (const SparseQuantizedMultiModTemplate & linemod_template);
/** \brief Detects the stored templates in the supplied modality data.
* \param[in] modalities the modalities that will be used for detection.
* \param[out] detections the destination for the detections.
*/
void
detectTemplates (const std::vector<QuantizableModality*> & modalities,
std::vector<LINEMODDetection> & detections) const;
/** \brief Detects the stored templates in a semi scale invariant manner
* by applying the detection to multiple scaled versions of the input data.
* \param[in] modalities the modalities that will be used for detection.
* \param[out] detections the destination for the detections.
* \param[in] min_scale the minimum scale.
* \param[in] max_scale the maximum scale.
* \param[in] scale_multiplier the multiplier for getting from one scale to the next.
*/
void
detectTemplatesSemiScaleInvariant (const std::vector<QuantizableModality*> & modalities,
std::vector<LINEMODDetection> & detections,
float min_scale = 0.6944444f,
float max_scale = 1.44f,
float scale_multiplier = 1.2f) const;
/** \brief Matches the stored templates to the supplied modality data.
* \param[in] modalities the modalities that will be used for matching.
* \param[out] matches the found matches.
*/
void
matchTemplates (const std::vector<QuantizableModality*> & modalities,
std::vector<LINEMODDetection> & matches) const;
/** \brief Sets the detection threshold.
* \param[in] threshold the detection threshold.
*/
inline void
setDetectionThreshold (float threshold)
{
template_threshold_ = threshold;
}
/** \brief Enables/disables non-maximum suppression.
* \param[in] use_non_max_suppression determines whether to use non-maximum suppression or not.
*/
inline void
setNonMaxSuppression (bool use_non_max_suppression)
{
use_non_max_suppression_ = use_non_max_suppression;
}
/** \brief Enables/disables averaging of close detections.
* \param[in] average_detections determines whether to average close detections or not.
*/
inline void
setDetectionAveraging (bool average_detections)
{
average_detections_ = average_detections;
}
/** \brief Returns the template with the specified ID.
* \param[in] template_id the ID of the template to return.
*/
inline const SparseQuantizedMultiModTemplate &
getTemplate (int template_id) const
{
return (templates_[template_id]);
}
/** \brief Returns the number of stored/trained templates. */
inline size_t
getNumOfTemplates () const
{
return (templates_.size ());
}
/** \brief Saves the stored templates to the specified file.
* \param[in] file_name the name of the file to save the templates to.
*/
void
saveTemplates (const char * file_name) const;
/** \brief Loads templates from the specified file.
* \param[in] file_name the name of the file to load the template from.
*/
void
loadTemplates (const char * file_name);
/** \brief Loads templates from the specified files.
* \param[in] file_names vector of files to load the templates from.
*/
void
loadTemplates (std::vector<std::string> & file_names);
/** \brief Serializes the stored templates to the specified stream.
* \param[in] stream the stream the templates will be written to.
*/
void
serialize (std::ostream & stream) const;
/** \brief Deserializes templates from the specified stream.
* \param[in] stream the stream the templates will be read from.
*/
void
deserialize (std::istream & stream);
private:
/** template response threshold */
float template_threshold_;
/** states whether non-max-suppression on detections is enabled or not */
bool use_non_max_suppression_;
/** states whether to return an averaged detection */
bool average_detections_;
/** template storage */
std::vector<SparseQuantizedMultiModTemplate> templates_;
};
}
#endif
###
# line_rgbd.h
# namespace pcl
# struct BoundingBoxXYZ
# /** \brief Constructor. */
# BoundingBoxXYZ () : x (0.0f), y (0.0f), z (0.0f), width (0.0f), height (0.0f), depth (0.0f) {}
#
# /** \brief X-coordinate of the upper left front point */
# float x;
# /** \brief Y-coordinate of the upper left front point */
# float y;
# /** \brief Z-coordinate of the upper left front point */
# float z;
#
# /** \brief Width of the bounding box */
# float width;
# /** \brief Height of the bounding box */
# float height;
# /** \brief Depth of the bounding box */
# float depth;
# /** \brief High-level class for template matching using the LINEMOD approach based on RGB and Depth data.
# * \author Stefan Holzer
# */
# template <typename PointXYZT, typename PointRGBT=PointXYZT>
# class PCL_EXPORTS LineRGBD
# {
# public:
#
# /** \brief A LineRGBD detection. */
# struct Detection
# /** \brief Constructor. */
# Detection () : template_id (0), object_id (0), detection_id (0), response (0.0f), bounding_box () {}
#
# /** \brief The ID of the template. */
# size_t template_id;
# /** \brief The ID of the object corresponding to the template. */
# size_t object_id;
# /** \brief The ID of this detection. This is only valid for the last call of the method detect (...). */
# size_t detection_id;
# /** \brief The response of this detection. Responses are between 0 and 1, where 1 is best. */
# float response;
# /** \brief The 3D bounding box of the detection. */
# BoundingBoxXYZ bounding_box;
# /** \brief The 2D template region of the detection. */
# RegionXY region;
# /** \brief Constructor */
# LineRGBD ()
# : intersection_volume_threshold_ (1.0f)
# , linemod_ ()
# , color_gradient_mod_ ()
# , surface_normal_mod_ ()
# , cloud_xyz_ ()
# , cloud_rgb_ ()
# , template_point_clouds_ ()
# , bounding_boxes_ ()
# , object_ids_ ()
# , detections_ ()
# /** \brief Destructor */
# virtual ~LineRGBD ()
# /** \brief Loads templates from a LMT (LineMod Template) file. Overrides old templates.
# * LineMod Template files are TAR files that store pairs of PCD datasets
# * together with their LINEMOD signatures in \ref
# * SparseQuantizedMultiModTemplate format.
# * \param[in] file_name The name of the file that stores the templates.
# * \param object_id
# * \return true, if the operation was successful, false otherwise.
# */
# bool loadTemplates (const std::string &file_name, size_t object_id = 0);
#
# bool addTemplate (const SparseQuantizedMultiModTemplate & sqmmt, pcl::PointCloud<pcl::PointXYZRGBA> & cloud, size_t object_id = 0);
#
# /** \brief Sets the threshold for the detection responses. Responses are between 0 and 1, where 1 is a best.
# * \param[in] threshold The threshold used to decide where a template is detected.
# */
# inline void setDetectionThreshold (float threshold)
#
# /** \brief Sets the threshold on the magnitude of color gradients. Color gradients with a magnitude below
# * this threshold are not considered in the detection process.
# * \param[in] threshold The threshold on the magnitude of color gradients.
# */
# inline void setGradientMagnitudeThreshold (const float threshold)
#
# /** \brief Sets the threshold for the decision whether two detections of the same template are merged or not.
# * If ratio between the intersection of the bounding boxes of two detections and the original bounding
# * boxes is larger than the specified threshold then they are merged. If detection A overlaps with
# * detection B and B with C than A, B, and C are merged. Threshold has to be between 0 and 1.
# * \param[in] threshold The threshold on the ratio between the intersection bounding box and the original
# * bounding box.
# */
# inline void setIntersectionVolumeThreshold (const float threshold = 1.0f)
#
# /** \brief Sets the input cloud with xyz point coordinates. The cloud has to be organized.
# * \param[in] cloud The input cloud with xyz point coordinates.
# */
# inline void setInputCloud (const typename pcl::PointCloud<PointXYZT>::ConstPtr & cloud)
#
# /** \brief Sets the input cloud with rgb values. The cloud has to be organized.
# * \param[in] cloud The input cloud with rgb values.
# */
# inline void setInputColors (const typename pcl::PointCloud<PointRGBT>::ConstPtr & cloud)
#
# /** \brief Creates a template from the specified data and adds it to the matching queue.
# * \param cloud
# * \param object_id
# * \param[in] mask_xyz the mask that determine which parts of the xyz-modality are used for creating the template.
# * \param[in] mask_rgb the mask that determine which parts of the rgb-modality are used for creating the template.
# * \param[in] region the region which will be associated with the template (can be larger than the actual modality-maps).
# */
# int createAndAddTemplate (
# pcl::PointCloud<pcl::PointXYZRGBA> & cloud,
# const size_t object_id,
# const MaskMap & mask_xyz,
# const MaskMap & mask_rgb,
# const RegionXY & region);
#
# /** \brief Applies the detection process and fills the supplied vector with the detection instances.
# * \param[out] detections The storage for the detection instances.
# */
# void detect (std::vector<typename pcl::LineRGBD<PointXYZT, PointRGBT>::Detection> & detections);
#
# /** \brief Applies the detection process in a semi-scale-invariant manner. This is done by acutally
# * scaling the template to different sizes.
# */
# void detectSemiScaleInvariant (std::vector<typename pcl::LineRGBD<PointXYZT, PointRGBT>::Detection> & detections,
# float min_scale = 0.6944444f,
# float max_scale = 1.44f,
# float scale_multiplier = 1.2f);
#
# /** \brief Computes and returns the point cloud of the specified detection. This is the template point
# * cloud transformed to the detection coordinates. The detection ID refers to the last call of
# * the method detect (...).
# * \param[in] detection_id The ID of the detection (according to the last call of the method detect (...)).
# * \param[out] cloud The storage for the transformed points.
# */
# void computeTransformedTemplatePoints (const size_t detection_id,
# pcl::PointCloud<pcl::PointXYZRGBA> & cloud);
#
# /** \brief Finds the indices of the points in the input cloud which correspond to the specified detection.
# * The detection ID refers to the last call of the method detect (...).
# * \param[in] detection_id The ID of the detection (according to the last call of the method detect (...)).
# */
# inline std::vector<size_t> findObjectPointIndices (const size_t detection_id)
###
# mask_map.h
# namespace pcl
# class PCL_EXPORTS MaskMap
# public:
# MaskMap ();
# MaskMap (size_t width, size_t height);
# virtual ~MaskMap ();
#
# void resize (size_t width, size_t height);
#
# inline size_t getWidth () const { return (width_); }
# inline size_t getHeight () const { return (height_); }
# inline unsigned char* getData () { return (&data_[0]); }
# inline const unsigned char* getData () const { return (&data_[0]); }
# static void getDifferenceMask (const MaskMap & mask0,
# const MaskMap & mask1,
# MaskMap & diff_mask);
#
# inline void set (const size_t x, const size_t y)
# inline void unset (const size_t x, const size_t y)
# inline bool isSet (const size_t x, const size_t y) const
# inline void reset ()
# inline unsigned char & operator() (const size_t x, const size_t y)
# inline const unsigned char &operator() (const size_t x, const size_t y) const
# void erode (MaskMap & eroded_mask) const;
###
# model_library.h
# #include <pcl/recognition/ransac_based/model_library.h>
# namespace pcl
# namespace recognition
# class PCL_EXPORTS ModelLibrary
# public:
# typedef pcl::PointCloud<pcl::PointXYZ> PointCloudIn;
# typedef pcl::PointCloud<pcl::Normal> PointCloudN;
#
# /** \brief Stores some information about the model. */
# class Model
# public:
# Model (const PointCloudIn& points, const PointCloudN& normals, float voxel_size, const std::string& object_name,
# float frac_of_points_for_registration, void* user_data = NULL)
# : obj_name_(object_name),
# user_data_ (user_data)
virtual ~Model ()
inline const std::string& getObjectName () const
inline const ORROctree& getOctree () const
inline void* getUserData () const
inline const float* getOctreeCenterOfMass () const
inline const float* getBoundsOfOctreePoints () const
inline const PointCloudIn& getPointsForRegistration () const
# typedef std::list<std::pair<const ORROctree::Node::Data*, const ORROctree::Node::Data*> > node_data_pair_list;
# typedef std::map<const Model*, node_data_pair_list> HashTableCell;
# typedef VoxelStructure<HashTableCell, float> HashTable;
# public:
# /** \brief This class is used by 'ObjRecRANSAC' to maintain the object models to be recognized. Normally, you do not need to use
# * this class directly. */
# ModelLibrary (float pair_width, float voxel_size, float max_coplanarity_angle = 3.0f*AUX_DEG_TO_RADIANS/*3 degrees*/);
# virtual ~ModelLibrary ()
#
# /** \brief Removes all models from the library and clears the hash table. */
# void removeAllModels ();
#
# /** \brief This is a threshold. The larger the value the more point pairs will be considered as co-planar and will
# * be ignored in the off-line model pre-processing and in the online recognition phases. This makes sense only if
# * "ignore co-planar points" is on. Call this method before calling addModel. */
# inline void setMaxCoplanarityAngleDegrees (float max_coplanarity_angle_degrees)
#
# /** \brief Call this method in order NOT to add co-planar point pairs to the hash table. The default behavior
# * is ignoring co-planar points on. */
# inline void ignoreCoplanarPointPairsOn ()
#
# /** \brief Call this method in order to add all point pairs (co-planar as well) to the hash table. The default
# * behavior is ignoring co-planar points on. */
# inline void ignoreCoplanarPointPairsOff ()
#
# /** \brief Adds a model to the hash table.
# *
# * \param[in] points represents the model to be added.
# * \param[in] normals are the normals at the model points.
# * \param[in] object_name is the unique name of the object to be added.
# * \param[in] frac_of_points_for_registration is the number of points used for fast ICP registration prior to hypothesis testing
# * \param[in] user_data is a pointer to some data (can be NULL)
# *
# * Returns true if model successfully added and false otherwise (e.g., if object_name is not unique). */
# bool addModel (
# const PointCloudIn& points, const PointCloudN& normals, const std::string& object_name,
# float frac_of_points_for_registration, void* user_data = NULL);
#
# /** \brief Returns the hash table built by this instance. */
# inline const HashTable& getHashTable () const
# inline const Model* getModel (const std::string& name) const
# inline const std::map<std::string,Model*>& getModels () const
###
# obj_rec_ransac.h
# #include <pcl/recognition/ransac_based/obj_rec_ransac.h>
# #error "Using pcl/recognition/obj_rec_ransac.h is deprecated, please use pcl/recognition/ransac_based/obj_rec_ransac.h instead."
# namespace pcl
# namespace recognition
# /** \brief This is a RANSAC-based 3D object recognition method. Do the following to use it: (i) call addModel() k times with k different models
# * representing the objects to be recognized and (ii) call recognize() with the 3D scene in which the objects should be recognized. Recognition means both
# * object identification and pose (position + orientation) estimation. Check the method descriptions for more details.
# *
# * \note If you use this code in any academic work, please cite:
# *
# * - Chavdar Papazov, Sami Haddadin, Sven Parusel, Kai Krieger and Darius Burschka.
# * Rigid 3D geometry matching for grasping of known objects in cluttered scenes.
# * The International Journal of Robotics Research 2012. DOI: 10.1177/0278364911436019
# *
# * - Chavdar Papazov and Darius Burschka.
# * An Efficient RANSAC for 3D Object Recognition in Noisy and Occluded Scenes.
# * In Proceedings of the 10th Asian Conference on Computer Vision (ACCV'10),
# * November 2010.
# *
# *
# * \author Chavdar Papazov
# * \ingroup recognition
# */
# class PCL_EXPORTS ObjRecRANSAC
# public:
# typedef ModelLibrary::PointCloudIn PointCloudIn;
# typedef ModelLibrary::PointCloudN PointCloudN;
#
# typedef BVH<Hypothesis*> BVHH;
#
# /** \brief This is an output item of the ObjRecRANSAC::recognize() method. It contains the recognized model, its name (the ones passed to
# * ObjRecRANSAC::addModel()), the rigid transform which aligns the model with the input scene and the match confidence which is a number
# * in the interval (0, 1] which gives the fraction of the model surface area matched to the scene. E.g., a match confidence of 0.3 means
# * that 30% of the object surface area was matched to the scene points. If the scene is represented by a single range image, the match
# * confidence can not be greater than 0.5 since the range scanner sees only one side of each object.
# */
# class Output
# public:
# Output (const std::string& object_name, const float rigid_transform[12], float match_confidence, void* user_data) :
# object_name_ (object_name),
# match_confidence_ (match_confidence),
# user_data_ (user_data)
# virtual ~Output (){}
#
# public:
# std::string object_name_;
# float rigid_transform_[12];
# float match_confidence_;
# void* user_data_;
# class OrientedPointPair
# public:
# OrientedPointPair (const float *p1, const float *n1, const float *p2, const float *n2)
# : p1_ (p1), n1_ (n1), p2_ (p2), n2_ (n2)
#
# virtual ~OrientedPointPair (){}
#
# public:
# const float *p1_, *n1_, *p2_, *n2_;
# class HypothesisCreator
# public:
# HypothesisCreator (){}
# virtual ~HypothesisCreator (){}
#
# Hypothesis* create (const SimpleOctree<Hypothesis, HypothesisCreator, float>::Node* ) const { return new Hypothesis ();}
# typedef SimpleOctree<Hypothesis, HypothesisCreator, float> HypothesisOctree;
#
#
# public:
# /** \brief Constructor with some important parameters which can not be changed once an instance of that class is created.
# *
# * \param[in] pair_width should be roughly half the extent of the visible object part. This means, for each object point p there should be (at least)
# * one point q (from the same object) such that ||p - q|| <= pair_width. Tradeoff: smaller values allow for detection in more occluded scenes but lead
# * to more imprecise alignment. Bigger values lead to better alignment but require large visible object parts (i.e., less occlusion).
# *
# * \param[in] voxel_size is the size of the leafs of the octree, i.e., the "size" of the discretization. Tradeoff: High values lead to less
# * computation time but ignore object details. Small values allow to better distinguish between objects, but will introduce more holes in the resulting
# * "voxel-surface" (especially for a sparsely sampled scene). */
# ObjRecRANSAC (float pair_width, float voxel_size);
# virtual ~ObjRecRANSAC ()
#
# /** \brief Removes all models from the model library and releases some memory dynamically allocated by this instance. */
# void inline clear()
#
# /** \brief This is a threshold. The larger the value the more point pairs will be considered as co-planar and will
# * be ignored in the off-line model pre-processing and in the online recognition phases. This makes sense only if
# * "ignore co-planar points" is on. Call this method before calling addModel. This method calls the corresponding
# * method of the model library. */
# inline void setMaxCoplanarityAngleDegrees (float max_coplanarity_angle_degrees)
# inline void setSceneBoundsEnlargementFactor (float value)
#
# /** \brief Default is on. This method calls the corresponding method of the model library. */
# inline void ignoreCoplanarPointPairsOn ()
#
# /** \brief Default is on. This method calls the corresponding method of the model library. */
# inline void ignoreCoplanarPointPairsOff ()
#
# inline void icpHypothesesRefinementOn ()
# inline void icpHypothesesRefinementOff ()
#
# /** \brief Add an object model to be recognized.
# *
# * \param[in] points are the object points.
# * \param[in] normals at each point.
# * \param[in] object_name is an identifier for the object. If that object is detected in the scene 'object_name'
# * is returned by the recognition method and you know which object has been detected. Note that 'object_name' has
# * to be unique!
# * \param[in] user_data is a pointer to some data (can be NULL)
# *
# * The method returns true if the model was successfully added to the model library and false otherwise (e.g., if 'object_name' is already in use).
# */
# inline bool addModel (const PointCloudIn& points, const PointCloudN& normals, const std::string& object_name, void* user_data = NULL)
#
# /** \brief This method performs the recognition of the models loaded to the model library with the method addModel().
# *
# * \param[in] scene is the 3d scene in which the object should be recognized.
# * \param[in] normals are the scene normals.
# * \param[out] recognized_objects is the list of output items each one containing the recognized model instance, its name, the aligning rigid transform
# * and the match confidence (see ObjRecRANSAC::Output for further explanations).
# * \param[in] success_probability is the user-defined probability of detecting all objects in the scene.
# */
# void recognize (const PointCloudIn& scene, const PointCloudN& normals, std::list<ObjRecRANSAC::Output>& recognized_objects, double success_probability = 0.99);
#
# inline void enterTestModeSampleOPP ()
# inline void enterTestModeTestHypotheses ()
# inline void leaveTestMode ()
#
# /** \brief This function is useful for testing purposes. It returns the oriented point pairs which were sampled from the
# * scene during the recognition process. Makes sense only if some of the testing modes are active. */
# inline const std::list<ObjRecRANSAC::OrientedPointPair>& getSampledOrientedPointPairs () const
#
# /** \brief This function is useful for testing purposes. It returns the accepted hypotheses generated during the
# * recognition process. Makes sense only if some of the testing modes are active. */
# inline const std::vector<Hypothesis>& getAcceptedHypotheses () const
#
# /** \brief This function is useful for testing purposes. It returns the accepted hypotheses generated during the
# * recognition process. Makes sense only if some of the testing modes are active. */
# inline void getAcceptedHypotheses (std::vector<Hypothesis>& out) const
#
# /** \brief Returns the hash table in the model library. */
# inline const pcl::recognition::ModelLibrary::HashTable& getHashTable () const
#
# inline const ModelLibrary& getModelLibrary () const
# inline const ModelLibrary::Model* getModel (const std::string& name) const
# inline const ORROctree& getSceneOctree () const
# inline RigidTransformSpace& getRigidTransformSpace ()
# inline float getPairWidth () const
#
# protected:
# enum Recognition_Mode {SAMPLE_OPP, TEST_HYPOTHESES, /*BUILD_CONFLICT_GRAPH,*/ FULL_RECOGNITION};
# friend class ModelLibrary;
#
# inline int computeNumberOfIterations (double success_probability) const
# inline void clearTestData ()
# void sampleOrientedPointPairs (int num_iterations, const std::vector<ORROctree::Node*>& full_scene_leaves, std::list<OrientedPointPair>& output) const;
# int generateHypotheses (const std::list<OrientedPointPair>& pairs, std::list<HypothesisBase>& out) const;
#
# /** \brief Groups close hypotheses in 'hypotheses'. Saves a representative for each group in 'out'. Returns the
# * number of hypotheses after grouping. */
# int groupHypotheses(std::list<HypothesisBase>& hypotheses, int num_hypotheses, RigidTransformSpace& transform_space, HypothesisOctree& grouped_hypotheses) const;
# inline void testHypothesis (Hypothesis* hypothesis, int& match, int& penalty) const;
# inline void testHypothesisNormalBased (Hypothesis* hypothesis, float& match) const;
# void buildGraphOfCloseHypotheses (HypothesisOctree& hypotheses, ORRGraph<Hypothesis>& graph) const;
# void filterGraphOfCloseHypotheses (ORRGraph<Hypothesis>& graph, std::vector<Hypothesis>& out) const;
# void buildGraphOfConflictingHypotheses (const BVHH& bvh, ORRGraph<Hypothesis*>& graph) const;
# void filterGraphOfConflictingHypotheses (ORRGraph<Hypothesis*>& graph, std::list<ObjRecRANSAC::Output>& recognized_objects) const;
#
# /** \brief Computes the rigid transform that maps the line (a1, b1) to (a2, b2).
# * The computation is based on the corresponding points 'a1' <-> 'a2' and 'b1' <-> 'b2'
# * and the normals 'a1_n', 'b1_n', 'a2_n', and 'b2_n'. The result is saved in
# * 'rigid_transform' which is an array of length 12. The first 9 elements are the
# * rotational part (row major order) and the last 3 are the translation. */
# inline void computeRigidTransform(
# const float *a1, const float *a1_n, const float *b1, const float* b1_n,
# const float *a2, const float *a2_n, const float *b2, const float* b2_n,
# float* rigid_transform) const
#
# /** \brief Computes the signature of the oriented point pair ((p1, n1), (p2, n2)) consisting of the angles between
# * \param p1
# * \param n1
# * \param p2
# * \param n2
# * \param[out] signature is an array of three doubles saving the three angles in the order shown above. */
# static inline void compute_oriented_point_pair_signature (const float *p1, const float *n1, const float *p2, const float *n2, float signature[3])
###
# orr_graph.h
# #include <pcl/recognition/ransac_based/orr_graph.h>
# #error "Using pcl/recognition/orr_graph.h is deprecated, please use pcl/recognition/ransac_based/orr_graph.h instead."
# namespace pcl
# namespace recognition
# template<class NodeData>
# class ORRGraph
# public:
# class Node
# public:
# enum State {ON, OFF, UNDEF};
#
# Node (int id)
# : id_ (id),
# state_(UNDEF)
# virtual ~Node (){}
# inline const std::set<Node*>& getNeighbors () const
# inline const NodeData& getData () const
# inline void setData (const NodeData& data)
# inline int getId () const
# inline void setId (int id)
# inline void setFitness (int fitness)
# static inline bool compare (const Node* a, const Node* b)
# friend class ORRGraph;
# public:
# ORRGraph (){}
# virtual ~ORRGraph (){ this->clear ();}
# inline void clear ()
#
# /** \brief Drops all existing graph nodes and creates 'n' new ones. */
# inline void resize (int n)
# inline void computeMaximalOnOffPartition (std::list<Node*>& on_nodes, std::list<Node*>& off_nodes)
# inline void insertUndirectedEdge (int id1, int id2)
# inline void insertDirectedEdge (int id1, int id2)
# inline void deleteUndirectedEdge (int id1, int id2)
# inline void deleteDirectedEdge (int id1, int id2)
# inline typename std::vector<Node*>& getNodes (){ return nodes_;}
#
# public:
# typename std::vector<Node*> nodes_;
###
# orr_octree.h
# #include <pcl/recognition/ransac_based/orr_octree.h>
# #error "Using pcl/recognition/orr_octree.h is deprecated, please use pcl/recognition/ransac_based/orr_octree.h instead."
# namespace pcl
# namespace recognition
# /** \brief That's a very specialized and simple octree class. That's the way it is intended to
# * be, that's why no templates and stuff like this.
# *
# * \author Chavdar Papazov
# * \ingroup recognition
# */
# class PCL_EXPORTS ORROctree
# public:
# typedef pcl::PointCloud<pcl::PointXYZ> PointCloudIn;
# typedef pcl::PointCloud<pcl::PointXYZ> PointCloudOut;
# typedef pcl::PointCloud<pcl::Normal> PointCloudN;
#
# class Node
# public:
# class Data
# public:
# Data (int id_x, int id_y, int id_z, int lin_id, void* user_data = NULL)
# : id_x_ (id_x), id_y_ (id_y), id_z_ (id_z), lin_id_ (lin_id), num_points_ (0), user_data_ (user_data)
# virtual~ Data (){}
#
# inline void addToPoint (float x, float y, float z)
# inline void computeAveragePoint ()
# inline void addToNormal (float x, float y, float z) { n_[0] += x; n_[1] += y; n_[2] += z;}
# inline const float* getPoint () const { return p_;}
# inline float* getPoint (){ return p_;}
# inline const float* getNormal () const { return n_;}
# inline float* getNormal (){ return n_;}
# inline void get3dId (int id[3]) const
# inline int get3dIdX () const {return id_x_;}
# inline int get3dIdY () const {return id_y_;}
# inline int get3dIdZ () const {return id_z_;}
# inline int getLinearId () const { return lin_id_;}
# inline void setUserData (void* user_data){ user_data_ = user_data;}
# inline void* getUserData () const { return user_data_;}
# inline void insertNeighbor (Node* node){ neighbors_.insert (node);}
# inline const std::set<Node*>& getNeighbors () const { return (neighbors_);}
# Node ()
# : data_ (NULL),
# parent_ (NULL),
# children_(NULL)
# virtual~ Node ()
#
# inline void setCenter(const float *c) { center_[0] = c[0]; center_[1] = c[1]; center_[2] = c[2];}
#
# inline void setBounds(const float *b) { bounds_[0] = b[0]; bounds_[1] = b[1]; bounds_[2] = b[2]; bounds_[3] = b[3]; bounds_[4] = b[4]; bounds_[5] = b[5];}
# inline void setParent(Node* parent) { parent_ = parent;}
# inline void setData(Node::Data* data) { data_ = data;}
# /** \brief Computes the "radius" of the node which is half the diagonal length. */
# inline void computeRadius()
# inline const float* getCenter() const { return center_;}
# inline const float* getBounds() const { return bounds_;}
# inline void getBounds(float b[6]) const
# inline Node* getChild (int id) { return &children_[id];}
# inline Node* getChildren () { return children_;}
# inline Node::Data* getData (){ return data_;}
# inline const Node::Data* getData () const { return data_;}
# inline void setUserData (void* user_data){ data_->setUserData (user_data);}
# inline Node* getParent (){ return parent_;}
# inline bool hasData (){ return static_cast<bool> (data_);}
# inline bool hasChildren (){ return static_cast<bool> (children_);}
# /** \brief Computes the "radius" of the node which is half the diagonal length. */
# inline float getRadius (){ return radius_;}
# bool createChildren ();
# inline void deleteChildren ()
# inline void deleteData ()
#
# /** \brief Make this and 'node' neighbors by inserting each node in the others node neighbor set. Nothing happens
# * of either of the nodes has no data. */
# inline void makeNeighbors (Node* node)
# ORROctree ();
# virtual ~ORROctree (){ this->clear ();}
# void clear ();
#
# /** \brief Creates an octree which encloses 'points' and with leaf size equal to 'voxel_size'.
# * 'enlarge_bounds' makes sure that no points from the input will lie on the octree boundary
# * by enlarging the bounds by that factor. For example, enlarge_bounds = 1 means that the
# * bounds will be enlarged by 100%. The default value is fine. */
# void build (const PointCloudIn& points, float voxel_size, const PointCloudN* normals = NULL, float enlarge_bounds = 0.00001f);
#
# /** \brief Creates an empty octree with bounds at least as large as the ones provided as input and with leaf
# * size equal to 'voxel_size'. */
# void build (const float* bounds, float voxel_size);
#
# /** \brief Creates the leaf containing p = (x, y, z) and returns a pointer to it, however, only if p lies within
# * the octree bounds! A more general version which allows p to be out of bounds is not implemented yet. The method
# * returns NULL if p is not within the root bounds. If the leaf containing p already exists nothing happens and
# * method just returns a pointer to the leaf. */
# inline ORROctree::Node* createLeaf (float x, float y, float z)
#
# /** \brief This method returns a super set of the full leavess which are intersected by the sphere
# * with radius 'radius' and centered at 'p'. Pointers to the intersected full leaves are saved in
# * 'out'. The method computes a super set in the sense that in general not all leaves saved in 'out'
# * are really intersected by the sphere. The intersection test is based on the leaf radius (since
# * its faster than checking all leaf corners and sides), so we report more leaves than we should,
# * but still, this is a fair approximation. */
# void getFullLeavesIntersectedBySphere (const float* p, float radius, std::list<ORROctree::Node*>& out) const;
#
# /** \brief Randomly chooses and returns a full leaf that is intersected by the sphere with center 'p'
# * and 'radius'. Returns NULL if no leaf is intersected by that sphere. */
# ORROctree::Node* getRandomFullLeafOnSphere (const float* p, float radius) const;
#
# /** \brief Since the leaves are aligned in a rectilinear grid, each leaf has a unique id. The method returns the leaf
# * with id [i, j, k] or NULL is no such leaf exists. */
# ORROctree::Node* getLeaf (int i, int j, int k)
#
# /** \brief Returns a pointer to the leaf containing p = (x, y, z) or NULL if no such leaf exists. */
# inline ORROctree::Node* getLeaf (float x, float y, float z)
#
# /** \brief Deletes the branch 'node' is part of. */
# void deleteBranch (Node* node);
#
# /** \brief Returns a vector with all octree leaves which contain at least one point. */
# inline std::vector<ORROctree::Node*>& getFullLeaves () { return full_leaves_;}
# inline const std::vector<ORROctree::Node*>& getFullLeaves () const { return full_leaves_;}
# void getFullLeavesPoints (PointCloudOut& out) const;
# void getNormalsOfFullLeaves (PointCloudN& out) const;
# inline ORROctree::Node* getRoot (){ return root_;}
# inline const float* getBounds () const
# inline void getBounds (float b[6]) const
# inline float getVoxelSize () const { return voxel_size_;}
# inline void insertNeighbors (Node* node)
###
# orr_octree_zprojection.h
# #include <pcl/recognition/ransac_based/orr_octree_zprojection.h>
# #error "Using pcl/recognition/orr_octree_zprojection.h is deprecated, please use pcl/recognition/ransac_based/orr_octree_zprojection.h instead."
# namespace pcl
# namespace recognition
# class ORROctree;
# class PCL_EXPORTS ORROctreeZProjection
# public:
# class Pixel
# public:
# Pixel (int id): id_ (id) {}
# inline void set_z1 (float z1) { z1_ = z1;}
# inline void set_z2 (float z2) { z2_ = z2;}
# float z1 () const { return z1_;}
# float z2 () const { return z2_;}
# int getId () const { return id_;}
# protected:
# float z1_, z2_;
# int id_;
# public:
# class Set
# public:
# Set (int x, int y) : nodes_ (compare_nodes_z), x_ (x), y_ (y)
#
# static inline bool compare_nodes_z (ORROctree::Node* node1, ORROctree::Node* node2)
# inline void insert (ORROctree::Node* leaf) { nodes_.insert(leaf);}
# inline std::set<ORROctree::Node*, bool(*)(ORROctree::Node*,ORROctree::Node*)>& get_nodes (){ return nodes_;}
# inline int get_x () const { return x_;}
# inline int get_y () const { return y_;}
# public:
# ORROctreeZProjection () : pixels_(NULL), sets_(NULL)
# virtual ~ORROctreeZProjection (){ this->clear();}
# void build (const ORROctree& input, float eps_front, float eps_back);
# void clear ();
# inline void getPixelCoordinates (const float* p, int& x, int& y) const
# inline const Pixel* getPixel (const float* p) const
# inline Pixel* getPixel (const float* p)
# inline const std::set<ORROctree::Node*, bool(*)(ORROctree::Node*,ORROctree::Node*)>* getOctreeNodes (const float* p) const
#
# inline std::list<Pixel*>& getFullPixels (){ return full_pixels_;}
# inline const Pixel* getPixel (int i, int j) const
# inline float getPixelSize () const
# inline const float* getBounds () const
# /** \brief Get the width ('num_x') and height ('num_y') of the image. */
# inline void getNumberOfPixels (int& num_x, int& num_y) const
###
# point_types.h
# namespace pcl
# /** \brief A point structure representing Euclidean xyz coordinates, and the intensity value.
# * \ingroup common
# */
# struct EIGEN_ALIGN16 GradientXY
# union
# {
# struct
# {
# float x;
# float y;
# float angle;
# float magnitude;
# };
# float data[4];
# };
# EIGEN_MAKE_ALIGNED_OPERATOR_NEW
#
# inline bool operator< (const GradientXY & rhs)
#
# inline std::ostream & operator << (std::ostream & os, const GradientXY & p)
###
# quantized_map.h
# namespace pcl
# class PCL_EXPORTS QuantizedMap
# {
# public:
# QuantizedMap ();
# QuantizedMap (size_t width, size_t height);
# QuantizedMap (const QuantizedMap & copy_me);
# virtual ~QuantizedMap ();
#
# inline size_t getWidth () const { return (width_); }
# inline size_t getHeight () const { return (height_); }
# inline unsigned char* getData () { return (&data_[0]); }
# inline const unsigned char* getData () const { return (&data_[0]); }
# inline QuantizedMap getSubMap (
# size_t x,
# size_t y,
# size_t width,
# size_t height)
#
# void resize (size_t width, size_t height);
#
# inline unsigned char & operator() (const size_t x, const size_t y)
# inline const unsigned char &operator() (const size_t x, const size_t y) const
#
# static void spreadQuantizedMap (const QuantizedMap & input_map, QuantizedMap & output_map, size_t spreading_size);
#
# void serialize (std::ostream & stream) const
#
# void deserialize (std::istream & stream)
# //private:
# std::vector<unsigned char> data_;
# size_t width_;
# size_t height_;
###
# region_xy.h
# namespace pcl
# /** \brief Function for reading data from a stream. */
# template <class Type> void read (std::istream & stream, Type & value)
#
# /** \brief Function for reading data arrays from a stream. */
# template <class Type> void read (std::istream & stream, Type * value, int nr_values)
#
# /** \brief Function for writing data to a stream. */
# template <class Type> void write (std::ostream & stream, Type value)
#
# /** \brief Function for writing data arrays to a stream. */
# template <class Type> void write (std::ostream & stream, Type * value, int nr_values)
#
# /** \brief Defines a region in XY-space.
# * \author Stefan Holzer
# */
# struct PCL_EXPORTS RegionXY
# /** \brief Constructor. */
# RegionXY () : x (0), y (0), width (0), height (0) {}
#
# /** \brief x-position of the region. */
# int x;
# /** \brief y-position of the region. */
# int y;
# /** \brief width of the region. */
# int width;
# /** \brief height of the region. */
# int height;
# /** \brief Serializes the object to the specified stream.
# * \param[out] stream the stream the object will be serialized to. */
# void serialize (std::ostream & stream) const
#
# /** \brief Deserializes the object from the specified stream.
# * \param[in] stream the stream the object will be deserialized from. */
# void deserialize (::std::istream & stream)
###
# rigid_transform_space.h
# namespace pcl
# namespace recognition
# class RotationSpaceCell
# public:
# class Entry
# {
# public:
# Entry () : num_transforms_ (0)
# Entry (const Entry& src) : num_transforms_ (src.num_transforms_)
# const Entry& operator = (const Entry& src)
# inline const Entry& addRigidTransform (const float axis_angle[3], const float translation[3])
# inline void computeAverageRigidTransform (float *rigid_transform = NULL)
# inline const float* getAxisAngle () const
# inline const float* getTranslation () const
# inline int getNumberOfTransforms () const
# };// class Entry
#
#
# public:
# RotationSpaceCell (){}
# virtual ~RotationSpaceCell ()
#
# inline std::map<const ModelLibrary::Model*,Entry>& getEntries ()
#
# inline const RotationSpaceCell::Entry* getEntry (const ModelLibrary::Model* model) const
#
# inline const RotationSpaceCell::Entry& addRigidTransform (const ModelLibrary::Model* model, const float axis_angle[3], const float translation[3])
# }; // class RotationSpaceCell
#
# class RotationSpaceCellCreator
# {
# public:
# RotationSpaceCellCreator (){}
# virtual ~RotationSpaceCellCreator (){}
#
# RotationSpaceCell* create (const SimpleOctree<RotationSpaceCell, RotationSpaceCellCreator, float>::Node* )
# {
# return (new RotationSpaceCell ());
# }
# };
#
# typedef SimpleOctree<RotationSpaceCell, RotationSpaceCellCreator, float> CellOctree;
#
#
# /** \brief This is a class for a discrete representation of the rotation space based on the axis-angle representation.
# * This class is not supposed to be very general. That's why it is dependent on the class ModelLibrary.
# * \author Chavdar Papazov
# * \ingroup recognition
# */
# class PCL_EXPORTS RotationSpace
# {
# public:
# /** \brief We use the axis-angle representation for rotations. The axis is encoded in the vector
# * and the angle is its magnitude. This is represented in an octree with bounds [-pi, pi]^3. */
# RotationSpace (float discretization)
#
# inline void setCenter (const float* c)
# inline const float* getCenter () const { return center_;}
# inline bool getTransformWithMostVotes (const ModelLibrary::Model* model, float rigid_transform[12]) const
# inline bool addRigidTransform (const ModelLibrary::Model* model, const float axis_angle[3], const float translation[3])
# };// class RotationSpace
# class RotationSpaceCreator
# public:
# RotationSpaceCreator() : counter_ (0)
# virtual ~RotationSpaceCreator(){}
# RotationSpace* create(const SimpleOctree<RotationSpace, RotationSpaceCreator, float>::Node* leaf)
# void setDiscretization (float value){ discretization_ = value;}
# int getNumberOfRotationSpaces () const { return (counter_);}
# const std::list<RotationSpace*>& getRotationSpaces () const { return (rotation_spaces_);}
#
# std::list<RotationSpace*>& getRotationSpaces (){ return (rotation_spaces_);}
#
# void reset ()
#
# typedef SimpleOctree<RotationSpace, RotationSpaceCreator, float> RotationSpaceOctree;
# class PCL_EXPORTS RigidTransformSpace
# public:
# RigidTransformSpace (){}
# virtual ~RigidTransformSpace (){ this->clear ();}
inline void build (const float* pos_bounds, float translation_cell_size, float rotation_cell_size)
inline void clear ()
inline std::list<RotationSpace*>& getRotationSpaces ()
inline const std::list<RotationSpace*>& getRotationSpaces () const
inline int getNumberOfOccupiedRotationSpaces ()
inline bool addRigidTransform (const ModelLibrary::Model* model, const float position[3], const float rigid_transform[12])
###
# simple_octree.h
# namespace pcl
# namespace recognition
# template<typename NodeData, typename NodeDataCreator, typename Scalar = float>
# class PCL_EXPORTS SimpleOctree
# public:
# class Node
# public:
# Node ();
# virtual~ Node ();
# inline void setCenter (const Scalar *c);
# inline void setBounds (const Scalar *b);
# inline const Scalar* getCenter () const { return center_;}
# inline const Scalar* getBounds () const { return bounds_;}
# inline void getBounds (Scalar b[6]) const { memcpy (b, bounds_, 6*sizeof (Scalar));}
# inline Node* getChild (int id) { return &children_[id];}
# inline Node* getChildren () { return children_;}
# inline void setData (const NodeData& src){ *data_ = src;}
# inline NodeData& getData (){ return *data_;}
# inline const NodeData& getData () const { return *data_;}
# inline Node* getParent (){ return parent_;}
# inline float getRadius () const { return radius_;}
# inline bool hasData (){ return static_cast<bool> (data_);}
# inline bool hasChildren (){ return static_cast<bool> (children_);}
# inline const std::set<Node*>& getNeighbors () const { return (full_leaf_neighbors_);}
# inline void deleteChildren ();
# inline void deleteData ();
# friend class SimpleOctree;
# };
#
#
# SimpleOctree ();
# virtual ~SimpleOctree ();
# void clear ();
#
# /** \brief Creates an empty octree with bounds at least as large as the ones provided as input and with leaf
# * size equal to 'voxel_size'. */
# void build (const Scalar* bounds, Scalar voxel_size, NodeDataCreator* node_data_creator);
#
# /** \brief Creates the leaf containing p = (x, y, z) and returns a pointer to it, however, only if p lies within
# * the octree bounds! A more general version which allows p to be out of bounds is not implemented yet. The method
# * returns NULL if p is not within the root bounds. If the leaf containing p already exists nothing happens and
# * method just returns a pointer to the leaf. Note that for a new created leaf, the method also creates its data
# * object. */
# inline Node* createLeaf (Scalar x, Scalar y, Scalar z);
#
# /** \brief Since the leaves are aligned in a rectilinear grid, each leaf has a unique id. The method returns the full
# * leaf, i.e., the one having a data object, with id [i, j, k] or NULL is no such leaf exists. */
# inline Node* getFullLeaf (int i, int j, int k);
#
# /** \brief Returns a pointer to the full leaf, i.e., one having a data pbject, containing p = (x, y, z) or NULL if no such leaf exists. */
# inline Node* getFullLeaf (Scalar x, Scalar y, Scalar z);
#
# inline std::vector<Node*>& getFullLeaves () { return full_leaves_;}
#
# inline const std::vector<Node*>& getFullLeaves () const { return full_leaves_;}
#
# inline Node* getRoot (){ return root_;}
#
# inline const Scalar* getBounds () const { return (bounds_);}
#
# inline void getBounds (Scalar b[6]) const { memcpy (b, bounds_, 6*sizeof (Scalar));}
#
# inline Scalar getVoxelSize () const { return voxel_size_;}
###
# sparse_quantized_multi_mod_template.h
# namespace pcl
#
# /** \brief Feature that defines a position and quantized value in a specific modality.
# * \author Stefan Holzer
# */
# struct QuantizedMultiModFeature
# /** \brief Constructor. */
# QuantizedMultiModFeature () : x (0), y (0), modality_index (0), quantized_value (0) {}
#
# /** \brief x-position. */
# int x;
# /** \brief y-position. */
# int y;
# /** \brief the index of the corresponding modality. */
# size_t modality_index;
# /** \brief the quantized value attached to the feature. */
# unsigned char quantized_value;
#
# /** \brief Compares whether two features are the same.
# * \param[in] base the feature to compare to.
# */
# bool compareForEquality (const QuantizedMultiModFeature & base)
#
# /** \brief Serializes the object to the specified stream.
# * \param[out] stream the stream the object will be serialized to. */
# void serialize (std::ostream & stream) const
#
# /** \brief Deserializes the object from the specified stream.
# * \param[in] stream the stream the object will be deserialized from. */
# void deserialize (std::istream & stream)
#
# /** \brief A multi-modality template constructed from a set of quantized multi-modality features.
# * \author Stefan Holzer
# */
# struct SparseQuantizedMultiModTemplate
# /** \brief Constructor. */
# SparseQuantizedMultiModTemplate () : features (), region () {}
#
# /** \brief The storage for the multi-modality features. */
# std::vector<QuantizedMultiModFeature> features;
#
# /** \brief The region assigned to the template. */
# RegionXY region;
#
# /** \brief Serializes the object to the specified stream.
# * \param[out] stream the stream the object will be serialized to. */
# void serialize (std::ostream & stream) const
#
# /** \brief Deserializes the object from the specified stream.
# * \param[in] stream the stream the object will be deserialized from. */
# void deserialize (std::istream & stream)
###
# surface_normal_modality.h
# namespace pcl
# /** \brief Map that stores orientations.
# * \author Stefan Holzer
# */
# struct PCL_EXPORTS LINEMOD_OrientationMap
# public:
# /** \brief Constructor. */
# inline LINEMOD_OrientationMap () : width_ (0), height_ (0), map_ () {}
# /** \brief Destructor. */
# inline ~LINEMOD_OrientationMap () {}
#
# /** \brief Returns the width of the modality data map. */
# inline size_t getWidth () const
#
# /** \brief Returns the height of the modality data map. */
# inline size_t getHeight () const
#
# /** \brief Resizes the map to the specific width and height and initializes
# * all new elements with the specified value.
# * \param[in] width the width of the resized map.
# * \param[in] height the height of the resized map.
# * \param[in] value the value all new elements will be initialized with.
# */
# inline void resize (const size_t width, const size_t height, const float value)
#
# /** \brief Operator to access elements of the map.
# * \param[in] col_index the column index of the element to access.
# * \param[in] row_index the row index of the element to access.
# */
# inline float & operator() (const size_t col_index, const size_t row_index)
#
# /** \brief Operator to access elements of the map.
# * \param[in] col_index the column index of the element to access.
# * \param[in] row_index the row index of the element to access.
# */
# inline const float &operator() (const size_t col_index, const size_t row_index) const
#
# /** \brief Look-up-table for fast surface normal quantization.
# * \author Stefan Holzer
# */
# struct QuantizedNormalLookUpTable
# {
# /** \brief The range of the LUT in x-direction. */
# int range_x;
# /** \brief The range of the LUT in y-direction. */
# int range_y;
# /** \brief The range of the LUT in z-direction. */
# int range_z;
#
# /** \brief The offset in x-direction. */
# int offset_x;
# /** \brief The offset in y-direction. */
# int offset_y;
# /** \brief The offset in z-direction. */
# int offset_z;
#
# /** \brief The size of the LUT in x-direction. */
# int size_x;
# /** \brief The size of the LUT in y-direction. */
# int size_y;
# /** \brief The size of the LUT in z-direction. */
# int size_z;
#
# /** \brief The LUT data. */
# unsigned char * lut;
#
# /** \brief Constructor. */
# QuantizedNormalLookUpTable () :
# range_x (-1), range_y (-1), range_z (-1),
# offset_x (-1), offset_y (-1), offset_z (-1),
# size_x (-1), size_y (-1), size_z (-1), lut (NULL)
# {}
#
# /** \brief Destructor. */
# ~QuantizedNormalLookUpTable ()
# {
# if (lut != NULL)
# delete[] lut;
# }
#
# /** \brief Initializes the LUT.
# * \param[in] range_x_arg the range of the LUT in x-direction.
# * \param[in] range_y_arg the range of the LUT in y-direction.
# * \param[in] range_z_arg the range of the LUT in z-direction.
# */
# void initializeLUT (const int range_x_arg, const int range_y_arg, const int range_z_arg)
#
# /** \brief Operator to access an element in the LUT.
# * \param[in] x the x-component of the normal.
# * \param[in] y the y-component of the normal.
# * \param[in] z the z-component of the normal.
# */
# inline unsigned char operator() (const float x, const float y, const float z) const
#
# /** \brief Operator to access an element in the LUT.
# * \param[in] index the index of the element.
# */
# inline unsigned char operator() (const int index) const
# /** \brief Modality based on surface normals.
# * \author Stefan Holzer
# */
# template <typename PointInT>
# class SurfaceNormalModality : public QuantizableModality, public PCLBase<PointInT>
# protected:
# using PCLBase<PointInT>::input_;
#
# /** \brief Candidate for a feature (used in feature extraction methods). */
# struct Candidate
# /** \brief Constructor. */
# Candidate () : normal (), distance (0.0f), bin_index (0), x (0), y (0) {}
#
# /** \brief Normal. */
# Normal normal;
# /** \brief Distance to the next different quantized value. */
# float distance;
#
# /** \brief Quantized value. */
# unsigned char bin_index;
#
# /** \brief x-position of the feature. */
# size_t x;
# /** \brief y-position of the feature. */
# size_t y;
# /** \brief Compares two candidates based on their distance to the next different quantized value.
# * \param[in] rhs the candidate to compare with.
# */
# bool operator< (const Candidate & rhs) const
#
# public:
# typedef typename pcl::PointCloud<PointInT> PointCloudIn;
#
# /** \brief Constructor. */
# SurfaceNormalModality ();
# /** \brief Destructor. */
# virtual ~SurfaceNormalModality ();
#
# /** \brief Sets the spreading size.
# * \param[in] spreading_size the spreading size.
# */
# inline void setSpreadingSize (const size_t spreading_size)
#
# /** \brief Enables/disables the use of extracting a variable number of features.
# * \param[in] enabled specifies whether extraction of a variable number of features will be enabled/disabled.
# */
# inline void setVariableFeatureNr (const bool enabled)
#
# /** \brief Returns the surface normals. */
# inline pcl::PointCloud<pcl::Normal> &getSurfaceNormals ()
#
# /** \brief Returns the surface normals. */
# inline const pcl::PointCloud<pcl::Normal> &getSurfaceNormals () const
#
# /** \brief Returns a reference to the internal quantized map. */
# inline QuantizedMap &getQuantizedMap ()
#
# /** \brief Returns a reference to the internal spreaded quantized map. */
# inline QuantizedMap &getSpreadedQuantizedMap ()
#
# /** \brief Returns a reference to the orientation map. */
# inline LINEMOD_OrientationMap &getOrientationMap ()
#
# /** \brief Extracts features from this modality within the specified mask.
# * \param[in] mask defines the areas where features are searched in.
# * \param[in] nr_features defines the number of features to be extracted
# * (might be less if not sufficient information is present in the modality).
# * \param[in] modality_index the index which is stored in the extracted features.
# * \param[out] features the destination for the extracted features.
# */
# void extractFeatures (
# const MaskMap & mask, size_t nr_features, size_t modality_index,
# std::vector<QuantizedMultiModFeature> & features) const;
#
# /** \brief Extracts all possible features from the modality within the specified mask.
# * \param[in] mask defines the areas where features are searched in.
# * \param[in] nr_features IGNORED (TODO: remove this parameter).
# * \param[in] modality_index the index which is stored in the extracted features.
# * \param[out] features the destination for the extracted features.
# */
# void extractAllFeatures (
# const MaskMap & mask, size_t nr_features, size_t modality_index,
# std::vector<QuantizedMultiModFeature> & features) const;
#
# /** \brief Provide a pointer to the input dataset (overwrites the PCLBase::setInputCloud method)
# * \param[in] cloud the const boost shared pointer to a PointCloud message
# */
# virtual void setInputCloud (const typename PointCloudIn::ConstPtr & cloud)
#
# /** \brief Processes the input data (smoothing, computing gradients, quantizing, filtering, spreading). */
# virtual void processInputData ();
#
# /** \brief Processes the input data assuming that everything up to filtering is already done/available
# * (so only spreading is performed). */
# virtual void processInputDataFromFiltered ();
# template <typename PointInT> pcl::SurfaceNormalModality<PointInT>::SurfaceNormalModality ()
# template <typename PointInT> pcl::SurfaceNormalModality<PointInT>::~SurfaceNormalModality ()
# template <typename PointInT> void pcl::SurfaceNormalModality<PointInT>::processInputData ()
# template <typename PointInT> void pcl::SurfaceNormalModality<PointInT>::processInputDataFromFiltered ()
# template <typename PointInT> void pcl::SurfaceNormalModality<PointInT>::computeSurfaceNormals ()
# template <typename PointInT> void pcl::SurfaceNormalModality<PointInT>::computeAndQuantizeSurfaceNormals ()
# static void accumBilateral(long delta, long i, long j, long * A, long * b, int threshold)
# /**
# * \brief Compute quantized normal image from depth image.
# * Implements section 2.6 "Extension to Dense Depth Sensors."
# * \todo Should also need camera model, or at least focal lengths? Replace distance_threshold with mask?
# */
# template <typename PointInT> void pcl::SurfaceNormalModality<PointInT>::computeAndQuantizeSurfaceNormals2 ()
# template <typename PointInT> void pcl::SurfaceNormalModality<PointInT>::extractFeatures (const MaskMap & mask,
# const size_t nr_features,
# const size_t modality_index,
# std::vector<QuantizedMultiModFeature> & features) const
# template <typename PointInT> void pcl::SurfaceNormalModality<PointInT>::extractAllFeatures (
# const MaskMap & mask, const size_t, const size_t modality_index, std::vector<QuantizedMultiModFeature> & features) const
# template <typename PointInT> void pcl::SurfaceNormalModality<PointInT>::quantizeSurfaceNormals ()
# pcl::SurfaceNormalModality<PointInT>::filterQuantizedSurfaceNormals ()
# template <typename PointInT> void
# pcl::SurfaceNormalModality<PointInT>::computeDistanceMap (const MaskMap & input, DistanceMap & output) const
# trimmed_icp.h
# namespace pcl
# namespace recognition
# template<typename PointT, typename Scalar>
# class PCL_EXPORTS TrimmedICP : public pcl::registration::TransformationEstimationSVD<PointT, PointT, Scalar>
# {
cdef extern from "pcl/Recognition/trimmed_icp.h" namespace "pcl::registration":
cdef cppclass TrimmedICP[PointT, Scalar](pcl::registration::TransformationEstimationSVD[PointT, PointT, Scalar])
TrimmedICP ()
# public:
# typedef pcl::PointCloud<PointT> PointCloud;
# typedef typename PointCloud::ConstPtr PointCloudConstPtr;
# typedef typename Eigen::Matrix<Scalar, 4, 4> Matrix4;
# public:
# TrimmedICP () : new_to_old_energy_ratio_ (0.99f)
#
# /** \brief Call this method before calling align().
# * \param[in] target is target point cloud. The method builds a kd-tree based on 'target' for performing fast closest point search.
# * The source point cloud will be registered to 'target' (see align() method).
# * */
# inline void init (const PointCloudConstPtr& target)
#
# /** \brief The method performs trimmed ICP, i.e., it rigidly registers the source to the target (passed to the init() method).
# * \param[in] source_points is the point cloud to be registered to the target.
# * \param[in] num_source_points_to_use gives the number of closest source points taken into account for registration. By closest
# * source points we mean the source points closest to the target. These points are computed anew at each iteration.
# * \param[in,out] guess_and_result is the estimated rigid transform. IMPORTANT: this matrix is also taken as the initial guess
# * for the alignment. If there is no guess, set the matrix to identity!
# * */
# inline void align (const PointCloud& source_points, int num_source_points_to_use, Matrix4& guess_and_result) const
#
# inline void setNewToOldEnergyRatio (float ratio)
#endif /* TRIMMED_ICP_H_ */
###
# voxel_structure.h
# namespace pcl
# namespace recognition
#
# /** \brief This class is a box in R3 built of voxels ordered in a regular rectangular grid. Each voxel is of type T. */
# template<class T, typename REAL = float>
# class VoxelStructure
cdef extern from "pcl/Recognition/voxel_structure.h" namespace "pcl::recognition":
cdef cppclass VoxelStructure[T, float]
VoxelStructure ()
# public:
# inline VoxelStructure (): voxels_(NULL){}
# inline virtual ~VoxelStructure (){ this->clear();}
#
# /** \brief Call this method before using an instance of this class. Parameter meaning is obvious. */
# inline void build (const REAL bounds[6], int num_of_voxels[3]);
#
# /** \brief Release the memory allocated for the voxels. */
# inline void clear (){ if ( voxels_ ){ delete[] voxels_; voxels_ = NULL;}}
#
# /** \brief Returns a pointer to the voxel which contains p or NULL if p is not inside the structure. */
# inline T* getVoxel (const REAL p[3]);
#
# /** \brief Returns a pointer to the voxel with integer id (x,y,z) or NULL if (x,y,z) is out of bounds. */
# inline T* getVoxel (int x, int y, int z) const;
#
# /** \brief Returns the linear voxel array. */
# const inline T* getVoxels () const
#
# /** \brief Returns the linear voxel array. */
# inline T* getVoxels ()
#
# /** \brief Converts a linear id to a 3D id, i.e., computes the integer 3D coordinates of a voxel from its position in the voxel array.
# *
# * \param[in] linear_id the position of the voxel in the internal voxel array.
# * \param[out] id3d an array of 3 integers for the integer coordinates of the voxel. */
# inline void compute3dId (int linear_id, int id3d[3]) const
#
# /** \brief Returns the number of voxels in x, y and z direction. */
# inline const int* getNumberOfVoxelsXYZ() const
#
# /** \brief Computes the center of the voxel with given integer coordinates.
# *
# * \param[in] id3 the integer coordinates along the x, y and z axis.
# * \param[out] center */
# inline void computeVoxelCenter (const int id3[3], REAL center[3]) const
#
# /** \brief Returns the total number of voxels. */
# inline int getNumberOfVoxels() const
#
# /** \brief Returns the bounds of the voxel structure, which is pointer to the internal array of 6 doubles: (min_x, max_x, min_y, max_y, min_z, max_z). */
# inline const float* getBounds() const
#
# /** \brief Copies the bounds of the voxel structure to 'b'. */
# inline void getBounds(REAL b[6]) const
#
# /** \brief Returns the voxel spacing in x, y and z direction. That's the same as the voxel size along each axis. */
# const REAL* getVoxelSpacing() const
#
# /** \brief Saves pointers to the voxels which are neighbors of the voxels which contains 'p'. The containing voxel is returned too.
# * 'neighs' has to be an array of pointers with space for at least 27 pointers (27 = 3^3 which is the max number of neighbors). The */
# inline int getNeighbors (const REAL* p, T **neighs) const;
###
|