1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329
|
# -*- coding: utf-8 -*-
cimport _pcl
cimport pcl_defs as cpp
cimport numpy as cnp
cimport cython
from libcpp.string cimport string
from libcpp.vector cimport vector
cimport eigen as eigen3
from libcpp.memory cimport shared_ptr
# common/angles.h
# namespace pcl
cdef extern from "pcl/common/angles.h" namespace "pcl":
# brief Convert an angle from radians to degrees
# param alpha the input angle (in radians)
# ingroup common
# inline float rad2deg (float alpha);
cdef float rad2deg (float alpha)
# brief Convert an angle from degrees to radians
# param alpha the input angle (in degrees)
# ingroup common
# inline float deg2rad (float alpha);
cdef float deg2rad (float alpha)
# brief Convert an angle from radians to degrees
# param alpha the input angle (in radians)
# ingroup common
# inline double rad2deg (double alpha);
cdef double deg2rad (double alpha)
# brief Convert an angle from degrees to radians
# param alpha the input angle (in degrees)
# ingroup common
# inline double deg2rad (double alpha);
cdef double deg2rad (double alpha)
# brief Normalize an angle to (-PI, PI]
# param alpha the input angle (in radians)
# ingroup common
# inline float normAngle (float alpha);
cdef float normAngle (float alpha)
###
# bivariate_polynomial.h
# namespace pcl
# /** \brief This represents a bivariate polynomial and provides some functionality for it
# * \author Bastian Steder
# * \ingroup common
# */
# template<typename real> class BivariatePolynomialT
# cdef extern from "pcl/common/bivariate_polynomial.h" namespace "pcl":
# class BivariatePolynomialT[real]
# BivariatePolynomialT()
# public:
# //-----CONSTRUCTOR&DESTRUCTOR-----
# /** Constructor */
# BivariatePolynomialT (int new_degree=0);
# /** Copy constructor */
# BivariatePolynomialT (const BivariatePolynomialT& other);
# /** Destructor */
# ~BivariatePolynomialT ();
#
# //-----OPERATORS-----
# /** = operator */
# BivariatePolynomialT& operator= (const BivariatePolynomialT& other) { deepCopy (other); return *this;}
#
# //-----METHODS-----
# /** Initialize members to default values */
# void setDegree (int new_degree);
# void setDegree (int new_degree)
#
# /** How many parametes has a bivariate polynomial with this degree */
# unsigned int getNoOfParameters () const { return getNoOfParametersFromDegree (degree);}
# int getNoOfParameters ()
#
# /** Calculate the value of the polynomial at the given point */
# real getValue (real x, real y) const;
# real getValue (real x, real y)
#
# /** Calculate the gradient of this polynomial
# * If forceRecalc is false, it will do nothing when the gradient already exists */
# void calculateGradient (bool forceRecalc=false);
# void calculateGradient (bool forceRecalc)
#
# /** Calculate the value of the gradient at the given point */
# void getValueOfGradient (real x, real y, real& gradX, real& gradY);
# void getValueOfGradient (real x, real y, real& gradX, real& gradY);
#
# /** Returns critical points of the polynomial. type can be 0=maximum, 1=minimum, or 2=saddle point
# * !!Currently only implemented for degree 2!! */
# void findCriticalPoints (std::vector<real>& x_values, std::vector<real>& y_values, std::vector<int>& types) const;
#
# /** write as binary to a stream */
# void writeBinary (std::ostream& os) const;
#
# /** write as binary into a file */
# void writeBinary (const char* filename) const;
#
# /** read binary from a stream */
# void readBinary (std::istream& os);
#
# /** read binary from a file */
# void readBinary (const char* filename);
#
# /** How many parametes has a bivariate polynomial of the given degree */
# static unsigned int getNoOfParametersFromDegree (int n) { return ((n+2)* (n+1))/2;}
# template<typename real> std::ostream& operator<< (std::ostream& os, const BivariatePolynomialT<real>& p);
# typedef BivariatePolynomialT<double> BivariatePolynomiald;
# typedef BivariatePolynomialT<float> BivariatePolynomial;
###
# boost.h
# // Marking all Boost headers as system headers to remove warnings
###
# centroid.h
# namespace pcl
# cdef extern from "pcl/common/centroid.h" namespace "pcl":
# \brief Compute the 3D (X-Y-Z) centroid of a set of points and return it as a 3D vector.
# \param[in] cloud_iterator an iterator over the input point cloud
# \param[out] centroid the output centroid
# \return number of valid point used to determine the centroid. In case of dense point clouds, this is the same as the size of input cloud.
# \note if return value is 0, the centroid is not changed, thus not valid.
# The last compononent of the vector is set to 1, this allow to transform the centroid vector with 4x4 matrices.
# \ingroup common
# template <typename PointT, typename Scalar> inline unsigned int
# compute3DCentroid (ConstCloudIterator<PointT> &cloud_iterator, Eigen::Matrix<Scalar, 4, 1> ¢roid);
# centroid.h
# namespace pcl
# cdef extern from "pcl/common/centroid.h" namespace "pcl":
# unsigned int compute3DCentroid (ConstCloudIterator<PointT> &cloud_iterator, Eigen::Matrix<Scalar, 4, 1> ¢roid);
###
# centroid.h
# namespace pcl
# cdef extern from "pcl/common/centroid.h" namespace "pcl":
# template <typename PointT> inline unsigned int
# compute3DCentroid (ConstCloudIterator<PointT> &cloud_iterator, Eigen::Vector4f ¢roid)
###
# centroid.h
# namespace pcl
# cdef extern from "pcl/common/centroid.h" namespace "pcl":
# template <typename PointT> inline unsigned int
# compute3DCentroid (ConstCloudIterator<PointT> &cloud_iterator, Eigen::Vector4d ¢roid)
###
# centroid.h
# namespace pcl
# cdef extern from "pcl/common/centroid.h" namespace "pcl":
# /** \brief Compute the 3D (X-Y-Z) centroid of a set of points and return it as a 3D vector.
# * \param[in] cloud the input point cloud
# * \param[out] centroid the output centroid
# * \return number of valid point used to determine the centroid. In case of dense point clouds, this is the same as the size of input cloud.
# * \note if return value is 0, the centroid is not changed, thus not valid.
# * The last compononent of the vector is set to 1, this allow to transform the centroid vector with 4x4 matrices.
# * \ingroup common
# */
# template <typename PointT, typename Scalar> inline unsigned int
# compute3DCentroid (const pcl::PointCloud<PointT> &cloud, Eigen::Matrix<Scalar, 4, 1> ¢roid);
###
# centroid.h
# namespace pcl
# cdef extern from "pcl/common/centroid.h" namespace "pcl":
# template <typename PointT> inline unsigned int
# compute3DCentroid (const pcl::PointCloud<PointT> &cloud, Eigen::Vector4f ¢roid)
###
# centroid.h
# namespace pcl
# cdef extern from "pcl/common/centroid.h" namespace "pcl":
# template <typename PointT> inline unsigned int
# compute3DCentroid (const pcl::PointCloud<PointT> &cloud, Eigen::Vector4d ¢roid)
###
# /** \brief Compute the 3D (X-Y-Z) centroid of a set of points using their indices and
# * return it as a 3D vector.
# * \param[in] cloud the input point cloud
# * \param[in] indices the point cloud indices that need to be used
# * \param[out] centroid the output centroid
# * \return number of valid point used to determine the centroid. In case of dense point clouds, this is the same as the size of input cloud.
# * \note if return value is 0, the centroid is not changed, thus not valid.
# * The last compononent of the vector is set to 1, this allow to transform the centroid vector with 4x4 matrices.
# * \ingroup common
# */
# template <typename PointT, typename Scalar> inline unsigned int
# compute3DCentroid (const pcl::PointCloud<PointT> &cloud, const std::vector<int> &indices, Eigen::Matrix<Scalar, 4, 1> ¢roid);
###
# centroid.h
# namespace pcl
# cdef extern from "pcl/common/centroid.h" namespace "pcl":
# template <typename PointT> inline unsigned int
# compute3DCentroid (const pcl::PointCloud<PointT> &cloud, const std::vector<int> &indices, Eigen::Vector4f ¢roid)
###
# centroid.h
# namespace pcl
# cdef extern from "pcl/common/centroid.h" namespace "pcl":
# template <typename PointT> inline unsigned int
# compute3DCentroid (const pcl::PointCloud<PointT> &cloud, const std::vector<int> &indices, Eigen::Vector4d ¢roid)
###
# /** \brief Compute the 3D (X-Y-Z) centroid of a set of points using their indices and
# * return it as a 3D vector.
# * \param[in] cloud the input point cloud
# * \param[in] indices the point cloud indices that need to be used
# * \param[out] centroid the output centroid
# * \return number of valid point used to determine the centroid. In case of dense point clouds, this is the same as the size of input cloud.
# * \note if return value is 0, the centroid is not changed, thus not valid.
# * The last compononent of the vector is set to 1, this allow to transform the centroid vector with 4x4 matrices.
# * \ingroup common
# */
# template <typename PointT, typename Scalar> inline unsigned int
# compute3DCentroid (const pcl::PointCloud<PointT> &cloud, const pcl::PointIndices &indices, Eigen::Matrix<Scalar, 4, 1> ¢roid);
###
# centroid.h
# namespace pcl
# cdef extern from "pcl/common/centroid.h" namespace "pcl":
# template <typename PointT> inline unsigned int
# compute3DCentroid (const pcl::PointCloud<PointT> &cloud, const pcl::PointIndices &indices, Eigen::Vector4f ¢roid)
###
# centroid.h
# namespace pcl
# cdef extern from "pcl/common/centroid.h" namespace "pcl":
# template <typename PointT> inline unsigned int
# compute3DCentroid (const pcl::PointCloud<PointT> &cloud, const pcl::PointIndices &indices, Eigen::Vector4d ¢roid)
###
# centroid.h
# namespace pcl
# cdef extern from "pcl/common/centroid.h" namespace "pcl":
# /** \brief Compute the 3x3 covariance matrix of a given set of points.
# * The result is returned as a Eigen::Matrix3f.
# * Note: the covariance matrix is not normalized with the number of
# * points. For a normalized covariance, please use
# * computeNormalizedCovarianceMatrix.
# * \param[in] cloud the input point cloud
# * \param[in] centroid the centroid of the set of points in the cloud
# * \param[out] covariance_matrix the resultant 3x3 covariance matrix
# * \return number of valid point used to determine the covariance matrix.
# * In case of dense point clouds, this is the same as the size of input cloud.
# * \note if return value is 0, the covariance matrix is not changed, thus not valid.
# * \ingroup common
# */
# template <typename PointT, typename Scalar> inline unsigned int
# computeCovarianceMatrix (const pcl::PointCloud<PointT> &cloud, const Eigen::Matrix<Scalar, 4, 1> ¢roid, Eigen::Matrix<Scalar, 3, 3> &covariance_matrix);
###
# centroid.h
# namespace pcl
# cdef extern from "pcl/common/centroid.h" namespace "pcl":
# template <typename PointT> inline unsigned int
# computeCovarianceMatrix (const pcl::PointCloud<PointT> &cloud,
# const Eigen::Vector4f ¢roid,
# Eigen::Matrix3f &covariance_matrix)
###
# centroid.h
# namespace pcl
# cdef extern from "pcl/common/centroid.h" namespace "pcl":
# template <typename PointT> inline unsigned int
# computeCovarianceMatrix (const pcl::PointCloud<PointT> &cloud,
# const Eigen::Vector4d ¢roid,
# Eigen::Matrix3d &covariance_matrix)
###
# centroid.h
# namespace pcl
# cdef extern from "pcl/common/centroid.h" namespace "pcl":
# /** \brief Compute normalized the 3x3 covariance matrix of a given set of points.
# * The result is returned as a Eigen::Matrix3f.
# * Normalized means that every entry has been divided by the number of points in the point cloud.
# * For small number of points, or if you want explicitely the sample-variance, use computeCovarianceMatrix
# * and scale the covariance matrix with 1 / (n-1), where n is the number of points used to calculate
# * the covariance matrix and is returned by the computeCovarianceMatrix function.
# * \param[in] cloud the input point cloud
# * \param[in] centroid the centroid of the set of points in the cloud
# * \param[out] covariance_matrix the resultant 3x3 covariance matrix
# * \return number of valid point used to determine the covariance matrix.
# * In case of dense point clouds, this is the same as the size of input cloud.
# * \ingroup common
# */
# template <typename PointT, typename Scalar> inline unsigned int
# computeCovarianceMatrixNormalized (const pcl::PointCloud<PointT> &cloud,
# const Eigen::Matrix<Scalar, 4, 1> ¢roid,
# Eigen::Matrix<Scalar, 3, 3> &covariance_matrix);
###
# centroid.h
# namespace pcl
# cdef extern from "pcl/common/centroid.h" namespace "pcl":
# template <typename PointT> inline unsigned int
# computeCovarianceMatrixNormalized (const pcl::PointCloud<PointT> &cloud,
# const Eigen::Vector4f ¢roid,
# Eigen::Matrix3f &covariance_matrix)
###
# centroid.h
# namespace pcl
# cdef extern from "pcl/common/centroid.h" namespace "pcl":
# template <typename PointT> inline unsigned int
# computeCovarianceMatrixNormalized (const pcl::PointCloud<PointT> &cloud,
# const Eigen::Vector4d ¢roid,
# Eigen::Matrix3d &covariance_matrix)
###
# centroid.h
# namespace pcl
# cdef extern from "pcl/common/centroid.h" namespace "pcl":
# /** \brief Compute the 3x3 covariance matrix of a given set of points using their indices.
# * The result is returned as a Eigen::Matrix3f.
# * Note: the covariance matrix is not normalized with the number of
# * points. For a normalized covariance, please use
# * computeNormalizedCovarianceMatrix.
# * \param[in] cloud the input point cloud
# * \param[in] indices the point cloud indices that need to be used
# * \param[in] centroid the centroid of the set of points in the cloud
# * \param[out] covariance_matrix the resultant 3x3 covariance matrix
# * \return number of valid point used to determine the covariance matrix.
# * In case of dense point clouds, this is the same as the size of input cloud.
# * \ingroup common
# */
# template <typename PointT, typename Scalar> inline unsigned int
# computeCovarianceMatrix (const pcl::PointCloud<PointT> &cloud,
# const std::vector<int> &indices,
# const Eigen::Matrix<Scalar, 4, 1> ¢roid,
# Eigen::Matrix<Scalar, 3, 3> &covariance_matrix);
###
# centroid.h
# namespace pcl
# cdef extern from "pcl/common/centroid.h" namespace "pcl":
# template <typename PointT> inline unsigned int
# computeCovarianceMatrix (const pcl::PointCloud<PointT> &cloud,
# const std::vector<int> &indices,
# const Eigen::Vector4f ¢roid,
# Eigen::Matrix3f &covariance_matrix)
###
# centroid.h
# namespace pcl
# cdef extern from "pcl/common/centroid.h" namespace "pcl":
# template <typename PointT> inline unsigned int
# computeCovarianceMatrix (const pcl::PointCloud<PointT> &cloud,
# const std::vector<int> &indices,
# const Eigen::Vector4d ¢roid,
# Eigen::Matrix3d &covariance_matrix)
###
# centroid.h
# namespace pcl
# cdef extern from "pcl/common/centroid.h" namespace "pcl":
# /** \brief Compute the 3x3 covariance matrix of a given set of points using their indices.
# * The result is returned as a Eigen::Matrix3f.
# * Note: the covariance matrix is not normalized with the number of
# * points. For a normalized covariance, please use
# * computeNormalizedCovarianceMatrix.
# * \param[in] cloud the input point cloud
# * \param[in] indices the point cloud indices that need to be used
# * \param[in] centroid the centroid of the set of points in the cloud
# * \param[out] covariance_matrix the resultant 3x3 covariance matrix
# * \return number of valid point used to determine the covariance matrix.
# * In case of dense point clouds, this is the same as the size of input cloud.
# * \ingroup common
# */
# template <typename PointT, typename Scalar> inline unsigned int
# computeCovarianceMatrix (const pcl::PointCloud<PointT> &cloud,
# const pcl::PointIndices &indices,
# const Eigen::Matrix<Scalar, 4, 1> ¢roid,
# Eigen::Matrix<Scalar, 3, 3> &covariance_matrix);
###
# centroid.h
# namespace pcl
# cdef extern from "pcl/common/centroid.h" namespace "pcl":
# template <typename PointT> inline unsigned int
# computeCovarianceMatrix (const pcl::PointCloud<PointT> &cloud,
# const pcl::PointIndices &indices,
# const Eigen::Vector4f ¢roid,
# Eigen::Matrix3f &covariance_matrix)
###
# centroid.h
# namespace pcl
# cdef extern from "pcl/common/centroid.h" namespace "pcl":
# template <typename PointT> inline unsigned int
# computeCovarianceMatrix (const pcl::PointCloud<PointT> &cloud,
# const pcl::PointIndices &indices,
# const Eigen::Vector4d ¢roid,
# Eigen::Matrix3d &covariance_matrix)
###
# centroid.h
# namespace pcl
# cdef extern from "pcl/common/centroid.h" namespace "pcl":
# /** \brief Compute the normalized 3x3 covariance matrix of a given set of points using
# * their indices.
# * The result is returned as a Eigen::Matrix3f.
# * Normalized means that every entry has been divided by the number of entries in indices.
# * For small number of points, or if you want explicitely the sample-variance, use computeCovarianceMatrix
# * and scale the covariance matrix with 1 / (n-1), where n is the number of points used to calculate
# * the covariance matrix and is returned by the computeCovarianceMatrix function.
# * \param[in] cloud the input point cloud
# * \param[in] indices the point cloud indices that need to be used
# * \param[in] centroid the centroid of the set of points in the cloud
# * \param[out] covariance_matrix the resultant 3x3 covariance matrix
# * \return number of valid point used to determine the covariance matrix.
# * In case of dense point clouds, this is the same as the size of input cloud.
# * \ingroup common
# */
# template <typename PointT, typename Scalar> inline unsigned int
# computeCovarianceMatrixNormalized (const pcl::PointCloud<PointT> &cloud,
# const std::vector<int> &indices,
# const Eigen::Matrix<Scalar, 4, 1> ¢roid,
# Eigen::Matrix<Scalar, 3, 3> &covariance_matrix);
###
# centroid.h
# namespace pcl
# cdef extern from "pcl/common/centroid.h" namespace "pcl":
# template <typename PointT> inline unsigned int
# computeCovarianceMatrixNormalized (const pcl::PointCloud<PointT> &cloud,
# const std::vector<int> &indices,
# const Eigen::Vector4f ¢roid,
# Eigen::Matrix3f &covariance_matrix)
###
# centroid.h
# namespace pcl
# cdef extern from "pcl/common/centroid.h" namespace "pcl":
# template <typename PointT> inline unsigned int
# computeCovarianceMatrixNormalized (const pcl::PointCloud<PointT> &cloud,
# const std::vector<int> &indices,
# const Eigen::Vector4d ¢roid,
# Eigen::Matrix3d &covariance_matrix)
###
# centroid.h
# namespace pcl
# cdef extern from "pcl/common/centroid.h" namespace "pcl":
# /** \brief Compute the normalized 3x3 covariance matrix of a given set of points using
# * their indices. The result is returned as a Eigen::Matrix3f.
# * Normalized means that every entry has been divided by the number of entries in indices.
# * For small number of points, or if you want explicitely the sample-variance, use computeCovarianceMatrix
# * and scale the covariance matrix with 1 / (n-1), where n is the number of points used to calculate
# * the covariance matrix and is returned by the computeCovarianceMatrix function.
# * \param[in] cloud the input point cloud
# * \param[in] indices the point cloud indices that need to be used
# * \param[in] centroid the centroid of the set of points in the cloud
# * \param[out] covariance_matrix the resultant 3x3 covariance matrix
# * \return number of valid point used to determine the covariance matrix.
# * In case of dense point clouds, this is the same as the size of input cloud.
# * \ingroup common
# */
# template <typename PointT, typename Scalar> inline unsigned int
# computeCovarianceMatrixNormalized (const pcl::PointCloud<PointT> &cloud,
# const pcl::PointIndices &indices,
# const Eigen::Matrix<Scalar, 4, 1> ¢roid,
# Eigen::Matrix<Scalar, 3, 3> &covariance_matrix);
###
# centroid.h
# namespace pcl
# cdef extern from "pcl/common/centroid.h" namespace "pcl":
# template <typename PointT> inline unsigned int
# computeCovarianceMatrixNormalized (const pcl::PointCloud<PointT> &cloud,
# const pcl::PointIndices &indices,
# const Eigen::Vector4f ¢roid,
# Eigen::Matrix3f &covariance_matrix)
###
# centroid.h
# namespace pcl
# cdef extern from "pcl/common/centroid.h" namespace "pcl":
# template <typename PointT> inline unsigned int
# computeCovarianceMatrixNormalized (const pcl::PointCloud<PointT> &cloud,
# const pcl::PointIndices &indices,
# const Eigen::Vector4d ¢roid,
# Eigen::Matrix3d &covariance_matrix)
###
# centroid.h
# namespace pcl
# cdef extern from "pcl/common/centroid.h" namespace "pcl":
# /** \brief Compute the normalized 3x3 covariance matrix and the centroid of a given set of points in a single loop.
# * Normalized means that every entry has been divided by the number of entries in indices.
# * For small number of points, or if you want explicitely the sample-variance, scale the covariance matrix
# * with n / (n-1), where n is the number of points used to calculate the covariance matrix and is returned by this function.
# * \note This method is theoretically exact. However using float for internal calculations reduces the accuracy but increases the efficiency.
# * \param[in] cloud the input point cloud
# * \param[out] covariance_matrix the resultant 3x3 covariance matrix
# * \param[out] centroid the centroid of the set of points in the cloud
# * \return number of valid point used to determine the covariance matrix.
# * In case of dense point clouds, this is the same as the size of input cloud.
# * \ingroup common
# */
# template <typename PointT, typename Scalar> inline unsigned int
# computeMeanAndCovarianceMatrix (const pcl::PointCloud<PointT> &cloud,
# Eigen::Matrix<Scalar, 3, 3> &covariance_matrix,
# Eigen::Matrix<Scalar, 4, 1> ¢roid);
###
# centroid.h
# namespace pcl
# cdef extern from "pcl/common/centroid.h" namespace "pcl":
# template <typename PointT> inline unsigned int
# computeMeanAndCovarianceMatrix (const pcl::PointCloud<PointT> &cloud,
# Eigen::Matrix3f &covariance_matrix,
# Eigen::Vector4f ¢roid)
###
# centroid.h
# namespace pcl
# cdef extern from "pcl/common/centroid.h" namespace "pcl":
# template <typename PointT> inline unsigned int
# computeMeanAndCovarianceMatrix (const pcl::PointCloud<PointT> &cloud,
# Eigen::Matrix3d &covariance_matrix,
# Eigen::Vector4d ¢roid)
###
# centroid.h
# namespace pcl
# cdef extern from "pcl/common/centroid.h" namespace "pcl":
# /** \brief Compute the normalized 3x3 covariance matrix and the centroid of a given set of points in a single loop.
# * Normalized means that every entry has been divided by the number of entries in indices.
# * For small number of points, or if you want explicitely the sample-variance, scale the covariance matrix
# * with n / (n-1), where n is the number of points used to calculate the covariance matrix and is returned by this function.
# * \note This method is theoretically exact. However using float for internal calculations reduces the accuracy but increases the efficiency.
# * \param[in] cloud the input point cloud
# * \param[in] indices subset of points given by their indices
# * \param[out] covariance_matrix the resultant 3x3 covariance matrix
# * \param[out] centroid the centroid of the set of points in the cloud
# * \return number of valid point used to determine the covariance matrix.
# * In case of dense point clouds, this is the same as the size of input cloud.
# * \ingroup common
# */
# template <typename PointT, typename Scalar> inline unsigned int
# computeMeanAndCovarianceMatrix (const pcl::PointCloud<PointT> &cloud,
# const std::vector<int> &indices,
# Eigen::Matrix<Scalar, 3, 3> &covariance_matrix,
# Eigen::Matrix<Scalar, 4, 1> ¢roid);
###
# centroid.h
# namespace pcl
# cdef extern from "pcl/common/centroid.h" namespace "pcl":
# template <typename PointT> inline unsigned int
# computeMeanAndCovarianceMatrix (const pcl::PointCloud<PointT> &cloud,
# const std::vector<int> &indices,
# Eigen::Matrix3f &covariance_matrix,
# Eigen::Vector4f ¢roid)
###
# centroid.h
# namespace pcl
# cdef extern from "pcl/common/centroid.h" namespace "pcl":
# template <typename PointT> inline unsigned int
# computeMeanAndCovarianceMatrix (const pcl::PointCloud<PointT> &cloud,
# const std::vector<int> &indices,
# Eigen::Matrix3d &covariance_matrix,
# Eigen::Vector4d ¢roid)
###
# centroid.h
# namespace pcl
# cdef extern from "pcl/common/centroid.h" namespace "pcl":
# /** \brief Compute the normalized 3x3 covariance matrix and the centroid of a given set of points in a single loop.
# * Normalized means that every entry has been divided by the number of entries in indices.
# * For small number of points, or if you want explicitely the sample-variance, scale the covariance matrix
# * with n / (n-1), where n is the number of points used to calculate the covariance matrix and is returned by this function.
# * \note This method is theoretically exact. However using float for internal calculations reduces the accuracy but increases the efficiency.
# * \param[in] cloud the input point cloud
# * \param[in] indices subset of points given by their indices
# * \param[out] centroid the centroid of the set of points in the cloud
# * \param[out] covariance_matrix the resultant 3x3 covariance matrix
# * \return number of valid point used to determine the covariance matrix.
# * In case of dense point clouds, this is the same as the size of input cloud.
# * \ingroup common
# */
# template <typename PointT, typename Scalar> inline unsigned int
# computeMeanAndCovarianceMatrix (const pcl::PointCloud<PointT> &cloud,
# const pcl::PointIndices &indices,
# Eigen::Matrix<Scalar, 3, 3> &covariance_matrix,
# Eigen::Matrix<Scalar, 4, 1> ¢roid);
###
# centroid.h
# namespace pcl
# cdef extern from "pcl/common/centroid.h" namespace "pcl":
# template <typename PointT> inline unsigned int
# computeMeanAndCovarianceMatrix (const pcl::PointCloud<PointT> &cloud,
# const pcl::PointIndices &indices,
# Eigen::Matrix3f &covariance_matrix,
# Eigen::Vector4f ¢roid)
###
# centroid.h
# namespace pcl
# cdef extern from "pcl/common/centroid.h" namespace "pcl":
# template <typename PointT> inline unsigned int
# computeMeanAndCovarianceMatrix (const pcl::PointCloud<PointT> &cloud,
# const pcl::PointIndices &indices,
# Eigen::Matrix3d &covariance_matrix,
# Eigen::Vector4d ¢roid)
###
# centroid.h
# namespace pcl
# cdef extern from "pcl/common/centroid.h" namespace "pcl":
# /** \brief Compute the normalized 3x3 covariance matrix for a already demeaned point cloud.
# * Normalized means that every entry has been divided by the number of entries in indices.
# * For small number of points, or if you want explicitely the sample-variance, scale the covariance matrix
# * with n / (n-1), where n is the number of points used to calculate the covariance matrix and is returned by this function.
# * \note This method is theoretically exact. However using float for internal calculations reduces the accuracy but increases the efficiency.
# * \param[in] cloud the input point cloud
# * \param[out] covariance_matrix the resultant 3x3 covariance matrix
# * \return number of valid point used to determine the covariance matrix.
# * In case of dense point clouds, this is the same as the size of input cloud.
# * \ingroup common
# */
# template <typename PointT, typename Scalar> inline unsigned int
# computeCovarianceMatrix (const pcl::PointCloud<PointT> &cloud,
# Eigen::Matrix<Scalar, 3, 3> &covariance_matrix);
###
# centroid.h
# namespace pcl
# cdef extern from "pcl/common/centroid.h" namespace "pcl":
# template <typename PointT> inline unsigned int
# computeCovarianceMatrix (const pcl::PointCloud<PointT> &cloud,
# Eigen::Matrix3f &covariance_matrix)
###
# centroid.h
# namespace pcl
# cdef extern from "pcl/common/centroid.h" namespace "pcl":
# template <typename PointT> inline unsigned int
# computeCovarianceMatrix (const pcl::PointCloud<PointT> &cloud,
# Eigen::Matrix3d &covariance_matrix)
###
# centroid.h
# namespace pcl
# cdef extern from "pcl/common/centroid.h" namespace "pcl":
# /** \brief Compute the normalized 3x3 covariance matrix for a already demeaned point cloud.
# * Normalized means that every entry has been divided by the number of entries in indices.
# * For small number of points, or if you want explicitely the sample-variance, scale the covariance matrix
# * with n / (n-1), where n is the number of points used to calculate the covariance matrix and is returned by this function.
# * \note This method is theoretically exact. However using float for internal calculations reduces the accuracy but increases the efficiency.
# * \param[in] cloud the input point cloud
# * \param[in] indices subset of points given by their indices
# * \param[out] covariance_matrix the resultant 3x3 covariance matrix
# * \return number of valid point used to determine the covariance matrix.
# * In case of dense point clouds, this is the same as the size of input cloud.
# * \ingroup common
# */
# template <typename PointT, typename Scalar> inline unsigned int
# computeCovarianceMatrix (const pcl::PointCloud<PointT> &cloud,
# const std::vector<int> &indices,
# Eigen::Matrix<Scalar, 3, 3> &covariance_matrix);
###
# centroid.h
# namespace pcl
# cdef extern from "pcl/common/centroid.h" namespace "pcl":
# template <typename PointT> inline unsigned int
# computeCovarianceMatrix (const pcl::PointCloud<PointT> &cloud,
# const std::vector<int> &indices,
# Eigen::Matrix3f &covariance_matrix)
###
# centroid.h
# namespace pcl
# cdef extern from "pcl/common/centroid.h" namespace "pcl":
# template <typename PointT> inline unsigned int
# computeCovarianceMatrix (const pcl::PointCloud<PointT> &cloud,
# const std::vector<int> &indices,
# Eigen::Matrix3d &covariance_matrix)
###
# centroid.h
# namespace pcl
# cdef extern from "pcl/common/centroid.h" namespace "pcl":
# /** \brief Compute the normalized 3x3 covariance matrix for a already demeaned point cloud.
# * Normalized means that every entry has been divided by the number of entries in indices.
# * For small number of points, or if you want explicitely the sample-variance, scale the covariance matrix
# * with n / (n-1), where n is the number of points used to calculate the covariance matrix and is returned by this function.
# * \note This method is theoretically exact. However using float for internal calculations reduces the accuracy but increases the efficiency.
# * \param[in] cloud the input point cloud
# * \param[in] indices subset of points given by their indices
# * \param[out] covariance_matrix the resultant 3x3 covariance matrix
# * \return number of valid point used to determine the covariance matrix.
# * In case of dense point clouds, this is the same as the size of input cloud.
# * \ingroup common
# */
# template <typename PointT, typename Scalar> inline unsigned int
# computeCovarianceMatrix (const pcl::PointCloud<PointT> &cloud,
# const pcl::PointIndices &indices,
# Eigen::Matrix<Scalar, 3, 3> &covariance_matrix);
###
# centroid.h
# namespace pcl
# cdef extern from "pcl/common/centroid.h" namespace "pcl":
# template <typename PointT> inline unsigned int
# computeCovarianceMatrix (const pcl::PointCloud<PointT> &cloud,
# const pcl::PointIndices &indices,
# Eigen::Matrix3f &covariance_matrix)
###
# centroid.h
# namespace pcl
# cdef extern from "pcl/common/centroid.h" namespace "pcl":
# template <typename PointT> inline unsigned int
# computeCovarianceMatrix (const pcl::PointCloud<PointT> &cloud,
# const pcl::PointIndices &indices,
# Eigen::Matrix3d &covariance_matrix)
###
# centroid.h
# namespace pcl
# cdef extern from "pcl/common/centroid.h" namespace "pcl":
# /** \brief Subtract a centroid from a point cloud and return the de-meaned representation
# * \param[in] cloud_iterator an iterator over the input point cloud
# * \param[in] centroid the centroid of the point cloud
# * \param[out] cloud_out the resultant output point cloud
# * \param[in] npts the number of samples guaranteed to be left in the input cloud, accessible by the iterator. If not given, it will be calculated.
# * \ingroup common
# */
# template <typename PointT, typename Scalar> void
# demeanPointCloud (ConstCloudIterator<PointT> &cloud_iterator,
# const Eigen::Matrix<Scalar, 4, 1> ¢roid,
# pcl::PointCloud<PointT> &cloud_out,
# int npts = 0);
###
# centroid.h
# namespace pcl
# cdef extern from "pcl/common/centroid.h" namespace "pcl":
# template <typename PointT> void
# demeanPointCloud (ConstCloudIterator<PointT> &cloud_iterator,
# const Eigen::Vector4f ¢roid,
# pcl::PointCloud<PointT> &cloud_out,
# int npts = 0)
###
# centroid.h
# namespace pcl
# cdef extern from "pcl/common/centroid.h" namespace "pcl":
# template <typename PointT> void
# demeanPointCloud (ConstCloudIterator<PointT> &cloud_iterator,
# const Eigen::Vector4d ¢roid,
# pcl::PointCloud<PointT> &cloud_out,
# int npts = 0)
###
# centroid.h
# namespace pcl
# cdef extern from "pcl/common/centroid.h" namespace "pcl":
# /** \brief Subtract a centroid from a point cloud and return the de-meaned representation
# * \param[in] cloud_in the input point cloud
# * \param[in] centroid the centroid of the point cloud
# * \param[out] cloud_out the resultant output point cloud
# * \ingroup common
# */
# template <typename PointT, typename Scalar> void
# demeanPointCloud (const pcl::PointCloud<PointT> &cloud_in,
# const Eigen::Matrix<Scalar, 4, 1> ¢roid,
# pcl::PointCloud<PointT> &cloud_out);
###
# centroid.h
# namespace pcl
# cdef extern from "pcl/common/centroid.h" namespace "pcl":
# template <typename PointT> void
# demeanPointCloud (ConstCloudIterator<PointT> &cloud_iterator,
# const Eigen::Vector4f ¢roid,
# pcl::PointCloud<PointT> &cloud_out)
###
# centroid.h
# namespace pcl
# cdef extern from "pcl/common/centroid.h" namespace "pcl":
# template <typename PointT> void
# demeanPointCloud (ConstCloudIterator<PointT> &cloud_iterator,
# const Eigen::Vector4d ¢roid,
# pcl::PointCloud<PointT> &cloud_out)
###
# centroid.h
# namespace pcl
# cdef extern from "pcl/common/centroid.h" namespace "pcl":
# /** \brief Subtract a centroid from a point cloud and return the de-meaned representation
# * \param[in] cloud_in the input point cloud
# * \param[in] indices the set of point indices to use from the input point cloud
# * \param[out] centroid the centroid of the point cloud
# * \param cloud_out the resultant output point cloud
# * \ingroup common
# */
# template <typename PointT, typename Scalar> void
# demeanPointCloud (const pcl::PointCloud<PointT> &cloud_in,
# const std::vector<int> &indices,
# const Eigen::Matrix<Scalar, 4, 1> ¢roid,
# pcl::PointCloud<PointT> &cloud_out);
###
# centroid.h
# namespace pcl
# cdef extern from "pcl/common/centroid.h" namespace "pcl":
# template <typename PointT> void
# demeanPointCloud (const pcl::PointCloud<PointT> &cloud_in,
# const std::vector<int> &indices,
# const Eigen::Vector4f ¢roid,
# pcl::PointCloud<PointT> &cloud_out)
###
# centroid.h
# namespace pcl
# cdef extern from "pcl/common/centroid.h" namespace "pcl":
# template <typename PointT> void
# demeanPointCloud (const pcl::PointCloud<PointT> &cloud_in,
# const std::vector<int> &indices,
# const Eigen::Vector4d ¢roid,
# pcl::PointCloud<PointT> &cloud_out)
###
# centroid.h
# namespace pcl
# cdef extern from "pcl/common/centroid.h" namespace "pcl":
# /** \brief Subtract a centroid from a point cloud and return the de-meaned representation
# * \param[in] cloud_in the input point cloud
# * \param[in] indices the set of point indices to use from the input point cloud
# * \param[out] centroid the centroid of the point cloud
# * \param cloud_out the resultant output point cloud
# * \ingroup common
# */
# template <typename PointT, typename Scalar> void
# demeanPointCloud (const pcl::PointCloud<PointT> &cloud_in,
# const pcl::PointIndices& indices,
# const Eigen::Matrix<Scalar, 4, 1> ¢roid,
# pcl::PointCloud<PointT> &cloud_out);
###
# centroid.h
# namespace pcl
# cdef extern from "pcl/common/centroid.h" namespace "pcl":
# template <typename PointT> void
# demeanPointCloud (const pcl::PointCloud<PointT> &cloud_in,
# const pcl::PointIndices& indices,
# const Eigen::Vector4f ¢roid,
# pcl::PointCloud<PointT> &cloud_out)
###
# centroid.h
# namespace pcl
# cdef extern from "pcl/common/centroid.h" namespace "pcl":
# template <typename PointT> void
# demeanPointCloud (const pcl::PointCloud<PointT> &cloud_in,
# const pcl::PointIndices& indices,
# const Eigen::Vector4d ¢roid,
# pcl::PointCloud<PointT> &cloud_out)
###
# centroid.h
# namespace pcl
# cdef extern from "pcl/common/centroid.h" namespace "pcl":
# /** \brief Subtract a centroid from a point cloud and return the de-meaned
# * representation as an Eigen matrix
# * \param[in] cloud_iterator an iterator over the input point cloud
# * \param[in] centroid the centroid of the point cloud
# * \param[out] cloud_out the resultant output XYZ0 dimensions of \a cloud_in as
# * an Eigen matrix (4 rows, N pts columns)
# * \param[in] npts the number of samples guaranteed to be left in the input cloud, accessible by the iterator. If not given, it will be calculated.
# * \ingroup common
# */
# template <typename PointT, typename Scalar> void
# demeanPointCloud (ConstCloudIterator<PointT> &cloud_iterator,
# const Eigen::Matrix<Scalar, 4, 1> ¢roid,
# Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic> &cloud_out,
# int npts = 0);
###
# centroid.h
# namespace pcl
# cdef extern from "pcl/common/centroid.h" namespace "pcl":
# template <typename PointT> void
# demeanPointCloud (ConstCloudIterator<PointT> &cloud_iterator,
# const Eigen::Vector4f ¢roid,
# Eigen::MatrixXf &cloud_out,
# int npts = 0)
###
# centroid.h
# namespace pcl
# cdef extern from "pcl/common/centroid.h" namespace "pcl":
# template <typename PointT> void
# demeanPointCloud (ConstCloudIterator<PointT> &cloud_iterator,
# const Eigen::Vector4d ¢roid,
# Eigen::MatrixXd &cloud_out,
# int npts = 0)
###
# centroid.h
# namespace pcl
# cdef extern from "pcl/common/centroid.h" namespace "pcl":
# /** \brief Subtract a centroid from a point cloud and return the de-meaned
# * representation as an Eigen matrix
# * \param[in] cloud_in the input point cloud
# * \param[in] centroid the centroid of the point cloud
# * \param[out] cloud_out the resultant output XYZ0 dimensions of \a cloud_in as
# * an Eigen matrix (4 rows, N pts columns)
# * \ingroup common
# */
# template <typename PointT, typename Scalar> void
# demeanPointCloud (const pcl::PointCloud<PointT> &cloud_in,
# const Eigen::Matrix<Scalar, 4, 1> ¢roid,
# Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic> &cloud_out);
###
# centroid.h
# namespace pcl
# cdef extern from "pcl/common/centroid.h" namespace "pcl":
# template <typename PointT> void
# demeanPointCloud (const pcl::PointCloud<PointT> &cloud_in,
# const Eigen::Vector4f ¢roid,
# Eigen::MatrixXf &cloud_out)
###
# centroid.h
# namespace pcl
# cdef extern from "pcl/common/centroid.h" namespace "pcl":
# template <typename PointT> void
# demeanPointCloud (const pcl::PointCloud<PointT> &cloud_in,
# const Eigen::Vector4d ¢roid,
# Eigen::MatrixXd &cloud_out)
###
# centroid.h
# namespace pcl
# cdef extern from "pcl/common/centroid.h" namespace "pcl":
# /** \brief Subtract a centroid from a point cloud and return the de-meaned
# * representation as an Eigen matrix
# * \param[in] cloud_in the input point cloud
# * \param[in] indices the set of point indices to use from the input point cloud
# * \param[in] centroid the centroid of the point cloud
# * \param[out] cloud_out the resultant output XYZ0 dimensions of \a cloud_in as
# * an Eigen matrix (4 rows, N pts columns)
# * \ingroup common
# */
# template <typename PointT, typename Scalar> void
# demeanPointCloud (const pcl::PointCloud<PointT> &cloud_in,
# const std::vector<int> &indices,
# const Eigen::Matrix<Scalar, 4, 1> ¢roid,
# Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic> &cloud_out);
###
# centroid.h
# namespace pcl
# cdef extern from "pcl/common/centroid.h" namespace "pcl":
# template <typename PointT> void
# demeanPointCloud (const pcl::PointCloud<PointT> &cloud_in,
# const std::vector<int> &indices,
# const Eigen::Vector4f ¢roid,
# Eigen::MatrixXf &cloud_out)
###
# centroid.h
# namespace pcl
# cdef extern from "pcl/common/centroid.h" namespace "pcl":
# template <typename PointT> void
# demeanPointCloud (const pcl::PointCloud<PointT> &cloud_in,
# const std::vector<int> &indices,
# const Eigen::Vector4d ¢roid,
# Eigen::MatrixXd &cloud_out)
###
# centroid.h
# namespace pcl
# cdef extern from "pcl/common/centroid.h" namespace "pcl":
# /** \brief Subtract a centroid from a point cloud and return the de-meaned
# * representation as an Eigen matrix
# * \param[in] cloud_in the input point cloud
# * \param[in] indices the set of point indices to use from the input point cloud
# * \param[in] centroid the centroid of the point cloud
# * \param[out] cloud_out the resultant output XYZ0 dimensions of \a cloud_in as
# * an Eigen matrix (4 rows, N pts columns)
# * \ingroup common
# */
# template <typename PointT, typename Scalar> void
# demeanPointCloud (const pcl::PointCloud<PointT> &cloud_in,
# const pcl::PointIndices& indices,
# const Eigen::Matrix<Scalar, 4, 1> ¢roid,
# Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic> &cloud_out);
###
# centroid.h
# namespace pcl
# cdef extern from "pcl/common/centroid.h" namespace "pcl":
# template <typename PointT> void
# demeanPointCloud (const pcl::PointCloud<PointT> &cloud_in,
# const pcl::PointIndices& indices,
# const Eigen::Vector4f ¢roid,
# Eigen::MatrixXf &cloud_out)
###
# centroid.h
# namespace pcl
# cdef extern from "pcl/common/centroid.h" namespace "pcl":
# template <typename PointT> void
# demeanPointCloud (const pcl::PointCloud<PointT> &cloud_in,
# const pcl::PointIndices& indices,
# const Eigen::Vector4d ¢roid,
# Eigen::MatrixXd &cloud_out)
###
# centroid.h
# namespace pcl
# cdef extern from "pcl/common/centroid.h" namespace "pcl":
# /** \brief Helper functor structure for n-D centroid estimation. */
# template<typename PointT, typename Scalar>
# struct NdCentroidFunctor
# {
# typedef typename traits::POD<PointT>::type Pod;
#
# NdCentroidFunctor (const PointT &p, Eigen::Matrix<Scalar, Eigen::Dynamic, 1> ¢roid)
# : f_idx_ (0),
# centroid_ (centroid),
# p_ (reinterpret_cast<const Pod&>(p)) { }
#
# template<typename Key> inline void operator() ()
#
# };
###
# centroid.h
# namespace pcl
# cdef extern from "pcl/common/centroid.h" namespace "pcl":
# /** \brief General, all purpose nD centroid estimation for a set of points using their
# * indices.
# * \param cloud the input point cloud
# * \param centroid the output centroid
# * \ingroup common
# */
# template <typename PointT, typename Scalar> inline void
# computeNDCentroid (const pcl::PointCloud<PointT> &cloud,
# Eigen::Matrix<Scalar, Eigen::Dynamic, 1> ¢roid);
###
# centroid.h
# namespace pcl
# cdef extern from "pcl/common/centroid.h" namespace "pcl":
# template <typename PointT> inline void
# computeNDCentroid (const pcl::PointCloud<PointT> &cloud,
# Eigen::VectorXf ¢roid)
# {
# return (computeNDCentroid<PointT, float> (cloud, centroid));
# }
###
# centroid.h
# namespace pcl
# cdef extern from "pcl/common/centroid.h" namespace "pcl":
# template <typename PointT> inline void
# computeNDCentroid (const pcl::PointCloud<PointT> &cloud,
# Eigen::VectorXd ¢roid)
###
# centroid.h
# namespace pcl
# cdef extern from "pcl/common/centroid.h" namespace "pcl":
# /** \brief General, all purpose nD centroid estimation for a set of points using their
# * indices.
# * \param cloud the input point cloud
# * \param indices the point cloud indices that need to be used
# * \param centroid the output centroid
# * \ingroup common
# */
# template <typename PointT, typename Scalar> inline void
# computeNDCentroid (const pcl::PointCloud<PointT> &cloud,
# const std::vector<int> &indices,
# Eigen::Matrix<Scalar, Eigen::Dynamic, 1> ¢roid);
###
# centroid.h
# namespace pcl
# cdef extern from "pcl/common/centroid.h" namespace "pcl":
# template <typename PointT> inline void
# computeNDCentroid (const pcl::PointCloud<PointT> &cloud,
# const std::vector<int> &indices,
# Eigen::VectorXf ¢roid)
###
# centroid.h
# namespace pcl
# cdef extern from "pcl/common/centroid.h" namespace "pcl":
# template <typename PointT> inline void
# computeNDCentroid (const pcl::PointCloud<PointT> &cloud,
# const std::vector<int> &indices,
# Eigen::VectorXd ¢roid)
###
# centroid.h
# namespace pcl
# cdef extern from "pcl/common/centroid.h" namespace "pcl":
# /** \brief General, all purpose nD centroid estimation for a set of points using their
# * indices.
# * \param cloud the input point cloud
# * \param indices the point cloud indices that need to be used
# * \param centroid the output centroid
# * \ingroup common
# */
# template <typename PointT, typename Scalar> inline void
# computeNDCentroid (const pcl::PointCloud<PointT> &cloud,
# const pcl::PointIndices &indices,
# Eigen::Matrix<Scalar, Eigen::Dynamic, 1> ¢roid);
###
# centroid.h
# namespace pcl
# cdef extern from "pcl/common/centroid.h" namespace "pcl":
# template <typename PointT> inline void
# computeNDCentroid (const pcl::PointCloud<PointT> &cloud,
# const pcl::PointIndices &indices,
# Eigen::VectorXf ¢roid)
###
# centroid.h
# namespace pcl
# cdef extern from "pcl/common/centroid.h" namespace "pcl":
# template <typename PointT> inline void
# computeNDCentroid (const pcl::PointCloud<PointT> &cloud,
# const pcl::PointIndices &indices,
# Eigen::VectorXd ¢roid)
###
# centroid.h
# namespace pcl
# cdef extern from "pcl/common/centroid.h" namespace "pcl":
# /** A generic class that computes the centroid of points fed to it.
# * Here by "centroid" we denote not just the mean of 3D point coordinates,
# * but also mean of values in the other data fields. The general-purpose
# * \ref computeNDCentroid() function also implements this sort of
# * functionality, however it does it in a "dumb" way, i.e. regardless of the
# * semantics of the data inside a field it simply averages the values. In
# * certain cases (e.g. for \c x, \c y, \c z, \c intensity fields) this
# * behavior is reasonable, however in other cases (e.g. \c rgb, \c rgba,
# * \c label fields) this does not lead to meaningful results.
# * This class is capable of computing the centroid in a "smart" way, i.e.
# * taking into account the meaning of the data inside fields. Currently the
# * following fields are supported:
# * - XYZ (\c x, \c y, \c z)
# * Separate average for each field.
# * - Normal (\c normal_x, \c normal_y, \c normal_z)
# * Separate average for each field, and the resulting vector is normalized.
# * - Curvature (\c curvature)
# * Average.
# * - RGB/RGBA (\c rgb or \c rgba)
# * Separate average for R, G, B, and alpha channels.
# * - Intensity (\c intensity)
# * Average.
# * - Label (\c label)
# * Majority vote. If several labels have the same largest support then the
# * smaller label wins.
# *
# * The template parameter defines the type of points that may be accumulated
# * with this class. This may be an arbitrary PCL point type, and centroid
# * computation will happen only for the fields that are present in it and are
# * supported.
# *
# * Current centroid may be retrieved at any time using get(). Note that the
# * function is templated on point type, so it is possible to fetch the
# * centroid into a point type that differs from the type of points that are
# * being accumulated. All the "extra" fields for which the centroid is not
# * being calculated will be left untouched.
# *
# * Example usage:
# *
# * \code
# * // Create and accumulate points
# * CentroidPoint<pcl::PointXYZ> centroid;
# * centroid.add (pcl::PointXYZ (1, 2, 3);
# * centroid.add (pcl::PointXYZ (5, 6, 7);
# * // Fetch centroid using `get()`
# * pcl::PointXYZ c1;
# * centroid.get (c1);
# * // The expected result is: c1.x == 3, c1.y == 4, c1.z == 5
# * // It is also okay to use `get()` with a different point type
# * pcl::PointXYZRGB c2;
# * centroid.get (c2);
# * // The expected result is: c2.x == 3, c2.y == 4, c2.z == 5,
# * // and c2.rgb is left untouched
# * \endcode
# *
# * \note Assumes that the points being inserted are valid.
# *
# * \note This class template can be successfully instantiated for *any*
# * PCL point type. Of course, each of the field averages is computed only if
# * the point type has the corresponding field.
# *
# * \ingroup common
# * \author Sergey Alexandrov */
# template <typename PointT>
# class CentroidPoint
#
# public:
#
# CentroidPoint ()
# : num_points_ (0)
# {
# }
#
# /** Add a new point to the centroid computation.
# *
# * In this function only the accumulators and point counter are updated,
# * actual centroid computation does not happen until get() is called. */
# void
# add (const PointT& point)
# {
# // Invoke add point on each accumulator
# boost::fusion::for_each (accumulators_, detail::AddPoint<PointT> (point));
# ++num_points_;
# }
#
# /** Retrieve the current centroid.
# *
# * Computation (division of accumulated values by the number of points
# * and normalization where applicable) happens here. The result is not
# * cached, so any subsequent call to this function will trigger
# * re-computation.
# *
# * If the number of accumulated points is zero, then the point will be
# * left untouched. */
# template <typename PointOutT> void
# get (PointOutT& point) const
# {
# if (num_points_ != 0)
# {
# // Filter accumulators so that only those that are compatible with
# // both PointT and requested point type remain
# typename pcl::detail::Accumulators<PointT, PointOutT>::type ca (accumulators_);
# // Invoke get point on each accumulator in filtered list
# boost::fusion::for_each (ca, detail::GetPoint<PointOutT> (point, num_points_));
# }
# }
#
# /** Get the total number of points that were added. */
# size_t getSize () const
#
# EIGEN_MAKE_ALIGNED_OPERATOR_NEW
#
#
# };
#
# centroid.h
# namespace pcl
# cdef extern from "pcl/common/centroid.h" namespace "pcl":
# /** Compute the centroid of a set of points and return it as a point.
# *
# * Implementation leverages \ref CentroidPoint class and therefore behaves
# * differently from \ref compute3DCentroid() and \ref computeNDCentroid().
# * See \ref CentroidPoint documentation for explanation.
# *
# * \param[in] cloud input point cloud
# * \param[out] centroid output centroid
# *
# * \return number of valid points used to determine the centroid (will be the
# * same as the size of the cloud if it is dense)
# *
# * \note If return value is \c 0, then the centroid is not changed, thus is
# * not valid.
# *
# * \ingroup common */
# template <typename PointInT, typename PointOutT> size_t
# computeCentroid (const pcl::PointCloud<PointInT>& cloud,
# PointOutT& centroid);
###
# centroid.h
# namespace pcl
# cdef extern from "pcl/common/centroid.h" namespace "pcl":
# /** Compute the centroid of a set of points and return it as a point.
# * \param[in] cloud
# * \param[in] indices point cloud indices that need to be used
# * \param[out] centroid
# * This is an overloaded function provided for convenience. See the
# * documentation for computeCentroid().
# *
# * \ingroup common */
# template <typename PointInT, typename PointOutT> size_t
# computeCentroid (const pcl::PointCloud<PointInT>& cloud,
# const std::vector<int>& indices,
# PointOutT& centroid);
#
###
### end of centroid.h file ###
# common.h
# namespace pcl
# cdef extern from "pcl/common/common.h" namespace "pcl":
# /** \brief Compute the smallest angle between two vectors in the [ 0, PI ) interval in 3D.
# * \param v1 the first 3D vector (represented as a \a Eigen::Vector4f)
# * \param v2 the second 3D vector (represented as a \a Eigen::Vector4f)
# * \return the angle between v1 and v2
# * \ingroup common
# */
# inline double getAngle3D (const Eigen::Vector4f &v1, const Eigen::Vector4f &v2);
###
# common.h
# namespace pcl
# cdef extern from "pcl/common/common.h" namespace "pcl":
# /** \brief Compute both the mean and the standard deviation of an array of values
# * \param values the array of values
# * \param mean the resultant mean of the distribution
# * \param stddev the resultant standard deviation of the distribution
# * \ingroup common
# */
# inline void getMeanStd (const std::vector<float> &values, double &mean, double &stddev);
###
# common.h
# namespace pcl
# cdef extern from "pcl/common/common.h" namespace "pcl":
# /** \brief Get a set of points residing in a box given its bounds
# * \param cloud the point cloud data message
# * \param min_pt the minimum bounds
# * \param max_pt the maximum bounds
# * \param indices the resultant set of point indices residing in the box
# * \ingroup common
# */
# template <typename PointT> inline void
# getPointsInBox (const pcl::PointCloud<PointT> &cloud, Eigen::Vector4f &min_pt,
# Eigen::Vector4f &max_pt, std::vector<int> &indices);
###
# common.h
# namespace pcl
# cdef extern from "pcl/common/common.h" namespace "pcl":
# /** \brief Get the point at maximum distance from a given point and a given pointcloud
# * \param cloud the point cloud data message
# * \param pivot_pt the point from where to compute the distance
# * \param max_pt the point in cloud that is the farthest point away from pivot_pt
# * \ingroup common
# */
# template<typename PointT> inline void
# getMaxDistance (const pcl::PointCloud<PointT> &cloud, const Eigen::Vector4f &pivot_pt, Eigen::Vector4f &max_pt);
###
# common.h
# namespace pcl
# cdef extern from "pcl/common/common.h" namespace "pcl":
# /** \brief Get the point at maximum distance from a given point and a given pointcloud
# * \param cloud the point cloud data message
# * \param pivot_pt the point from where to compute the distance
# * \param indices the vector of point indices to use from \a cloud
# * \param max_pt the point in cloud that is the farthest point away from pivot_pt
# * \ingroup common
# */
# template<typename PointT> inline void
# getMaxDistance (const pcl::PointCloud<PointT> &cloud, const std::vector<int> &indices,
# const Eigen::Vector4f &pivot_pt, Eigen::Vector4f &max_pt);
###
# common.h
# namespace pcl
# cdef extern from "pcl/common/common.h" namespace "pcl":
# /** \brief Get the minimum and maximum values on each of the 3 (x-y-z) dimensions in a given pointcloud
# * \param cloud the point cloud data message
# * \param min_pt the resultant minimum bounds
# * \param max_pt the resultant maximum bounds
# * \ingroup common
# */
# template <typename PointT> inline void
# getMinMax3D (const pcl::PointCloud<PointT> &cloud, PointT &min_pt, PointT &max_pt);
###
# common.h
# namespace pcl
# cdef extern from "pcl/common/common.h" namespace "pcl":
# /** \brief Get the minimum and maximum values on each of the 3 (x-y-z) dimensions in a given pointcloud
# * \param cloud the point cloud data message
# * \param min_pt the resultant minimum bounds
# * \param max_pt the resultant maximum bounds
# * \ingroup common
# */
# template <typename PointT> inline void
# getMinMax3D (const pcl::PointCloud<PointT> &cloud,
# Eigen::Vector4f &min_pt, Eigen::Vector4f &max_pt);
###
# common.h
# namespace pcl
# cdef extern from "pcl/common/common.h" namespace "pcl":
# /** \brief Get the minimum and maximum values on each of the 3 (x-y-z) dimensions in a given pointcloud
# * \param cloud the point cloud data message
# * \param indices the vector of point indices to use from \a cloud
# * \param min_pt the resultant minimum bounds
# * \param max_pt the resultant maximum bounds
# * \ingroup common
# */
# template <typename PointT> inline void
# getMinMax3D (const pcl::PointCloud<PointT> &cloud, const std::vector<int> &indices,
# Eigen::Vector4f &min_pt, Eigen::Vector4f &max_pt);
###
# common.h
# namespace pcl
# cdef extern from "pcl/common/common.h" namespace "pcl":
# /** \brief Get the minimum and maximum values on each of the 3 (x-y-z) dimensions in a given pointcloud
# * \param cloud the point cloud data message
# * \param indices the vector of point indices to use from \a cloud
# * \param min_pt the resultant minimum bounds
# * \param max_pt the resultant maximum bounds
# * \ingroup common
# */
# template <typename PointT> inline void
# getMinMax3D (const pcl::PointCloud<PointT> &cloud, const pcl::PointIndices &indices,
# Eigen::Vector4f &min_pt, Eigen::Vector4f &max_pt);
###
# common.h
# namespace pcl
# cdef extern from "pcl/common/common.h" namespace "pcl":
# /** \brief Compute the radius of a circumscribed circle for a triangle formed of three points pa, pb, and pc
# * \param pa the first point
# * \param pb the second point
# * \param pc the third point
# * \return the radius of the circumscribed circle
# * \ingroup common
# */
# template <typename PointT> inline double
# getCircumcircleRadius (const PointT &pa, const PointT &pb, const PointT &pc);
###
# common.h
# namespace pcl
# cdef extern from "pcl/common/common.h" namespace "pcl":
# /** \brief Get the minimum and maximum values on a point histogram
# * \param histogram the point representing a multi-dimensional histogram
# * \param len the length of the histogram
# * \param min_p the resultant minimum
# * \param max_p the resultant maximum
# * \ingroup common
# */
# template <typename PointT> inline void
# getMinMax (const PointT &histogram, int len, float &min_p, float &max_p);
###
# common.h
# namespace pcl
# cdef extern from "pcl/common/common.h" namespace "pcl":
# /** \brief Calculate the area of a polygon given a point cloud that defines the polygon
# * \param polygon point cloud that contains those vertices that comprises the polygon. Vertices are stored in counterclockwise.
# * \return the polygon area
# * \ingroup common
# */
# template<typename PointT> inline float
# calculatePolygonArea (const pcl::PointCloud<PointT> &polygon);
###
# common.h
# namespace pcl
# cdef extern from "pcl/common/common.h" namespace "pcl":
# /** \brief Get the minimum and maximum values on a point histogram
# * \param cloud the cloud containing multi-dimensional histograms
# * \param idx point index representing the histogram that we need to compute min/max for
# * \param field_name the field name containing the multi-dimensional histogram
# * \param min_p the resultant minimum
# * \param max_p the resultant maximum
# * \ingroup common
# */
# PCL_EXPORTS void
# getMinMax (const pcl::PCLPointCloud2 &cloud, int idx, const std::string &field_name,
# float &min_p, float &max_p);
###
# common.h
# namespace pcl
# cdef extern from "pcl/common/common.h" namespace "pcl":
# /** \brief Compute both the mean and the standard deviation of an array of values
# * \param values the array of values
# * \param mean the resultant mean of the distribution
# * \param stddev the resultant standard deviation of the distribution
# * \ingroup common
# */
# PCL_EXPORTS void
# getMeanStdDev (const std::vector<float> &values, double &mean, double &stddev);
#
###
# common_headers.h
###
# concatenate.h
# // We're doing a lot of black magic with Boost here, so disable warnings in Maintainer mode, as we will never
# // be able to fix them anyway
# #ifdef BUILD_Maintainer
# # if defined __GNUC__
# # if __GNUC__ == 4 && __GNUC_MINOR__ > 3
# # pragma GCC diagnostic ignored "-Weffc++"
# # pragma GCC diagnostic ignored "-pedantic"
# # else
# # pragma GCC system_header
# # endif
# # elif defined _MSC_VER
# # pragma warning(push, 1)
# # endif
# #endif
###
# concatenate.h
# namespace pcl
# cdef extern from "pcl/common/concatenate.h" namespace "pcl":
# /** \brief Helper functor structure for concatenate.
# * \ingroup common
# */
# template<typename PointInT, typename PointOutT>
# struct NdConcatenateFunctor
# {
# typedef typename traits::POD<PointInT>::type PodIn;
# typedef typename traits::POD<PointOutT>::type PodOut;
#
# NdConcatenateFunctor (const PointInT &p1, PointOutT &p2)
# : p1_ (reinterpret_cast<const PodIn&> (p1))
# , p2_ (reinterpret_cast<PodOut&> (p2)) { }
# template<typename Key> inline void
# operator () ()
# {
# // This sucks without Fusion :(
# //boost::fusion::at_key<Key> (p2_) = boost::fusion::at_key<Key> (p1_);
# typedef typename pcl::traits::datatype<PointInT, Key>::type InT;
# typedef typename pcl::traits::datatype<PointOutT, Key>::type OutT;
# // Note: don't currently support different types for the same field (e.g. converting double to float)
# BOOST_MPL_ASSERT_MSG ((boost::is_same<InT, OutT>::value),
# POINT_IN_AND_POINT_OUT_HAVE_DIFFERENT_TYPES_FOR_FIELD,
# (Key, PointInT&, InT, PointOutT&, OutT));
# memcpy (reinterpret_cast<uint8_t*>(&p2_) + pcl::traits::offset<PointOutT, Key>::value,
# reinterpret_cast<const uint8_t*>(&p1_) + pcl::traits::offset<PointInT, Key>::value,
# sizeof (InT));
# }
# }
###
# concatenate.h
# namespace pcl
# cdef extern from "pcl/common/concatenate.h" namespace "pcl":
#ifdef BUILD_Maintainer
# if defined __GNUC__
# if __GNUC__ == 4 && __GNUC_MINOR__ > 3
# pragma GCC diagnostic warning "-Weffc++"
# pragma GCC diagnostic warning "-pedantic"
# endif
# elif defined _MSC_VER
# pragma warning(pop)
# endif
#endif
###
# conversions.h
# namespace pcl
# namespace detail
# cdef extern from "pcl/common/conversions.h" namespace "pcl::detail":
# // For converting template point cloud to message.
# template<typename PointT>
# struct FieldAdder
# {
# FieldAdder (std::vector<pcl::PCLPointField>& fields) : fields_ (fields) {};
#
# template<typename U> void operator() ()
# {
# pcl::PCLPointField f;
# f.name = traits::name<PointT, U>::value;
# f.offset = traits::offset<PointT, U>::value;
# f.datatype = traits::datatype<PointT, U>::value;
# f.count = traits::datatype<PointT, U>::size;
# fields_.push_back (f);
# }
#
# std::vector<pcl::PCLPointField>& fields_;
# };
#
# // For converting message to template point cloud.
# template<typename PointT>
# struct FieldMapper
# {
# FieldMapper (const std::vector<pcl::PCLPointField>& fields,
# std::vector<FieldMapping>& map)
# : fields_ (fields), map_ (map)
# {
# }
#
# template<typename Tag> void
# operator () ()
# {
# BOOST_FOREACH (const pcl::PCLPointField& field, fields_)
# {
# if (FieldMatches<PointT, Tag>()(field))
# {
# FieldMapping mapping;
# mapping.serialized_offset = field.offset;
# mapping.struct_offset = traits::offset<PointT, Tag>::value;
# mapping.size = sizeof (typename traits::datatype<PointT, Tag>::type);
# map_.push_back (mapping);
# return;
# }
# }
# // Disable thrown exception per #595: http://dev.pointclouds.org/issues/595
# PCL_WARN ("Failed to find match for field '%s'.\n", traits::name<PointT, Tag>::value);
# //throw pcl::InvalidConversionException (ss.str ());
# }
#
# const std::vector<pcl::PCLPointField>& fields_;
# std::vector<FieldMapping>& map_;
# };
#
# inline bool fieldOrdering (const FieldMapping& a, const FieldMapping& b)
#
# } //namespace detail
###
# conversions.h
# namespace pcl
# cdef extern from "pcl/common/conversions.h" namespace "pcl":
# template<typename PointT> void createMapping (const std::vector<pcl::PCLPointField>& msg_fields, MsgFieldMap& field_map)
###
# conversions.h
# namespace pcl
# cdef extern from "pcl/common/conversions.h" namespace "pcl":
# /** \brief Convert a PCLPointCloud2 binary data blob into a pcl::PointCloud<T> object using a field_map.
# * \param[in] msg the PCLPointCloud2 binary blob
# * \param[out] cloud the resultant pcl::PointCloud<T>
# * \param[in] field_map a MsgFieldMap object
# * \note Use fromPCLPointCloud2 (PCLPointCloud2, PointCloud<T>) directly or create you
# * own MsgFieldMap using:
# * \code
# * MsgFieldMap field_map;
# * createMapping<PointT> (msg.fields, field_map);
# * \endcode
# */
# template <typename PointT> void fromPCLPointCloud2 (const pcl::PCLPointCloud2& msg, pcl::PointCloud<PointT>& cloud, const MsgFieldMap& field_map)
###
# conversions.h
# namespace pcl
# cdef extern from "pcl/common/conversions.h" namespace "pcl":
# /** \brief Convert a PCLPointCloud2 binary data blob into a pcl::PointCloud<T> object.
# * \param[in] msg the PCLPointCloud2 binary blob
# * \param[out] cloud the resultant pcl::PointCloud<T>
# */
# template<typename PointT> void fromPCLPointCloud2 (const pcl::PCLPointCloud2& msg, pcl::PointCloud<PointT>& cloud)
###
# conversions.h
# namespace pcl
# cdef extern from "pcl/common/conversions.h" namespace "pcl":
# /** \brief Convert a pcl::PointCloud<T> object to a PCLPointCloud2 binary data blob.
# * \param[in] cloud the input pcl::PointCloud<T>
# * \param[out] msg the resultant PCLPointCloud2 binary blob
# */
# template<typename PointT> void toPCLPointCloud2 (const pcl::PointCloud<PointT>& cloud, pcl::PCLPointCloud2& msg)
###
# conversions.h
# namespace pcl
# cdef extern from "pcl/common/conversions.h" namespace "pcl":
# /** \brief Copy the RGB fields of a PointCloud into pcl::PCLImage format
# * \param[in] cloud the point cloud message
# * \param[out] msg the resultant pcl::PCLImage
# * CloudT cloud type, CloudT should be akin to pcl::PointCloud<pcl::PointXYZRGBA>
# * \note will throw std::runtime_error if there is a problem
# */
# template<typename CloudT> void toPCLPointCloud2 (const CloudT& cloud, pcl::PCLImage& msg)
###
# conversions.h
# namespace pcl
# cdef extern from "pcl/common/conversions.h" namespace "pcl":
# /** \brief Copy the RGB fields of a PCLPointCloud2 msg into pcl::PCLImage format
# * \param cloud the point cloud message
# * \param msg the resultant pcl::PCLImage
# * will throw std::runtime_error if there is a problem
# */
# inline void toPCLPointCloud2 (const pcl::PCLPointCloud2& cloud, pcl::PCLImage& msg)
###
# distances.h
# namespace pcl
# cdef extern from "pcl/common/distances.h" namespace "pcl":
# /** \brief Get the shortest 3D segment between two 3D lines
# * \param line_a the coefficients of the first line (point, direction)
# * \param line_b the coefficients of the second line (point, direction)
# * \param pt1_seg the first point on the line segment
# * \param pt2_seg the second point on the line segment
# * \ingroup common
# */
# PCL_EXPORTS void lineToLineSegment (const Eigen::VectorXf &line_a, const Eigen::VectorXf &line_b, Eigen::Vector4f &pt1_seg, Eigen::Vector4f &pt2_seg);
###
# distances.h
# namespace pcl
# cdef extern from "pcl/common/distances.h" namespace "pcl":
# /** \brief Get the square distance from a point to a line (represented by a point and a direction)
# * \param pt a point
# * \param line_pt a point on the line (make sure that line_pt[3] = 0 as there are no internal checks!)
# * \param line_dir the line direction
# * \ingroup common
# */
# double inline sqrPointToLineDistance (const Eigen::Vector4f &pt, const Eigen::Vector4f &line_pt, const Eigen::Vector4f &line_dir)
###
# distances.h
# namespace pcl
# cdef extern from "pcl/common/distances.h" namespace "pcl":
# /** \brief Get the square distance from a point to a line (represented by a point and a direction)
# * \note This one is useful if one has to compute many distances to a fixed line, so the vector length can be pre-computed
# * \param pt a point
# * \param line_pt a point on the line (make sure that line_pt[3] = 0 as there are no internal checks!)
# * \param line_dir the line direction
# * \param sqr_length the squared norm of the line direction
# * \ingroup common
# */
# double inline sqrPointToLineDistance (const Eigen::Vector4f &pt, const Eigen::Vector4f &line_pt, const Eigen::Vector4f &line_dir, const double sqr_length)
###
# distances.h
# namespace pcl
# cdef extern from "pcl/common/distances.h" namespace "pcl":
# /** \brief Obtain the maximum segment in a given set of points, and return the minimum and maximum points.
# * \param[in] cloud the point cloud dataset
# * \param[out] pmin the coordinates of the "minimum" point in \a cloud (one end of the segment)
# * \param[out] pmax the coordinates of the "maximum" point in \a cloud (the other end of the segment)
# * \return the length of segment length
# * \ingroup common
# */
# template <typename PointT> double inline getMaxSegment (const pcl::PointCloud<PointT> &cloud, PointT &pmin, PointT &pmax)
###
# distances.h
# namespace pcl
# cdef extern from "pcl/common/distances.h" namespace "pcl":
# /** \brief Obtain the maximum segment in a given set of points, and return the minimum and maximum points.
# * \param[in] cloud the point cloud dataset
# * \param[in] indices a set of point indices to use from \a cloud
# * \param[out] pmin the coordinates of the "minimum" point in \a cloud (one end of the segment)
# * \param[out] pmax the coordinates of the "maximum" point in \a cloud (the other end of the segment)
# * \return the length of segment length
# * \ingroup common
# */
# template <typename PointT> double inline getMaxSegment (const pcl::PointCloud<PointT> &cloud, const std::vector<int> &indices, PointT &pmin, PointT &pmax)
###
# distances.h
# namespace pcl
# cdef extern from "pcl/common/distances.h" namespace "pcl":
# /** \brief Calculate the squared euclidean distance between the two given points.
# * \param[in] p1 the first point
# * \param[in] p2 the second point
# */
# template<typename PointType1, typename PointType2> inline float
# squaredEuclideanDistance (const PointType1& p1, const PointType2& p2)
###
# distances.h
# namespace pcl
# cdef extern from "pcl/common/distances.h" namespace "pcl":
# /** \brief Calculate the squared euclidean distance between the two given points.
# * \param[in] p1 the first point
# * \param[in] p2 the second point
# */
# template<> inline float
# squaredEuclideanDistance (const PointXY& p1, const PointXY& p2)
###
# distances.h
# namespace pcl
# cdef extern from "pcl/common/distances.h" namespace "pcl":
# /** \brief Calculate the euclidean distance between the two given points.
# * \param[in] p1 the first point
# * \param[in] p2 the second point
# */
# template<typename PointType1, typename PointType2> inline float
# euclideanDistance (const PointType1& p1, const PointType2& p2)
###
# eigen.h
# #ifndef NOMINMAX
# #define NOMINMAX
# #endif
#
# #if defined __GNUC__
# # pragma GCC system_header
# #elif defined __SUNPRO_CC
# # pragma disable_warn
# #endif
#
# #include <cmath>
# #include <pcl/ModelCoefficients.h>
#
# #include <Eigen/StdVector>
# #include <Eigen/Core>
# #include <Eigen/Eigenvalues>
# #include <Eigen/Geometry>
# #include <Eigen/SVD>
# #include <Eigen/LU>
# #include <Eigen/Dense>
# #include <Eigen/Eigenvalues>
#
# eigen.h
# namespace pcl
# cdef extern from "pcl/common/eigen.h" namespace "pcl":
# /** \brief Compute the roots of a quadratic polynom x^2 + b*x + c = 0
# * \param[in] b linear parameter
# * \param[in] c constant parameter
# * \param[out] roots solutions of x^2 + b*x + c = 0
# */
# template <typename Scalar, typename Roots> void computeRoots2 (const Scalar &b, const Scalar &c, Roots &roots);
###
# eigen.h
# namespace pcl
# cdef extern from "pcl/common/eigen.h" namespace "pcl":
# /** \brief computes the roots of the characteristic polynomial of the input matrix m, which are the eigenvalues
# * \param[in] m input matrix
# * \param[out] roots roots of the characteristic polynomial of the input matrix m, which are the eigenvalues
# */
# template <typename Matrix, typename Roots> void computeRoots (const Matrix &m, Roots &roots);
###
# eigen.h
# namespace pcl
# cdef extern from "pcl/common/eigen.h" namespace "pcl":
# /** \brief determine the smallest eigenvalue and its corresponding eigenvector
# * \param[in] mat input matrix that needs to be symmetric and positive semi definite
# * \param[out] eigenvalue the smallest eigenvalue of the input matrix
# * \param[out] eigenvector the corresponding eigenvector to the smallest eigenvalue of the input matrix
# * \ingroup common
# */
# template <typename Matrix, typename Vector> void
# eigen22 (const Matrix &mat, typename Matrix::Scalar &eigenvalue, Vector &eigenvector);
###
# eigen.h
# namespace pcl
# cdef extern from "pcl/common/eigen.h" namespace "pcl":
# /** \brief determine the smallest eigenvalue and its corresponding eigenvector
# * \param[in] mat input matrix that needs to be symmetric and positive semi definite
# * \param[out] eigenvectors the corresponding eigenvector to the smallest eigenvalue of the input matrix
# * \param[out] eigenvalues the smallest eigenvalue of the input matrix
# * \ingroup common
# */
# template <typename Matrix, typename Vector> void eigen22 (const Matrix &mat, Matrix &eigenvectors, Vector &eigenvalues);
###
# eigen.h
# namespace pcl
# cdef extern from "pcl/common/eigen.h" namespace "pcl":
# /** \brief determines the corresponding eigenvector to the given eigenvalue of the symmetric positive semi definite input matrix
# * \param[in] mat symmetric positive semi definite input matrix
# * \param[in] eigenvalue the eigenvalue which corresponding eigenvector is to be computed
# * \param[out] eigenvector the corresponding eigenvector for the input eigenvalue
# * \ingroup common
# */
# template <typename Matrix, typename Vector> void computeCorrespondingEigenVector (const Matrix &mat, const typename Matrix::Scalar &eigenvalue, Vector &eigenvector);
###
# eigen.h
# namespace pcl
# cdef extern from "pcl/common/eigen.h" namespace "pcl":
# /** \brief determines the eigenvector and eigenvalue of the smallest eigenvalue of the symmetric positive semi definite input matrix
# * \param[in] mat symmetric positive semi definite input matrix
# * \param[out] eigenvalue smallest eigenvalue of the input matrix
# * \param[out] eigenvector the corresponding eigenvector for the input eigenvalue
# * \note if the smallest eigenvalue is not unique, this function may return any eigenvector that is consistent to the eigenvalue.
# * \ingroup common
# */
# template <typename Matrix, typename Vector> void eigen33 (const Matrix &mat, typename Matrix::Scalar &eigenvalue, Vector &eigenvector);
###
# eigen.h
# namespace pcl
# cdef extern from "pcl/common/eigen.h" namespace "pcl":
# /** \brief determines the eigenvalues of the symmetric positive semi definite input matrix
# * \param[in] mat symmetric positive semi definite input matrix
# * \param[out] evals resulting eigenvalues in ascending order
# * \ingroup common
# */
# template <typename Matrix, typename Vector> void eigen33 (const Matrix &mat, Vector &evals);
###
# eigen.h
# namespace pcl
# cdef extern from "pcl/common/eigen.h" namespace "pcl":
# /** \brief determines the eigenvalues and corresponding eigenvectors of the symmetric positive semi definite input matrix
# * \param[in] mat symmetric positive semi definite input matrix
# * \param[out] evecs resulting eigenvalues in ascending order
# * \param[out] evals corresponding eigenvectors in correct order according to eigenvalues
# * \ingroup common
# */
# template <typename Matrix, typename Vector> void eigen33 (const Matrix &mat, Matrix &evecs, Vector &evals);
###
# eigen.h
# namespace pcl
# cdef extern from "pcl/common/eigen.h" namespace "pcl":
# /** \brief Calculate the inverse of a 2x2 matrix
# * \param[in] matrix matrix to be inverted
# * \param[out] inverse the resultant inverted matrix
# * \note only the upper triangular part is taken into account => non symmetric matrices will give wrong results
# * \return determinant of the original matrix => if 0 no inverse exists => result is invalid
# * \ingroup common
# */
# template <typename Matrix> typename Matrix::Scalar invert2x2 (const Matrix &matrix, Matrix &inverse);
###
# eigen.h
# namespace pcl
# cdef extern from "pcl/common/eigen.h" namespace "pcl":
# /** \brief Calculate the inverse of a 3x3 symmetric matrix.
# * \param[in] matrix matrix to be inverted
# * \param[out] inverse the resultant inverted matrix
# * \note only the upper triangular part is taken into account => non symmetric matrices will give wrong results
# * \return determinant of the original matrix => if 0 no inverse exists => result is invalid
# * \ingroup common
# */
# template <typename Matrix> typename Matrix::Scalar invert3x3SymMatrix (const Matrix &matrix, Matrix &inverse);
###
# eigen.h
# namespace pcl
# cdef extern from "pcl/common/eigen.h" namespace "pcl":
# /** \brief Calculate the inverse of a general 3x3 matrix.
# * \param[in] matrix matrix to be inverted
# * \param[out] inverse the resultant inverted matrix
# * \return determinant of the original matrix => if 0 no inverse exists => result is invalid
# * \ingroup common
# */
# template <typename Matrix> typename Matrix::Scalar
# invert3x3Matrix (const Matrix &matrix, Matrix &inverse);
###
# eigen.h
# namespace pcl
# cdef extern from "pcl/common/eigen.h" namespace "pcl":
# /** \brief Calculate the determinant of a 3x3 matrix.
# * \param[in] matrix matrix
# * \return determinant of the matrix
# * \ingroup common
# */
# template <typename Matrix> typename Matrix::Scalar determinant3x3Matrix (const Matrix &matrix);
###
# eigen.h
# namespace pcl
# cdef extern from "pcl/common/eigen.h" namespace "pcl":
# /** \brief Get the unique 3D rotation that will rotate \a z_axis into (0,0,1) and \a y_direction into a vector
# * with x=0 (or into (0,1,0) should \a y_direction be orthogonal to \a z_axis)
# * \param[in] z_axis the z-axis
# * \param[in] y_direction the y direction
# * \param[out] transformation the resultant 3D rotation
# * \ingroup common
# */
# inline void getTransFromUnitVectorsZY (const Eigen::Vector3f& z_axis, const Eigen::Vector3f& y_direction, Eigen::Affine3f& transformation);
###
# eigen.h
# namespace pcl
# cdef extern from "pcl/common/eigen.h" namespace "pcl":
# /** \brief Get the unique 3D rotation that will rotate \a z_axis into (0,0,1) and \a y_direction into a vector
# * with x=0 (or into (0,1,0) should \a y_direction be orthogonal to \a z_axis)
# * \param[in] z_axis the z-axis
# * \param[in] y_direction the y direction
# * \return the resultant 3D rotation
# * \ingroup common
# */
# inline Eigen::Affine3f getTransFromUnitVectorsZY (const Eigen::Vector3f& z_axis, const Eigen::Vector3f& y_direction);
###
# eigen.h
# namespace pcl
# cdef extern from "pcl/common/eigen.h" namespace "pcl":
# /** \brief Get the unique 3D rotation that will rotate \a x_axis into (1,0,0) and \a y_direction into a vector
# * with z=0 (or into (0,1,0) should \a y_direction be orthogonal to \a z_axis)
# * \param[in] x_axis the x-axis
# * \param[in] y_direction the y direction
# * \param[out] transformation the resultant 3D rotation
# * \ingroup common
# */
# inline void getTransFromUnitVectorsXY (const Eigen::Vector3f& x_axis, const Eigen::Vector3f& y_direction, Eigen::Affine3f& transformation);
###
# eigen.h
# namespace pcl
# cdef extern from "pcl/common/eigen.h" namespace "pcl":
# /** \brief Get the unique 3D rotation that will rotate \a x_axis into (1,0,0) and \a y_direction into a vector
# * with z=0 (or into (0,1,0) should \a y_direction be orthogonal to \a z_axis)
# * \param[in] x_axis the x-axis
# * \param[in] y_direction the y direction
# * \return the resulting 3D rotation
# * \ingroup common
# */
# inline Eigen::Affine3f getTransFromUnitVectorsXY (const Eigen::Vector3f& x_axis, const Eigen::Vector3f& y_direction);
###
# eigen.h
# namespace pcl
# cdef extern from "pcl/common/eigen.h" namespace "pcl":
# /** \brief Get the unique 3D rotation that will rotate \a z_axis into (0,0,1) and \a y_direction into a vector
# * with x=0 (or into (0,1,0) should \a y_direction be orthogonal to \a z_axis)
# * \param[in] y_direction the y direction
# * \param[in] z_axis the z-axis
# * \param[out] transformation the resultant 3D rotation
# * \ingroup common
# */
# inline void getTransformationFromTwoUnitVectors (const Eigen::Vector3f& y_direction, const Eigen::Vector3f& z_axis, Eigen::Affine3f& transformation);
###
# eigen.h
# namespace pcl
# cdef extern from "pcl/common/eigen.h" namespace "pcl":
# /** \brief Get the unique 3D rotation that will rotate \a z_axis into (0,0,1) and \a y_direction into a vector
# * with x=0 (or into (0,1,0) should \a y_direction be orthogonal to \a z_axis)
# * \param[in] y_direction the y direction
# * \param[in] z_axis the z-axis
# * \return transformation the resultant 3D rotation
# * \ingroup common
# */
# inline Eigen::Affine3f getTransformationFromTwoUnitVectors (const Eigen::Vector3f& y_direction, const Eigen::Vector3f& z_axis);
###
# eigen.h
# namespace pcl
# cdef extern from "pcl/common/eigen.h" namespace "pcl":
# /** \brief Get the transformation that will translate \a orign to (0,0,0) and rotate \a z_axis into (0,0,1)
# * and \a y_direction into a vector with x=0 (or into (0,1,0) should \a y_direction be orthogonal to \a z_axis)
# * \param[in] y_direction the y direction
# * \param[in] z_axis the z-axis
# * \param[in] origin the origin
# * \param[in] transformation the resultant transformation matrix
# * \ingroup common
# */
# inline void
# getTransformationFromTwoUnitVectorsAndOrigin (const Eigen::Vector3f& y_direction, const Eigen::Vector3f& z_axis, const Eigen::Vector3f& origin, Eigen::Affine3f& transformation);
###
# eigen.h
# namespace pcl
# cdef extern from "pcl/common/eigen.h" namespace "pcl":
# /** \brief Extract the Euler angles (XYZ-convention) from the given transformation
# * \param[in] t the input transformation matrix
# * \param[in] roll the resulting roll angle
# * \param[in] pitch the resulting pitch angle
# * \param[in] yaw the resulting yaw angle
# * \ingroup common
# */
# template <typename Scalar> void
# getEulerAngles (const Eigen::Transform<Scalar, 3, Eigen::Affine> &t, Scalar &roll, Scalar &pitch, Scalar &yaw);
###
# eigen.h
# namespace pcl
# cdef extern from "pcl/common/eigen.h" namespace "pcl":
# inline void getEulerAngles (const Eigen::Affine3f &t, float &roll, float &pitch, float &yaw)
###
# eigen.h
# namespace pcl
# cdef extern from "pcl/common/eigen.h" namespace "pcl":
# inline void
# getEulerAngles (const Eigen::Affine3d &t, double &roll, double &pitch, double &yaw)
###
# eigen.h
# namespace pcl
# cdef extern from "pcl/common/eigen.h" namespace "pcl":
# /** Extract x,y,z and the Euler angles (XYZ-convention) from the given transformation
# * \param[in] t the input transformation matrix
# * \param[out] x the resulting x translation
# * \param[out] y the resulting y translation
# * \param[out] z the resulting z translation
# * \param[out] roll the resulting roll angle
# * \param[out] pitch the resulting pitch angle
# * \param[out] yaw the resulting yaw angle
# * \ingroup common
# */
# template <typename Scalar> void
# getTranslationAndEulerAngles (const Eigen::Transform<Scalar, 3, Eigen::Affine> &t, Scalar &x, Scalar &y, Scalar &z, Scalar &roll, Scalar &pitch, Scalar &yaw);
###
# eigen.h
# namespace pcl
# cdef extern from "pcl/common/eigen.h" namespace "pcl":
# inline void
# getTranslationAndEulerAngles (const Eigen::Affine3f &t, float &x, float &y, float &z, float &roll, float &pitch, float &yaw)
###
# eigen.h
# namespace pcl
# cdef extern from "pcl/common/eigen.h" namespace "pcl":
# inline void
# getTranslationAndEulerAngles (const Eigen::Affine3d &t, double &x, double &y, double &z, double &roll, double &pitch, double &yaw)
###
# eigen.h
# namespace pcl
# cdef extern from "pcl/common/eigen.h" namespace "pcl":
# /** \brief Create a transformation from the given translation and Euler angles (XYZ-convention)
# * \param[in] x the input x translation
# * \param[in] y the input y translation
# * \param[in] z the input z translation
# * \param[in] roll the input roll angle
# * \param[in] pitch the input pitch angle
# * \param[in] yaw the input yaw angle
# * \param[out] t the resulting transformation matrix
# * \ingroup common
# */
# template <typename Scalar> void getTransformation (Scalar x, Scalar y, Scalar z, Scalar roll, Scalar pitch, Scalar yaw, Eigen::Transform<Scalar, 3, Eigen::Affine> &t);
###
# eigen.h
# namespace pcl
# cdef extern from "pcl/common/eigen.h" namespace "pcl":
# inline void getTransformation (float x, float y, float z, float roll, float pitch, float yaw, Eigen::Affine3f &t)
###
# eigen.h
# namespace pcl
# cdef extern from "pcl/common/eigen.h" namespace "pcl":
# inline void getTransformation (double x, double y, double z, double roll, double pitch, double yaw, Eigen::Affine3d &t)
###
# eigen.h
# namespace pcl
# cdef extern from "pcl/common/eigen.h" namespace "pcl":
# /** \brief Create a transformation from the given translation and Euler angles (XYZ-convention)
# * \param[in] x the input x translation
# * \param[in] y the input y translation
# * \param[in] z the input z translation
# * \param[in] roll the input roll angle
# * \param[in] pitch the input pitch angle
# * \param[in] yaw the input yaw angle
# * \return the resulting transformation matrix
# * \ingroup common
# */
# inline Eigen::Affine3f getTransformation (float x, float y, float z, float roll, float pitch, float yaw)
###
# eigen.h
# namespace pcl
# cdef extern from "pcl/common/eigen.h" namespace "pcl":
# /** \brief Write a matrix to an output stream
# * \param[in] matrix the matrix to output
# * \param[out] file the output stream
# * \ingroup common
# */
# template <typename Derived> void saveBinary (const Eigen::MatrixBase<Derived>& matrix, std::ostream& file);
###
# eigen.h
# namespace pcl
# cdef extern from "pcl/common/eigen.h" namespace "pcl":
# /** \brief Read a matrix from an input stream
# * \param[out] matrix the resulting matrix, read from the input stream
# * \param[in,out] file the input stream
# * \ingroup common
# */
# template <typename Derived> void
# loadBinary (Eigen::MatrixBase<Derived> const& matrix, std::istream& file);
###
# // PCL_EIGEN_SIZE_MIN_PREFER_DYNAMIC gives the min between compile-time sizes. 0 has absolute priority, followed by 1,
# // followed by Dynamic, followed by other finite values. The reason for giving Dynamic the priority over
# // finite values is that min(3, Dynamic) should be Dynamic, since that could be anything between 0 and 3.
# #define PCL_EIGEN_SIZE_MIN_PREFER_DYNAMIC(a,b) ((int (a) == 0 || int (b) == 0) ? 0 \
# : (int (a) == 1 || int (b) == 1) ? 1 \
# : (int (a) == Eigen::Dynamic || int (b) == Eigen::Dynamic) ? Eigen::Dynamic \
# : (int (a) <= int (b)) ? int (a) : int (b))
###
# eigen.h
# namespace pcl
# cdef extern from "pcl/common/eigen.h" namespace "pcl":
# /** \brief Returns the transformation between two point sets.
# * The algorithm is based on:
# * "Least-squares estimation of transformation parameters between two point patterns",
# * Shinji Umeyama, PAMI 1991, DOI: 10.1109/34.88573
# *
# * It estimates parameters \f$ c, \mathbf{R}, \f$ and \f$ \mathbf{t} \f$ such that
# * \f{align*}
# * \frac{1}{n} \sum_{i=1}^n \vert\vert y_i - (c\mathbf{R}x_i + \mathbf{t}) \vert\vert_2^2
# * \f}
# * is minimized.
# *
# * The algorithm is based on the analysis of the covariance matrix
# * \f$ \Sigma_{\mathbf{x}\mathbf{y}} \in \mathbb{R}^{d \times d} \f$
# * of the input point sets \f$ \mathbf{x} \f$ and \f$ \mathbf{y} \f$ where
# * \f$d\f$ is corresponding to the dimension (which is typically small).
# * The analysis is involving the SVD having a complexity of \f$O(d^3)\f$
# * though the actual computational effort lies in the covariance
# * matrix computation which has an asymptotic lower bound of \f$O(dm)\f$ when
# * the input point sets have dimension \f$d \times m\f$.
# *
# * \param[in] src Source points \f$ \mathbf{x} = \left( x_1, \hdots, x_n \right) \f$
# * \param[in] dst Destination points \f$ \mathbf{y} = \left( y_1, \hdots, y_n \right) \f$.
# * \param[in] with_scaling Sets \f$ c=1 \f$ when <code>false</code> is passed. (default: false)
# * \return The homogeneous transformation
# * \f{align*}
# * T = \begin{bmatrix} c\mathbf{R} & \mathbf{t} \\ \mathbf{0} & 1 \end{bmatrix}
# * \f}
# * minimizing the resudiual above. This transformation is always returned as an
# * Eigen::Matrix.
# */
# template <typename Derived, typename OtherDerived>
# typename Eigen::internal::umeyama_transform_matrix_type<Derived, OtherDerived>::type
# umeyama (const Eigen::MatrixBase<Derived>& src, const Eigen::MatrixBase<OtherDerived>& dst, bool with_scaling = false);
###
# eigen.h
# namespace pcl
# cdef extern from "pcl/common/eigen.h" namespace "pcl":
# /** \brief Transform a point using an affine matrix
# * \param[in] point_in the vector to be transformed
# * \param[out] point_out the transformed vector
# * \param[in] transformation the transformation matrix
# *
# * \note Can be used with \c point_in = \c point_out
# */
# template<typename Scalar> inline void transformPoint (const Eigen::Matrix<Scalar, 3, 1> &point_in, Eigen::Matrix<Scalar, 3, 1> &point_out, const Eigen::Transform<Scalar, 3, Eigen::Affine> &transformation)
###
# eigen.h
# namespace pcl
# cdef extern from "pcl/common/eigen.h" namespace "pcl":
# inline void transformPoint (const Eigen::Vector3f &point_in, Eigen::Vector3f &point_out, const Eigen::Affine3f &transformation)
###
# eigen.h
# namespace pcl
# cdef extern from "pcl/common/eigen.h" namespace "pcl":
# inline void
# transformPoint (const Eigen::Vector3d &point_in, Eigen::Vector3d &point_out, const Eigen::Affine3d &transformation)
###
# eigen.h
# namespace pcl
# cdef extern from "pcl/common/eigen.h" namespace "pcl":
# /** \brief Transform a vector using an affine matrix
# * \param[in] vector_in the vector to be transformed
# * \param[out] vector_out the transformed vector
# * \param[in] transformation the transformation matrix
# * \note Can be used with \c vector_in = \c vector_out
# */
# template <typename Scalar> inline void
# transformVector (const Eigen::Matrix<Scalar, 3, 1> &vector_in, Eigen::Matrix<Scalar, 3, 1> &vector_out, const Eigen::Transform<Scalar, 3, Eigen::Affine> &transformation)
###
# eigen.h
# namespace pcl
# cdef extern from "pcl/common/eigen.h" namespace "pcl":
# inline void
# transformVector (const Eigen::Vector3f &vector_in, Eigen::Vector3f &vector_out, const Eigen::Affine3f &transformation)
###
# eigen.h
# namespace pcl
# cdef extern from "pcl/common/eigen.h" namespace "pcl":
# inline void
# transformVector (const Eigen::Vector3d &vector_in, Eigen::Vector3d &vector_out, const Eigen::Affine3d &transformation)
###
# eigen.h
# namespace pcl
# cdef extern from "pcl/common/eigen.h" namespace "pcl":
# /** \brief Transform a line using an affine matrix
# * \param[in] line_in the line to be transformed
# * \param[out] line_out the transformed line
# * \param[in] transformation the transformation matrix
# * Lines must be filled in this form:\n
# * line[0-2] = Origin coordinates of the vector\n
# * line[3-5] = Direction vector
# * \note Can be used with \c line_in = \c line_out
# */
# template <typename Scalar> bool
# transformLine (const Eigen::Matrix<Scalar, Eigen::Dynamic, 1> &line_in, Eigen::Matrix<Scalar, Eigen::Dynamic, 1> &line_out, const Eigen::Transform<Scalar, 3, Eigen::Affine> &transformation);
###
# eigen.h
# namespace pcl
# cdef extern from "pcl/common/eigen.h" namespace "pcl":
# inline bool
# transformLine (const Eigen::VectorXf &line_in, Eigen::VectorXf &line_out, const Eigen::Affine3f &transformation)
###
# eigen.h
# namespace pcl
# cdef extern from "pcl/common/eigen.h" namespace "pcl":
# inline bool
# transformLine (const Eigen::VectorXd &line_in, Eigen::VectorXd &line_out, const Eigen::Affine3d &transformation)
###
# eigen.h
# namespace pcl
# cdef extern from "pcl/common/eigen.h" namespace "pcl":
# /** \brief Transform plane vectors using an affine matrix
# * \param[in] plane_in the plane coefficients to be transformed
# * \param[out] plane_out the transformed plane coefficients to fill
# * \param[in] transformation the transformation matrix
# * The plane vectors are filled in the form ax+by+cz+d=0
# * Can be used with non Hessian form planes coefficients
# * Can be used with \c plane_in = \c plane_out
# */
# template <typename Scalar> void
# transformPlane (const Eigen::Matrix<Scalar, 4, 1> &plane_in, Eigen::Matrix<Scalar, 4, 1> &plane_out, const Eigen::Transform<Scalar, 3, Eigen::Affine> &transformation);
###
# eigen.h
# namespace pcl
# cdef extern from "pcl/common/eigen.h" namespace "pcl":
# inline void
# transformPlane (const Eigen::Matrix<double, 4, 1> &plane_in, Eigen::Matrix<double, 4, 1> &plane_out, const Eigen::Transform<double, 3, Eigen::Affine> &transformation)
###
# eigen.h
# namespace pcl
# cdef extern from "pcl/common/eigen.h" namespace "pcl":
# inline void
# transformPlane (const Eigen::Matrix<float, 4, 1> &plane_in, Eigen::Matrix<float, 4, 1> &plane_out,const Eigen::Transform<float, 3, Eigen::Affine> &transformation)
###
# eigen.h
# namespace pcl
# cdef extern from "pcl/common/eigen.h" namespace "pcl":
# /** \brief Transform plane vectors using an affine matrix
# * \param[in] plane_in the plane coefficients to be transformed
# * \param[out] plane_out the transformed plane coefficients to fill
# * \param[in] transformation the transformation matrix
# * The plane vectors are filled in the form ax+by+cz+d=0
# * Can be used with non Hessian form planes coefficients
# * Can be used with \c plane_in = \c plane_out
# * \warning ModelCoefficients stores floats only !
# */
# template<typename Scalar> void
# transformPlane (const pcl::ModelCoefficients::Ptr plane_in, pcl::ModelCoefficients::Ptr plane_out, const Eigen::Transform<Scalar, 3, Eigen::Affine> &transformation);
###
# eigen.h
# namespace pcl
# cdef extern from "pcl/common/eigen.h" namespace "pcl":
# inline void
# transformPlane (const pcl::ModelCoefficients::Ptr plane_in, pcl::ModelCoefficients::Ptr plane_out, const Eigen::Transform<double, 3, Eigen::Affine> &transformation)
###
# eigen.h
# namespace pcl
# cdef extern from "pcl/common/eigen.h" namespace "pcl":
# inline void transformPlane (const pcl::ModelCoefficients::Ptr plane_in, pcl::ModelCoefficients::Ptr plane_out, const Eigen::Transform<float, 3, Eigen::Affine> &transformation)
###
# eigen.h
# namespace pcl
# cdef extern from "pcl/common/eigen.h" namespace "pcl":
# /** \brief Check coordinate system integrity
# * \param[in] line_x the first axis
# * \param[in] line_y the second axis
# * \param[in] norm_limit the limit to ignore norm rounding errors
# * \param[in] dot_limit the limit to ignore dot product rounding errors
# * \return True if the coordinate system is consistent, false otherwise.
# * Lines must be filled in this form:\n
# * line[0-2] = Origin coordinates of the vector\n
# * line[3-5] = Direction vector
# * Can be used like this :\n
# * line_x = X axis and line_y = Y axis\n
# * line_x = Z axis and line_y = X axis\n
# * line_x = Y axis and line_y = Z axis\n
# * Because X^Y = Z, Z^X = Y and Y^Z = X.
# * Do NOT invert line order !
# * Determine whether a coordinate system is consistent or not by checking :\n
# * Line origins: They must be the same for the 2 lines\n
# * Norm: The 2 lines must be normalized\n
# * Dot products: Must be 0 or perpendicular vectors
# */
# template<typename Scalar> bool
# checkCoordinateSystem (const Eigen::Matrix<Scalar, Eigen::Dynamic, 1> &line_x,
# const Eigen::Matrix<Scalar, Eigen::Dynamic, 1> &line_y,
# const Scalar norm_limit = 1e-3,
# const Scalar dot_limit = 1e-3);
###
# eigen.h
# namespace pcl
# cdef extern from "pcl/common/eigen.h" namespace "pcl":
# inline bool
# checkCoordinateSystem (const Eigen::Matrix<double, Eigen::Dynamic, 1> &line_x,
# const Eigen::Matrix<double, Eigen::Dynamic, 1> &line_y,
# const double norm_limit = 1e-3,
# const double dot_limit = 1e-3)
###
# eigen.h
# namespace pcl
# cdef extern from "pcl/common/eigen.h" namespace "pcl":
# inline bool
# checkCoordinateSystem (const Eigen::Matrix<float, Eigen::Dynamic, 1> &line_x,
# const Eigen::Matrix<float, Eigen::Dynamic, 1> &line_y,
# const float norm_limit = 1e-3,
# const float dot_limit = 1e-3)
###
# eigen.h
# namespace pcl
# cdef extern from "pcl/common/eigen.h" namespace "pcl":
# /** \brief Check coordinate system integrity
# * \param[in] origin the origin of the coordinate system
# * \param[in] x_direction the first axis
# * \param[in] y_direction the second axis
# * \param[in] norm_limit the limit to ignore norm rounding errors
# * \param[in] dot_limit the limit to ignore dot product rounding errors
# * \return True if the coordinate system is consistent, false otherwise.
# * Read the other variant for more information
# */
# template <typename Scalar> inline bool
# checkCoordinateSystem (const Eigen::Matrix<Scalar, 3, 1> &origin,
# const Eigen::Matrix<Scalar, 3, 1> &x_direction,
# const Eigen::Matrix<Scalar, 3, 1> &y_direction,
# const Scalar norm_limit = 1e-3,
# const Scalar dot_limit = 1e-3)
###
# eigen.h
# namespace pcl
# cdef extern from "pcl/common/eigen.h" namespace "pcl":
# inline bool
# checkCoordinateSystem (const Eigen::Matrix<double, 3, 1> &origin,
# const Eigen::Matrix<double, 3, 1> &x_direction,
# const Eigen::Matrix<double, 3, 1> &y_direction,
# const double norm_limit = 1e-3,
# const double dot_limit = 1e-3)
###
# eigen.h
# namespace pcl
# cdef extern from "pcl/common/eigen.h" namespace "pcl":
# inline bool
# checkCoordinateSystem (const Eigen::Matrix<float, 3, 1> &origin,
# const Eigen::Matrix<float, 3, 1> &x_direction,
# const Eigen::Matrix<float, 3, 1> &y_direction,
# const float norm_limit = 1e-3,
# const float dot_limit = 1e-3)
###
# eigen.h
# namespace pcl
# cdef extern from "pcl/common/eigen.h" namespace "pcl":
# /** \brief Compute the transformation between two coordinate systems
# * \param[in] from_line_x X axis from the origin coordinate system
# * \param[in] from_line_y Y axis from the origin coordinate system
# * \param[in] to_line_x X axis from the destination coordinate system
# * \param[in] to_line_y Y axis from the destination coordinate system
# * \param[out] transformation the transformation matrix to fill
# * \return true if transformation was filled, false otherwise.
# * Line must be filled in this form:\n
# * line[0-2] = Coordinate system origin coordinates \n
# * line[3-5] = Direction vector (norm doesn't matter)
# */
# template <typename Scalar> bool
# transformBetween2CoordinateSystems (const Eigen::Matrix<Scalar, Eigen::Dynamic, 1> from_line_x,
# const Eigen::Matrix<Scalar, Eigen::Dynamic, 1> from_line_y,
# const Eigen::Matrix<Scalar, Eigen::Dynamic, 1> to_line_x,
# const Eigen::Matrix<Scalar, Eigen::Dynamic, 1> to_line_y,
# Eigen::Transform<Scalar, 3, Eigen::Affine> &transformation);
###
# eigen.h
# namespace pcl
# cdef extern from "pcl/common/eigen.h" namespace "pcl":
# inline bool
# transformBetween2CoordinateSystems (const Eigen::Matrix<double, Eigen::Dynamic, 1> from_line_x,
# const Eigen::Matrix<double, Eigen::Dynamic, 1> from_line_y,
# const Eigen::Matrix<double, Eigen::Dynamic, 1> to_line_x,
# const Eigen::Matrix<double, Eigen::Dynamic, 1> to_line_y,
# Eigen::Transform<double, 3, Eigen::Affine> &transformation)
###
# eigen.h
# namespace pcl
# cdef extern from "pcl/common/eigen.h" namespace "pcl":
# inline bool
# transformBetween2CoordinateSystems (const Eigen::Matrix<float, Eigen::Dynamic, 1> from_line_x,
# const Eigen::Matrix<float, Eigen::Dynamic, 1> from_line_y,
# const Eigen::Matrix<float, Eigen::Dynamic, 1> to_line_x,
# const Eigen::Matrix<float, Eigen::Dynamic, 1> to_line_y,
# Eigen::Transform<float, 3, Eigen::Affine> &transformation)
###
# file_io.h
# namespace pcl
# cdef extern from "pcl/common/file_io.h" namespace "pcl":
# /** \brief Find all *.pcd files in the directory and return them sorted
# * \param directory the directory to be searched
# * \param file_names the resulting (sorted) list of .pcd files
# */
# inline void getAllPcdFilesInDirectory (const std::string& directory, std::vector<std::string>& file_names);
###
# file_io.h
# namespace pcl
# cdef extern from "pcl/common/file_io.h" namespace "pcl":
# /** \brief Remove the path from the given string and return only the filename (the remaining string after the
# * last '/')
# * \param input the input filename (with full path)
# * \return the resulting filename, stripped of the path
# */
# inline std::string getFilenameWithoutPath (const std::string& input);
###
# file_io.h
# namespace pcl
# cdef extern from "pcl/common/file_io.h" namespace "pcl":
# /** \brief Remove the extension from the given string and return only the filename (everything before the last '.')
# * \param input the input filename (with the file extension)
# * \return the resulting filename, stripped of its extension
# */
# inline std::string getFilenameWithoutExtension (const std::string& input);
###
# file_io.h
# namespace pcl
# cdef extern from "pcl/common/file_io.h" namespace "pcl":
# /** \brief Get the file extension from the given string (the remaining string after the last '.')
# * \param input the input filename
# * \return \a input 's file extension
# */
# inline std::string getFileExtension (const std::string& input)
###
# gaussian.h
# namespace pcl
# cdef extern from "pcl/common/gaussian.h" namespace "pcl":
# /** Class GaussianKernel assembles all the method for computing,
# * convolving, smoothing, gradients computing an image using
# * a gaussian kernel. The image is stored in point cloud elements
# * intensity member or rgb or...
# * \author Nizar Sallem
# * \ingroup common
# */
# class PCL_EXPORTS GaussianKernel
# public:
# GaussianKernel () {}
#
# static const unsigned MAX_KERNEL_WIDTH = 71;
# /** Computes the gaussian kernel and dervative assiociated to sigma.
# * The kernel and derivative width are adjusted according.
# * \param[in] sigma
# * \param[out] kernel the computed gaussian kernel
# * \param[in] kernel_width the desired kernel width upper bond
# * \throws pcl::KernelWidthTooSmallException
# */
# void compute (float sigma,
# Eigen::VectorXf &kernel,
# unsigned kernel_width = MAX_KERNEL_WIDTH) const;
#
# /** Computes the gaussian kernel and dervative assiociated to sigma.
# * The kernel and derivative width are adjusted according.
# * \param[in] sigma
# * \param[out] kernel the computed gaussian kernel
# * \param[out] derivative the computed kernel derivative
# * \param[in] kernel_width the desired kernel width upper bond
# * \throws pcl::KernelWidthTooSmallException
# */
# void compute (float sigma,
# Eigen::VectorXf &kernel, Eigen::VectorXf &derivative,
# unsigned kernel_width = MAX_KERNEL_WIDTH) const;
#
# /** Convolve a float image rows by a given kernel.
# * \param[in] kernel convolution kernel
# * \param[in] input the image to convolve
# * \param[out] output the convolved image
# * \note if output doesn't fit in input i.e. output.rows () < input.rows () or
# * output.cols () < input.cols () then output is resized to input sizes.
# */
# void convolveRows (const pcl::PointCloud<float> &input, const Eigen::VectorXf &kernel, pcl::PointCloud<float> &output) const;
#
# /** Convolve a float image rows by a given kernel.
# * \param[in] input the image to convolve
# * \param[in] field_accessor a field accessor
# * \param[in] kernel convolution kernel
# * \param[out] output the convolved image
# * \note if output doesn't fit in input i.e. output.rows () < input.rows () or
# * output.cols () < input.cols () then output is resized to input sizes.
# */
# template <typename PointT> void
# convolveRows (const pcl::PointCloud<PointT> &input,
# boost::function <float (const PointT& p)> field_accessor, const Eigen::VectorXf &kernel,
# pcl::PointCloud<float> &output) const;
#
# /** Convolve a float image columns by a given kernel.
# * \param[in] input the image to convolve
# * \param[in] kernel convolution kernel
# * \param[out] output the convolved image
# * \note if output doesn't fit in input i.e. output.rows () < input.rows () or
# * output.cols () < input.cols () then output is resized to input sizes.
# */
# void convolveCols (const pcl::PointCloud<float> &input, const Eigen::VectorXf &kernel, pcl::PointCloud<float> &output) const;
#
# /** Convolve a float image columns by a given kernel.
# * \param[in] input the image to convolve
# * \param[in] field_accessor a field accessor
# * \param[in] kernel convolution kernel
# * \param[out] output the convolved image
# * \note if output doesn't fit in input i.e. output.rows () < input.rows () or
# * output.cols () < input.cols () then output is resized to input sizes.
# */
# template <typename PointT> void
# convolveCols (const pcl::PointCloud<PointT> &input,
# boost::function <float (const PointT& p)> field_accessor, const Eigen::VectorXf &kernel, pcl::PointCloud<float> &output) const;
#
# /** Convolve a float image in the 2 directions
# * \param[in] horiz_kernel kernel for convolving rows
# * \param[in] vert_kernel kernel for convolving columns
# * \param[in] input image to convolve
# * \param[out] output the convolved image
# * \note if output doesn't fit in input i.e. output.rows () < input.rows () or
# * output.cols () < input.cols () then output is resized to input sizes.
# */
# inline void
# convolve (const pcl::PointCloud<float> &input,
# const Eigen::VectorXf &horiz_kernel, const Eigen::VectorXf &vert_kernel, pcl::PointCloud<float> &output) const
#
# /** Convolve a float image in the 2 directions
# * \param[in] input image to convolve
# * \param[in] field_accessor a field accessor
# * \param[in] horiz_kernel kernel for convolving rows
# * \param[in] vert_kernel kernel for convolving columns
# * \param[out] output the convolved image
# * \note if output doesn't fit in input i.e. output.rows () < input.rows () or
# * output.cols () < input.cols () then output is resized to input sizes.
# */
# template <typename PointT> inline void
# convolve (const pcl::PointCloud<PointT> &input,
# boost::function <float (const PointT& p)> field_accessor,
# const Eigen::VectorXf &horiz_kernel, const Eigen::VectorXf &vert_kernel, pcl::PointCloud<float> &output) const
#
# /** Computes float image gradients using a gaussian kernel and gaussian kernel
# * derivative.
# * \param[in] input image to compute gardients for
# * \param[in] gaussian_kernel the gaussian kernel to be used
# * \param[in] gaussian_kernel_derivative the associated derivative
# * \param[out] grad_x gradient along X direction
# * \param[out] grad_y gradient along Y direction
# * \note if output doesn't fit in input i.e. output.rows () < input.rows () or
# * output.cols () < input.cols () then output is resized to input sizes.
# */
# inline void
# computeGradients (const pcl::PointCloud<float> &input,
# const Eigen::VectorXf &gaussian_kernel, const Eigen::VectorXf &gaussian_kernel_derivative,
# pcl::PointCloud<float> &grad_x, pcl::PointCloud<float> &grad_y) const
#
# /** Computes float image gradients using a gaussian kernel and gaussian kernel
# * derivative.
# * \param[in] input image to compute gardients for
# * \param[in] field_accessor a field accessor
# * \param[in] gaussian_kernel the gaussian kernel to be used
# * \param[in] gaussian_kernel_derivative the associated derivative
# * \param[out] grad_x gradient along X direction
# * \param[out] grad_y gradient along Y direction
# * \note if output doesn't fit in input i.e. output.rows () < input.rows () or
# * output.cols () < input.cols () then output is resized to input sizes.
# */
# template <typename PointT> inline void
# computeGradients (const pcl::PointCloud<PointT> &input, boost::function <float (const PointT& p)> field_accessor,
# const Eigen::VectorXf &gaussian_kernel, const Eigen::VectorXf &gaussian_kernel_derivative,
# pcl::PointCloud<float> &grad_x, pcl::PointCloud<float> &grad_y) const
#
# /** Smooth image using a gaussian kernel.
# * \param[in] input image
# * \param[in] gaussian_kernel the gaussian kernel to be used
# * \param[out] output the smoothed image
# * \note if output doesn't fit in input i.e. output.rows () < input.rows () or
# * output.cols () < input.cols () then output is resized to input sizes.
# */
# inline void smooth (const pcl::PointCloud<float> &input,
# const Eigen::VectorXf &gaussian_kernel, pcl::PointCloud<float> &output) const
#
# /** Smooth image using a gaussian kernel.
# * \param[in] input image
# * \param[in] field_accessor a field accessor
# * \param[in] gaussian_kernel the gaussian kernel to be used
# * \param[out] output the smoothed image
# * \note if output doesn't fit in input i.e. output.rows () < input.rows () or
# * output.cols () < input.cols () then output is resized to input sizes.
# */
# template <typename PointT> inline void
# smooth (const pcl::PointCloud<PointT> &input, boost::function <float (const PointT& p)> field_accessor,
# const Eigen::VectorXf &gaussian_kernel, pcl::PointCloud<float> &output) const
# };
# }
#
###
# generate.h
# namespace pcl
# namespace common
# cdef extern from "pcl/common/generate.h" namespace "pcl::common":
# /** \brief CloudGenerator class generates a point cloud using some randoom number generator.
# * Generators can be found in \file common/random.h and easily extensible.
# * \ingroup common
# * \author Nizar Sallem
# */
# template <typename PointT, typename GeneratorT>
# class CloudGenerator
# {
# public:
# typedef typename GeneratorT::Parameters GeneratorParameters;
#
# /// Default constructor
# CloudGenerator ();
#
# /** Consttructor with single generator to ensure all X, Y and Z values are within same range
# * \param params paramteres for X, Y and Z values generation. Uniqueness is ensured through
# * seed incrementation
# */
# CloudGenerator (const GeneratorParameters& params);
#
# /** Constructor with independant generators per axis
# * \param x_params parameters for x values generation
# * \param y_params parameters for y values generation
# * \param z_params parameters for z values generation
# */
# CloudGenerator (const GeneratorParameters& x_params,
# const GeneratorParameters& y_params,
# const GeneratorParameters& z_params);
#
# /** Set parameters for x, y and z values. Uniqueness is ensured through seed incrementation.
# * \param params parameteres for X, Y and Z values generation.
# */
# void setParameters (const GeneratorParameters& params);
#
# /** Set parameters for x values generation
# * \param x_params paramters for x values generation
# */
# void setParametersForX (const GeneratorParameters& x_params);
#
# /** Set parameters for y values generation
# * \param y_params paramters for y values generation
# */
# void setParametersForY (const GeneratorParameters& y_params);
#
# /** Set parameters for z values generation
# * \param z_params paramters for z values generation
# */
# void setParametersForZ (const GeneratorParameters& z_params);
#
# /// \return x values generation parameters
# const GeneratorParameters& getParametersForX () const;
#
# /// \return y values generation parameters
# const GeneratorParameters& getParametersForY () const;
#
# /// \return z values generation parameters
# const GeneratorParameters& getParametersForZ () const;
#
# /// \return a single random generated point
# PointT get ();
#
# /** Generates a cloud with X Y Z picked within given ranges. This function assumes that
# * cloud is properly defined else it raises errors and does nothing.
# * \param[out] cloud cloud to generate coordinates for
# * \return 0 if generation went well else -1.
# */
# int fill (pcl::PointCloud<PointT>& cloud);
#
# /** Generates a cloud of specified dimensions with X Y Z picked within given ranges.
# * \param[in] width width of generated cloud
# * \param[in] height height of generated cloud
# * \param[out] cloud output cloud
# * \return 0 if generation went well else -1.
# */
# int fill (int width, int height, pcl::PointCloud<PointT>& cloud);
# };
#
# template <typename GeneratorT>
# class CloudGenerator<pcl::PointXY, GeneratorT>
# {
# public:
# typedef typename GeneratorT::Parameters GeneratorParameters;
#
# CloudGenerator ();
#
# CloudGenerator (const GeneratorParameters& params);
#
# CloudGenerator (const GeneratorParameters& x_params, const GeneratorParameters& y_params);
#
# void setParameters (const GeneratorParameters& params);
#
# void setParametersForX (const GeneratorParameters& x_params);
#
# void setParametersForY (const GeneratorParameters& y_params);
#
# const GeneratorParameters& getParametersForX () const;
#
# const GeneratorParameters& getParametersForY () const;
#
# pcl::PointXYget ();
#
# int fill (pcl::PointCloud<pcl::PointXY>& cloud);
#
# int fill (int width, int height, pcl::PointCloud<pcl::PointXY>& cloud);
#
# };
# }
# }
###
# geometry.h
# namespace pcl
# namespace geometry
# /** @return the euclidean distance between 2 points */
# template <typename PointT> inline float distance (const PointT& p1, const PointT& p2)
#
# /** @return the squared euclidean distance between 2 points */
# template<typename PointT> inline float squaredDistance (const PointT& p1, const PointT& p2)
#
# /** @return the point projection on a plane defined by its origin and normal vector
# * \param[in] point Point to be projected
# * \param[in] plane_origin The plane origin
# * \param[in] plane_normal The plane normal
# * \param[out] projected The returned projected point
# */
# template<typename PointT, typename NormalT> inline void
# project (const PointT& point, const PointT &plane_origin, const NormalT& plane_normal, PointT& projected)
#
# /** @return the point projection on a plane defined by its origin and normal vector
# * \param[in] point Point to be projected
# * \param[in] plane_origin The plane origin
# * \param[in] plane_normal The plane normal
# * \param[out] projected The returned projected point
# */
# inline void project (const Eigen::Vector3f& point, const Eigen::Vector3f &plane_origin, const Eigen::Vector3f& plane_normal, Eigen::Vector3f& projected)
###
# intensity.h
# namespace pcl
# namespace common
# /** \brief Intensity field accessor provides access to the inetnsity filed of a PoinT
# * implementation for specific types should be done in \file pcl/common/impl/intensity.hpp
# */
# template<typename PointT> struct IntensityFieldAccessor
# {
# /** \brief get intensity field
# * \param[in] p point
# * \return p.intensity
# */
# inline float operator () (const PointT &p) const
#
# /** \brief gets the intensity value of a point
# * \param p point for which intensity to be get
# * \param[in] intensity value of the intensity field
# */
# inline void get (const PointT &p, float &intensity) const
#
# /** \brief sets the intensity value of a point
# * \param p point for which intensity to be set
# * \param[in] intensity value of the intensity field
# */
# inline void set (PointT &p, float intensity) const
#
# /** \brief subtract value from intensity field
# * \param p point for which to modify inetnsity
# * \param[in] value value to be subtracted from point intensity
# */
# inline void demean (PointT& p, float value) const
#
# /** \brief add value to intensity field
# * \param p point for which to modify inetnsity
# * \param[in] value value to be added to point intensity
# */
# inline void add (PointT& p, float value) const
# };
# }
# }
###
# intersections.h
# namespace pcl
# {
# /** \brief Get the intersection of a two 3D lines in space as a 3D point
# * \param[in] line_a the coefficients of the first line (point, direction)
# * \param[in] line_b the coefficients of the second line (point, direction)
# * \param[out] point holder for the computed 3D point
# * \param[in] sqr_eps maximum allowable squared distance to the true solution
# * \ingroup common
# */
# PCL_EXPORTS inline bool lineWithLineIntersection (
# const Eigen::VectorXf &line_a,
# const Eigen::VectorXf &line_b,
# Eigen::Vector4f &point,
# double sqr_eps = 1e-4);
#
# /** \brief Get the intersection of a two 3D lines in space as a 3D point
# * \param[in] line_a the coefficients of the first line (point, direction)
# * \param[in] line_b the coefficients of the second line (point, direction)
# * \param[out] point holder for the computed 3D point
# * \param[in] sqr_eps maximum allowable squared distance to the true solution
# * \ingroup common
# */
#
# PCL_EXPORTS inline bool
# lineWithLineIntersection (const pcl::ModelCoefficients &line_a,
# const pcl::ModelCoefficients &line_b,
# Eigen::Vector4f &point,
# double sqr_eps = 1e-4);
#
# /** \brief Determine the line of intersection of two non-parallel planes using lagrange multipliers
# * \note Described in: "Intersection of Two Planes, John Krumm, Microsoft Research, Redmond, WA, USA"
# * \param[in] plane_a coefficients of plane A and plane B in the form ax + by + cz + d = 0
# * \param[in] plane_b coefficients of line where line.tail<3>() = direction vector and
# * line.head<3>() the point on the line clossest to (0, 0, 0)
# * \param[out] line the intersected line to be filled
# * \param[in] angular_tolerance tolerance in radians
# * \return true if succeeded/planes aren't parallel
# */
# PCL_EXPORTS template <typename Scalar> bool
# planeWithPlaneIntersection (const Eigen::Matrix<Scalar, 4, 1> &plane_a,
# const Eigen::Matrix<Scalar, 4, 1> &plane_b,
# Eigen::Matrix<Scalar, Eigen::Dynamic, 1> &line,
# double angular_tolerance = 0.1);
#
# PCL_EXPORTS inline bool
# planeWithPlaneIntersection (const Eigen::Vector4f &plane_a,
# const Eigen::Vector4f &plane_b,
# Eigen::VectorXf &line,
# double angular_tolerance = 0.1)
# {
# return (planeWithPlaneIntersection<float> (plane_a, plane_b, line, angular_tolerance));
# }
#
# PCL_EXPORTS inline bool
# planeWithPlaneIntersection (const Eigen::Vector4d &plane_a,
# const Eigen::Vector4d &plane_b,
# Eigen::VectorXd &line,
# double angular_tolerance = 0.1)
# {
# return (planeWithPlaneIntersection<double> (plane_a, plane_b, line, angular_tolerance));
# }
#
# /** \brief Determine the point of intersection of three non-parallel planes by solving the equations.
# * \note If using nearly parralel planes you can lower the determinant_tolerance value. This can
# * lead to inconsistent results.
# * If the three planes intersects in a line the point will be anywhere on the line.
# * \param[in] plane_a are the coefficients of the first plane in the form ax + by + cz + d = 0
# * \param[in] plane_b are the coefficients of the second plane
# * \param[in] plane_c are the coefficients of the third plane
# * \param[in] determinant_tolerance is a limit to determine whether planes are parallel or not
# * \param[out] intersection_point the three coordinates x, y, z of the intersection point
# * \return true if succeeded/planes aren't parallel
# */
# PCL_EXPORTS template <typename Scalar> bool
# threePlanesIntersection (const Eigen::Matrix<Scalar, 4, 1> &plane_a,
# const Eigen::Matrix<Scalar, 4, 1> &plane_b,
# const Eigen::Matrix<Scalar, 4, 1> &plane_c,
# Eigen::Matrix<Scalar, 3, 1> &intersection_point,
# double determinant_tolerance = 1e-6);
#
#
# PCL_EXPORTS inline bool
# threePlanesIntersection (const Eigen::Vector4f &plane_a,
# const Eigen::Vector4f &plane_b,
# const Eigen::Vector4f &plane_c,
# Eigen::Vector3f &intersection_point,
# double determinant_tolerance = 1e-6)
# {
# return (threePlanesIntersection<float> (plane_a, plane_b, plane_c,
# intersection_point, determinant_tolerance));
# }
#
# PCL_EXPORTS inline bool
# threePlanesIntersection (const Eigen::Vector4d &plane_a,
# const Eigen::Vector4d &plane_b,
# const Eigen::Vector4d &plane_c,
# Eigen::Vector3d &intersection_point,
# double determinant_tolerance = 1e-6)
# {
# return (threePlanesIntersection<double> (plane_a, plane_b, plane_c, intersection_point, determinant_tolerance));
# }
#
# }
###
# io.h
# namespace pcl
# /** \brief Get the index of a specified field (i.e., dimension/channel)
# * \param[in] cloud the the point cloud message
# * \param[in] field_name the string defining the field name
# * \ingroup common
# */
# inline int getFieldIndex (const pcl::PCLPointCloud2 &cloud, const std::string &field_name)
#
# /** \brief Get the index of a specified field (i.e., dimension/channel)
# * \param[in] cloud the the point cloud message
# * \param[in] field_name the string defining the field name
# * \param[out] fields a vector to the original \a PCLPointField vector that the raw PointCloud message contains
# * \ingroup common
# */
# template <typename PointT> inline int getFieldIndex (const pcl::PointCloud<PointT> &cloud, const std::string &field_name, std::vector<pcl::PCLPointField> &fields);
#
# /** \brief Get the index of a specified field (i.e., dimension/channel)
# * \param[in] field_name the string defining the field name
# * \param[out] fields a vector to the original \a PCLPointField vector that the raw PointCloud message contains
# * \ingroup common
# */
# template <typename PointT> inline int getFieldIndex (const std::string &field_name, std::vector<pcl::PCLPointField> &fields);
#
# /** \brief Get the list of available fields (i.e., dimension/channel)
# * \param[in] cloud the point cloud message
# * \param[out] fields a vector to the original \a PCLPointField vector that the raw PointCloud message contains
# * \ingroup common
# */
# template <typename PointT> inline void getFields (const pcl::PointCloud<PointT> &cloud, std::vector<pcl::PCLPointField> &fields);
#
# /** \brief Get the list of available fields (i.e., dimension/channel)
# * \param[out] fields a vector to the original \a PCLPointField vector that the raw PointCloud message contains
# * \ingroup common
# */
# template <typename PointT> inline void getFields (std::vector<pcl::PCLPointField> &fields);
#
# /** \brief Get the list of all fields available in a given cloud
# * \param[in] cloud the the point cloud message
# * \ingroup common
# */
# template <typename PointT> inline std::string getFieldsList (const pcl::PointCloud<PointT> &cloud);
#
# /** \brief Get the available point cloud fields as a space separated string
# * \param[in] cloud a pointer to the PointCloud message
# * \ingroup common
# */
# inline std::string getFieldsList (const pcl::PCLPointCloud2 &cloud)
#
# /** \brief Obtains the size of a specific field data type in bytes
# * \param[in] datatype the field data type (see PCLPointField.h)
# * \ingroup common
# */
# inline int getFieldSize (const int datatype)
#
# /** \brief Obtain a vector with the sizes of all valid fields (e.g., not "_")
# * \param[in] fields the input vector containing the fields
# * \param[out] field_sizes the resultant field sizes in bytes
# */
# PCL_EXPORTS void getFieldsSizes (const std::vector<pcl::PCLPointField> &fields,std::vector<int> &field_sizes);
#
# /** \brief Obtains the type of the PCLPointField from a specific size and type
# * \param[in] size the size in bytes of the data field
# * \param[in] type a char describing the type of the field ('F' = float, 'I' = signed, 'U' = unsigned)
# * \ingroup common
# */
# inline int getFieldType (const int size, char type)
#
# /** \brief Obtains the type of the PCLPointField from a specific PCLPointField as a char
# * \param[in] type the PCLPointField field type
# * \ingroup common
# */
# inline char getFieldType (const int type)
# {
# switch (type)
# {
# case pcl::PCLPointField::INT8:
# case pcl::PCLPointField::INT16:
# case pcl::PCLPointField::INT32:
# return ('I');
#
# case pcl::PCLPointField::UINT8:
# case pcl::PCLPointField::UINT16:
# case pcl::PCLPointField::UINT32:
# return ('U');
#
# case pcl::PCLPointField::FLOAT32:
# case pcl::PCLPointField::FLOAT64:
# return ('F');
# default:
# return ('?');
# }
# }
#
# typedef enum
# {
# BORDER_CONSTANT = 0, BORDER_REPLICATE = 1,
# BORDER_REFLECT = 2, BORDER_WRAP = 3,
# BORDER_REFLECT_101 = 4, BORDER_TRANSPARENT = 5,
# BORDER_DEFAULT = BORDER_REFLECT_101
# } InterpolationType;
###
# /** \brief \return the right index according to the interpolation type.
# * \note this is adapted from OpenCV
# * \param p the index of point to interpolate
# * \param length the top/bottom row or left/right column index
# * \param type the requested interpolation
# * \throws pcl::BadArgumentException if type is unknown
# */
# PCL_EXPORTS int interpolatePointIndex (int p, int length, InterpolationType type);
###
# /** \brief Concatenate two pcl::PCLPointCloud2.
# * \param[in] cloud1 the first input point cloud dataset
# * \param[in] cloud2 the second input point cloud dataset
# * \param[out] cloud_out the resultant output point cloud dataset
# * \return true if successful, false if failed (e.g., name/number of fields differs)
# * \ingroup common
# */
# PCL_EXPORTS bool concatenatePointCloud (const pcl::PCLPointCloud2 &cloud1, const pcl::PCLPointCloud2 &cloud2, pcl::PCLPointCloud2 &cloud_out);
###
# pcl1.6.0 NG
# pcl1.7.2
# copy_point.h
# namespace pcl
# \brief Copy the fields of a source point into a target point.
# If the source and the target point types are the same, then a complete
# copy is made. Otherwise only those fields that the two point types share
# in common are copied.
# \param[in] point_in the source point
# \param[out] point_out the target point
# \ingroup common
# template <typename PointInT, typename PointOutT> void copyPoint (const PointInT& point_in, PointOutT& point_out);
# PCL 1.7.2
# cdef extern from "pcl/common/copy_point.h" namespace "pcl":
# PCL 1.6.0
cdef extern from "pcl/common/io.h" namespace "pcl":
void copyPointCloud [PointInT, PointOutT](const PointInT &cloud_in, const PointOutT &cloud_out)
# void copyPointCloud [shared_ptr[cpp.PointCloud[cpp.PointXYZ]], shared_ptr[cpp.PointCloud[cpp.PointXYZ]] (hogehoge)
###
# common/io.h
# namespace pcl
# cdef extern from "pcl/common/io.h" namespace "pcl":
# \brief Extract the indices of a given point cloud as a new point cloud
# \param[in] cloud_in the input point cloud dataset
# \param[in] indices the vector of indices representing the points to be copied from \a cloud_in
# \param[out] cloud_out the resultant output point cloud dataset
# \note Assumes unique indices.
# \ingroup common
# PCL_EXPORTS void copyPointCloud (const pcl::PCLPointCloud2 &cloud_in, const std::vector<int> &indices, pcl::PCLPointCloud2 &cloud_out);
###
# common/io.h
# namespace pcl
# cdef extern from "pcl/common/io.h" namespace "pcl":
# \brief Extract the indices of a given point cloud as a new point cloud
# \param[in] cloud_in the input point cloud dataset
# \param[in] indices the vector of indices representing the points to be copied from \a cloud_in
# \param[out] cloud_out the resultant output point cloud dataset
# \note Assumes unique indices.
# \ingroup common
# PCL_EXPORTS void copyPointCloud (const pcl::PCLPointCloud2 &cloud_in, const std::vector<int, Eigen::aligned_allocator<int> > &indices, pcl::PCLPointCloud2 &cloud_out);
###
# common/io.h
# namespace pcl
# cdef extern from "pcl/common/io.h" namespace "pcl":
# \brief Copy fields and point cloud data from \a cloud_in to \a cloud_out
# \param[in] cloud_in the input point cloud dataset
# \param[out] cloud_out the resultant output point cloud dataset
# \ingroup common
# PCL_EXPORTS void copyPointCloud (const pcl::PCLPointCloud2 &cloud_in, pcl::PCLPointCloud2 &cloud_out);
###
# common/io.h
# namespace pcl
# cdef extern from "pcl/common/io.h" namespace "pcl":
# /** \brief Check if two given point types are the same or not. */
# template <typename Point1T, typename Point2T> inline bool isSamePointType ()
###
# common/io.h
# namespace pcl
# \brief Extract the indices of a given point cloud as a new point cloud
# \param[in] cloud_in the input point cloud dataset
# \param[in] indices the vector of indices representing the points to be copied from \a cloud_in
# \param[out] cloud_out the resultant output point cloud dataset
# \note Assumes unique indices.
# \ingroup common
# template <typename PointT> void copyPointCloud (const pcl::PointCloud<PointT> &cloud_in, const std::vector<int> &indices, pcl::PointCloud<PointT> &cloud_out);
cdef extern from "pcl/common/io.h" namespace "pcl":
# cdef void copyPointCloud [PointT](shared_ptr[cpp.PointCloud[PointT]] &cloud_in, const vector[int] &indices, shared_ptr[cpp.PointCloud[PointT]] &cloud_out)
# NG
# cdef void copyPointCloud_Indices "copyPointCloud" [PointT](const shared_ptr[cpp.PointCloud[PointT]] &cloud_in, const vector[int] &indices, shared_ptr[cpp.PointCloud[PointT]] &cloud_out)
# cdef void copyPointCloud_Indices "pcl::copyPointCloud" [PointT](const shared_ptr[cpp.PointCloud[PointT]] &cloud_in, const vector[int] &indices, shared_ptr[cpp.PointCloud[PointT]] &cloud_out)
void copyPointCloud_Indices "pcl::copyPointCloud" [PointT](const cpp.PointCloud[PointT]* &cloud_in, const vector[int] &indices, cpp.PointCloud[PointT] &cloud_out)
###
# common/io.h
# namespace pcl
# cdef extern from "pcl/common/io.h" namespace "pcl":
# \brief Extract the indices of a given point cloud as a new point cloud
# \param[in] cloud_in the input point cloud dataset
# \param[in] indices the vector of indices representing the points to be copied from \a cloud_in
# \param[out] cloud_out the resultant output point cloud dataset
# \note Assumes unique indices.
# \ingroup common
# template <typename PointT> void copyPointCloud (const pcl::PointCloud<PointT> &cloud_in, const std::vector<int, Eigen::aligned_allocator<int> > &indices, pcl::PointCloud<PointT> &cloud_out);
cdef extern from "pcl/common/io.h" namespace "pcl":
cdef void copyPointCloud_Indices2 "pcl::copyPointCloud" [PointT](const cpp.PointCloud[PointT]* &cloud_in, const vector[int, eigen3.aligned_allocator_t] &indices, cpp.PointCloud[PointT] &cloud_out)
###
# common/io.h
# namespace pcl
# cdef extern from "pcl/common/io.h" namespace "pcl":
# /** \brief Extract the indices of a given point cloud as a new point cloud
# * \param[in] cloud_in the input point cloud dataset
# * \param[in] indices the PointIndices structure representing the points to be copied from cloud_in
# * \param[out] cloud_out the resultant output point cloud dataset
# * \note Assumes unique indices.
# * \ingroup common
# */
# template <typename PointT> void copyPointCloud (const pcl::PointCloud<PointT> &cloud_in, const PointIndices &indices, pcl::PointCloud<PointT> &cloud_out);
cdef extern from "pcl/common/io.h" namespace "pcl":
cdef void copyPointCloud_Indices3 "pcl::copyPointCloud" [PointT](const cpp.PointCloud[PointT]* &cloud_in, const cpp.PointIndices &indices, cpp.PointCloud[PointT] &cloud_out)
###
# common/io.h
# namespace pcl
# cdef extern from "pcl/common/io.h" namespace "pcl":
# /** \brief Extract the indices of a given point cloud as a new point cloud
# * \param[in] cloud_in the input point cloud dataset
# * \param[in] indices the vector of indices representing the points to be copied from \a cloud_in
# * \param[out] cloud_out the resultant output point cloud dataset
# * \note Assumes unique indices.
# * \ingroup common
# */
# template <typename PointT> void copyPointCloud (const pcl::PointCloud<PointT> &cloud_in, const std::vector<pcl::PointIndices> &indices, pcl::PointCloud<PointT> &cloud_out);
cdef extern from "pcl/common/io.h" namespace "pcl":
cdef void copyPointCloud_Indices4 "pcl::copyPointCloud" [PointT](const cpp.PointCloud[PointT]* &cloud_in, const vector[cpp.PointIndices] &indices, cpp.PointCloud[PointT] &cloud_out)
###
# common/io.h
# namespace pcl
# cdef extern from "pcl/common/io.h" namespace "pcl":
# /** \brief Copy a point cloud inside a larger one interpolating borders.
# * \param[in] cloud_in the input point cloud dataset
# * \param[out] cloud_out the resultant output point cloud dataset
# * \param top
# * \param bottom
# * \param left
# * \param right
# * Position of cloud_in inside cloud_out is given by \a top, \a left, \a bottom \a right.
# * \param[in] border_type the interpolating method (pcl::BORDER_XXX)
# * BORDER_REPLICATE: aaaaaa|abcdefgh|hhhhhhh
# * BORDER_REFLECT: fedcba|abcdefgh|hgfedcb
# * BORDER_REFLECT_101: gfedcb|abcdefgh|gfedcba
# * BORDER_WRAP: cdefgh|abcdefgh|abcdefg
# * BORDER_CONSTANT: iiiiii|abcdefgh|iiiiiii with some specified 'i'
# * BORDER_TRANSPARENT: mnopqr|abcdefgh|tuvwxyz where m-r and t-z are orignal values of cloud_out
# * \param value
# * \throw pcl::BadArgumentException if any of top, bottom, left or right is negative.
# * \ingroup common
# */
# template <typename PointT> void copyPointCloud (const pcl::PointCloud<PointT> &cloud_in, pcl::PointCloud<PointT> &cloud_out, int top, int bottom, int left, int right, pcl::InterpolationType border_type, const PointT& value);
###
# common/io.h
# namespace pcl
# cdef extern from "pcl/common/io.h" namespace "pcl":
# /** \brief Concatenate two datasets representing different fields.
# * \note If the input datasets have overlapping fields (i.e., both contain
# * the same fields), then the data in the second cloud (cloud2_in) will
# * overwrite the data in the first (cloud1_in).
# * \param[in] cloud1_in the first input dataset
# * \param[in] cloud2_in the second input dataset (overwrites the fields of the first dataset for those that are shared)
# * \param[out] cloud_out the resultant output dataset created by the concatenation of all the fields in the input datasets
# * \ingroup common
# */
# template <typename PointIn1T, typename PointIn2T, typename PointOutT> void concatenateFields (const pcl::PointCloud<PointIn1T> &cloud1_in, const pcl::PointCloud<PointIn2T> &cloud2_in, pcl::PointCloud<PointOutT> &cloud_out);
###
# common/io.h
# namespace pcl
# cdef extern from "pcl/common/io.h" namespace "pcl":
# /** \brief Concatenate two datasets representing different fields.
# * \note If the input datasets have overlapping fields (i.e., both contain
# * the same fields), then the data in the second cloud (cloud2_in) will
# * overwrite the data in the first (cloud1_in).
# * \param[in] cloud1_in the first input dataset
# * \param[in] cloud2_in the second input dataset (overwrites the fields of the first dataset for those that are shared)
# * \param[out] cloud_out the output dataset created by concatenating all the fields in the input datasets
# * \ingroup common
# */
# PCL_EXPORTS bool concatenateFields (const pcl::PCLPointCloud2 &cloud1_in,const pcl::PCLPointCloud2 &cloud2_in,pcl::PCLPointCloud2 &cloud_out);
###
# common/io.h
# namespace pcl
# cdef extern from "pcl/common/io.h" namespace "pcl":
# /** \brief Copy the XYZ dimensions of a pcl::PCLPointCloud2 into Eigen format
# * \param[in] in the point cloud message
# * \param[out] out the resultant Eigen MatrixXf format containing XYZ0 / point
# * \ingroup common
# */
# PCL_EXPORTS bool getPointCloudAsEigen (const pcl::PCLPointCloud2 &in, Eigen::MatrixXf &out);
###
# common/io.h
# namespace pcl
# cdef extern from "pcl/common/io.h" namespace "pcl":
# /** \brief Copy the XYZ dimensions from an Eigen MatrixXf into a pcl::PCLPointCloud2 message
# * \param[in] in the Eigen MatrixXf format containing XYZ0 / point
# * \param[out] out the resultant point cloud message
# * \note the method assumes that the PCLPointCloud2 message already has the fields set up properly !
# * \ingroup common
# */
# PCL_EXPORTS bool getEigenAsPointCloud (Eigen::MatrixXf &in, pcl::PCLPointCloud2 &out);
#
# namespace io
# {
# /** \brief swap bytes order of a char array of length N
# * \param bytes char array to swap
# * \ingroup common
# */
# template <std::size_t N> void swapByte (char* bytes);
#
# /** \brief specialization of swapByte for dimension 1
# * \param bytes char array to swap
# */
# template <> inline void swapByte<1> (char* bytes) { bytes[0] = bytes[0]; }
#
# /** \brief specialization of swapByte for dimension 2
# * \param bytes char array to swap
# */
# template <> inline void swapByte<2> (char* bytes) { std::swap (bytes[0], bytes[1]); }
#
# /** \brief specialization of swapByte for dimension 4
# * \param bytes char array to swap
# */
# template <> inline void swapByte<4> (char* bytes)
#
# /** \brief specialization of swapByte for dimension 8
# * \param bytes char array to swap
# */
# template <> inline void swapByte<8> (char* bytes)
#
# /** \brief swaps byte of an arbitrary type T casting it to char*
# * \param value the data you want its bytes swapped
# */
# template <typename T> void swapByte (T& value)
###
# norms.h
# namespace pcl
# cdef extern from "pcl/common/norms.h" namespace "pcl":
# /** \brief Enum that defines all the types of norms available.
# * \note Any new norm type should have its own enum value and its own case in the selectNorm () method
# * \ingroup common
# */
# enum NormType {L1, L2_SQR, L2, LINF, JM, B, SUBLINEAR, CS, DIV, PF, K, KL, HIK};
###
# norms.h
# namespace pcl
# cdef extern from "pcl/common/norms.h" namespace "pcl":
# /** \brief Method that calculates any norm type available, based on the norm_type variable
# * \note FloatVectorT is any type of vector with its values accessible via [ ]
# * \ingroup common
# * */
# template <typename FloatVectorT> inline float
# selectNorm (FloatVectorT A, FloatVectorT B, int dim, NormType norm_type);
###
# norms.h
# namespace pcl
# cdef extern from "pcl/common/norms.h" namespace "pcl":
# /** \brief Compute the L1 norm of the vector between two points
# * \param A the first point
# * \param B the second point
# * \param dim the number of dimensions in \a A and \a B (dimensions must match)
# * \note FloatVectorT is any type of vector with its values accessible via [ ]
# * \ingroup common
# */
# template <typename FloatVectorT> inline float
# L1_Norm (FloatVectorT A, FloatVectorT B, int dim);
###
# norms.h
# namespace pcl
# cdef extern from "pcl/common/norms.h" namespace "pcl":
# /** \brief Compute the squared L2 norm of the vector between two points
# * \param A the first point
# * \param B the second point
# * \param dim the number of dimensions in \a A and \a B (dimensions must match)
# * \note FloatVectorT is any type of vector with its values accessible via [ ]
# * \ingroup common
# */
# template <typename FloatVectorT> inline float
# L2_Norm_SQR (FloatVectorT A, FloatVectorT B, int dim);
###
# norms.h
# namespace pcl
# cdef extern from "pcl/common/norms.h" namespace "pcl":
# /** \brief Compute the L2 norm of the vector between two points
# * \param A the first point
# * \param B the second point
# * \param dim the number of dimensions in \a A and \a B (dimensions must match)
# * \note FloatVectorT is any type of vector with its values accessible via [ ]
# * \ingroup common
# */
# template <typename FloatVectorT> inline float
# L2_Norm (FloatVectorT A, FloatVectorT B, int dim);
###
# norms.h
# namespace pcl
# cdef extern from "pcl/common/norms.h" namespace "pcl":
# /** \brief Compute the L-infinity norm of the vector between two points
# * \param A the first point
# * \param B the second point
# * \param dim the number of dimensions in \a A and \a B (dimensions must match)
# * \note FloatVectorT is any type of vector with its values accessible via [ ]
# * \ingroup common
# */
# template <typename FloatVectorT> inline float
# Linf_Norm (FloatVectorT A, FloatVectorT B, int dim);
###
# norms.h
# namespace pcl
# cdef extern from "pcl/common/norms.h" namespace "pcl":
# /** \brief Compute the JM norm of the vector between two points
# * \param A the first point
# * \param B the second point
# * \param dim the number of dimensions in \a A and \a B (dimensions must match)
# * \note FloatVectorT is any type of vector with its values accessible via [ ]
# * \ingroup common
# */
# template <typename FloatVectorT> inline float
# JM_Norm (FloatVectorT A, FloatVectorT B, int dim);
###
# norms.h
# namespace pcl
# cdef extern from "pcl/common/norms.h" namespace "pcl":
# /** \brief Compute the B norm of the vector between two points
# * \param A the first point
# * \param B the second point
# * \param dim the number of dimensions in \a A and \a B (dimensions must match)
# * \note FloatVectorT is any type of vector with its values accessible via [ ]
# * \ingroup common
# */
# template <typename FloatVectorT> inline float
# B_Norm (FloatVectorT A, FloatVectorT B, int dim);
###
# norms.h
# namespace pcl
# cdef extern from "pcl/common/norms.h" namespace "pcl":
# /** \brief Compute the sublinear norm of the vector between two points
# * \param A the first point
# * \param B the second point
# * \param dim the number of dimensions in \a A and \a B (dimensions must match)
# * \note FloatVectorT is any type of vector with its values accessible via [ ]
# * \ingroup common
# */
# template <typename FloatVectorT> inline float
# Sublinear_Norm (FloatVectorT A, FloatVectorT B, int dim);
###
# norms.h
# namespace pcl
# cdef extern from "pcl/common/norms.h" namespace "pcl":
# /** \brief Compute the CS norm of the vector between two points
# * \param A the first point
# * \param B the second point
# * \param dim the number of dimensions in \a A and \a B (dimensions must match)
# * \note FloatVectorT is any type of vector with its values accessible via [ ]
# * \ingroup common
# */
# template <typename FloatVectorT> inline float
# CS_Norm (FloatVectorT A, FloatVectorT B, int dim);
###
# norms.h
# namespace pcl
# cdef extern from "pcl/common/norms.h" namespace "pcl":
# /** \brief Compute the div norm of the vector between two points
# * \param A the first point
# * \param B the second point
# * \param dim the number of dimensions in \a A and \a B (dimensions must match)
# * \note FloatVectorT is any type of vector with its values accessible via [ ]
# * \ingroup common
# */
# template <typename FloatVectorT> inline float
# Div_Norm (FloatVectorT A, FloatVectorT B, int dim);
###
# norms.h
# namespace pcl
# cdef extern from "pcl/common/norms.h" namespace "pcl":
# /** \brief Compute the PF norm of the vector between two points
# * \param A the first point
# * \param B the second point
# * \param dim the number of dimensions in \a A and \a B (dimensions must match)
# * \param P1 the first parameter
# * \param P2 the second parameter
# * \note FloatVectorT is any type of vector with its values accessible via [ ]
# * \ingroup common
# */
# template <typename FloatVectorT> inline float
# PF_Norm (FloatVectorT A, FloatVectorT B, int dim, float P1, float P2);
###
# norms.h
# namespace pcl
# cdef extern from "pcl/common/norms.h" namespace "pcl":
# /** \brief Compute the K norm of the vector between two points
# * \param A the first point
# * \param B the second point
# * \param dim the number of dimensions in \a A and \a B (dimensions must match)
# * \param P1 the first parameter
# * \param P2 the second parameter
# * \note FloatVectorT is any type of vector with its values accessible via [ ]
# * \ingroup common
# */
# template <typename FloatVectorT> inline float
# K_Norm (FloatVectorT A, FloatVectorT B, int dim, float P1, float P2);
###
# norms.h
# namespace pcl
# cdef extern from "pcl/common/norms.h" namespace "pcl":
# /** \brief Compute the KL between two discrete probability density functions
# * \param A the first discrete PDF
# * \param B the second discrete PDF
# * \param dim the number of dimensions in \a A and \a B (dimensions must match)
# * \note FloatVectorT is any type of vector with its values accessible via [ ]
# * \ingroup common
# */
# template <typename FloatVectorT> inline float
# KL_Norm (FloatVectorT A, FloatVectorT B, int dim);
###
# norms.h
# namespace pcl
# cdef extern from "pcl/common/norms.h" namespace "pcl":
# /** \brief Compute the HIK norm of the vector between two points
# * \param A the first point
# * \param B the second point
# * \param dim the number of dimensions in \a A and \a B (dimensions must match)
# * \note FloatVectorT is any type of vector with its values accessible via [ ]
# * \ingroup common
# */
# template <typename FloatVectorT> inline float
# HIK_Norm (FloatVectorT A, FloatVectorT B, int dim);
###
# pca.h
# namespace pcl
# cdef extern from "pcl/common/pca.h" namespace "pcl":
# /** Principal Component analysis (PCA) class.\n
# * Principal components are extracted by singular values decomposition on the
# * covariance matrix of the centered input cloud. Available data after pca computation
# * are the mean of the input data, the eigenvalues (in descending order) and
# * corresponding eigenvectors.\n
# * Other methods allow projection in the eigenspace, reconstruction from eigenspace and
# * update of the eigenspace with a new datum (according Matej Artec, Matjaz Jogan and
# * Ales Leonardis: "Incremental PCA for On-line Visual Learning and Recognition").
# * \author Nizar Sallem
# * \ingroup common
# */
# template <typename PointT>
# class PCA : public pcl::PCLBase <PointT>
# {
# public:
# typedef pcl::PCLBase <PointT> Base;
# typedef typename Base::PointCloud PointCloud;
# typedef typename Base::PointCloudPtr PointCloudPtr;
# typedef typename Base::PointCloudConstPtr PointCloudConstPtr;
# typedef typename Base::PointIndicesPtr PointIndicesPtr;
# typedef typename Base::PointIndicesConstPtr PointIndicesConstPtr;
#
# using Base::input_;
# using Base::indices_;
# using Base::initCompute;
# using Base::setInputCloud;
#
# /** Updating method flag */
# enum FLAG
# {
# /** keep the new basis vectors if possible */
# increase,
# /** preserve subspace dimension */
# preserve
# };
#
# /** \brief Default Constructor
# * \param basis_only flag to compute only the PCA basis
# */
# PCA (bool basis_only = false)
# : Base ()
# , compute_done_ (false)
# , basis_only_ (basis_only)
# , eigenvectors_ ()
# , coefficients_ ()
# , mean_ ()
# , eigenvalues_ ()
# {}
#
# /** \brief Constructor with direct computation
# * X input m*n matrix (ie n vectors of R(m))
# * basis_only flag to compute only the PCA basis
# */
# PCL_DEPRECATED ("Use PCA (bool basis_only); setInputCloud (X.makeShared ()); instead")
# PCA (const pcl::PointCloud<PointT>& X, bool basis_only = false);
#
# /** Copy Constructor
# * \param[in] pca PCA object
# */
# PCA (PCA const & pca)
# : Base (pca)
# , compute_done_ (pca.compute_done_)
# , basis_only_ (pca.basis_only_)
# , eigenvectors_ (pca.eigenvectors_)
# , coefficients_ (pca.coefficients_)
# , mean_ (pca.mean_)
# , eigenvalues_ (pca.eigenvalues_)
# {}
#
# /** Assignment operator
# * \param[in] pca PCA object
# */
# inline PCA& operator= (PCA const & pca)
#
# /** \brief Provide a pointer to the input dataset
# * \param cloud the const boost shared pointer to a PointCloud message
# */
# inline void setInputCloud (const PointCloudConstPtr &cloud)
#
# /** \brief Mean accessor
# * \throw InitFailedException
# */
# inline Eigen::Vector4f& getMean ()
#
# /** Eigen Vectors accessor
# * \throw InitFailedException
# */
# inline Eigen::Matrix3f& getEigenVectors ()
#
# /** Eigen Values accessor
# * \throw InitFailedException
# */
# inline Eigen::Vector3f& getEigenValues ()
#
# /** Coefficients accessor
# * \throw InitFailedException
# */
# inline Eigen::MatrixXf& getCoefficients ()
#
# /** update PCA with a new point
# * \param[in] input input point
# * \param[in] flag update flag
# * \throw InitFailedException
# */
# inline void update (const PointT& input, FLAG flag = preserve);
#
# /** Project point on the eigenspace.
# * \param[in] input point from original dataset
# * \param[out] projection the point in eigen vectors space
# * \throw InitFailedException
# */
# inline void project (const PointT& input, PointT& projection);
#
# /** Project cloud on the eigenspace.
# * \param[in] input cloud from original dataset
# * \param[out] projection the cloud in eigen vectors space
# * \throw InitFailedException
# */
# inline void project (const PointCloud& input, PointCloud& projection);
#
# /** Reconstruct point from its projection
# * \param[in] projection point from eigenvector space
# * \param[out] input reconstructed point
# * \throw InitFailedException
# */
# inline void reconstruct (const PointT& projection, PointT& input);
#
# /** Reconstruct cloud from its projection
# * \param[in] projection cloud from eigenvector space
# * \param[out] input reconstructed cloud
# * \throw InitFailedException
# */
# inline void reconstruct (const PointCloud& projection, PointCloud& input);
###
# piecewise_linear_function.h
# namespace pcl
# cdef extern from "pcl/common/piecewise_linear_function.h" namespace "pcl":
# /**
# * \brief This provides functionalities to efficiently return values for piecewise linear function
# * \ingroup common
# */
# class PiecewiseLinearFunction
# public:
# // =====CONSTRUCTOR & DESTRUCTOR=====
# //! Constructor
# PiecewiseLinearFunction (float factor, float offset);
#
# // =====PUBLIC METHODS=====
# //! Get the list of known data points
# std::vector<float>& getDataPoints ()
#
# //! Get the value of the function at the given point
# inline float getValue (float point) const;
#
# // =====PUBLIC MEMBER VARIABLES=====
#
###
# point_operators.h
###
# point_tests.h
# namespace pcl
# {
# /** Tests if the 3D components of a point are all finite
# * param[in] pt point to be tested
# */
# template <typename PointT> inline bool
# isFinite (const PointT &pt)
# {
# return (pcl_isfinite (pt.x) && pcl_isfinite (pt.y) && pcl_isfinite (pt.z));
# }
#
# #ifdef _MSC_VER
# template <typename PointT> inline bool
# isFinite (const Eigen::internal::workaround_msvc_stl_support<PointT> &pt)
# {
# return isFinite<PointT> (static_cast<const PointT&> (pt));
# }
# #endif
#
# template<> inline bool isFinite<pcl::RGB> (const pcl::RGB&) { return (true); }
# template<> inline bool isFinite<pcl::Label> (const pcl::Label&) { return (true); }
# template<> inline bool isFinite<pcl::Axis> (const pcl::Axis&) { return (true); }
# template<> inline bool isFinite<pcl::Intensity> (const pcl::Intensity&) { return (true); }
# template<> inline bool isFinite<pcl::MomentInvariants> (const pcl::MomentInvariants&) { return (true); }
# template<> inline bool isFinite<pcl::PrincipalRadiiRSD> (const pcl::PrincipalRadiiRSD&) { return (true); }
# template<> inline bool isFinite<pcl::Boundary> (const pcl::Boundary&) { return (true); }
# template<> inline bool isFinite<pcl::PrincipalCurvatures> (const pcl::PrincipalCurvatures&) { return (true); }
# template<> inline bool isFinite<pcl::SHOT352> (const pcl::SHOT352&) { return (true); }
# template<> inline bool isFinite<pcl::SHOT1344> (const pcl::SHOT1344&) { return (true); }
# template<> inline bool isFinite<pcl::ReferenceFrame> (const pcl::ReferenceFrame&) { return (true); }
# template<> inline bool isFinite<pcl::ShapeContext1980> (const pcl::ShapeContext1980&) { return (true); }
# template<> inline bool isFinite<pcl::PFHSignature125> (const pcl::PFHSignature125&) { return (true); }
# template<> inline bool isFinite<pcl::PFHRGBSignature250> (const pcl::PFHRGBSignature250&) { return (true); }
# template<> inline bool isFinite<pcl::PPFSignature> (const pcl::PPFSignature&) { return (true); }
# template<> inline bool isFinite<pcl::PPFRGBSignature> (const pcl::PPFRGBSignature&) { return (true); }
# template<> inline bool isFinite<pcl::NormalBasedSignature12> (const pcl::NormalBasedSignature12&) { return (true); }
# template<> inline bool isFinite<pcl::FPFHSignature33> (const pcl::FPFHSignature33&) { return (true); }
# template<> inline bool isFinite<pcl::VFHSignature308> (const pcl::VFHSignature308&) { return (true); }
# template<> inline bool isFinite<pcl::ESFSignature640> (const pcl::ESFSignature640&) { return (true); }
# template<> inline bool isFinite<pcl::IntensityGradient> (const pcl::IntensityGradient&) { return (true); }
#
# // specification for pcl::PointXY
# template <> inline bool
# isFinite<pcl::PointXY> (const pcl::PointXY &p)
# {
# return (pcl_isfinite (p.x) && pcl_isfinite (p.y));
# }
#
# // specification for pcl::BorderDescription
# template <> inline bool
# isFinite<pcl::BorderDescription> (const pcl::BorderDescription &p)
# {
# return (pcl_isfinite (p.x) && pcl_isfinite (p.y));
# }
#
# // specification for pcl::Normal
# template <> inline bool
# isFinite<pcl::Normal> (const pcl::Normal &n)
# {
# return (pcl_isfinite (n.normal_x) && pcl_isfinite (n.normal_y) && pcl_isfinite (n.normal_z));
# }
# }
###
# polynomial_calculations.h
# namespace pcl
# {
# /** \brief This provides some functionality for polynomials,
# * like finding roots or approximating bivariate polynomials
# * \author Bastian Steder
# * \ingroup common
# */
# template <typename real>
# class PolynomialCalculationsT
# {
# public:
# // =====CONSTRUCTOR & DESTRUCTOR=====
# PolynomialCalculationsT ();
# ~PolynomialCalculationsT ();
#
# // =====PUBLIC STRUCTS=====
# //! Parameters used in this class
# struct Parameters
# {
# Parameters () : zero_value (), sqr_zero_value () { setZeroValue (1e-6);}
# //! Set zero_value
# void
# setZeroValue (real new_zero_value);
#
# real zero_value; //!< Every value below this is considered to be zero
# real sqr_zero_value; //!< sqr of the above
# };
#
# // =====PUBLIC METHODS=====
# /** Solves an equation of the form ax^4 + bx^3 + cx^2 +dx + e = 0
# * See http://en.wikipedia.org/wiki/Quartic_equation#Summary_of_Ferrari.27s_method */
# inline void
# solveQuarticEquation (real a, real b, real c, real d, real e, std::vector<real>& roots) const;
#
# /** Solves an equation of the form ax^3 + bx^2 + cx + d = 0
# * See http://en.wikipedia.org/wiki/Cubic_equation */
# inline void
# solveCubicEquation (real a, real b, real c, real d, std::vector<real>& roots) const;
#
# /** Solves an equation of the form ax^2 + bx + c = 0
# * See http://en.wikipedia.org/wiki/Quadratic_equation */
# inline void
# solveQuadraticEquation (real a, real b, real c, std::vector<real>& roots) const;
#
# /** Solves an equation of the form ax + b = 0 */
# inline void
# solveLinearEquation (real a, real b, std::vector<real>& roots) const;
#
# /** Get the bivariate polynomial approximation for Z(X,Y) from the given sample points.
# * The parameters a,b,c,... for the polynom are returned.
# * The order is, e.g., for degree 1: ax+by+c and for degree 2: ax2+bxy+cx+dy2+ey+f.
# * error is set to true if the approximation did not work for any reason
# * (not enough points, matrix not invertible, etc.) */
# inline BivariatePolynomialT<real>
# bivariatePolynomialApproximation (std::vector<Eigen::Matrix<real, 3, 1> >& samplePoints,
# unsigned int polynomial_degree, bool& error) const;
#
# //! Same as above, using a reference for the return value
# inline bool
# bivariatePolynomialApproximation (std::vector<Eigen::Matrix<real, 3, 1> >& samplePoints,
# unsigned int polynomial_degree, BivariatePolynomialT<real>& ret) const;
#
# //! Set the minimum value under which values are considered zero
# inline void
# setZeroValue (real new_zero_value) { parameters_.setZeroValue(new_zero_value); }
#
# protected:
# // =====PROTECTED METHODS=====
# //! check if fabs(d)<zeroValue
# inline bool
# isNearlyZero (real d) const
# {
# return (fabs (d) < parameters_.zero_value);
# }
#
# //! check if sqrt(fabs(d))<zeroValue
# inline bool
# sqrtIsNearlyZero (real d) const
# {
# return (fabs (d) < parameters_.sqr_zero_value);
# }
#
# // =====PROTECTED MEMBERS=====
# Parameters parameters_;
# };
#
# typedef PolynomialCalculationsT<double> PolynomialCalculationsd;
# typedef PolynomialCalculationsT<float> PolynomialCalculations;
#
# } // end namespace
###
# poses_from_matches.h
# namespace pcl
# {
# /**
# * \brief calculate 3D transformation based on point correspondencdes
# * \author Bastian Steder
# * \ingroup common
# */
# class PCL_EXPORTS PosesFromMatches
# {
# public:
# // =====CONSTRUCTOR & DESTRUCTOR=====
# //! Constructor
# PosesFromMatches();
# //! Destructor
# ~PosesFromMatches();
#
# // =====STRUCTS=====
# //! Parameters used in this class
# struct PCL_EXPORTS Parameters
# {
# Parameters() : max_correspondence_distance_error(0.2f) {}
# float max_correspondence_distance_error; // As a fraction
# };
#
# //! A result of the pose estimation process
# struct PoseEstimate
# {
# PoseEstimate () :
# transformation (Eigen::Affine3f::Identity ()),
# score (0),
# correspondence_indices (0)
# {}
#
# Eigen::Affine3f transformation; //!< The estimated transformation between the two coordinate systems
# float score; //!< An estimate in [0,1], how good the estimated pose is
# std::vector<int> correspondence_indices; //!< The indices of the used correspondences
#
# struct IsBetter
# {
# bool operator()(const PoseEstimate& pe1, const PoseEstimate& pe2) const { return pe1.score>pe2.score;}
# };
# public:
# EIGEN_MAKE_ALIGNED_OPERATOR_NEW
# };
#
# // =====TYPEDEFS=====
# typedef std::vector<PoseEstimate, Eigen::aligned_allocator<PoseEstimate> > PoseEstimatesVector;
#
#
# // =====STATIC METHODS=====
#
# // =====PUBLIC METHODS=====
# /** Use single 6DOF correspondences to estimate transformations between the coordinate systems.
# * Use max_no_of_results=-1 to use all.
# * It is assumed, that the correspondences are sorted from good to bad. */
# void
# estimatePosesUsing1Correspondence (
# const PointCorrespondences6DVector& correspondences,
# int max_no_of_results, PoseEstimatesVector& pose_estimates) const;
#
# /** Use pairs of 6DOF correspondences to estimate transformations between the coordinate systems.
# * It is assumed, that the correspondences are sorted from good to bad. */
# void
# estimatePosesUsing2Correspondences (
# const PointCorrespondences6DVector& correspondences,
# int max_no_of_tested_combinations, int max_no_of_results,
# PoseEstimatesVector& pose_estimates) const;
#
# /** Use triples of 6DOF correspondences to estimate transformations between the coordinate systems.
# * It is assumed, that the correspondences are sorted from good to bad. */
# void
# estimatePosesUsing3Correspondences (
# const PointCorrespondences6DVector& correspondences,
# int max_no_of_tested_combinations, int max_no_of_results,
# PoseEstimatesVector& pose_estimates) const;
#
# /// Get a reference to the parameters struct
# Parameters&
# getParameters () { return parameters_; }
#
# protected:
# // =====PROTECTED MEMBER VARIABLES=====
# Parameters parameters_;
#
# };
#
# } // end namespace pcl
###
# projection_matrix.h
# namespace pcl
# {
# template <typename T> class PointCloud;
#
# /** \brief Estimates the projection matrix P = K * (R|-R*t) from organized point clouds, with
# * K = [[fx, s, cx], [0, fy, cy], [0, 0, 1]]
# * R = rotation matrix and
# * t = translation vector
# *
# * \param[in] cloud input cloud. Must be organized and from a projective device. e.g. stereo or kinect, ...
# * \param[out] projection_matrix output projection matrix
# * \param[in] indices The indices to be used to determine the projection matrix
# * \return the resudial error. A high residual indicates, that the point cloud was not from a projective device.
# */
# template<typename PointT> double
# estimateProjectionMatrix (typename pcl::PointCloud<PointT>::ConstPtr cloud, Eigen::Matrix<float, 3, 4, Eigen::RowMajor>& projection_matrix, const std::vector<int>& indices = std::vector<int> ());
#
# /** \brief Determines the camera matrix from the given projection matrix.
# * \note This method does NOT use a RQ decomposition, but uses the fact that the left 3x3 matrix P' of P squared eliminates the rotational part.
# * P' = K * R -> P' * P'^T = K * R * R^T * K = K * K^T
# * \param[in] projection_matrix
# * \param[out] camera_matrix
# */
# PCL_EXPORTS void
# getCameraMatrixFromProjectionMatrix (const Eigen::Matrix<float, 3, 4, Eigen::RowMajor>& projection_matrix, Eigen::Matrix3f& camera_matrix);
# }
###
# random.h
# namespace pcl
# {
# namespace common
# {
# /// uniform distribution dummy struct
# template <typename T> struct uniform_distribution;
# /// uniform distribution int specialized
# template<>
# struct uniform_distribution<int>
# {
# typedef boost::uniform_int<int> type;
# };
# /// uniform distribution float specialized
# template<>
# struct uniform_distribution<float>
# {
# typedef boost::uniform_real<float> type;
# };
# /// normal distribution
# template<typename T>
# struct normal_distribution
# {
# typedef boost::normal_distribution<T> type;
# };
#
# /** \brief UniformGenerator class generates a random number from range [min, max] at each run picked
# * according to a uniform distribution i.e eaach number within [min, max] has almost the same
# * probability of being drawn.
# *
# * \author Nizar Sallem
# */
# template<typename T>
# class UniformGenerator
# {
# public:
# struct Parameters
# {
# Parameters (T _min = 0, T _max = 1, pcl::uint32_t _seed = 1)
# : min (_min)
# , max (_max)
# , seed (_seed)
# {}
#
# T min;
# T max;
# pcl::uint32_t seed;
# };
#
# /** Constructor
# * \param min: included lower bound
# * \param max: included higher bound
# * \param seed: seeding value
# */
# UniformGenerator(T min = 0, T max = 1, pcl::uint32_t seed = -1);
#
# /** Constructor
# * \param parameters uniform distribution parameters and generator seed
# */
# UniformGenerator(const Parameters& parameters);
#
# /** Change seed value
# * \param[in] seed new generator seed value
# */
# void
# setSeed (pcl::uint32_t seed);
#
# /** Set the uniform number generator parameters
# * \param[in] min minimum allowed value
# * \param[in] max maximum allowed value
# * \param[in] seed random number generator seed (applied if != -1)
# */
# void
# setParameters (T min, T max, pcl::uint32_t seed = -1);
#
# /** Set generator parameters
# * \param parameters uniform distribution parameters and generator seed
# */
# void
# setParameters (const Parameters& parameters);
#
# /// \return uniform distribution parameters and generator seed
# const Parameters&
# getParameters () { return (parameters_); }
#
# /// \return a randomly generated number in the interval [min, max]
# inline T
# run () { return (generator_ ()); }
#
# private:
# typedef boost::mt19937 EngineType;
# typedef typename uniform_distribution<T>::type DistributionType;
# /// parameters
# Parameters parameters_;
# /// uniform distribution
# DistributionType distribution_;
# /// random number generator
# EngineType rng_;
# /// generator of random number from a uniform distribution
# boost::variate_generator<EngineType&, DistributionType> generator_;
# };
#
# /** \brief NormalGenerator class generates a random number from a normal distribution specified
# * by (mean, sigma).
# *
# * \author Nizar Sallem
# */
# template<typename T>
# class NormalGenerator
# {
# public:
# struct Parameters
# {
# Parameters (T _mean = 0, T _sigma = 1, pcl::uint32_t _seed = 1)
# : mean (_mean)
# , sigma (_sigma)
# , seed (_seed)
# {}
#
# T mean;
# T sigma;
# pcl::uint32_t seed;
# };
#
# /** Constructor
# * \param[in] mean normal mean
# * \param[in] sigma normal variation
# * \param[in] seed seeding value
# */
# NormalGenerator(T mean = 0, T sigma = 1, pcl::uint32_t seed = -1);
#
# /** Constructor
# * \param parameters normal distribution parameters and seed
# */
# NormalGenerator(const Parameters& parameters);
#
# /** Change seed value
# * \param[in] seed new seed value
# */
# void
# setSeed (pcl::uint32_t seed);
#
# /** Set the normal number generator parameters
# * \param[in] mean mean of the normal distribution
# * \param[in] sigma standard variation of the normal distribution
# * \param[in] seed random number generator seed (applied if != -1)
# */
# void
# setParameters (T mean, T sigma, pcl::uint32_t seed = -1);
#
# /** Set generator parameters
# * \param parameters normal distribution parameters and seed
# */
# void
# setParameters (const Parameters& parameters);
#
# /// \return normal distribution parameters and generator seed
# const Parameters&
# getParameters () { return (parameters_); }
#
# /// \return a randomly generated number in the normal distribution (mean, sigma)
# inline T
# run () { return (generator_ ()); }
#
# typedef boost::mt19937 EngineType;
# typedef typename normal_distribution<T>::type DistributionType;
# /// parameters
# Parameters parameters_;
# /// normal distribution
# DistributionType distribution_;
# /// random number generator
# EngineType rng_;
# /// generator of random number from a normal distribution
# boost::variate_generator<EngineType&, DistributionType > generator_;
# };
# }
# }
###
# register_point_struct.h
# #include <pcl/pcl_macros.h>
# #include <pcl/point_traits.h>
# #include <boost/mpl/vector.hpp>
# #include <boost/preprocessor/seq/enum.hpp>
# #include <boost/preprocessor/seq/for_each.hpp>
# #include <boost/preprocessor/seq/transform.hpp>
# #include <boost/preprocessor/cat.hpp>
# #include <boost/preprocessor/comparison.hpp>
# #include <boost/utility.hpp>
# //https://bugreports.qt-project.org/browse/QTBUG-22829
# #ifndef Q_MOC_RUN
# #include <boost/type_traits.hpp>
# #endif
# #include <stddef.h> //offsetof
#
# // Must be used in global namespace with name fully qualified
# #define POINT_CLOUD_REGISTER_POINT_STRUCT(name, fseq) \
# POINT_CLOUD_REGISTER_POINT_STRUCT_I(name, \
# BOOST_PP_CAT(POINT_CLOUD_REGISTER_POINT_STRUCT_X fseq, 0)) \
# /***/
#
# #define POINT_CLOUD_REGISTER_POINT_WRAPPER(wrapper, pod) \
# BOOST_MPL_ASSERT_MSG(sizeof(wrapper) == sizeof(pod), POINT_WRAPPER_AND_POD_TYPES_HAVE_DIFFERENT_SIZES, (wrapper&, pod&)); \
# namespace pcl { \
# namespace traits { \
# template<> struct POD<wrapper> { typedef pod type; }; \
# } \
# } \
# /***/
#
# // These macros help transform the unusual data structure (type, name, tag)(type, name, tag)...
# // into a proper preprocessor sequence of 3-tuples ((type, name, tag))((type, name, tag))...
# #define POINT_CLOUD_REGISTER_POINT_STRUCT_X(type, name, tag) \
# ((type, name, tag)) POINT_CLOUD_REGISTER_POINT_STRUCT_Y
# #define POINT_CLOUD_REGISTER_POINT_STRUCT_Y(type, name, tag) \
# ((type, name, tag)) POINT_CLOUD_REGISTER_POINT_STRUCT_X
# #define POINT_CLOUD_REGISTER_POINT_STRUCT_X0
# #define POINT_CLOUD_REGISTER_POINT_STRUCT_Y0
#
# namespace pcl
# {
# namespace traits
# {
# template<typename T> inline
# typename boost::disable_if_c<boost::is_array<T>::value>::type
# plus (T &l, const T &r)
# {
# l += r;
# }
#
# template<typename T> inline
# typename boost::enable_if_c<boost::is_array<T>::value>::type
# plus (typename boost::remove_const<T>::type &l, const T &r)
# {
# typedef typename boost::remove_all_extents<T>::type type;
# static const uint32_t count = sizeof (T) / sizeof (type);
# for (int i = 0; i < count; ++i)
# l[i] += r[i];
# }
#
# template<typename T1, typename T2> inline
# typename boost::disable_if_c<boost::is_array<T1>::value>::type
# plusscalar (T1 &p, const T2 &scalar)
# {
# p += scalar;
# }
#
# template<typename T1, typename T2> inline
# typename boost::enable_if_c<boost::is_array<T1>::value>::type
# plusscalar (T1 &p, const T2 &scalar)
# {
# typedef typename boost::remove_all_extents<T1>::type type;
# static const uint32_t count = sizeof (T1) / sizeof (type);
# for (int i = 0; i < count; ++i)
# p[i] += scalar;
# }
#
# template<typename T> inline
# typename boost::disable_if_c<boost::is_array<T>::value>::type
# minus (T &l, const T &r)
# {
# l -= r;
# }
#
# template<typename T> inline
# typename boost::enable_if_c<boost::is_array<T>::value>::type
# minus (typename boost::remove_const<T>::type &l, const T &r)
# {
# typedef typename boost::remove_all_extents<T>::type type;
# static const uint32_t count = sizeof (T) / sizeof (type);
# for (int i = 0; i < count; ++i)
# l[i] -= r[i];
# }
#
# template<typename T1, typename T2> inline
# typename boost::disable_if_c<boost::is_array<T1>::value>::type
# minusscalar (T1 &p, const T2 &scalar)
# {
# p -= scalar;
# }
#
# template<typename T1, typename T2> inline
# typename boost::enable_if_c<boost::is_array<T1>::value>::type
# minusscalar (T1 &p, const T2 &scalar)
# {
# typedef typename boost::remove_all_extents<T1>::type type;
# static const uint32_t count = sizeof (T1) / sizeof (type);
# for (int i = 0; i < count; ++i)
# p[i] -= scalar;
# }
#
# template<typename T1, typename T2> inline
# typename boost::disable_if_c<boost::is_array<T1>::value>::type
# mulscalar (T1 &p, const T2 &scalar)
# {
# p *= scalar;
# }
#
# template<typename T1, typename T2> inline
# typename boost::enable_if_c<boost::is_array<T1>::value>::type
# mulscalar (T1 &p, const T2 &scalar)
# {
# typedef typename boost::remove_all_extents<T1>::type type;
# static const uint32_t count = sizeof (T1) / sizeof (type);
# for (int i = 0; i < count; ++i)
# p[i] *= scalar;
# }
#
# template<typename T1, typename T2> inline
# typename boost::disable_if_c<boost::is_array<T1>::value>::type
# divscalar (T1 &p, const T2 &scalar)
# {
# p /= scalar;
# }
#
# template<typename T1, typename T2> inline
# typename boost::enable_if_c<boost::is_array<T1>::value>::type
# divscalar (T1 &p, const T2 &scalar)
# {
# typedef typename boost::remove_all_extents<T1>::type type;
# static const uint32_t count = sizeof (T1) / sizeof (type);
# for (int i = 0; i < count; ++i)
# p[i] /= scalar;
# }
# }
# }
#
# // Point operators
# #define PCL_PLUSEQ_POINT_TAG(r, data, elem) \
# pcl::traits::plus (lhs.BOOST_PP_TUPLE_ELEM(3, 1, elem), \
# rhs.BOOST_PP_TUPLE_ELEM(3, 1, elem)); \
# /***/
#
# #define PCL_PLUSEQSC_POINT_TAG(r, data, elem) \
# pcl::traits::plusscalar (p.BOOST_PP_TUPLE_ELEM(3, 1, elem), \
# scalar); \
# /***/
# //p.BOOST_PP_TUPLE_ELEM(3, 1, elem) += scalar; \
#
# #define PCL_MINUSEQ_POINT_TAG(r, data, elem) \
# pcl::traits::minus (lhs.BOOST_PP_TUPLE_ELEM(3, 1, elem), \
# rhs.BOOST_PP_TUPLE_ELEM(3, 1, elem)); \
# /***/
#
# #define PCL_MINUSEQSC_POINT_TAG(r, data, elem) \
# pcl::traits::minusscalar (p.BOOST_PP_TUPLE_ELEM(3, 1, elem), \
# scalar); \
# /***/
# //p.BOOST_PP_TUPLE_ELEM(3, 1, elem) -= scalar; \
#
# #define PCL_MULEQSC_POINT_TAG(r, data, elem) \
# pcl::traits::mulscalar (p.BOOST_PP_TUPLE_ELEM(3, 1, elem), \
# scalar); \
# /***/
#
# #define PCL_DIVEQSC_POINT_TAG(r, data, elem) \
# pcl::traits::divscalar (p.BOOST_PP_TUPLE_ELEM(3, 1, elem), \
# scalar); \
# /***/
#
# // Construct type traits given full sequence of (type, name, tag) triples
# // BOOST_MPL_ASSERT_MSG(boost::is_pod<name>::value,
# // REGISTERED_POINT_TYPE_MUST_BE_PLAIN_OLD_DATA, (name));
# #define POINT_CLOUD_REGISTER_POINT_STRUCT_I(name, seq) \
# namespace pcl \
# { \
# namespace fields \
# { \
# BOOST_PP_SEQ_FOR_EACH(POINT_CLOUD_REGISTER_FIELD_TAG, name, seq) \
# } \
# namespace traits \
# { \
# BOOST_PP_SEQ_FOR_EACH(POINT_CLOUD_REGISTER_FIELD_NAME, name, seq) \
# BOOST_PP_SEQ_FOR_EACH(POINT_CLOUD_REGISTER_FIELD_OFFSET, name, seq) \
# BOOST_PP_SEQ_FOR_EACH(POINT_CLOUD_REGISTER_FIELD_DATATYPE, name, seq) \
# POINT_CLOUD_REGISTER_POINT_FIELD_LIST(name, POINT_CLOUD_EXTRACT_TAGS(seq)) \
# } \
# namespace common \
# { \
# inline const name& \
# operator+= (name& lhs, const name& rhs) \
# { \
# BOOST_PP_SEQ_FOR_EACH(PCL_PLUSEQ_POINT_TAG, _, seq) \
# return (lhs); \
# } \
# inline const name& \
# operator+= (name& p, const float& scalar) \
# { \
# BOOST_PP_SEQ_FOR_EACH(PCL_PLUSEQSC_POINT_TAG, _, seq) \
# return (p); \
# } \
# inline const name operator+ (const name& lhs, const name& rhs) \
# { name result = lhs; result += rhs; return (result); } \
# inline const name operator+ (const float& scalar, const name& p) \
# { name result = p; result += scalar; return (result); } \
# inline const name operator+ (const name& p, const float& scalar) \
# { name result = p; result += scalar; return (result); } \
# inline const name& \
# operator-= (name& lhs, const name& rhs) \
# { \
# BOOST_PP_SEQ_FOR_EACH(PCL_MINUSEQ_POINT_TAG, _, seq) \
# return (lhs); \
# } \
# inline const name& \
# operator-= (name& p, const float& scalar) \
# { \
# BOOST_PP_SEQ_FOR_EACH(PCL_MINUSEQSC_POINT_TAG, _, seq) \
# return (p); \
# } \
# inline const name operator- (const name& lhs, const name& rhs) \
# { name result = lhs; result -= rhs; return (result); } \
# inline const name operator- (const float& scalar, const name& p) \
# { name result = p; result -= scalar; return (result); } \
# inline const name operator- (const name& p, const float& scalar) \
# { name result = p; result -= scalar; return (result); } \
# inline const name& \
# operator*= (name& p, const float& scalar) \
# { \
# BOOST_PP_SEQ_FOR_EACH(PCL_MULEQSC_POINT_TAG, _, seq) \
# return (p); \
# } \
# inline const name operator* (const float& scalar, const name& p) \
# { name result = p; result *= scalar; return (result); } \
# inline const name operator* (const name& p, const float& scalar) \
# { name result = p; result *= scalar; return (result); } \
# inline const name& \
# operator/= (name& p, const float& scalar) \
# { \
# BOOST_PP_SEQ_FOR_EACH(PCL_DIVEQSC_POINT_TAG, _, seq) \
# return (p); \
# } \
# inline const name operator/ (const float& scalar, const name& p) \
# { name result = p; result /= scalar; return (result); } \
# inline const name operator/ (const name& p, const float& scalar) \
# { name result = p; result /= scalar; return (result); } \
# } \
# } \
# /***/
#
# #define POINT_CLOUD_REGISTER_FIELD_TAG(r, name, elem) \
# struct BOOST_PP_TUPLE_ELEM(3, 2, elem); \
# /***/
#
# #define POINT_CLOUD_REGISTER_FIELD_NAME(r, point, elem) \
# template<int dummy> \
# struct name<point, pcl::fields::BOOST_PP_TUPLE_ELEM(3, 2, elem), dummy> \
# { \
# static const char value[]; \
# }; \
# \
# template<int dummy> \
# const char name<point, \
# pcl::fields::BOOST_PP_TUPLE_ELEM(3, 2, elem), \
# dummy>::value[] = \
# BOOST_PP_STRINGIZE(BOOST_PP_TUPLE_ELEM(3, 2, elem)); \
# /***/
#
# #define POINT_CLOUD_REGISTER_FIELD_OFFSET(r, name, elem) \
# template<> struct offset<name, pcl::fields::BOOST_PP_TUPLE_ELEM(3, 2, elem)> \
# { \
# static const size_t value = offsetof(name, BOOST_PP_TUPLE_ELEM(3, 1, elem)); \
# }; \
# /***/
#
# // \note: the mpl::identity weirdness is to support array types without requiring the
# // user to wrap them. The basic problem is:
# // typedef float[81] type; // SYNTAX ERROR!
# // typedef float type[81]; // OK, can now use "type" as a synonym for float[81]
# #define POINT_CLOUD_REGISTER_FIELD_DATATYPE(r, name, elem) \
# template<> struct datatype<name, pcl::fields::BOOST_PP_TUPLE_ELEM(3, 2, elem)> \
# { \
# typedef boost::mpl::identity<BOOST_PP_TUPLE_ELEM(3, 0, elem)>::type type; \
# typedef decomposeArray<type> decomposed; \
# static const uint8_t value = asEnum<decomposed::type>::value; \
# static const uint32_t size = decomposed::value; \
# }; \
# /***/
#
# #define POINT_CLOUD_TAG_OP(s, data, elem) pcl::fields::BOOST_PP_TUPLE_ELEM(3, 2, elem)
#
# #define POINT_CLOUD_EXTRACT_TAGS(seq) BOOST_PP_SEQ_TRANSFORM(POINT_CLOUD_TAG_OP, _, seq)
#
# #define POINT_CLOUD_REGISTER_POINT_FIELD_LIST(name, seq) \
# template<> struct fieldList<name> \
# { \
# typedef boost::mpl::vector<BOOST_PP_SEQ_ENUM(seq)> type; \
# }; \
# /***/
#
# #if defined _MSC_VER
# #pragma warning (pop)
# #endif
###
# spring.h
# namespace pcl
# {
# namespace common
# {
# /** expand point cloud inserting \a amount rows at the
# * top and the bottom of a point cloud and filling them with
# * custom values.
# * \param[in] input the input point cloud
# * \param[out] output the output point cloud
# * \param[in] val the point value to be insterted
# * \param[in] amount the amount of rows to be added
# */
# template <typename PointT> void
# expandRows (const PointCloud<PointT>& input, PointCloud<PointT>& output,
# const PointT& val, const size_t& amount);
#
# /** expand point cloud inserting \a amount columns at
# * the right and the left of a point cloud and filling them with
# * custom values.
# * \param[in] input the input point cloud
# * \param[out] output the output point cloud
# * \param[in] val the point value to be insterted
# * \param[in] amount the amount of columns to be added
# */
# template <typename PointT> void
# expandColumns (const PointCloud<PointT>& input, PointCloud<PointT>& output,
# const PointT& val, const size_t& amount);
#
# /** expand point cloud duplicating the \a amount top and bottom rows times.
# * \param[in] input the input point cloud
# * \param[out] output the output point cloud
# * \param[in] amount the amount of rows to be added
# */
# template <typename PointT> void
# duplicateRows (const PointCloud<PointT>& input, PointCloud<PointT>& output,
# const size_t& amount);
#
# /** expand point cloud duplicating the \a amount right and left columns
# * times.
# * \param[in] input the input point cloud
# * \param[out] output the output point cloud
# * \param[in] amount the amount of cilumns to be added
# */
# template <typename PointT> void
# duplicateColumns (const PointCloud<PointT>& input, PointCloud<PointT>& output,
# const size_t& amount);
#
# /** expand point cloud mirroring \a amount top and bottom rows.
# * \param[in] input the input point cloud
# * \param[out] output the output point cloud
# * \param[in] amount the amount of rows to be added
# */
# template <typename PointT> void
# mirrorRows (const PointCloud<PointT>& input, PointCloud<PointT>& output,
# const size_t& amount);
#
# /** expand point cloud mirroring \a amount right and left columns.
# * \param[in] input the input point cloud
# * \param[out] output the output point cloud
# * \param[in] amount the amount of rows to be added
# */
# template <typename PointT> void
# mirrorColumns (const PointCloud<PointT>& input, PointCloud<PointT>& output,
# const size_t& amount);
#
# /** delete \a amount rows in top and bottom of point cloud
# * \param[in] input the input point cloud
# * \param[out] output the output point cloud
# * \param[in] amount the amount of rows to be added
# */
# template <typename PointT> void
# deleteRows (const PointCloud<PointT>& input, PointCloud<PointT>& output,
# const size_t& amount);
#
# /** delete \a amount columns in top and bottom of point cloud
# * \param[in] input the input point cloud
# * \param[out] output the output point cloud
# * \param[in] amount the amount of rows to be added
# */
# template <typename PointT> void
# deleteCols (const PointCloud<PointT>& input, PointCloud<PointT>& output,
# const size_t& amount);
# };
# }
###
# synchronizer.h
# namespace pcl
# {
# /** /brief This template class synchronizes two data streams of different types.
# * The data can be added using add0 and add1 methods which expects also a timestamp of type unsigned long.
# * If two matching data objects are found, registered callback functions are invoked with the objects and the time stamps.
# * The only assumption of the timestamp is, that they are in the same unit, linear and strictly monotonic increasing.
# * If filtering is desired, e.g. thresholding of time differences, the user can do that in the callback method.
# * This class is thread safe.
# * /ingroup common
# */
# template <typename T1, typename T2>
# class Synchronizer
# {
# typedef std::pair<unsigned long, T1> T1Stamped;
# typedef std::pair<unsigned long, T2> T2Stamped;
# boost::mutex mutex1_;
# boost::mutex mutex2_;
# boost::mutex publish_mutex_;
# std::deque<T1Stamped> queueT1;
# std::deque<T2Stamped> queueT2;
#
# typedef boost::function<void(T1, T2, unsigned long, unsigned long) > CallbackFunction;
#
# std::map<int, CallbackFunction> cb_;
# int callback_counter;
# public:
#
# Synchronizer () : mutex1_ (), mutex2_ (), publish_mutex_ (), queueT1 (), queueT2 (), cb_ (), callback_counter (0) { };
#
# int
# addCallback (const CallbackFunction& callback)
# {
# boost::unique_lock<boost::mutex> publish_lock (publish_mutex_);
# cb_[callback_counter] = callback;
# return callback_counter++;
# }
#
# void
# removeCallback (int i)
# {
# boost::unique_lock<boost::mutex> publish_lock (publish_mutex_);
# cb_.erase (i);
# }
#
# void
# add0 (const T1& t, unsigned long time)
# {
# mutex1_.lock ();
# queueT1.push_back (T1Stamped (time, t));
# mutex1_.unlock ();
# publish ();
# }
#
# void
# add1 (const T2& t, unsigned long time)
# {
# mutex2_.lock ();
# queueT2.push_back (T2Stamped (time, t));
# mutex2_.unlock ();
# publish ();
# }
#
# private:
#
# void
# publishData ()
# {
# boost::unique_lock<boost::mutex> lock1 (mutex1_);
# boost::unique_lock<boost::mutex> lock2 (mutex2_);
#
# for (typename std::map<int, CallbackFunction>::iterator cb = cb_.begin (); cb != cb_.end (); ++cb)
# {
# if (!cb->second.empty ())
# {
# cb->second.operator()(queueT1.front ().second, queueT2.front ().second, queueT1.front ().first, queueT2.front ().first);
# }
# }
#
# queueT1.pop_front ();
# queueT2.pop_front ();
# }
#
# void
# publish ()
# {
# // only one publish call at once allowed
# boost::unique_lock<boost::mutex> publish_lock (publish_mutex_);
#
# boost::unique_lock<boost::mutex> lock1 (mutex1_);
# if (queueT1.empty ())
# return;
# T1Stamped t1 = queueT1.front ();
# lock1.unlock ();
#
# boost::unique_lock<boost::mutex> lock2 (mutex2_);
# if (queueT2.empty ())
# return;
# T2Stamped t2 = queueT2.front ();
# lock2.unlock ();
#
# bool do_publish = false;
#
# if (t1.first <= t2.first)
# { // iterate over queue1
# lock1.lock ();
# while (queueT1.size () > 1 && queueT1[1].first <= t2.first)
# queueT1.pop_front ();
#
# if (queueT1.size () > 1)
# { // we have at least 2 measurements; first in past and second in future -> find out closer one!
# if ( (t2.first << 1) > (queueT1[0].first + queueT1[1].first) )
# queueT1.pop_front ();
#
# do_publish = true;
# }
# lock1.unlock ();
# }
# else
# { // iterate over queue2
# lock2.lock ();
# while (queueT2.size () > 1 && (queueT2[1].first <= t1.first) )
# queueT2.pop_front ();
#
# if (queueT2.size () > 1)
# { // we have at least 2 measurements; first in past and second in future -> find out closer one!
# if ( (t1.first << 1) > queueT2[0].first + queueT2[1].first )
# queueT2.pop_front ();
#
# do_publish = true;
# }
# lock2.unlock ();
# }
#
# if (do_publish)
# publishData ();
# }
# } ;
# } // namespace
###
# time.h
# namespace pcl
# {
# /** \brief Simple stopwatch.
# * \ingroup common
# */
# class StopWatch
# {
# public:
# /** \brief Constructor. */
# StopWatch () : start_time_ (boost::posix_time::microsec_clock::local_time ())
# {
# }
#
# /** \brief Destructor. */
# virtual ~StopWatch () {}
#
# /** \brief Retrieve the time in milliseconds spent since the last call to \a reset(). */
# inline double
# getTime ()
# {
# boost::posix_time::ptime end_time = boost::posix_time::microsec_clock::local_time ();
# return (static_cast<double> (((end_time - start_time_).total_milliseconds ())));
# }
#
# /** \brief Retrieve the time in seconds spent since the last call to \a reset(). */
# inline double
# getTimeSeconds ()
# {
# return (getTime () * 0.001f);
# }
#
# /** \brief Reset the stopwatch to 0. */
# inline void
# reset ()
# {
# start_time_ = boost::posix_time::microsec_clock::local_time ();
# }
#
# protected:
# boost::posix_time::ptime start_time_;
# };
#
# /** \brief Class to measure the time spent in a scope
# *
# * To use this class, e.g. to measure the time spent in a function,
# * just create an instance at the beginning of the function. Example:
# *
# * \code
# * {
# * pcl::ScopeTime t1 ("calculation");
# *
# * // ... perform calculation here
# * }
# * \endcode
# *
# * \ingroup common
# */
# class ScopeTime : public StopWatch
# {
# public:
# inline ScopeTime (const char* title) :
# title_ (std::string (title))
# {
# start_time_ = boost::posix_time::microsec_clock::local_time ();
# }
#
# inline ScopeTime () :
# title_ (std::string (""))
# {
# start_time_ = boost::posix_time::microsec_clock::local_time ();
# }
#
# inline ~ScopeTime ()
# {
# double val = this->getTime ();
# std::cerr << title_ << " took " << val << "ms.\n";
# }
# };
#
#
# #ifndef MEASURE_FUNCTION_TIME
# #define MEASURE_FUNCTION_TIME \
# ScopeTime scopeTime(__func__)
# #endif
#
# inline double getTime ()
#
# /// Executes code, only if secs are gone since last exec.
# #ifndef DO_EVERY_TS
# #define DO_EVERY_TS(secs, currentTime, code) \
# if (1) {\
# static double s_lastDone_ = 0.0; \
# double s_now_ = (currentTime); \
# if (s_lastDone_ > s_now_) \
# s_lastDone_ = s_now_; \
# if ((s_now_ - s_lastDone_) > (secs)) { \
# code; \
# s_lastDone_ = s_now_; \
# }\
# } else \
# (void)0
# #endif
#
# /// Executes code, only if secs are gone since last exec.
# #ifndef DO_EVERY
# #define DO_EVERY(secs, code) \
# DO_EVERY_TS(secs, pcl::getTime(), code)
# #endif
#
# } // end namespace
# /*@}*/
###
# time_trigger.h
# namespace pcl
# {
# /** \brief Timer class that invokes registered callback methods periodically.
# * \ingroup common
# */
# class PCL_EXPORTS TimeTrigger
# {
# public:
# typedef boost::function<void() > callback_type;
#
# /** \brief Timer class that calls a callback method periodically. Due to possible blocking calls, only one callback method can be registered per instance.
# * \param[in] interval_seconds interval in seconds
# * \param[in] callback callback to be invoked periodically
# */
# TimeTrigger (double interval_seconds, const callback_type& callback);
#
# /** \brief Timer class that calls a callback method periodically. Due to possible blocking calls, only one callback method can be registered per instance.
# * \param[in] interval_seconds interval in seconds
# */
# TimeTrigger (double interval_seconds = 1.0);
#
# /** \brief Destructor. */
# ~TimeTrigger ();
#
# /** \brief registeres a callback
# * \param[in] callback callback function to the list of callbacks. signature has to be boost::function<void()>
# * \return connection the connection, which can be used to disable/enable and remove callback from list
# */
# boost::signals2::connection registerCallback (const callback_type& callback);
#
# /** \brief Resets the timer interval
# * \param[in] interval_seconds interval in seconds
# */
# void
# setInterval (double interval_seconds);
#
# /** \brief Start the Trigger. */
# void
# start ();
#
# /** \brief Stop the Trigger. */
# void
# stop ();
# private:
# void
# thread_function ();
# boost::signals2::signal <void() > callbacks_;
#
# double interval_;
#
# bool quit_;
# bool running_;
#
# boost::thread timer_thread_;
# boost::condition_variable condition_;
# boost::mutex condition_mutex_;
# };
# }
###
# transformation_from_correspondences.h
# namespace pcl
# {
# /**
# * \brief Calculates a transformation based on corresponding 3D points
# * \author Bastian Steder
# * \ingroup common
# */
# class TransformationFromCorrespondences
# {
# public:
# //-----CONSTRUCTOR&DESTRUCTOR-----
# /** Constructor - dimension gives the size of the vectors to work with. */
# TransformationFromCorrespondences () :
# no_of_samples_ (0), accumulated_weight_ (0),
# mean1_ (Eigen::Vector3f::Identity ()),
# mean2_ (Eigen::Vector3f::Identity ()),
# covariance_ (Eigen::Matrix<float, 3, 3>::Identity ())
# { reset (); }
#
# /** Destructor */
# ~TransformationFromCorrespondences () { };
#
# //-----METHODS-----
# /** Reset the object to work with a new data set */
# inline void
# reset ();
#
# /** Get the summed up weight of all added vectors */
# inline float
# getAccumulatedWeight () const { return accumulated_weight_;}
#
# /** Get the number of added vectors */
# inline unsigned int
# getNoOfSamples () { return no_of_samples_;}
#
# /** Add a new sample */
# inline void
# add (const Eigen::Vector3f& point, const Eigen::Vector3f& corresponding_point, float weight=1.0);
#
# /** Calculate the transformation that will best transform the points into their correspondences */
# inline Eigen::Affine3f
# getTransformation ();
#
# //-----VARIABLES-----
#
# };
#
# } // END namespace
###
# transforms.h
# namespace pcl
# /** \brief Apply an affine transform defined by an Eigen Transform
# * \param[in] cloud_in the input point cloud
# * \param[out] cloud_out the resultant output point cloud
# * \param[in] transform an affine transformation (typically a rigid transformation)
# * \note Can be used with cloud_in equal to cloud_out
# * \ingroup common
# */
# template <typename PointT, typename Scalar> void
# transformPointCloud (const pcl::PointCloud<PointT> &cloud_in,
# pcl::PointCloud<PointT> &cloud_out,
# const Eigen::Transform<Scalar, 3, Eigen::Affine> &transform);
#
# template <typename PointT> void
# transformPointCloud (const pcl::PointCloud<PointT> &cloud_in,
# pcl::PointCloud<PointT> &cloud_out,
# const Eigen::Affine3f &transform)
#
# /** \brief Apply an affine transform defined by an Eigen Transform
# * \param[in] cloud_in the input point cloud
# * \param[in] indices the set of point indices to use from the input point cloud
# * \param[out] cloud_out the resultant output point cloud
# * \param[in] transform an affine transformation (typically a rigid transformation)
# * \ingroup common
# */
# template <typename PointT, typename Scalar> void
# transformPointCloud (const pcl::PointCloud<PointT> &cloud_in,
# const std::vector<int> &indices,
# pcl::PointCloud<PointT> &cloud_out,
# const Eigen::Transform<Scalar, 3, Eigen::Affine> &transform);
#
# template <typename PointT> void
# transformPointCloud (const pcl::PointCloud<PointT> &cloud_in,
# const std::vector<int> &indices,
# pcl::PointCloud<PointT> &cloud_out,
# const Eigen::Affine3f &transform)
#
# /** \brief Apply an affine transform defined by an Eigen Transform
# * \param[in] cloud_in the input point cloud
# * \param[in] indices the set of point indices to use from the input point cloud
# * \param[out] cloud_out the resultant output point cloud
# * \param[in] transform an affine transformation (typically a rigid transformation)
# * \ingroup common
# */
# template <typename PointT, typename Scalar> void
# transformPointCloud (const pcl::PointCloud<PointT> &cloud_in,
# const pcl::PointIndices &indices,
# pcl::PointCloud<PointT> &cloud_out,
# const Eigen::Transform<Scalar, 3, Eigen::Affine> &transform)
#
# template <typename PointT> void
# transformPointCloud (const pcl::PointCloud<PointT> &cloud_in,
# const pcl::PointIndices &indices,
# pcl::PointCloud<PointT> &cloud_out,
# const Eigen::Affine3f &transform)
#
# /** \brief Transform a point cloud and rotate its normals using an Eigen transform.
# * \param[in] cloud_in the input point cloud
# * \param[out] cloud_out the resultant output point cloud
# * \param[in] transform an affine transformation (typically a rigid transformation)
# * \note Can be used with cloud_in equal to cloud_out
# */
# template <typename PointT, typename Scalar> void
# transformPointCloudWithNormals (const pcl::PointCloud<PointT> &cloud_in,
# pcl::PointCloud<PointT> &cloud_out,
# const Eigen::Transform<Scalar, 3, Eigen::Affine> &transform);
#
# template <typename PointT> void
# transformPointCloudWithNormals (const pcl::PointCloud<PointT> &cloud_in,
# pcl::PointCloud<PointT> &cloud_out,
# const Eigen::Affine3f &transform)
#
# /** \brief Transform a point cloud and rotate its normals using an Eigen transform.
# * \param[in] cloud_in the input point cloud
# * \param[in] indices the set of point indices to use from the input point cloud
# * \param[out] cloud_out the resultant output point cloud
# * \param[in] transform an affine transformation (typically a rigid transformation)
# */
# template <typename PointT, typename Scalar> void
# transformPointCloudWithNormals (const pcl::PointCloud<PointT> &cloud_in,
# const std::vector<int> &indices,
# pcl::PointCloud<PointT> &cloud_out,
# const Eigen::Transform<Scalar, 3, Eigen::Affine> &transform);
#
# template <typename PointT> void
# transformPointCloudWithNormals (const pcl::PointCloud<PointT> &cloud_in,
# const std::vector<int> &indices,
# pcl::PointCloud<PointT> &cloud_out,
# const Eigen::Affine3f &transform)
#
# /** \brief Transform a point cloud and rotate its normals using an Eigen transform.
# * \param[in] cloud_in the input point cloud
# * \param[in] indices the set of point indices to use from the input point cloud
# * \param[out] cloud_out the resultant output point cloud
# * \param[in] transform an affine transformation (typically a rigid transformation)
# */
# template <typename PointT, typename Scalar> void
# transformPointCloudWithNormals (const pcl::PointCloud<PointT> &cloud_in,
# const pcl::PointIndices &indices,
# pcl::PointCloud<PointT> &cloud_out,
# const Eigen::Transform<Scalar, 3, Eigen::Affine> &transform)
#
# template <typename PointT> void
# transformPointCloudWithNormals (const pcl::PointCloud<PointT> &cloud_in,
# const pcl::PointIndices &indices,
# pcl::PointCloud<PointT> &cloud_out,
# const Eigen::Affine3f &transform)
#
# /** \brief Apply a rigid transform defined by a 4x4 matrix
# * \param[in] cloud_in the input point cloud
# * \param[out] cloud_out the resultant output point cloud
# * \param[in] transform a rigid transformation
# * \note Can be used with cloud_in equal to cloud_out
# * \ingroup common
# */
# template <typename PointT, typename Scalar> void
# transformPointCloud (const pcl::PointCloud<PointT> &cloud_in,
# pcl::PointCloud<PointT> &cloud_out,
# const Eigen::Matrix<Scalar, 4, 4> &transform)
#
# template <typename PointT> void
# transformPointCloud (const pcl::PointCloud<PointT> &cloud_in,
# pcl::PointCloud<PointT> &cloud_out,
# const Eigen::Matrix4f &transform)
#
# /** \brief Apply a rigid transform defined by a 4x4 matrix
# * \param[in] cloud_in the input point cloud
# * \param[in] indices the set of point indices to use from the input point cloud
# * \param[out] cloud_out the resultant output point cloud
# * \param[in] transform a rigid transformation
# * \ingroup common
# */
# template <typename PointT, typename Scalar> void
# transformPointCloud (const pcl::PointCloud<PointT> &cloud_in,
# const std::vector<int> &indices,
# pcl::PointCloud<PointT> &cloud_out,
# const Eigen::Matrix<Scalar, 4, 4> &transform)
#
# template <typename PointT> void
# transformPointCloud (const pcl::PointCloud<PointT> &cloud_in,
# const std::vector<int> &indices,
# pcl::PointCloud<PointT> &cloud_out,
# const Eigen::Matrix4f &transform)
#
# /** \brief Apply a rigid transform defined by a 4x4 matrix
# * \param[in] cloud_in the input point cloud
# * \param[in] indices the set of point indices to use from the input point cloud
# * \param[out] cloud_out the resultant output point cloud
# * \param[in] transform a rigid transformation
# * \ingroup common
# */
# template <typename PointT, typename Scalar> void
# transformPointCloud (const pcl::PointCloud<PointT> &cloud_in,
# const pcl::PointIndices &indices,
# pcl::PointCloud<PointT> &cloud_out,
# const Eigen::Matrix<Scalar, 4, 4> &transform)
#
# template <typename PointT> void
# transformPointCloud (const pcl::PointCloud<PointT> &cloud_in,
# const pcl::PointIndices &indices,
# pcl::PointCloud<PointT> &cloud_out,
# const Eigen::Matrix4f &transform)
#
# /** \brief Transform a point cloud and rotate its normals using an Eigen transform.
# * \param[in] cloud_in the input point cloud
# * \param[out] cloud_out the resultant output point cloud
# * \param[in] transform an affine transformation (typically a rigid transformation)
# * \note Can be used with cloud_in equal to cloud_out
# * \ingroup common
# */
# template <typename PointT, typename Scalar> void
# transformPointCloudWithNormals (const pcl::PointCloud<PointT> &cloud_in,
# pcl::PointCloud<PointT> &cloud_out,
# const Eigen::Matrix<Scalar, 4, 4> &transform)
#
# template <typename PointT> void
# transformPointCloudWithNormals (const pcl::PointCloud<PointT> &cloud_in,
# pcl::PointCloud<PointT> &cloud_out,
# const Eigen::Matrix4f &transform)
#
# /** \brief Transform a point cloud and rotate its normals using an Eigen transform.
# * \param[in] cloud_in the input point cloud
# * \param[in] indices the set of point indices to use from the input point cloud
# * \param[out] cloud_out the resultant output point cloud
# * \param[in] transform an affine transformation (typically a rigid transformation)
# * \note Can be used with cloud_in equal to cloud_out
# * \ingroup common
# */
# template <typename PointT, typename Scalar> void
# transformPointCloudWithNormals (const pcl::PointCloud<PointT> &cloud_in,
# const std::vector<int> &indices,
# pcl::PointCloud<PointT> &cloud_out,
# const Eigen::Matrix<Scalar, 4, 4> &transform)
#
# template <typename PointT> void
# transformPointCloudWithNormals (const pcl::PointCloud<PointT> &cloud_in,
# const std::vector<int> &indices,
# pcl::PointCloud<PointT> &cloud_out,
# const Eigen::Matrix4f &transform)
###
# /** \brief Transform a point cloud and rotate its normals using an Eigen transform.
# * \param[in] cloud_in the input point cloud
# * \param[in] indices the set of point indices to use from the input point cloud
# * \param[out] cloud_out the resultant output point cloud
# * \param[in] transform an affine transformation (typically a rigid transformation)
# * \note Can be used with cloud_in equal to cloud_out
# * \ingroup common
# */
# template <typename PointT, typename Scalar> void
# transformPointCloudWithNormals (const pcl::PointCloud<PointT> &cloud_in, const pcl::PointIndices &indices, pcl::PointCloud<PointT> &cloud_out,
# const Eigen::Matrix<Scalar, 4, 4> &transform)
###
# template <typename PointT> void
# transformPointCloudWithNormals (const pcl::PointCloud<PointT> &cloud_in, const pcl::PointIndices &indices, pcl::PointCloud<PointT> &cloud_out,
# const Eigen::Matrix4f &transform)
###
# /** \brief Apply a rigid transform defined by a 3D offset and a quaternion
# * \param[in] cloud_in the input point cloud
# * \param[out] cloud_out the resultant output point cloud
# * \param[in] offset the translation component of the rigid transformation
# * \param[in] rotation the rotation component of the rigid transformation
# * \ingroup common
# */
# template <typename PointT, typename Scalar> inline void
# transformPointCloud (const pcl::PointCloud<PointT> &cloud_in, pcl::PointCloud<PointT> &cloud_out,
# const Eigen::Matrix<Scalar, 3, 1> &offset, const Eigen::Quaternion<Scalar> &rotation);
###
# template <typename PointT> inline void
# transformPointCloud (const pcl::PointCloud<PointT> &cloud_in, pcl::PointCloud<PointT> &cloud_out,
# const Eigen::Vector3f &offset, const Eigen::Quaternionf &rotation)
###
# /** \brief Transform a point cloud and rotate its normals using an Eigen transform.
# * \param[in] cloud_in the input point cloud
# * \param[out] cloud_out the resultant output point cloud
# * \param[in] offset the translation component of the rigid transformation
# * \param[in] rotation the rotation component of the rigid transformation
# * \ingroup common
# */
# template <typename PointT, typename Scalar> inline void
# transformPointCloudWithNormals (const pcl::PointCloud<PointT> &cloud_in, pcl::PointCloud<PointT> &cloud_out,
# const Eigen::Matrix<Scalar, 3, 1> &offset, const Eigen::Quaternion<Scalar> &rotation);
#
# template <typename PointT> void
# transformPointCloudWithNormals (const pcl::PointCloud<PointT> &cloud_in, pcl::PointCloud<PointT> &cloud_out,
# const Eigen::Vector3f &offset, const Eigen::Quaternionf &rotation)
###
# /** \brief Transform a point with members x,y,z
# * \param[in] point the point to transform
# * \param[out] transform the transformation to apply
# * \return the transformed point
# * \ingroup common
# */
# template <typename PointT, typename Scalar> inline PointT
# transformPoint (const PointT &point, const Eigen::Transform<Scalar, 3, Eigen::Affine> &transform);
###
# template <typename PointT> inline PointT transformPoint (const PointT &point, const Eigen::Affine3f &transform)
###
# /** \brief Calculates the principal (PCA-based) alignment of the point cloud
# * \param[in] cloud the input point cloud
# * \param[out] transform the resultant transform
# * \return the ratio lambda1/lambda2 or lambda2/lambda3, whatever is closer to 1.
# * \note If the return value is close to one then the transformation might be not unique -> two principal directions have
# * almost same variance (extend)
# */
# template <typename PointT, typename Scalar> inline double
# getPrincipalTransformation (const pcl::PointCloud<PointT> &cloud, Eigen::Transform<Scalar, 3, Eigen::Affine> &transform);
#
# template <typename PointT> inline double getPrincipalTransformation (const pcl::PointCloud<PointT> &cloud, Eigen::Affine3f &transform)
###
# utils.h
# namespace pcl
# namespace utils
# /** \brief Check if val1 and val2 are equals to an epsilon extent
# * \param[in] val1 first number to check
# * \param[in] val2 second number to check
# * \param[in] eps epsilon
# * \return true if val1 is equal to val2, false otherwise.
# */
# template<typename T> bool equal (T val1, T val2, T eps = std::numeric_limits<T>::min ())
###
# vector_average.h
# namespace pcl
# /** \brief Calculates the weighted average and the covariance matrix
# *
# * A class to calculate the weighted average and the covariance matrix of a set of vectors with given weights.
# * The original data is not saved. Mean and covariance are calculated iteratively.
# * \author Bastian Steder
# * \ingroup common
# */
# template <typename real, int dimension>
# class VectorAverage
# public:
# //-----CONSTRUCTOR&DESTRUCTOR-----
# /** Constructor - dimension gives the size of the vectors to work with. */
# VectorAverage ();
# /** Destructor */
# ~VectorAverage () {}
#
# //-----METHODS-----
# /** Reset the object to work with a new data set */
# inline void
# reset ();
#
# /** Get the mean of the added vectors */
# inline const
# Eigen::Matrix<real, dimension, 1>& getMean () const { return mean_;}
#
# /** Get the covariance matrix of the added vectors */
# inline const
# Eigen::Matrix<real, dimension, dimension>& getCovariance () const { return covariance_;}
#
# /** Get the summed up weight of all added vectors */
# inline real
# getAccumulatedWeight () const { return accumulatedWeight_;}
#
# /** Get the number of added vectors */
# inline unsigned int
# getNoOfSamples () { return noOfSamples_;}
#
# /** Add a new sample */
# inline void add (const Eigen::Matrix<real, dimension, 1>& sample, real weight=1.0);
#
# /** Do Principal component analysis */
# inline void
# doPCA (Eigen::Matrix<real, dimension, 1>& eigen_values, Eigen::Matrix<real, dimension, 1>& eigen_vector1,
# Eigen::Matrix<real, dimension, 1>& eigen_vector2, Eigen::Matrix<real, dimension, 1>& eigen_vector3) const;
#
# /** Do Principal component analysis */
# inline void doPCA (Eigen::Matrix<real, dimension, 1>& eigen_values) const;
#
# /** Get the eigenvector corresponding to the smallest eigenvalue */
# inline void getEigenVector1 (Eigen::Matrix<real, dimension, 1>& eigen_vector1) const;
#
# //-----VARIABLES-----
# };
#
# typedef VectorAverage<float, 2> VectorAverage2f;
# typedef VectorAverage<float, 3> VectorAverage3f;
# typedef VectorAverage<float, 4> VectorAverage4f;
# } // END namespace
###
|