File: pcl_features.pxd

package info (click to toggle)
python-pcl 0.3.0~rc1%2Bdfsg-9
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 31,388 kB
  • sloc: python: 3,102; cpp: 283; makefile: 181; sh: 24; ansic: 12
file content (2822 lines) | stat: -rw-r--r-- 169,708 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
# -*- coding: utf-8 -*-

from libc.stddef cimport size_t

from libcpp.vector cimport vector
from libcpp.string cimport string
from libcpp cimport bool

from libcpp.memory cimport shared_ptr

cimport eigen as eigen3

# main
cimport pcl_defs as cpp
cimport pcl_kdtree as pclkdt
cimport pcl_range_image as pcl_r_img

###############################################################################
# Types
###############################################################################

### base class ###

# feature.h
# class Feature : public PCLBase<PointInT>
cdef extern from "pcl/features/feature.h" namespace "pcl":
    cdef cppclass Feature[In, Out](cpp.PCLBase[In]):
        Feature ()
        # public:
        # using PCLBase<PointInT>::indices_;
        # using PCLBase<PointInT>::input_;
        # ctypedef PCLBase<PointInT> BaseClass;
        # ctypedef boost::shared_ptr< Feature<PointInT, PointOutT> > Ptr;
        # ctypedef boost::shared_ptr< const Feature<PointInT, PointOutT> > ConstPtr;
        # ctypedef typename pcl::search::Search<PointInT> KdTree;
        # ctypedef typename pcl::search::Search<PointInT>::Ptr KdTreePtr;
        # ctypedef pcl::PointCloud<PointInT> PointCloudIn;
        # ctypedef typename PointCloudIn::Ptr PointCloudInPtr;
        # ctypedef typename PointCloudIn::ConstPtr PointCloudInConstPtr;
        # ctypedef pcl::PointCloud<PointOutT> PointCloudOut;
        # ctypedef boost::function<int (size_t, double, std::vector<int> &, std::vector<float> &)> SearchMethod;
        # ctypedef boost::function<int (const PointCloudIn &cloud, size_t index, double, std::vector<int> &, std::vector<float> &)> SearchMethodSurface;
        # public:
        # inline void setSearchSurface (const cpp.PointCloudPtr_t &)
        # inline cpp.PointCloudPtr_t getSearchSurface () const
        void setSearchSurface (const In &)
        In getSearchSurface () const
        
        # inline void setSearchMethod (const KdTreePtr &tree)
        # void setSearchMethod (pclkdt.KdTreePtr_t tree)
        # void setSearchMethod (pclkdt.KdTreeFLANNPtr_t tree)
        # void setSearchMethod (pclkdt.KdTreeFLANNConstPtr_t &tree)
        void setSearchMethod (const pclkdt.KdTreePtr_t &tree)
        
        # inline KdTreePtr getSearchMethod () const
        # pclkdt.KdTreePtr_t getSearchMethod ()
        # pclkdt.KdTreeFLANNPtr_t getSearchMethod ()
        # pclkdt.KdTreeFLANNConstPtr_t getSearchMethod ()
        
        double getSearchParameter ()
        void setKSearch (int search)
        int getKSearch () const
        void setRadiusSearch (double radius)
        double getRadiusSearch ()
        
        # void compute (PointCloudOut &output);
        # void compute (cpp.PointCloudPtr_t output)
        # void compute (cpp.PointCloud_PointXYZI_Ptr_t output)
        # void compute (cpp.PointCloud_PointXYZRGB_Ptr_t output)
        # void compute (cpp.PointCloud_PointXYZRGBA_Ptr_t output)
        void compute (cpp.PointCloud[Out] &output)
        
        # void computeEigen (cpp.PointCloud[Eigen::MatrixXf] &output);


ctypedef Feature[cpp.PointXYZ, cpp.Normal] Feature_t
ctypedef Feature[cpp.PointXYZI, cpp.Normal] Feature_PointXYZI_t
ctypedef Feature[cpp.PointXYZRGB, cpp.Normal] Feature_PointXYZRGB_t
ctypedef Feature[cpp.PointXYZRGBA, cpp.Normal] Feature_PointXYZRGBA_t
###

# template <typename PointInT, typename PointNT, typename PointOutT>
# class FeatureFromNormals : public Feature<PointInT, PointOutT>
# cdef cppclass FeatureFromNormals(Feature[In, Out]):
cdef extern from "pcl/features/feature.h" namespace "pcl":
    cdef cppclass FeatureFromNormals[In, NT, Out](Feature[In, Out]):
        FeatureFromNormals()
        # ctypedef typename Feature<PointInT, PointOutT>::PointCloudIn PointCloudIn;
        # ctypedef typename PointCloudIn::Ptr PointCloudInPtr;
        # ctypedef typename PointCloudIn::ConstPtr PointCloudInConstPtr;
        # ctypedef typename Feature<PointInT, PointOutT>::PointCloudOut PointCloudOut;
        # public:
        # ctypedef typename pcl::PointCloud<PointNT> PointCloudN;
        # ctypedef typename PointCloudN::Ptr PointCloudNPtr;
        # ctypedef typename PointCloudN::ConstPtr PointCloudNConstPtr;
        # ctypedef boost::shared_ptr< FeatureFromNormals<PointInT, PointNT, PointOutT> > Ptr;
        # ctypedef boost::shared_ptr< const FeatureFromNormals<PointInT, PointNT, PointOutT> > ConstPtr;
        # // Members derived from the base class
        # using Feature<PointInT, PointOutT>::input_;
        # using Feature<PointInT, PointOutT>::surface_;
        # using Feature<PointInT, PointOutT>::getClassName;
        
        # /** \brief Provide a pointer to the input dataset that contains the point normals of
        #         * the XYZ dataset.
        # * In case of search surface is set to be different from the input cloud,
        # * normals should correspond to the search surface, not the input cloud!
        # * \param[in] normals the const boost shared pointer to a PointCloud of normals.
        # * By convention, L2 norm of each normal should be 1.
        # inline void setInputNormals (const PointCloudNConstPtr &normals)
        void setInputNormals (cpp.PointCloud_Normal_Ptr_t normals)
        
        # /** \brief Get a pointer to the normals of the input XYZ point cloud dataset. */
        # inline PointCloudNConstPtr getInputNormals ()


###

# 3dsc.h
# class ShapeContext3DEstimation : public FeatureFromNormals<PointInT, PointNT, PointOutT>
cdef extern from "pcl/features/3dsc.h" namespace "pcl":
    cdef cppclass ShapeContext3DEstimation[In, NT, Out](FeatureFromNormals[In, NT, Out]):
        ShapeContext3DEstimation(bool)
        # public:
        # using Feature<PointInT, PointOutT>::feature_name_;
        # using Feature<PointInT, PointOutT>::getClassName;
        # using Feature<PointInT, PointOutT>::indices_;
        # using Feature<PointInT, PointOutT>::search_parameter_;
        # using Feature<PointInT, PointOutT>::search_radius_;
        # using Feature<PointInT, PointOutT>::surface_;
        # using Feature<PointInT, PointOutT>::input_;
        # using Feature<PointInT, PointOutT>::searchForNeighbors;
        # using FeatureFromNormals<PointInT, PointNT, PointOutT>::normals_;
        # ctypedef typename Feature<PointInT, PointOutT>::PointCloudOut PointCloudOut;
        # ctypedef typename Feature<PointInT, PointOutT>::PointCloudIn PointCloudIn;
        ##
        # brief Set the number of bins along the azimuth to \a bins.
        # param[in] bins the number of bins along the azimuth
        void setAzimuthBins (size_t bins)
        # return the number of bins along the azimuth
        size_t getAzimuthBins () 
        # brief Set the number of bins along the elevation to \a bins.
        # param[in] bins the number of bins along the elevation
        void setElevationBins (size_t )
        # return The number of bins along the elevation
        size_t getElevationBins ()
        # brief Set the number of bins along the radii to \a bins.
        # param[in] bins the number of bins along the radii
        void setRadiusBins (size_t )
        # return The number of bins along the radii direction
        size_t getRadiusBins ()
        # brief The minimal radius value for the search sphere (rmin) in the original paper 
        # param[in] radius the desired minimal radius
        void setMinimalRadius (double radius)
        # return The minimal sphere radius
        double getMinimalRadius ()
        # brief This radius is used to compute local point density 
        # density = number of points within this radius
        # param[in] radius value of the point density search radius
        void setPointDensityRadius (double radius)
        # return The point density search radius
        double getPointDensityRadius ()
        
###

# feature.h
# cdef extern from "pcl/features/feature.h" namespace "pcl":
#     cdef inline void solvePlaneParameters (const Eigen::Matrix3f &covariance_matrix,
#                                             const Eigen::Vector4f &point,
#                                             Eigen::Vector4f &plane_parameters, float &curvature);
#     cdef inline void solvePlaneParameters (const Eigen::Matrix3f &covariance_matrix,
#                         float &nx, float &ny, float &nz, float &curvature);
# template <typename PointInT, typename PointLT, typename PointOutT>
# class FeatureFromLabels : public Feature<PointInT, PointOutT>
cdef extern from "pcl/features/feature.h" namespace "pcl":
    cdef cppclass FeatureFromLabels[In, LT, Out](Feature[In, Out]):
        FeatureFromLabels()
        # ctypedef typename Feature<PointInT, PointOutT>::PointCloudIn PointCloudIn;
        # ctypedef typename PointCloudIn::Ptr PointCloudInPtr;
        # ctypedef typename PointCloudIn::ConstPtr PointCloudInConstPtr;
        # ctypedef typename pcl::PointCloud<PointLT> PointCloudL;
        # ctypedef typename PointCloudL::Ptr PointCloudNPtr;
        # ctypedef typename PointCloudL::ConstPtr PointCloudLConstPtr;
        # ctypedef typename Feature<PointInT, PointOutT>::PointCloudOut PointCloudOut;
        # public:
        # ctypedef boost::shared_ptr< FeatureFromLabels<PointInT, PointLT, PointOutT> > Ptr;
        # ctypedef boost::shared_ptr< const FeatureFromLabels<PointInT, PointLT, PointOutT> > ConstPtr;
        # // Members derived from the base class
        # using Feature<PointInT, PointOutT>::input_;
        # using Feature<PointInT, PointOutT>::surface_;
        # using Feature<PointInT, PointOutT>::getClassName;
        # using Feature<PointInT, PointOutT>::k_;
        # /** \brief Provide a pointer to the input dataset that contains the point labels of
        #   * the XYZ dataset.
        #   * In case of search surface is set to be different from the input cloud,
        #   * labels should correspond to the search surface, not the input cloud!
        #   * \param[in] labels the const boost shared pointer to a PointCloud of labels.
        #   */
        # inline void setInputLabels (const PointCloudLConstPtr &labels)
        # inline PointCloudLConstPtr getInputLabels () const
###

### Inheritance class ###

# 3dsc.h
# class ShapeContext3DEstimation<PointInT, PointNT, Eigen::MatrixXf> : public ShapeContext3DEstimation<PointInT, PointNT, pcl::SHOT>
# cdef extern from "pcl/features/3dsc.h" namespace "pcl":
#     cdef cppclass ShapeContext3DEstimation[T, N, M]:
#         ShapeContext3DEstimation(bool)
#         # public:
#         # using ShapeContext3DEstimation<PointInT, PointNT, pcl::SHOT>::feature_name_;
#         # using ShapeContext3DEstimation<PointInT, PointNT, pcl::SHOT>::indices_;
#         # using ShapeContext3DEstimation<PointInT, PointNT, pcl::SHOT>::descriptor_length_;
#         # using ShapeContext3DEstimation<PointInT, PointNT, pcl::SHOT>::normals_;
#         # using ShapeContext3DEstimation<PointInT, PointNT, pcl::SHOT>::input_;
#         # using ShapeContext3DEstimation<PointInT, PointNT, pcl::SHOT>::compute;
###

# class BoundaryEstimation: public FeatureFromNormals<PointInT, PointNT, PointOutT>
cdef extern from "pcl/features/boundary.h" namespace "pcl":
    cdef cppclass BoundaryEstimation[In, NT, Out](FeatureFromNormals[In, NT, Out]):
        BoundaryEstimation ()
        # public:
        # using Feature<PointInT, PointOutT>::feature_name_;
        # using Feature<PointInT, PointOutT>::getClassName;
        # using Feature<PointInT, PointOutT>::input_;
        # using Feature<PointInT, PointOutT>::indices_;
        # using Feature<PointInT, PointOutT>::k_;
        # using Feature<PointInT, PointOutT>::tree_;
        # using Feature<PointInT, PointOutT>::search_radius_;
        # using Feature<PointInT, PointOutT>::search_parameter_;
        # using Feature<PointInT, PointOutT>::surface_;
        # using FeatureFromNormals<PointInT, PointNT, PointOutT>::normals_;
        # ctypedef typename Feature<PointInT, PointOutT>::PointCloudOut PointCloudOut;
        ##
        # brief Check whether a point is a boundary point in a planar patch of projected points given by indices.
        # note A coordinate system u-v-n must be computed a-priori using \a getCoordinateSystemOnPlane
        # param[in] cloud a pointer to the input point cloud
        # param[in] q_idx the index of the query point in \a cloud
        # param[in] indices the estimated point neighbors of the query point
        # param[in] u the u direction
        # param[in] v the v direction
        # param[in] angle_threshold the threshold angle (default \f$\pi / 2.0\f$)
        # bool isBoundaryPoint (const cpp.PointCloud[In] &cloud, 
        #                int q_idx, const vector[int] &indices, 
        #                const Eigen::Vector4f &u, const Eigen::Vector4f &v, const float angle_threshold);
        # brief Check whether a point is a boundary point in a planar patch of projected points given by indices.
        # note A coordinate system u-v-n must be computed a-priori using \a getCoordinateSystemOnPlane
        # param[in] cloud a pointer to the input point cloud
        # param[in] q_point a pointer to the querry point
        # param[in] indices the estimated point neighbors of the query point
        # param[in] u the u direction
        # param[in] v the v direction
        # param[in] angle_threshold the threshold angle (default \f$\pi / 2.0\f$)
        # bool isBoundaryPoint (const cpp.PointCloud[In] &cloud, 
        #                const [In] &q_point, 
        #                const vector[int] &indices, 
        #                const Eigen::Vector4f &u, const Eigen::Vector4f &v, const float angle_threshold);
        # brief Set the decision boundary (angle threshold) that marks points as boundary or regular. 
        # (default \f$\pi / 2.0\f$) 
        # param[in] angle the angle threshold
        inline void setAngleThreshold (float angle)
        inline float getAngleThreshold ()
        # brief Get a u-v-n coordinate system that lies on a plane defined by its normal
        # param[in] p_coeff the plane coefficients (containing the plane normal)
        # param[out] u the resultant u direction
        # param[out] v the resultant v direction
        # inline void getCoordinateSystemOnPlane (const PointNT &p_coeff, 
        #                           Eigen::Vector4f &u, Eigen::Vector4f &v)

###

# class CVFHEstimation : public FeatureFromNormals<PointInT, PointNT, PointOutT>
# cdef extern from "pcl/features/cvfh.h" namespace "pcl":
#     cdef cppclass CVFHEstimation[In, NT, Out](FeatureFromNormals[In, NT, Out]):
#         CVFHEstimation()
#         # public:
#         # using Feature<PointInT, PointOutT>::feature_name_;
#         # using Feature<PointInT, PointOutT>::getClassName;
#         # using Feature<PointInT, PointOutT>::indices_;
#         # using Feature<PointInT, PointOutT>::k_;
#         # using Feature<PointInT, PointOutT>::search_radius_;
#         # using Feature<PointInT, PointOutT>::surface_;
#         # using FeatureFromNormals<PointInT, PointNT, PointOutT>::normals_;
#         # ctypedef typename Feature<PointInT, PointOutT>::PointCloudOut PointCloudOut;
#         # ctypedef typename pcl::search::Search<PointNormal>::Ptr KdTreePtr;
#         # ctypedef typename pcl::NormalEstimation<PointNormal, PointNormal> NormalEstimator;
#         # ctypedef typename pcl::VFHEstimation<PointInT, PointNT, pcl::VFHSignature308> VFHEstimator;
#         ##
#         # brief Removes normals with high curvature caused by real edges or noisy data
#         # param[in] cloud pointcloud to be filtered
#         # param[out] indices_out the indices of the points with higher curvature than threshold
#         # param[out] indices_in the indices of the remaining points after filtering
#         # param[in] threshold threshold value for curvature
#         void filterNormalsWithHighCurvature (
#                                               const cpp.PointCloud[NT] & cloud, 
#                                               vector[int] &indices, vector[int] &indices2,
#                                               vector[int] &, float);
#         # brief Set the viewpoint.
#         # param[in] vpx the X coordinate of the viewpoint
#         # param[in] vpy the Y coordinate of the viewpoint
#         # param[in] vpz the Z coordinate of the viewpoint
#         inline void setViewPoint (float x, float y, float z)
#         # brief Set the radius used to compute normals
#         # param[in] radius_normals the radius
#         inline void setRadiusNormals (float radius)
#         # brief Get the viewpoint. 
#         # param[out] vpx the X coordinate of the viewpoint
#         # param[out] vpy the Y coordinate of the viewpoint
#         # param[out] vpz the Z coordinate of the viewpoint
#         inline void getViewPoint (float &x, float &y, float &z)
#         # brief Get the centroids used to compute different CVFH descriptors
#         # param[out] centroids vector to hold the centroids
#         # inline void getCentroidClusters (vector[Eigen::Vector3f] &)
#         # brief Get the normal centroids used to compute different CVFH descriptors
#         # param[out] centroids vector to hold the normal centroids
#         # inline void getCentroidNormalClusters (vector[Eigen::Vector3f] &)
#         # brief Sets max. Euclidean distance between points to be added to the cluster 
#         # param[in] d the maximum Euclidean distance 
#         inline void setClusterTolerance (float tolerance)
#         # brief Sets max. deviation of the normals between two points so they can be clustered together
#         # param[in] d the maximum deviation 
#         inline void setEPSAngleThreshold (float angle)
#         # brief Sets curvature threshold for removing normals
#         # param[in] d the curvature threshold 
#         inline void setCurvatureThreshold (float curve)
#         # brief Set minimum amount of points for a cluster to be considered
#         # param[in] min the minimum amount of points to be set 
#         inline void setMinPoints (size_t points)
#         # brief Sets wether if the CVFH signatures should be normalized or not
#         # param[in] normalize true if normalization is required, false otherwise 
#         inline void setNormalizeBins (bool bins)
#         # brief Overloaded computed method from pcl::Feature.
#         # param[out] output the resultant point cloud model dataset containing the estimated features
#         # void compute (cpp.PointCloud[Out] &);


###

# esf.h
# class ESFEstimation: public Feature<PointInT, PointOutT>
cdef extern from "pcl/features/esf.h" namespace "pcl":
    cdef cppclass ESFEstimation[In, Out](Feature[In, Out]):
        ESFEstimation ()
        # public:
        # using Feature<PointInT, PointOutT>::feature_name_;
        # using Feature<PointInT, PointOutT>::getClassName;
        # using Feature<PointInT, PointOutT>::indices_;
        # using Feature<PointInT, PointOutT>::k_;
        # using Feature<PointInT, PointOutT>::search_radius_;
        # using Feature<PointInT, PointOutT>::input_;
        # using Feature<PointInT, PointOutT>::surface_;
        # ctypedef typename pcl::PointCloud<PointInT> PointCloudIn;
        # ctypedef typename Feature<PointInT, PointOutT>::PointCloudOut PointCloudOut;
        # void compute (cpp.PointCloud[Out] &output)
###

# template <typename PointInT, typename PointRFT>
# class FeatureWithLocalReferenceFrames
cdef extern from "pcl/features/feature.h" namespace "pcl":
    cdef cppclass FeatureWithLocalReferenceFrames[T, REF]:
        FeatureWithLocalReferenceFrames ()
        # public:
        # ctypedef cpp.PointCloud[RFT] PointCloudLRF;
        # ctypedef typename PointCloudLRF::Ptr PointCloudLRFPtr;
        # ctypedef typename PointCloudLRF::ConstPtr PointCloudLRFConstPtr;
        # inline void setInputReferenceFrames (const PointCloudLRFConstPtr &frames)
        # inline PointCloudLRFConstPtr getInputReferenceFrames () const
        # protected:
        # /** \brief A boost shared pointer to the local reference frames. */
        # PointCloudLRFConstPtr frames_;
        # /** \brief The user has never set the frames. */
        # bool frames_never_defined_;
        # /** \brief Check if frames_ has been correctly initialized and compute it if needed.
        # * \param input the subclass' input cloud dataset.
        # * \param lrf_estimation a pointer to a local reference frame estimation class to be used as default.
        # * \return true if frames_ has been correctly initialized.
        # */
        # typedef typename Feature<PointInT, PointRFT>::Ptr LRFEstimationPtr;
        # virtual bool
        # initLocalReferenceFrames (const size_t& indices_size,
        #                           const LRFEstimationPtr& lrf_estimation = LRFEstimationPtr());
###

# fpfh
# template <typename PointInT, typename PointNT, typename PointOutT = pcl::FPFHSignature33>
# class FPFHEstimation : public FeatureFromNormals<PointInT, PointNT, PointOutT>
cdef extern from "pcl/features/fpfh.h" namespace "pcl":
    cdef cppclass FPFHEstimation[In, NT, Out](FeatureFromNormals[In, NT, Out]):
        FPFHEstimation()
        # public:
        # using Feature<PointInT, PointOutT>::feature_name_;
        # using Feature<PointInT, PointOutT>::getClassName;
        # using Feature<PointInT, PointOutT>::indices_;
        # using Feature<PointInT, PointOutT>::k_;
        # using Feature<PointInT, PointOutT>::search_parameter_;
        # using Feature<PointInT, PointOutT>::input_;
        # using Feature<PointInT, PointOutT>::surface_;
        # using FeatureFromNormals<PointInT, PointNT, PointOutT>::normals_;
        # ctypedef typename Feature<PointInT, PointOutT>::PointCloudOut PointCloudOut;
        # * represented by Cartesian coordinates and normals.
        # * \note For explanations about the features, please see the literature mentioned above (the order of the
        # * features might be different).
        # * \param[in] cloud the dataset containing the XYZ Cartesian coordinates of the two points
        # * \param[in] normals the dataset containing the surface normals (assuming normalized vectors) at each point in cloud
        # * \param[in] p_idx the index of the first point (source)
        # * \param[in] q_idx the index of the second point (target)
        # * \param[out] f1 the first angular feature (angle between the projection of nq_idx and u)
        # * \param[out] f2 the second angular feature (angle between nq_idx and v)
        # * \param[out] f3 the third angular feature (angle between np_idx and |p_idx - q_idx|)
        # * \param[out] f4 the distance feature (p_idx - q_idx)
        # bool computePairFeatures (const pcl::PointCloud<PointInT> &cloud, const pcl::PointCloud<PointNT> &normals, int p_idx, int q_idx, float &f1, float &f2, float &f3, float &f4);
        
        # \brief Estimate the SPFH (Simple Point Feature Histograms) individual signatures of the three angular
        # (f1, f2, f3) features for a given point based on its spatial neighborhood of 3D points with normals
        # \param[in] cloud the dataset containing the XYZ Cartesian coordinates of the two points
        # \param[in] normals the dataset containing the surface normals at each point in \a cloud
        # \param[in] p_idx the index of the query point (source)
        # \param[in] row the index row in feature histogramms
        # \param[in] indices the k-neighborhood point indices in the dataset
        # \param[out] hist_f1 the resultant SPFH histogram for feature f1
        # \param[out] hist_f2 the resultant SPFH histogram for feature f2
        # \param[out] hist_f3 the resultant SPFH histogram for feature f3
        # void computePointSPFHSignature (
        #                               const pcl::PointCloud<PointInT> &cloud, 
        #                               const pcl::PointCloud<PointNT> &normals, int p_idx, int row, 
        #                               const std::vector<int> &indices, 
        #                               Eigen::MatrixXf &hist_f1, Eigen::MatrixXf &hist_f2, Eigen::MatrixXf &hist_f3);
        
        # \brief Weight the SPFH (Simple Point Feature Histograms) individual histograms to create the final FPFH
        # (Fast Point Feature Histogram) for a given point based on its 3D spatial neighborhood
        # \param[in] hist_f1 the histogram feature vector of \a f1 values over the given patch
        # \param[in] hist_f2 the histogram feature vector of \a f2 values over the given patch
        # \param[in] hist_f3 the histogram feature vector of \a f3 values over the given patch
        # \param[in] indices the point indices of p_idx's k-neighborhood in the point cloud
        # \param[in] dists the distances from p_idx to all its k-neighbors
        # \param[out] fpfh_histogram the resultant FPFH histogram representing the feature at the query point
        # void weightPointSPFHSignature (
        #                           const Eigen::MatrixXf &hist_f1, 
        #                           const Eigen::MatrixXf &hist_f2, 
        #                           const Eigen::MatrixXf &hist_f3, 
        #                           const std::vector<int> &indices, 
        #                           const std::vector<float> &dists, 
        #                           Eigen::VectorXf &fpfh_histogram);
        
        # \brief Set the number of subdivisions for each angular feature interval.
        # \param[in] nr_bins_f1 number of subdivisions for the first angular feature
        # \param[in] nr_bins_f2 number of subdivisions for the second angular feature
        # \param[in] nr_bins_f3 number of subdivisions for the third angular feature
        inline void setNrSubdivisions (int , int , int )
        
        # \brief Get the number of subdivisions for each angular feature interval. 
        # \param[out] nr_bins_f1 number of subdivisions for the first angular feature
        # \param[out] nr_bins_f2 number of subdivisions for the second angular feature
        # \param[out] nr_bins_f3 number of subdivisions for the third angular feature
        inline void getNrSubdivisions (int &, int &, int &)


ctypedef FPFHEstimation[cpp.PointXYZ, cpp.Normal, cpp.PFHSignature125] FPFHEstimation_t
ctypedef shared_ptr[FPFHEstimation[cpp.PointXYZ, cpp.Normal, cpp.PFHSignature125]] FPFHEstimationPtr_t
# template <typename PointInT, typename PointNT>
# class FPFHEstimation<PointInT, PointNT, Eigen::MatrixXf> : public FPFHEstimation<PointInT, PointNT, pcl::FPFHSignature33>
# cdef extern from "pcl/features/feature.h" namespace "pcl":
#     cdef cppclass FPFHEstimation[T, NT]:
#         FPFHEstimation()
# ctypedef FPFHEstimation[cpp.PointXYZ, cpp.Normal, eigen3.MatrixXf] FPFHEstimation2_t
# ctypedef shared_ptr[FPFHEstimation[cpp.PointXYZ, cpp.Normal, eigen3.MatrixXf]] FPFHEstimation2Ptr_t
###

# fpfh_omp
# template <typename PointInT, typename PointNT, typename PointOutT>
# class FPFHEstimationOMP : public FPFHEstimation<PointInT, PointNT, PointOutT>
cdef extern from "pcl/features/fpfh_omp.h" namespace "pcl":
    cdef cppclass FPFHEstimationOMP[In, NT, Out](FPFHEstimation[In, NT, Out]):
        FPFHEstimationOMP ()
        # FPFHEstimationOMP (unsigned int )
        # public:
        # using Feature<PointInT, PointOutT>::feature_name_;
        # using Feature<PointInT, PointOutT>::getClassName;
        # using Feature<PointInT, PointOutT>::indices_;
        # using Feature<PointInT, PointOutT>::k_;
        # using Feature<PointInT, PointOutT>::search_parameter_;
        # using Feature<PointInT, PointOutT>::input_;
        # using Feature<PointInT, PointOutT>::surface_;
        # using FeatureFromNormals<PointInT, PointNT, PointOutT>::normals_;
        # using FPFHEstimation<PointInT, PointNT, PointOutT>::hist_f1_;
        # using FPFHEstimation<PointInT, PointNT, PointOutT>::hist_f2_;
        # using FPFHEstimation<PointInT, PointNT, PointOutT>::hist_f3_;
        # using FPFHEstimation<PointInT, PointNT, PointOutT>::weightPointSPFHSignature;
        # ctypedef typename Feature<PointInT, PointOutT>::PointCloudOut PointCloudOut;
        # * \brief Initialize the scheduler and set the number of threads to use.
        # * \param[in] nr_threads the number of hardware threads to use (-1 sets the value back to automatic)
        inline void setNumberOfThreads (unsigned threads)
        # public:
        # * \brief The number of subdivisions for each angular feature interval. */
        # int nr_bins_f1_, nr_bins_f2_, nr_bins_f3_;

###

# integral_image_normal.h
# template <typename PointInT, typename PointOutT>
# class IntegralImageNormalEstimation : public Feature<PointInT, PointOutT>
cdef extern from "pcl/features/integral_image_normal.h" namespace "pcl":
    cdef cppclass IntegralImageNormalEstimation[In, Out](Feature[In, Out]):
        IntegralImageNormalEstimation ()
        # public:
        # ctypedef typename Feature<PointInT, PointOutT>::PointCloudIn  PointCloudIn;
        # ctypedef typename Feature<PointInT, PointOutT>::PointCloudOut PointCloudOut;
        # 
        # * \brief Set the regions size which is considered for normal estimation.
        # * \param[in] width the width of the search rectangle
        # * \param[in] height the height of the search rectangle
        void setRectSize (const int width, const int height)
        
        # * \brief Sets the policy for handling borders.
        # * \param[in] border_policy the border policy.
        # minipcl
        # void setBorderPolicy (BorderPolicy border_policy)
        # * \brief Computes the normal at the specified position.
        # * \param[in] pos_x x position (pixel)
        # * \param[in] pos_y y position (pixel)
        # * \param[in] point_index the position index of the point
        # * \param[out] normal the output estimated normal
        void computePointNormal (const int pos_x, const int pos_y, const unsigned point_index, Out &normal)
        
        # * \brief Computes the normal at the specified position with mirroring for border handling.
        # * \param[in] pos_x x position (pixel)
        # * \param[in] pos_y y position (pixel)
        # * \param[in] point_index the position index of the point
        # * \param[out] normal the output estimated normal
        void computePointNormalMirror (const int pos_x, const int pos_y, const unsigned point_index, Out &normal)
        
        # * \brief The depth change threshold for computing object borders
        # * \param[in] max_depth_change_factor the depth change threshold for computing object borders based on
        # * depth changes
        void setMaxDepthChangeFactor (float max_depth_change_factor)
        
        # * \brief Set the normal smoothing size
        # * \param[in] normal_smoothing_size factor which influences the size of the area used to smooth normals
        # * (depth dependent if useDepthDependentSmoothing is true)
        void setNormalSmoothingSize (float normal_smoothing_size)
        
        # TODO : use minipcl.cpp/h
        # * \brief Set the normal estimation method. The current implemented algorithms are:
        # * <ul>
        # *   <li><b>COVARIANCE_MATRIX</b> - creates 9 integral images to compute the normal for a specific point
        # *   from the covariance matrix of its local neighborhood.</li>
        # *   <li><b>AVERAGE_3D_GRADIENT</b> - creates 6 integral images to compute smoothed versions of
        # *   horizontal and vertical 3D gradients and computes the normals using the cross-product between these
        # *   two gradients.
        # *   <li><b>AVERAGE_DEPTH_CHANGE</b> -  creates only a single integral image and computes the normals
        # *   from the average depth changes.
        # * </ul>
        # * \param[in] normal_estimation_method the method used for normal estimation
        # void setNormalEstimationMethod (NormalEstimationMethod2 normal_estimation_method)
       
        # brief Set whether to use depth depending smoothing or not
        # param[in] use_depth_dependent_smoothing decides whether the smoothing is depth dependent
        void setDepthDependentSmoothing (bool use_depth_dependent_smoothing)
        
        # brief Provide a pointer to the input dataset (overwrites the PCLBase::setInputCloud method)
        # \param[in] cloud the const boost shared pointer to a PointCloud message
        # void setInputCloud (const typename PointCloudIn::ConstPtr &cloud)
        void setInputCloud (In cloud)
        
        # brief Returns a pointer to the distance map which was computed internally
        inline float* getDistanceMap ()
        
        # * \brief Set the viewpoint.
        # * \param vpx the X coordinate of the viewpoint
        # * \param vpy the Y coordinate of the viewpoint
        # * \param vpz the Z coordinate of the viewpoint
        inline void setViewPoint (float vpx, float vpy, float vpz)
        
        # * \brief Get the viewpoint.
        # * \param [out] vpx x-coordinate of the view point
        # * \param [out] vpy y-coordinate of the view point
        # * \param [out] vpz z-coordinate of the view point
        # * \note this method returns the currently used viewpoint for normal flipping.
        # * If the viewpoint is set manually using the setViewPoint method, this method will return the set view point coordinates.
        # * If an input cloud is set, it will return the sensor origin otherwise it will return the origin (0, 0, 0)
        inline void getViewPoint (float &vpx, float &vpy, float &vpz)
        
        # * \brief sets whether the sensor origin or a user given viewpoint should be used. After this method, the 
        # * normal estimation method uses the sensor origin of the input cloud.
        # * to use a user defined view point, use the method setViewPoint
        inline void useSensorOriginAsViewPoint ()


ctypedef IntegralImageNormalEstimation[cpp.PointXYZ, cpp.Normal] IntegralImageNormalEstimation_t
ctypedef IntegralImageNormalEstimation[cpp.PointXYZI, cpp.Normal] IntegralImageNormalEstimation_PointXYZI_t
ctypedef IntegralImageNormalEstimation[cpp.PointXYZRGB, cpp.Normal] IntegralImageNormalEstimation_PointXYZRGB_t
ctypedef IntegralImageNormalEstimation[cpp.PointXYZRGBA, cpp.Normal] IntegralImageNormalEstimation_PointXYZRGBA_t
ctypedef shared_ptr[IntegralImageNormalEstimation[cpp.PointXYZ, cpp.Normal]] IntegralImageNormalEstimationPtr_t
ctypedef shared_ptr[IntegralImageNormalEstimation[cpp.PointXYZI, cpp.Normal]] IntegralImageNormalEstimation_PointXYZI_Ptr_t
ctypedef shared_ptr[IntegralImageNormalEstimation[cpp.PointXYZRGB, cpp.Normal]] IntegralImageNormalEstimation_PointXYZRGB_Ptr_t
ctypedef shared_ptr[IntegralImageNormalEstimation[cpp.PointXYZRGBA, cpp.Normal]] IntegralImageNormalEstimation_PointXYZRGBA_Ptr_t
###

# integral_image2D.h
# template <class DataType, unsigned Dimension>
# class IntegralImage2D
cdef extern from "pcl/features/integral_image_normal.h" namespace "pcl":
    cdef cppclass IntegralImage2D[Type, Dim]:
        # IntegralImage2D ()
        IntegralImage2D (bool flag)
        # public:
        # static const unsigned second_order_size = (Dimension * (Dimension + 1)) >> 1;
        # ctypedef Eigen::Matrix<typename IntegralImageTypeTraits<DataType>::IntegralType, Dimension, 1> ElementType;
        # ctypedef Eigen::Matrix<typename IntegralImageTypeTraits<DataType>::IntegralType, second_order_size, 1> SecondOrderType;
        # void setSecondOrderComputation (bool compute_second_order_integral_images);
        # * \brief Set the input data to compute the integral image for
        #   * \param[in] data the input data
        #   * \param[in] width the width of the data
        #   * \param[in] height the height of the data
        #   * \param[in] element_stride the element stride of the data
        #   * \param[in] row_stride the row stride of the data
        # void setInput (const DataType * data, unsigned width, unsigned height, unsigned element_stride, unsigned row_stride)
        # * \brief Compute the first order sum within a given rectangle
        #   * \param[in] start_x x position of rectangle
        #   * \param[in] start_y y position of rectangle
        #   * \param[in] width width of rectangle
        #   * \param[in] height height of rectangle
        # inline ElementType getFirstOrderSum (unsigned start_x, unsigned start_y, unsigned width, unsigned height) const
        # /** \brief Compute the first order sum within a given rectangle
        #   * \param[in] start_x x position of the start of the rectangle
        #   * \param[in] start_y x position of the start of the rectangle
        #   * \param[in] end_x x position of the end of the rectangle
        #   * \param[in] end_y x position of the end of the rectangle
        # inline ElementType getFirstOrderSumSE (unsigned start_x, unsigned start_y, unsigned end_x, unsigned end_y) const
        # /** \brief Compute the second order sum within a given rectangle
        #   * \param[in] start_x x position of rectangle
        #   * \param[in] start_y y position of rectangle
        #   * \param[in] width width of rectangle
        #   * \param[in] height height of rectangle
        # inline SecondOrderType getSecondOrderSum (unsigned start_x, unsigned start_y, unsigned width, unsigned height) const
        # /** \brief Compute the second order sum within a given rectangle
        #   * \param[in] start_x x position of the start of the rectangle
        #   * \param[in] start_y x position of the start of the rectangle
        #   * \param[in] end_x x position of the end of the rectangle
        #   * \param[in] end_y x position of the end of the rectangle
        # inline SecondOrderType getSecondOrderSumSE (unsigned start_x, unsigned start_y, unsigned end_x, unsigned end_y) const
        # /** \brief Compute the number of finite elements within a given rectangle
        #   * \param[in] start_x x position of rectangle
        #   * \param[in] start_y y position of rectangle
        #   * \param[in] width width of rectangle
        #   * \param[in] height height of rectangle
        inline unsigned getFiniteElementsCount (unsigned start_x, unsigned start_y, unsigned width, unsigned height) const
        # /** \brief Compute the number of finite elements within a given rectangle
        #   * \param[in] start_x x position of the start of the rectangle
        #   * \param[in] start_y x position of the start of the rectangle
        #   * \param[in] end_x x position of the end of the rectangle
        #   * \param[in] end_y x position of the end of the rectangle
        inline unsigned getFiniteElementsCountSE (unsigned start_x, unsigned start_y, unsigned end_x, unsigned end_y) const
###

# template <class DataType>
# class IntegralImage2D <DataType, 1>
# cdef extern from "pcl/features/integral_image_normal.h" namespace "pcl":
#     cdef cppclass IntegralImage2D[Type]:
#         # IntegralImage2D ()
#         IntegralImage2D (bool flag)
#         # public:
#         # static const unsigned second_order_size = 1;
#         # ctypedef typename IntegralImageTypeTraits<DataType>::IntegralType ElementType;
#         # ctypedef typename IntegralImageTypeTraits<DataType>::IntegralType SecondOrderType;
#         # /** \brief Set the input data to compute the integral image for
#         #   * \param[in] data the input data
#         #   * \param[in] width the width of the data
#         #   * \param[in] height the height of the data
#         #   * \param[in] element_stride the element stride of the data
#         #   * \param[in] row_stride the row stride of the data
#         #   */
#         # void setInput (const DataType * data, unsigned width, unsigned height, unsigned element_stride, unsigned row_stride);
#         # /** \brief Compute the first order sum within a given rectangle
#         #   * \param[in] start_x x position of rectangle
#         #   * \param[in] start_y y position of rectangle
#         #   * \param[in] width width of rectangle
#         #   * \param[in] height height of rectangle
#         #   */
#         # inline ElementType getFirstOrderSum (unsigned start_x, unsigned start_y, unsigned width, unsigned height) const;
#         # /** \brief Compute the first order sum within a given rectangle
#         #   * \param[in] start_x x position of the start of the rectangle
#         #   * \param[in] start_y x position of the start of the rectangle
#         #   * \param[in] end_x x position of the end of the rectangle
#         #   * \param[in] end_y x position of the end of the rectangle
#         #   */
#         # inline ElementType getFirstOrderSumSE (unsigned start_x, unsigned start_y, unsigned end_x, unsigned end_y) const;
#         # /** \brief Compute the second order sum within a given rectangle
#         #   * \param[in] start_x x position of rectangle
#         #   * \param[in] start_y y position of rectangle
#         #   * \param[in] width width of rectangle
#         #   * \param[in] height height of rectangle
#         #   */
#         # inline SecondOrderType getSecondOrderSum (unsigned start_x, unsigned start_y, unsigned width, unsigned height) const;
#         # /** \brief Compute the second order sum within a given rectangle
#         #   * \param[in] start_x x position of the start of the rectangle
#         #   * \param[in] start_y x position of the start of the rectangle
#         #   * \param[in] end_x x position of the end of the rectangle
#         #   * \param[in] end_y x position of the end of the rectangle
#         # inline SecondOrderType getSecondOrderSumSE (unsigned start_x, unsigned start_y, unsigned end_x, unsigned end_y) const;
#         # /** \brief Compute the number of finite elements within a given rectangle
#         #   * \param[in] start_x x position of rectangle
#         #   * \param[in] start_y y position of rectangle
#         #   * \param[in] width width of rectangle
#         #   * \param[in] height height of rectangle
#         #   */
#         inline unsigned getFiniteElementsCount (unsigned start_x, unsigned start_y, unsigned width, unsigned height) const;
#         # /** \brief Compute the number of finite elements within a given rectangle
#         #   * \param[in] start_x x position of the start of the rectangle
#         #   * \param[in] start_y x position of the start of the rectangle
#         #   * \param[in] end_x x position of the end of the rectangle
#         #   * \param[in] end_y x position of the end of the rectangle
#         #   */
#         inline unsigned getFiniteElementsCountSE (unsigned start_x, unsigned start_y, unsigned end_x, unsigned end_y) const;

###

# intensity_gradient.h
# template <typename PointInT, typename PointNT, typename PointOutT, typename IntensitySelectorT = pcl::common::IntensityFieldAccessor<PointInT> >
# class IntensityGradientEstimation : public FeatureFromNormals<PointInT, PointNT, PointOutT>
cdef extern from "pcl/features/intensity_gradient.h" namespace "pcl":
    cdef cppclass IntensityGradientEstimation[In, NT, Out, Intensity](FeatureFromNormals[In, NT, Out]):
        IntensityGradientEstimation ()
        # public:
        # using Feature<PointInT, PointOutT>::feature_name_;
        # using Feature<PointInT, PointOutT>::getClassName;
        # using Feature<PointInT, PointOutT>::indices_;
        # using Feature<PointInT, PointOutT>::surface_;
        # using Feature<PointInT, PointOutT>::k_;
        # using Feature<PointInT, PointOutT>::search_parameter_;
        # using FeatureFromNormals<PointInT, PointNT, PointOutT>::normals_;
        # typedef typename Feature<PointInT, PointOutT>::PointCloudOut PointCloudOut;
        # brief Initialize the scheduler and set the number of threads to use.
        # param nr_threads the number of hardware threads to use (-1 sets the value back to automatic)
        # inline void setNumberOfThreads (int nr_threads)
###

# template <typename PointInT, typename PointNT>
# class IntensityGradientEstimation<PointInT, PointNT, Eigen::MatrixXf>: public IntensityGradientEstimation<PointInT, PointNT, pcl::IntensityGradient>
# cdef extern from "pcl/features/intensity_gradient.h" namespace "pcl":
#     cdef cppclass IntensityGradientEstimation[In, NT]:
#         IntensityGradientEstimation ()
#         # public:
#         #   using IntensityGradientEstimation<PointInT, PointNT, pcl::IntensityGradient>::indices_;
#         #   using IntensityGradientEstimation<PointInT, PointNT, pcl::IntensityGradient>::normals_;
#         #   using IntensityGradientEstimation<PointInT, PointNT, pcl::IntensityGradient>::input_;
#         #   using IntensityGradientEstimation<PointInT, PointNT, pcl::IntensityGradient>::surface_;
#         #   using IntensityGradientEstimation<PointInT, PointNT, pcl::IntensityGradient>::k_;
#         #   using IntensityGradientEstimation<PointInT, PointNT, pcl::IntensityGradient>::search_parameter_;
#         #   using IntensityGradientEstimation<PointInT, PointNT, pcl::IntensityGradient>::compute;

###

# intensity_spin.h
# template <typename PointInT, typename PointOutT>
# class IntensitySpinEstimation: public Feature<PointInT, PointOutT>
cdef extern from "pcl/features/intensity_spin.h" namespace "pcl":
    cdef cppclass IntensitySpinEstimation[In, Out](Feature[In, Out]):
        IntensitySpinEstimation ()
        # public:
        # using Feature<PointInT, PointOutT>::feature_name_;
        # using Feature<PointInT, PointOutT>::getClassName;
        # using Feature<PointInT, PointOutT>::input_;
        # using Feature<PointInT, PointOutT>::indices_;
        # using Feature<PointInT, PointOutT>::surface_;
        # using Feature<PointInT, PointOutT>::tree_;
        # using Feature<PointInT, PointOutT>::search_radius_;
        # ctypedef typename pcl::PointCloud<PointInT> PointCloudIn;
        # ctypedef typename Feature<PointInT, PointOutT>::PointCloudOut PointCloudOut;
        ##
        # /** \brief Estimate the intensity-domain spin image descriptor for a given point based on its spatial
        #   * neighborhood of 3D points and their intensities. 
        #   * \param[in] cloud the dataset containing the Cartesian coordinates and intensity values of the points
        #   * \param[in] radius the radius of the feature
        #   * \param[in] sigma the standard deviation of the Gaussian smoothing kernel to use during the soft histogram update
        #   * \param[in] k the number of neighbors to use from \a indices and \a squared_distances
        #   * \param[in] indices the indices of the points that comprise the query point's neighborhood
        #   * \param[in] squared_distances the squared distances from the query point to each point in the neighborhood
        #   * \param[out] intensity_spin_image the resultant intensity-domain spin image descriptor
        #   */
        # void computeIntensitySpinImage (const PointCloudIn &cloud, 
        #                            float radius, float sigma, int k, 
        #                            const std::vector<int> &indices, 
        #                            const std::vector<float> &squared_distances, 
        #                            Eigen::MatrixXf &intensity_spin_image);

        # /** \brief Set the number of bins to use in the distance dimension of the spin image
        #   * \param[in] nr_distance_bins the number of bins to use in the distance dimension of the spin image
        #   */
        # inline void setNrDistanceBins (size_t nr_distance_bins) { nr_distance_bins_ = static_cast<int> (nr_distance_bins); };
        # /** \brief Returns the number of bins in the distance dimension of the spin image. */
        # inline int getNrDistanceBins ()
        # /** \brief Set the number of bins to use in the intensity dimension of the spin image.
        #   * \param[in] nr_intensity_bins the number of bins to use in the intensity dimension of the spin image
        #   */
        # inline void setNrIntensityBins (size_t nr_intensity_bins)
        # /** \brief Returns the number of bins in the intensity dimension of the spin image. */
        # inline int getNrIntensityBins ()
        # /** \brief Set the standard deviation of the Gaussian smoothing kernel to use when constructing the spin images.  
        #   * \param[in] sigma the standard deviation of the Gaussian smoothing kernel to use when constructing the spin images
        # inline void setSmoothingBandwith (float sigma)
        # /** \brief Returns the standard deviation of the Gaussian smoothing kernel used to construct the spin images.  */
        # inline float getSmoothingBandwith ()
        # /** \brief Estimate the intensity-domain descriptors at a set of points given by <setInputCloud (), setIndices ()>
        #   *  using the surface in setSearchSurface (), and the spatial locator in setSearchMethod ().
        #   * \param[out] output the resultant point cloud model dataset that contains the intensity-domain spin image features
        # void computeFeature (PointCloudOut &output);
        # /** \brief The number of distance bins in the descriptor. */
        # int nr_distance_bins_;
        # /** \brief The number of intensity bins in the descriptor. */
        # int nr_intensity_bins_;
        # /** \brief The standard deviation of the Gaussian smoothing kernel used to construct the spin images. */
        # float sigma_;

###

# template <typename PointInT>
# class IntensitySpinEstimation<PointInT, Eigen::MatrixXf>: public IntensitySpinEstimation<PointInT, pcl::Histogram<20> >
# cdef extern from "pcl/features/intensity_spin.h" namespace "pcl":
#     cdef cppclass IntensitySpinEstimation[In](IntensitySpinEstimation[In]):
#         IntensitySpinEstimation ()
#         # public:
#         #   using IntensitySpinEstimation<PointInT, pcl::Histogram<20> >::getClassName;
#         #   using IntensitySpinEstimation<PointInT, pcl::Histogram<20> >::input_;
#         #   using IntensitySpinEstimation<PointInT, pcl::Histogram<20> >::indices_;
#         #   using IntensitySpinEstimation<PointInT, pcl::Histogram<20> >::surface_;
#         #   using IntensitySpinEstimation<PointInT, pcl::Histogram<20> >::search_radius_;
#         #   using IntensitySpinEstimation<PointInT, pcl::Histogram<20> >::nr_intensity_bins_;
#         #   using IntensitySpinEstimation<PointInT, pcl::Histogram<20> >::nr_distance_bins_;
#         #   using IntensitySpinEstimation<PointInT, pcl::Histogram<20> >::tree_;
#         #   using IntensitySpinEstimation<PointInT, pcl::Histogram<20> >::sigma_;
#         #   using IntensitySpinEstimation<PointInT, pcl::Histogram<20> >::compute;
###

# moment_invariants.h
# template <typename PointInT, typename PointOutT>
# class MomentInvariantsEstimation: public Feature<PointInT, PointOutT>
cdef extern from "pcl/features/moment_invariants.h" namespace "pcl":
    cdef cppclass MomentInvariantsEstimation[In, Out](Feature[In, Out]):
        MomentInvariantsEstimation ()
        # public:
        # using Feature<PointInT, PointOutT>::feature_name_;
        # using Feature<PointInT, PointOutT>::getClassName;
        # using Feature<PointInT, PointOutT>::indices_;
        # using Feature<PointInT, PointOutT>::k_;
        # using Feature<PointInT, PointOutT>::search_parameter_;
        # using Feature<PointInT, PointOutT>::surface_;
        # using Feature<PointInT, PointOutT>::input_;
        # typedef typename Feature<PointInT, PointOutT>::PointCloudOut PointCloudOut;
        # /** \brief Compute the 3 moment invariants (j1, j2, j3) for a given set of points, using their indices.
        # * \param[in] cloud the input point cloud
        # * \param[in] indices the point cloud indices that need to be used
        # * \param[out] j1 the resultant first moment invariant
        # * \param[out] j2 the resultant second moment invariant
        # * \param[out] j3 the resultant third moment invariant
        # */
        # void computePointMomentInvariants (const pcl::PointCloud<PointInT> &cloud, 
        #                             const std::vector<int> &indices, 
        #                             float &j1, float &j2, float &j3);
        # * \brief Compute the 3 moment invariants (j1, j2, j3) for a given set of points, using their indices.
        # * \param[in] cloud the input point cloud
        # * \param[out] j1 the resultant first moment invariant
        # * \param[out] j2 the resultant second moment invariant
        # * \param[out] j3 the resultant third moment invariant
        # void computePointMomentInvariants (const pcl::PointCloud<PointInT> &cloud, 
        #                             float &j1, float &j2, float &j3);
###

# template <typename PointInT>
# class MomentInvariantsEstimation<PointInT, Eigen::MatrixXf>: public MomentInvariantsEstimation<PointInT, pcl::MomentInvariants>
# cdef extern from "pcl/features/moment_invariants.h" namespace "pcl":
#     cdef cppclass MomentInvariantsEstimation[In, Out](MomentInvariantsEstimation[In]):
#         MomentInvariantsEstimation ()
#         public:
#         using MomentInvariantsEstimation<PointInT, pcl::MomentInvariants>::k_;
#         using MomentInvariantsEstimation<PointInT, pcl::MomentInvariants>::indices_;
#         using MomentInvariantsEstimation<PointInT, pcl::MomentInvariants>::search_parameter_;
#         using MomentInvariantsEstimation<PointInT, pcl::MomentInvariants>::surface_;
#         using MomentInvariantsEstimation<PointInT, pcl::MomentInvariants>::input_;
#         using MomentInvariantsEstimation<PointInT, pcl::MomentInvariants>::compute;
###

# multiscale_feature_persistence.h
# template <typename PointSource, typename PointFeature>
# class MultiscaleFeaturePersistence : public PCLBase<PointSource>
cdef extern from "pcl/features/multiscale_feature_persistence.h" namespace "pcl":
    cdef cppclass MultiscaleFeaturePersistence[Source, Feature](cpp.PCLBase[Source]):
        MultiscaleFeaturePersistence ()
        # public:
        # typedef pcl::PointCloud<PointFeature> FeatureCloud;
        # typedef typename pcl::PointCloud<PointFeature>::Ptr FeatureCloudPtr;
        # typedef typename pcl::Feature<PointSource, PointFeature>::Ptr FeatureEstimatorPtr;
        # typedef boost::shared_ptr<const pcl::PointRepresentation <PointFeature> > FeatureRepresentationConstPtr;
        # using pcl::PCLBase<PointSource>::input_;
        # 
        # /** \brief Method that calls computeFeatureAtScale () for each scale parameter */
        # void computeFeaturesAtAllScales ();
        
        # /** \brief Central function that computes the persistent features
        #  * \param output_features a cloud containing the persistent features
        #  * \param output_indices vector containing the indices of the points in the input cloud
        #  * that have persistent features, under a one-to-one correspondence with the output_features cloud
        #  */
        # void determinePersistentFeatures (FeatureCloud &output_features, boost::shared_ptr<std::vector<int> > &output_indices);
        
        # /** \brief Method for setting the scale parameters for the algorithm
        #  * \param scale_values vector of scales to determine the characteristic of each scaling step
        #  */
        inline void setScalesVector (vector[float] &scale_values)
        
        # /** \brief Method for getting the scale parameters vector */
        inline vector[float] getScalesVector ()
        
        # /** \brief Setter method for the feature estimator
        #  * \param feature_estimator pointer to the feature estimator instance that will be used
        #  * \note the feature estimator instance should already have the input data given beforehand
        #  * and everything set, ready to be given the compute () command
        #  */
        # inline void setFeatureEstimator (FeatureEstimatorPtr feature_estimator)
        
        # /** \brief Getter method for the feature estimator */
        # inline FeatureEstimatorPtr getFeatureEstimator ()
        
        # \brief Provide a pointer to the feature representation to use to convert features to k-D vectors.
        # \param feature_representation the const boost shared pointer to a PointRepresentation
        # inline void setPointRepresentation (const FeatureRepresentationConstPtr& feature_representation)
        
        # \brief Get a pointer to the feature representation used when converting features into k-D vectors. */
        # inline FeatureRepresentationConstPtr const getPointRepresentation ()
        
        # \brief Sets the alpha parameter
        # \param alpha value to replace the current alpha with
        inline void setAlpha (float alpha)
        
        # /** \brief Get the value of the alpha parameter */
        inline float getAlpha ()
        
        # /** \brief Method for setting the distance metric that will be used for computing the difference between feature vectors
        # * \param distance_metric the new distance metric chosen from the NormType enum
        # inline void setDistanceMetric (NormType distance_metric)
        
        # /** \brief Returns the distance metric that is currently used to calculate the difference between feature vectors */
        # inline NormType getDistanceMetric ()
###

# narf.h
# namespace pcl 
# {
#   // Forward declarations
#   class RangeImage;
#   struct InterestPoint;
# 
# #define NARF_DEFAULT_SURFACE_PATCH_PIXEL_SIZE 10
# narf.h
# namespace pcl 
# /**
# * \brief NARF (Normal Aligned Radial Features) is a point feature descriptor type for 3D data.
# * Please refer to pcl/features/narf_descriptor.h if you want the class derived from pcl Feature.
# * See B. Steder, R. B. Rusu, K. Konolige, and W. Burgard
# *     Point Feature Extraction on 3D Range Scans Taking into Account Object Boundaries
# *     In Proc. of the IEEE Int. Conf. on Robotics &Automation (ICRA). 2011. 
# * \author Bastian Steder
# * \ingroup features
# */
# class PCL_EXPORTS Narf
        # public:
        # // =====CONSTRUCTOR & DESTRUCTOR=====
        # //! Constructor
        # Narf();
        # //! Copy Constructor
        # Narf(const Narf& other);
        # //! Destructor
        # ~Narf();
        # 
        # // =====Operators=====
        # //! Assignment operator
        # const Narf& operator=(const Narf& other);
        # 
        # // =====STATIC=====
        # /** The maximum number of openmp threads that can be used in this class */
        # static int max_no_of_threads;
        # 
        # /** Add features extracted at the given interest point and add them to the list */
        # static void extractFromRangeImageAndAddToList (const RangeImage& range_image, const Eigen::Vector3f& interest_point, int descriptor_size, float support_size, bool rotation_invariant, std::vector<Narf*>& feature_list);
        # 
        # /** Same as above */
        # static void extractFromRangeImageAndAddToList (const RangeImage& range_image, float image_x, float image_y, int descriptor_size,float support_size, bool rotation_invariant, std::vector<Narf*>& feature_list);
        # 
        # /** Get a list of features from the given interest points. */
        # static void extractForInterestPoints (const RangeImage& range_image, const PointCloud<InterestPoint>& interest_points, int descriptor_size, float support_size, bool rotation_invariant, std::vector<Narf*>& feature_list);
        # 
        # /** Extract an NARF for every point in the range image. */
        # static void extractForEveryRangeImagePointAndAddToList (const RangeImage& range_image, int descriptor_size, float support_size, bool rotation_invariant, std::vector<Narf*>& feature_list);
        # 
        # // =====PUBLIC METHODS=====
        # /** Method to extract a NARF feature from a certain 3D point using a range image.
        # *  pose determines the coordinate system of the feature, whereas it transforms a point from the world into the feature system.
        # *  This means the interest point at which the feature is extracted will be the inverse application of pose onto (0,0,0).
        # *  descriptor_size_ determines the size of the descriptor,
        # *  support_size determines the support size of the feature, meaning the size in the world it covers */
        # bool extractFromRangeImage (const RangeImage& range_image, const Eigen::Affine3f& pose, int descriptor_size, float support_size,int surface_patch_world_size=NARF_DEFAULT_SURFACE_PATCH_PIXEL_SIZE);
        # 
        # //! Same as above, but determines the transformation from the surface in the range image
        # bool extractFromRangeImage (const RangeImage& range_image, float x, float y, int descriptor_size, float support_size);
        # 
        # //! Same as above
        # bool extractFromRangeImage (const RangeImage& range_image, const InterestPoint& interest_point, int descriptor_size, float support_size);
        # 
        # //! Same as above
        # bool extractFromRangeImage (const RangeImage& range_image, const Eigen::Vector3f& interest_point, int descriptor_size, float support_size);
        # 
        # /** Same as above, but using the rotational invariant version by choosing the best extracted rotation around the normal.
        # *  Use extractFromRangeImageAndAddToList if you want to enable the system to return multiple features with different rotations. */
        # bool extractFromRangeImageWithBestRotation (const RangeImage& range_image, const Eigen::Vector3f& interest_point, int descriptor_size, float support_size);
        # 
        # /* Get the dominant rotations of the current descriptor
        # * \param rotations the returned rotations
        # * \param strength values describing how pronounced the corresponding rotations are
        # */
        # void getRotations (std::vector<float>& rotations, std::vector<float>& strengths) const;
        # 
        # /* Get the feature with a different rotation around the normal
        # * You are responsible for deleting the new features!
        # * \param range_image the source from which the feature is extracted
        # * \param rotations list of angles (in radians)
        # * \param rvps returned features
        # */
        # void getRotatedVersions (const RangeImage& range_image, const std::vector<float>& rotations, std::vector<Narf*>& features) const;
        # 
        # //! Calculate descriptor distance, value in [0,1] with 0 meaning identical and 1 every cell above maximum distance
        # inline float getDescriptorDistance (const Narf& other) const;
        # 
        # //! How many points on each beam of the gradient star are used to calculate the descriptor?
        # inline int getNoOfBeamPoints () const { return (static_cast<int> (pcl_lrint (ceil (0.5f * float (surface_patch_pixel_size_))))); }
        # 
        # //! Copy the descriptor and pose to the point struct Narf36
        # inline void copyToNarf36 (Narf36& narf36) const;
        # 
        # /** Write to file */
        # void saveBinary (const std::string& filename) const;
        # 
        # /** Write to output stream */
        # void saveBinary (std::ostream& file) const;
        # 
        # /** Read from file */
        # void loadBinary (const std::string& filename);
        # /** Read from input stream */
        # void loadBinary (std::istream& file);
        # 
        # //! Create the descriptor from the already set other members
        # bool extractDescriptor (int descriptor_size);
        # 
        # // =====GETTERS=====
        # //! Getter (const) for the descriptor
        # inline const float* getDescriptor () const { return descriptor_;}
        # //! Getter for the descriptor
        # inline float* getDescriptor () { return descriptor_;}
        # //! Getter (const) for the descriptor length
        # inline const int& getDescriptorSize () const { return descriptor_size_;}
        # //! Getter for the descriptor length
        # inline int& getDescriptorSize () { return descriptor_size_;}
        # //! Getter (const) for the position
        # inline const Eigen::Vector3f& getPosition () const { return position_;}
        # //! Getter for the position
        # inline Eigen::Vector3f& getPosition () { return position_;}
        # //! Getter (const) for the 6DoF pose
        # inline const Eigen::Affine3f& getTransformation () const { return transformation_;}
        # //! Getter for the 6DoF pose
        # inline Eigen::Affine3f& getTransformation () { return transformation_;}
        # //! Getter (const) for the pixel size of the surface patch (only one dimension)
        # inline const int& getSurfacePatchPixelSize () const { return surface_patch_pixel_size_;}
        # //! Getter for the pixel size of the surface patch (only one dimension)
        # inline int& getSurfacePatchPixelSize () { return surface_patch_pixel_size_;}
        # //! Getter (const) for the world size of the surface patch
        # inline const float& getSurfacePatchWorldSize () const { return surface_patch_world_size_;}
        # //! Getter for the world size of the surface patch
        # inline float& getSurfacePatchWorldSize () { return surface_patch_world_size_;}
        # //! Getter (const) for the rotation of the surface patch
        # inline const float& getSurfacePatchRotation () const { return surface_patch_rotation_;}
        # //! Getter for the rotation of the surface patch
        # inline float& getSurfacePatchRotation () { return surface_patch_rotation_;}
        # //! Getter (const) for the surface patch
        # inline const float* getSurfacePatch () const { return surface_patch_;}
        # //! Getter for the surface patch
        # inline float* getSurfacePatch () { return surface_patch_;}
        # //! Method to erase the surface patch and free the memory
        # inline void freeSurfacePatch () { delete[] surface_patch_; surface_patch_=NULL; surface_patch_pixel_size_=0; }
        # 
        # // =====SETTERS=====
        # //! Setter for the descriptor
        # inline void setDescriptor (float* descriptor) { descriptor_ = descriptor;}
        # //! Setter for the surface patch
        # inline void setSurfacePatch (float* surface_patch) { surface_patch_ = surface_patch;}
        # 
        # // =====PUBLIC MEMBER VARIABLES=====
        # 
        # // =====PUBLIC STRUCTS=====
        # struct FeaturePointRepresentation : public PointRepresentation<Narf*>
        # {
        #     typedef Narf* PointT;
        #     FeaturePointRepresentation(int nr_dimensions) { this->nr_dimensions_ = nr_dimensions; }
        #     /** \brief Empty destructor */
        #     virtual ~FeaturePointRepresentation () {}
        #     virtual void copyToFloatArray (const PointT& p, float* out) const { memcpy(out, p->getDescriptor(), sizeof(*p->getDescriptor())*this->nr_dimensions_); }
        # };


###

# narf_descriptor.h
# namespace pcl
#     // Forward declarations
#     class RangeImage;
##
# narf_descriptor.h
# namespace pcl
# /** @b Computes NARF feature descriptors for points in a range image
# * See B. Steder, R. B. Rusu, K. Konolige, and W. Burgard
# *     Point Feature Extraction on 3D Range Scans Taking into Account Object Boundaries
# *     In Proc. of the IEEE Int. Conf. on Robotics &Automation (ICRA). 2011. 
# * \author Bastian Steder
# * \ingroup features
# */
# class PCL_EXPORTS NarfDescriptor : public Feature<PointWithRange,Narf36>
        # public:
        # typedef boost::shared_ptr<NarfDescriptor> Ptr;
        # typedef boost::shared_ptr<const NarfDescriptor> ConstPtr;
        # // =====TYPEDEFS=====
        # typedef Feature<PointWithRange,Narf36> BaseClass;
        # 
        # // =====STRUCTS/CLASSES=====
        # struct Parameters
        # {
        #   Parameters() : support_size(-1.0f), rotation_invariant(true) {}
        #   float support_size;
        #   bool rotation_invariant;
        # };
        # 
        # // =====CONSTRUCTOR & DESTRUCTOR=====
        # /** Constructor */
        # NarfDescriptor (const RangeImage* range_image=NULL, const std::vector<int>* indices=NULL);
        # /** Destructor */
        # virtual ~NarfDescriptor();
        # 
        # // =====METHODS=====
        # //! Set input data
        # void setRangeImage (const RangeImage* range_image, const std::vector<int>* indices=NULL);
        # 
        # //! Overwrite the compute function of the base class
        # void compute (cpp.PointCloud[Out]& output);
        # 
        # // =====GETTER=====
        # //! Get a reference to the parameters struct
        # Parameters& getParameters () { return parameters_;}


###

# normal_3d.h
# cdef extern from "pcl/features/normal_3d.h" namespace "pcl":
#     cdef cppclass NormalEstimation[I, N, O]:
#         NormalEstimation()
# 
#   template <typename PointT> inline void
#   computePointNormal (const pcl::PointCloud<PointT> &cloud,
#                       Eigen::Vector4f &plane_parameters, float &curvature)
#   /** \brief Compute the Least-Squares plane fit for a given set of points, using their indices,
#     * and return the estimated plane parameters together with the surface curvature.
#     * \param cloud the input point cloud
#     * \param indices the point cloud indices that need to be used
#     * \param plane_parameters the plane parameters as: a, b, c, d (ax + by + cz + d = 0)
#     * \param curvature the estimated surface curvature as a measure of
#     * \f[
#     * \lambda_0 / (\lambda_0 + \lambda_1 + \lambda_2)
#     * \f]
#     * \ingroup features
#     */
#   template <typename PointT> inline void
#   computePointNormal (const pcl::PointCloud<PointT> &cloud, const std::vector<int> &indices,
#                       Eigen::Vector4f &plane_parameters, float &curvature)
#
#   /** \brief Flip (in place) the estimated normal of a point towards a given viewpoint
#     * \param point a given point
#     * \param vp_x the X coordinate of the viewpoint
#     * \param vp_y the X coordinate of the viewpoint
#     * \param vp_z the X coordinate of the viewpoint
#     * \param normal the plane normal to be flipped
#     * \ingroup features
#     */
#   template <typename PointT, typename Scalar> inline void
#   flipNormalTowardsViewpoint (const PointT &point, float vp_x, float vp_y, float vp_z,
#                               Eigen::Matrix<Scalar, 4, 1>& normal)
# 
#   /** \brief Flip (in place) the estimated normal of a point towards a given viewpoint
#     * \param point a given point
#     * \param vp_x the X coordinate of the viewpoint
#     * \param vp_y the X coordinate of the viewpoint
#     * \param vp_z the X coordinate of the viewpoint
#     * \param normal the plane normal to be flipped
#     * \ingroup features
#     */
#   template <typename PointT, typename Scalar> inline void
#   flipNormalTowardsViewpoint (const PointT &point, float vp_x, float vp_y, float vp_z,
#                               Eigen::Matrix<Scalar, 3, 1>& normal)
#   
#   /** \brief Flip (in place) the estimated normal of a point towards a given viewpoint
#     * \param point a given point
#     * \param vp_x the X coordinate of the viewpoint
#     * \param vp_y the X coordinate of the viewpoint
#     * \param vp_z the X coordinate of the viewpoint
#     * \param nx the resultant X component of the plane normal
#     * \param ny the resultant Y component of the plane normal
#     * \param nz the resultant Z component of the plane normal
#     * \ingroup features
#     */
#   template <typename PointT> inline void
#   flipNormalTowardsViewpoint (const PointT &point, float vp_x, float vp_y, float vp_z,
#                               float &nx, float &ny, float &nz)
#

# template <typename PointInT, typename PointOutT>
# class NormalEstimation : public Feature<PointInT, PointOutT>
cdef extern from "pcl/features/normal_3d.h" namespace "pcl":
    cdef cppclass NormalEstimation[In, Out](Feature[In, Out]):
        NormalEstimation ()
        # public:
        # using Feature<PointInT, PointOutT>::feature_name_;
        # using Feature<PointInT, PointOutT>::getClassName;
        # using Feature<PointInT, PointOutT>::indices_;
        # using Feature<PointInT, PointOutT>::input_;
        # using Feature<PointInT, PointOutT>::surface_;
        # using Feature<PointInT, PointOutT>::k_;
        # using Feature<PointInT, PointOutT>::search_radius_;
        # using Feature<PointInT, PointOutT>::search_parameter_;
        # typedef typename Feature<PointInT, PointOutT>::PointCloudOut PointCloudOut;
        # typedef typename Feature<PointInT, PointOutT>::PointCloudConstPtr PointCloudConstPtr;
        
        # * \brief Compute the Least-Squares plane fit for a given set of points, using their indices,
        # * and return the estimated plane parameters together with the surface curvature.
        # * \param cloud the input point cloud
        # * \param indices the point cloud indices that need to be used
        # * \param plane_parameters the plane parameters as: a, b, c, d (ax + by + cz + d = 0)
        # * \param curvature the estimated surface curvature as a measure of
        # * \f[
        # * \lambda_0 / (\lambda_0 + \lambda_1 + \lambda_2)
        # * \f]
        # inline void computePointNormal (const cpp.PointCloud[In] &cloud, const vector[int] &indices, Eigen::Vector4f &plane_parameters, float &curvature)
        # void computePointNormal (const cpp.PointCloud[In] &cloud, const vector[int] &indices, eigen3.Vector4f &plane_parameters, float &curvature)
        
        # * \brief Compute the Least-Squares plane fit for a given set of points, using their indices,
        # * and return the estimated plane parameters together with the surface curvature.
        # * \param cloud the input point cloud
        # * \param indices the point cloud indices that need to be used
        # * \param nx the resultant X component of the plane normal
        # * \param ny the resultant Y component of the plane normal
        # * \param nz the resultant Z component of the plane normal
        # * \param curvature the estimated surface curvature as a measure of
        # * \f[
        # * \lambda_0 / (\lambda_0 + \lambda_1 + \lambda_2)
        # * \f]
        # inline void computePointNormal (const cpp.PointCloud[In] &cloud, const vector[int] &indices, float &nx, float &ny, float &nz, float &curvature)
        void computePointNormal (const cpp.PointCloud[In] &cloud, const vector[int] &indices, float &nx, float &ny, float &nz, float &curvature)
        
        # * \brief Provide a pointer to the input dataset
        # * \param cloud the const boost shared pointer to a PointCloud message
        # virtual inline void setInputCloud (const PointCloudConstPtr &cloud)
        # * \brief Set the viewpoint.
        # * \param vpx the X coordinate of the viewpoint
        # * \param vpy the Y coordinate of the viewpoint
        # * \param vpz the Z coordinate of the viewpoint
        inline void setViewPoint (float vpx, float vpy, float vpz)
        
        # * \brief Get the viewpoint.
        # * \param [out] vpx x-coordinate of the view point
        # * \param [out] vpy y-coordinate of the view point
        # * \param [out] vpz z-coordinate of the view point
        # * \note this method returns the currently used viewpoint for normal flipping.
        # * If the viewpoint is set manually using the setViewPoint method, this method will return the set view point coordinates.
        # * If an input cloud is set, it will return the sensor origin otherwise it will return the origin (0, 0, 0)
        inline void getViewPoint (float &vpx, float &vpy, float &vpz)
        
        # * \brief sets whether the sensor origin or a user given viewpoint should be used. After this method, the 
        # * normal estimation method uses the sensor origin of the input cloud.
        # * to use a user defined view point, use the method setViewPoint
        inline void useSensorOriginAsViewPoint ()
        

ctypedef NormalEstimation[cpp.PointXYZ, cpp.Normal] NormalEstimation_t
ctypedef NormalEstimation[cpp.PointXYZI, cpp.Normal] NormalEstimation_PointXYZI_t
ctypedef NormalEstimation[cpp.PointXYZRGB, cpp.Normal] NormalEstimation_PointXYZRGB_t
ctypedef NormalEstimation[cpp.PointXYZRGBA, cpp.Normal] NormalEstimation_PointXYZRGBA_t
ctypedef shared_ptr[NormalEstimation[cpp.PointXYZ, cpp.Normal]] NormalEstimationPtr_t
ctypedef shared_ptr[NormalEstimation[cpp.PointXYZI, cpp.Normal]] NormalEstimation_PointXYZI_Ptr_t
ctypedef shared_ptr[NormalEstimation[cpp.PointXYZRGB, cpp.Normal]] NormalEstimation_PointXYZRGB_Ptr_t
ctypedef shared_ptr[NormalEstimation[cpp.PointXYZRGBA, cpp.Normal]] NormalEstimation_PointXYZRGBA_Ptr_t
###

# template <typename PointInT>
# class NormalEstimation<PointInT, Eigen::MatrixXf>: public NormalEstimation<PointInT, pcl::Normal>
# cdef extern from "pcl/features/normal_3d.h" namespace "pcl":
#     cdef cppclass NormalEstimation[In, Eigen::MatrixXf](NormalEstimation[In, pcl::Normal]):
#         NormalEstimation ()
#     public:
#       using NormalEstimation<PointInT, pcl::Normal>::indices_;
#       using NormalEstimation<PointInT, pcl::Normal>::input_;
#       using NormalEstimation<PointInT, pcl::Normal>::surface_;
#       using NormalEstimation<PointInT, pcl::Normal>::k_;
#       using NormalEstimation<PointInT, pcl::Normal>::search_parameter_;
#       using NormalEstimation<PointInT, pcl::Normal>::vpx_;
#       using NormalEstimation<PointInT, pcl::Normal>::vpy_;
#       using NormalEstimation<PointInT, pcl::Normal>::vpz_;
#       using NormalEstimation<PointInT, pcl::Normal>::computePointNormal;
#       using NormalEstimation<PointInT, pcl::Normal>::compute;
###

# normal_3d_omp.h
# template <typename PointInT, typename PointOutT>
# class NormalEstimationOMP: public NormalEstimation<PointInT, PointOutT>
cdef extern from "pcl/features/normal_3d_omp.h" namespace "pcl":
    cdef cppclass NormalEstimationOMP[In, Out](NormalEstimation[In, Out]):
        NormalEstimationOMP ()
        NormalEstimationOMP (unsigned int nr_threads)
        # public:
        # using NormalEstimation<PointInT, PointOutT>::feature_name_;
        # using NormalEstimation<PointInT, PointOutT>::getClassName;
        # using NormalEstimation<PointInT, PointOutT>::indices_;
        # using NormalEstimation<PointInT, PointOutT>::input_;
        # using NormalEstimation<PointInT, PointOutT>::k_;
        # using NormalEstimation<PointInT, PointOutT>::search_parameter_;
        # using NormalEstimation<PointInT, PointOutT>::surface_;
        # using NormalEstimation<PointInT, PointOutT>::getViewPoint;
        # typedef typename NormalEstimation<PointInT, PointOutT>::PointCloudOut PointCloudOut;
        # public:
        # /** \brief Initialize the scheduler and set the number of threads to use.
        #     * \param nr_threads the number of hardware threads to use (-1 sets the value back to automatic)
        # */
        inline void setNumberOfThreads (unsigned int nr_threads)
###

# template <typename PointInT>
# class NormalEstimationOMP<PointInT, Eigen::MatrixXf>: public NormalEstimationOMP<PointInT, pcl::Normal>
#     public:
#       using NormalEstimationOMP<PointInT, pcl::Normal>::indices_;
#       using NormalEstimationOMP<PointInT, pcl::Normal>::search_parameter_;
#       using NormalEstimationOMP<PointInT, pcl::Normal>::k_;
#       using NormalEstimationOMP<PointInT, pcl::Normal>::input_;
#       using NormalEstimationOMP<PointInT, pcl::Normal>::surface_;
#       using NormalEstimationOMP<PointInT, pcl::Normal>::getViewPoint;
#       using NormalEstimationOMP<PointInT, pcl::Normal>::threads_;
#       using NormalEstimationOMP<PointInT, pcl::Normal>::compute;
# 
#       /** \brief Default constructor.
#         */
#       NormalEstimationOMP () : NormalEstimationOMP<PointInT, pcl::Normal> () {}
# 
#       /** \brief Initialize the scheduler and set the number of threads to use.
#         * \param nr_threads the number of hardware threads to use (-1 sets the value back to automatic)
#         */
#       NormalEstimationOMP (unsigned int nr_threads) : NormalEstimationOMP<PointInT, pcl::Normal> (nr_threads) {}
# 


###

# normal_based_signature.h
# template <typename PointT, typename PointNT, typename PointFeature>
# class NormalBasedSignatureEstimation : public FeatureFromNormals<PointT, PointNT, PointFeature>
cdef extern from "pcl/features/normal_based_signature.h" namespace "pcl":
    cdef cppclass NormalBasedSignatureEstimation[In, NT, Feature](FeatureFromNormals[In,  NT, Feature]):
        NormalBasedSignatureEstimation ()
        # public:
        # using Feature<PointT, PointFeature>::input_;
        # using Feature<PointT, PointFeature>::tree_;
        # using Feature<PointT, PointFeature>::search_radius_;
        # using PCLBase<PointT>::indices_;
        # using FeatureFromNormals<PointT, PointNT, PointFeature>::normals_;
        # typedef pcl::PointCloud<PointFeature> FeatureCloud;
        # typedef typename boost::shared_ptr<NormalBasedSignatureEstimation<PointT, PointNT, PointFeature> > Ptr;
        # typedef typename boost::shared_ptr<const NormalBasedSignatureEstimation<PointT, PointNT, PointFeature> > ConstPtr;
        # /** \brief Setter method for the N parameter - the length of the columns used for the Discrete Fourier Transform. 
        # * \param[in] n the length of the columns used for the Discrete Fourier Transform. 
        inline void setN (size_t n)
        # /** \brief Returns the N parameter - the length of the columns used for the Discrete Fourier Transform. */
        # inline size_t getN ()
        # /** \brief Setter method for the M parameter - the length of the rows used for the Discrete Cosine Transform.
        # * \param[in] m the length of the rows used for the Discrete Cosine Transform.
        inline void setM (size_t m)
        # /** \brief Returns the M parameter - the length of the rows used for the Discrete Cosine Transform */
        inline size_t getM ()
        # /** \brief Setter method for the N' parameter - the number of columns to be taken from the matrix of DFT and DCT
        # * values that will be contained in the output feature vector
        # * \note This value directly influences the dimensions of the type of output points (PointFeature)
        # * \param[in] n_prime the number of columns from the matrix of DFT and DCT that will be contained in the output
        inline void setNPrime (size_t n_prime)
        # /** \brief Returns the N' parameter - the number of rows to be taken from the matrix of DFT and DCT
        # * values that will be contained in the output feature vector
        # * \note This value directly influences the dimensions of the type of output points (PointFeature)
        inline size_t getNPrime ()
        # * \brief Setter method for the M' parameter - the number of rows to be taken from the matrix of DFT and DCT
        # * values that will be contained in the output feature vector
        # * \note This value directly influences the dimensions of the type of output points (PointFeature)
        # * \param[in] m_prime the number of rows from the matrix of DFT and DCT that will be contained in the output
        inline void setMPrime (size_t m_prime)
        # * \brief Returns the M' parameter - the number of rows to be taken from the matrix of DFT and DCT
        # * values that will be contained in the output feature vector
        # * \note This value directly influences the dimensions of the type of output points (PointFeature)
        inline size_t getMPrime ()
        # * \brief Setter method for the scale parameter - used to determine the radius of the sampling disc around the
        # * point of interest - linked to the smoothing scale of the input cloud
        inline void setScale (float scale)
        # * \brief Returns the scale parameter - used to determine the radius of the sampling disc around the
        # * point of interest - linked to the smoothing scale of the input cloud
        inline float getScale ()
###

# pfh.h
# template <typename PointInT, typename PointNT, typename PointOutT = pcl::PFHSignature125>
# class PFHEstimation : public FeatureFromNormals<PointInT, PointNT, PointOutT>
cdef extern from "pcl/features/pfh.h" namespace "pcl":
    cdef cppclass PFHEstimation[In, NT, Out](FeatureFromNormals[In,  NT, Out]):
        PFHEstimation ()
        # public:
        # using Feature<PointInT, PointOutT>::feature_name_;
        # using Feature<PointInT, PointOutT>::getClassName;
        # using Feature<PointInT, PointOutT>::indices_;
        # using Feature<PointInT, PointOutT>::k_;
        # using Feature<PointInT, PointOutT>::search_parameter_;
        # using Feature<PointInT, PointOutT>::surface_;
        # using Feature<PointInT, PointOutT>::input_;
        # using FeatureFromNormals<PointInT, PointNT, PointOutT>::normals_;
        # typedef typename Feature<PointInT, PointOutT>::PointCloudOut PointCloudOut;
        # typedef typename Feature<PointInT, PointOutT>::PointCloudIn  PointCloudIn;
        # * \brief Set the maximum internal cache size. Defaults to 2GB worth of entries.
        # * \param[in] cache_size maximum cache size 
        inline void setMaximumCacheSize (unsigned int cache_size)
        # /** \brief Get the maximum internal cache size. */
        inline unsigned int getMaximumCacheSize ()
        # * \brief Set whether to use an internal cache mechanism for removing redundant calculations or not. 
        # * \note Depending on how the point cloud is ordered and how the nearest
        # * neighbors are estimated, using a cache could have a positive or a
        # * negative influence. Please test with and without a cache on your
        # * data, and choose whatever works best!
        # * See \ref setMaximumCacheSize for setting the maximum cache size
        # * \param[in] use_cache set to true to use the internal cache, false otherwise
        inline void setUseInternalCache (bool use_cache)
        # /** \brief Get whether the internal cache is used or not for computing the PFH features. */
        inline bool getUseInternalCache ()
        # * \brief Compute the 4-tuple representation containing the three angles and one distance between two points
        # * represented by Cartesian coordinates and normals.
        # * \note For explanations about the features, please see the literature mentioned above (the order of the
        # * features might be different).
        # * \param[in] cloud the dataset containing the XYZ Cartesian coordinates of the two points
        # * \param[in] normals the dataset containing the surface normals (assuming normalized vectors) at each point in cloud
        # * \param[in] p_idx the index of the first point (source)
        # * \param[in] q_idx the index of the second point (target)
        # * \param[out] f1 the first angular feature (angle between the projection of nq_idx and u)
        # * \param[out] f2 the second angular feature (angle between nq_idx and v)
        # * \param[out] f3 the third angular feature (angle between np_idx and |p_idx - q_idx|)
        # * \param[out] f4 the distance feature (p_idx - q_idx)
        # * \note For efficiency reasons, we assume that the point data passed to the method is finite.
        bool computePairFeatures (const cpp.PointCloud[In] &cloud, const cpp.PointCloud[NT] &normals, 
                                    int p_idx, int q_idx, float &f1, float &f2, float &f3, float &f4);
        # * \brief Estimate the PFH (Point Feature Histograms) individual signatures of the three angular (f1, f2, f3)
        # * features for a given point based on its spatial neighborhood of 3D points with normals
        # * \param[in] cloud the dataset containing the XYZ Cartesian coordinates of the two points
        # * \param[in] normals the dataset containing the surface normals at each point in \a cloud
        # * \param[in] indices the k-neighborhood point indices in the dataset
        # * \param[in] nr_split the number of subdivisions for each angular feature interval
        # * \param[out] pfh_histogram the resultant (combinatorial) PFH histogram representing the feature at the query point
        # void computePointPFHSignature (const cpp.PointCloud[In] &cloud, const cpp.PointCloud[NT] &normals, 
        #                         const vector[int] &indices, int nr_split, Eigen::VectorXf &pfh_histogram);


###

# template <typename PointInT, typename PointNT>
# class PFHEstimation<PointInT, PointNT, Eigen::MatrixXf> : public PFHEstimation<PointInT, PointNT, pcl::PFHSignature125>
#     public:
#       using PFHEstimation<PointInT, PointNT, pcl::PFHSignature125>::pfh_histogram_;
#       using PFHEstimation<PointInT, PointNT, pcl::PFHSignature125>::nr_subdiv_;
#       using PFHEstimation<PointInT, PointNT, pcl::PFHSignature125>::k_;
#       using PFHEstimation<PointInT, PointNT, pcl::PFHSignature125>::indices_;
#       using PFHEstimation<PointInT, PointNT, pcl::PFHSignature125>::search_parameter_;
#       using PFHEstimation<PointInT, PointNT, pcl::PFHSignature125>::surface_;
#       using PFHEstimation<PointInT, PointNT, pcl::PFHSignature125>::input_;
#       using PFHEstimation<PointInT, PointNT, pcl::PFHSignature125>::normals_;
#       using PFHEstimation<PointInT, PointNT, pcl::PFHSignature125>::computePointPFHSignature;
#       using PFHEstimation<PointInT, PointNT, pcl::PFHSignature125>::compute;
#       using PFHEstimation<PointInT, PointNT, pcl::PFHSignature125>::feature_map_;
#       using PFHEstimation<PointInT, PointNT, pcl::PFHSignature125>::key_list_;

###

# pfhrgb.h
# template <typename PointInT, typename PointNT, typename PointOutT = pcl::PFHRGBSignature250>
# class PFHRGBEstimation : public FeatureFromNormals<PointInT, PointNT, PointOutT>
cdef extern from "pcl/features/pfhrgb.h" namespace "pcl":
    cdef cppclass PFHRGBEstimation[In, NT, Out](FeatureFromNormals[In,  NT, Out]):
        PFHRGBEstimation ()
        # public:
        # using PCLBase<PointInT>::indices_;
        # using Feature<PointInT, PointOutT>::feature_name_;
        # using Feature<PointInT, PointOutT>::surface_;
        # using Feature<PointInT, PointOutT>::k_;
        # using Feature<PointInT, PointOutT>::search_parameter_;
        # using FeatureFromNormals<PointInT, PointNT, PointOutT>::normals_;
        # typedef typename Feature<PointInT, PointOutT>::PointCloudOut PointCloudOut;
        bool computeRGBPairFeatures (const cpp.PointCloud[In] &cloud, const cpp.PointCloud[NT] &normals,
                              int p_idx, int q_idx,
                              float &f1, float &f2, float &f3, float &f4, float &f5, float &f6, float &f7)
        # void computePointPFHRGBSignature (const cpp.PointCloud[In] &cloud, const cpp.PointCloud[NT] &normals,
        #                            const vector[int] &indices, int nr_split, Eigen::VectorXf &pfhrgb_histogram)


###

# ppf.h
# template <typename PointInT, typename PointNT, typename PointOutT>
# class PPFEstimation : public FeatureFromNormals<PointInT, PointNT, PointOutT>
cdef extern from "pcl/features/ppf.h" namespace "pcl":
    cdef cppclass PPFEstimation[In, NT, Out](FeatureFromNormals[In,  NT, Out]):
        PPFEstimation ()
        # public:
        # using PCLBase<PointInT>::indices_;
        # using Feature<PointInT, PointOutT>::input_;
        # using Feature<PointInT, PointOutT>::feature_name_;
        # using Feature<PointInT, PointOutT>::getClassName;
        # using FeatureFromNormals<PointInT, PointNT, PointOutT>::normals_;
        # typedef pcl::PointCloud<PointOutT> PointCloudOut;

# template <typename PointInT, typename PointNT>
# class PPFEstimation<PointInT, PointNT, Eigen::MatrixXf> : public PPFEstimation<PointInT, PointNT, pcl::PPFSignature>
#     public:
#       using PPFEstimation<PointInT, PointNT, pcl::PPFSignature>::getClassName;
#       using PPFEstimation<PointInT, PointNT, pcl::PPFSignature>::input_;
#       using PPFEstimation<PointInT, PointNT, pcl::PPFSignature>::normals_;
#       using PPFEstimation<PointInT, PointNT, pcl::PPFSignature>::indices_;
# 
###

# ppfrgb.h
# template <typename PointInT, typename PointNT, typename PointOutT>
# class PPFRGBEstimation : public FeatureFromNormals<PointInT, PointNT, PointOutT>
cdef extern from "pcl/features/ppfrgb.h" namespace "pcl":
    cdef cppclass PPFRGBEstimation[In, NT, Out](FeatureFromNormals[In,  NT, Out]):
        PPFRGBEstimation ()
        # public:
        # using PCLBase<PointInT>::indices_;
        # using Feature<PointInT, PointOutT>::input_;
        # using Feature<PointInT, PointOutT>::feature_name_;
        # using Feature<PointInT, PointOutT>::getClassName;
        # using FeatureFromNormals<PointInT, PointNT, PointOutT>::normals_;
        # typedef pcl::PointCloud<PointOutT> PointCloudOut;

# template <typename PointInT, typename PointNT, typename PointOutT>
# class PPFRGBRegionEstimation : public FeatureFromNormals<PointInT, PointNT, PointOutT>
#       PPFRGBRegionEstimation ();
#     public:
#       using PCLBase<PointInT>::indices_;
#       using Feature<PointInT, PointOutT>::input_;
#       using Feature<PointInT, PointOutT>::feature_name_;
#       using Feature<PointInT, PointOutT>::search_radius_;
#       using Feature<PointInT, PointOutT>::tree_;
#       using Feature<PointInT, PointOutT>::getClassName;
#       using FeatureFromNormals<PointInT, PointNT, PointOutT>::normals_;
#       typedef pcl::PointCloud<PointOutT> PointCloudOut;
###

# principal_curvatures.h
# template <typename PointInT, typename PointNT, typename PointOutT = pcl::PrincipalCurvatures>
# class PrincipalCurvaturesEstimation : public FeatureFromNormals<PointInT, PointNT, PointOutT>
cdef extern from "pcl/features/principal_curvatures.h" namespace "pcl":
    cdef cppclass PrincipalCurvaturesEstimation[In, NT, Out](FeatureFromNormals[In,  NT, Out]):
        PrincipalCurvaturesEstimation ()
#       public:
#       using Feature<PointInT, PointOutT>::feature_name_;
#       using Feature<PointInT, PointOutT>::getClassName;
#       using Feature<PointInT, PointOutT>::indices_;
#       using Feature<PointInT, PointOutT>::k_;
#       using Feature<PointInT, PointOutT>::search_parameter_;
#       using Feature<PointInT, PointOutT>::surface_;
#       using Feature<PointInT, PointOutT>::input_;
#       using FeatureFromNormals<PointInT, PointNT, PointOutT>::normals_;
#       typedef typename Feature<PointInT, PointOutT>::PointCloudOut PointCloudOut;
#       typedef pcl::PointCloud<PointInT> PointCloudIn;
#       /** \brief Perform Principal Components Analysis (PCA) on the point normals of a surface patch in the tangent
#        *  plane of the given point normal, and return the principal curvature (eigenvector of the max eigenvalue),
#        *  along with both the max (pc1) and min (pc2) eigenvalues
#        * \param[in] normals the point cloud normals
#        * \param[in] p_idx the query point at which the least-squares plane was estimated
#        * \param[in] indices the point cloud indices that need to be used
#        * \param[out] pcx the principal curvature X direction
#        * \param[out] pcy the principal curvature Y direction
#        * \param[out] pcz the principal curvature Z direction
#        * \param[out] pc1 the max eigenvalue of curvature
#        * \param[out] pc2 the min eigenvalue of curvature
#        */
#       void computePointPrincipalCurvatures (const pcl::PointCloud<PointNT> &normals,
#                                        int p_idx, const std::vector<int> &indices,
#                                        float &pcx, float &pcy, float &pcz, float &pc1, float &pc2);

# template <typename PointInT, typename PointNT>
# class PrincipalCurvaturesEstimation<PointInT, PointNT, Eigen::MatrixXf> : public PrincipalCurvaturesEstimation<PointInT, PointNT, pcl::PrincipalCurvatures>
#     public:
#       using PrincipalCurvaturesEstimation<PointInT, PointNT, pcl::PrincipalCurvatures>::indices_;
#       using PrincipalCurvaturesEstimation<PointInT, PointNT, pcl::PrincipalCurvatures>::k_;
#       using PrincipalCurvaturesEstimation<PointInT, PointNT, pcl::PrincipalCurvatures>::search_parameter_;
#       using PrincipalCurvaturesEstimation<PointInT, PointNT, pcl::PrincipalCurvatures>::surface_;
#       using PrincipalCurvaturesEstimation<PointInT, PointNT, pcl::PrincipalCurvatures>::compute;
#       using PrincipalCurvaturesEstimation<PointInT, PointNT, pcl::PrincipalCurvatures>::input_;
#       using PrincipalCurvaturesEstimation<PointInT, PointNT, pcl::PrincipalCurvatures>::normals_;
###

# range_image_border_extractor.h
# namespace pcl
# class RangeImage;
# template <typename PointType>
# class PointCloud;

# class PCL_EXPORTS RangeImageBorderExtractor : public Feature<PointWithRange, BorderDescription>
cdef extern from "pcl/features/range_image_border_extractor.h" namespace "pcl":
    cdef cppclass RangeImageBorderExtractor(Feature[cpp.PointWithRange, cpp.BorderDescription]):
        RangeImageBorderExtractor ()
        RangeImageBorderExtractor (const pcl_r_img.RangeImage range_image)
        # =====CONSTRUCTOR & DESTRUCTOR=====
        # Constructor
        # RangeImageBorderExtractor (const RangeImage* range_image = NULL)
        # /** Destructor */
        # ~RangeImageBorderExtractor ();
        # 
        
        # public:
        # // =====PUBLIC STRUCTS=====
        # Stores some information extracted from the neighborhood of a point
        # struct LocalSurface
        # {
        #   LocalSurface () : 
        #     normal (), neighborhood_mean (), eigen_values (), normal_no_jumps (), 
        #     neighborhood_mean_no_jumps (), eigen_values_no_jumps (), max_neighbor_distance_squared () {}
        # 
        #   Eigen::Vector3f normal;
        #   Eigen::Vector3f neighborhood_mean;
        #   Eigen::Vector3f eigen_values;
        #   Eigen::Vector3f normal_no_jumps;
        #   Eigen::Vector3f neighborhood_mean_no_jumps;
        #   Eigen::Vector3f eigen_values_no_jumps;
        #   float max_neighbor_distance_squared;
        # };
        
        # Stores the indices of the shadow border corresponding to obstacle borders
        # struct ShadowBorderIndices 
        # {
        #   ShadowBorderIndices () : left (-1), right (-1), top (-1), bottom (-1) {}
        #   int left, right, top, bottom;
        # };
        
        # Parameters used in this class
        # struct Parameters
        # {
        #   Parameters () : max_no_of_threads(1), pixel_radius_borders (3), pixel_radius_plane_extraction (2), pixel_radius_border_direction (2), 
        #                  minimum_border_probability (0.8f), pixel_radius_principal_curvature (2) {}
        #   int max_no_of_threads;
        #   int pixel_radius_borders;
        #   int pixel_radius_plane_extraction;
        #   int pixel_radius_border_direction;
        #   float minimum_border_probability;
        #   int pixel_radius_principal_curvature;
        # };
        
        # =====STATIC METHODS=====
        # brief Take the information from BorderTraits to calculate the local direction of the border
        # param border_traits contains the information needed to calculate the border angle
        # 
        # static inline float getObstacleBorderAngle (const BorderTraits& border_traits);
        
        # // =====METHODS=====
        # /** \brief Provide a pointer to the range image
        #   * \param range_image a pointer to the range_image
        # void setRangeImage (const RangeImage* range_image);
        void setRangeImage (const pcl_r_img.RangeImage range_image)
        
        # brief Erase all data calculated for the current range image
        void clearData ()
        
        # brief Get the 2D directions in the range image from the border directions - probably mainly useful for 
        # visualization 
        # float* getAnglesImageForBorderDirections ();
        # float[] getAnglesImageForBorderDirections ()
        
        # brief Get the 2D directions in the range image from the surface change directions - probably mainly useful for visualization 
        # float* getAnglesImageForSurfaceChangeDirections ();
        # float[] getAnglesImageForSurfaceChangeDirections ()
        
        # /** Overwrite the compute function of the base class */
        # void compute (PointCloudOut& output);
        # void compute (cpp.PointCloud[Out]& output)
        
        # =====GETTER=====
        # Parameters& getParameters () { return (parameters_); }
        # Parameters& getParameters ()
        # 
        # bool hasRangeImage () const { return range_image_ != NULL; }
        bool hasRangeImage ()
        
        # const RangeImage& getRangeImage () const { return *range_image_; }
        const pcl_r_img.RangeImage getRangeImage ()
        
        # float* getBorderScoresLeft ()   { extractBorderScoreImages (); return border_scores_left_; }
        # float* getBorderScoresRight ()  { extractBorderScoreImages (); return border_scores_right_; }
        # float* getBorderScoresTop ()    { extractBorderScoreImages (); return border_scores_top_; }
        # float* getBorderScoresBottom () { extractBorderScoreImages (); return border_scores_bottom_; }
        # 
        # LocalSurface** getSurfaceStructure () { extractLocalSurfaceStructure (); return surface_structure_; }
        # PointCloudOut& getBorderDescriptions () { classifyBorders (); return *border_descriptions_; }
        # ShadowBorderIndices** getShadowBorderInformations () { findAndEvaluateShadowBorders (); return shadow_border_informations_; }
        # Eigen::Vector3f** getBorderDirections () { calculateBorderDirections (); return border_directions_; }
        # float* getSurfaceChangeScores () { calculateSurfaceChanges (); return surface_change_scores_; }
        # Eigen::Vector3f* getSurfaceChangeDirections () { calculateSurfaceChanges (); return surface_change_directions_; }


###

# rift.h
# template <typename PointInT, typename GradientT, typename PointOutT>
# class RIFTEstimation: public Feature<PointInT, PointOutT>
cdef extern from "pcl/features/rift.h" namespace "pcl":
    cdef cppclass RIFTEstimation[In, GradientT, Out](Feature[In, Out]):
        RIFTEstimation ()
        # public:
        # using Feature<PointInT, PointOutT>::feature_name_;
        # using Feature<PointInT, PointOutT>::getClassName;
        # using Feature<PointInT, PointOutT>::surface_;
        # using Feature<PointInT, PointOutT>::indices_;
        # using Feature<PointInT, PointOutT>::tree_;
        # using Feature<PointInT, PointOutT>::search_radius_;
        # typedef typename pcl::PointCloud<PointInT> PointCloudIn;
        # typedef typename Feature<PointInT, PointOutT>::PointCloudOut PointCloudOut;
        # typedef typename pcl::PointCloud<GradientT> PointCloudGradient;
        # typedef typename PointCloudGradient::Ptr PointCloudGradientPtr;
        # typedef typename PointCloudGradient::ConstPtr PointCloudGradientConstPtr;
        # typedef typename boost::shared_ptr<RIFTEstimation<PointInT, GradientT, PointOutT> > Ptr;
        # typedef typename boost::shared_ptr<const RIFTEstimation<PointInT, GradientT, PointOutT> > ConstPtr;
        
        # brief Provide a pointer to the input gradient data
        # param[in] gradient a pointer to the input gradient data
        # inline void setInputGradient (const PointCloudGradientConstPtr &gradient)
        
        # /** \brief Returns a shared pointer to the input gradient data */
        # inline PointCloudGradientConstPtr getInputGradient () const 
        
        # brief Set the number of bins to use in the distance dimension of the RIFT descriptor
        # param[in] nr_distance_bins the number of bins to use in the distance dimension of the RIFT descriptor
        # inline void setNrDistanceBins (int nr_distance_bins)
        
        # /** \brief Returns the number of bins in the distance dimension of the RIFT descriptor. */
        # inline int getNrDistanceBins () const
        
        # /** \brief Set the number of bins to use in the gradient orientation dimension of the RIFT descriptor
        # * \param[in] nr_gradient_bins the number of bins to use in the gradient orientation dimension of the RIFT descriptor
        # inline void setNrGradientBins (int nr_gradient_bins)
        
        # /** \brief Returns the number of bins in the gradient orientation dimension of the RIFT descriptor. */
        # inline int getNrGradientBins () const
        
        # /** \brief Estimate the Rotation Invariant Feature Transform (RIFT) descriptor for a given point based on its 
        # * spatial neighborhood of 3D points and the corresponding intensity gradient vector field
        # * \param[in] cloud the dataset containing the Cartesian coordinates of the points
        # * \param[in] gradient the dataset containing the intensity gradient at each point in \a cloud
        # * \param[in] p_idx the index of the query point in \a cloud (i.e. the center of the neighborhood)
        # * \param[in] radius the radius of the RIFT feature
        # * \param[in] indices the indices of the points that comprise \a p_idx's neighborhood in \a cloud
        # * \param[in] squared_distances the squared distances from the query point to each point in the neighborhood
        # * \param[out] rift_descriptor the resultant RIFT descriptor
        # void computeRIFT (const PointCloudIn &cloud, const PointCloudGradient &gradient, int p_idx, float radius,
        #            const std::vector<int> &indices, const std::vector<float> &squared_distances, 
        #            Eigen::MatrixXf &rift_descriptor);


# ctypedef
# 
###

# template <typename PointInT, typename GradientT>
# class RIFTEstimation<PointInT, GradientT, Eigen::MatrixXf>: public RIFTEstimation<PointInT, GradientT, pcl::Histogram<32> >
#     public:
#       using RIFTEstimation<PointInT, GradientT, pcl::Histogram<32> >::getClassName;
#       using RIFTEstimation<PointInT, GradientT, pcl::Histogram<32> >::surface_;
#       using RIFTEstimation<PointInT, GradientT, pcl::Histogram<32> >::indices_;
#       using RIFTEstimation<PointInT, GradientT, pcl::Histogram<32> >::tree_;
#       using RIFTEstimation<PointInT, GradientT, pcl::Histogram<32> >::search_radius_;
#       using RIFTEstimation<PointInT, GradientT, pcl::Histogram<32> >::gradient_;
#       using RIFTEstimation<PointInT, GradientT, pcl::Histogram<32> >::nr_gradient_bins_;
#       using RIFTEstimation<PointInT, GradientT, pcl::Histogram<32> >::nr_distance_bins_;
#       using RIFTEstimation<PointInT, GradientT, pcl::Histogram<32> >::compute;
###

# shot.h
# template <typename PointInT, typename PointNT, typename PointOutT, typename PointRFT = pcl::ReferenceFrame>
# class SHOTEstimationBase : public FeatureFromNormals<PointInT, PointNT, PointOutT>,
#                            public FeatureWithLocalReferenceFrames<PointInT, PointRFT>
cdef extern from "pcl/features/shot.h" namespace "pcl":
    cdef cppclass SHOTEstimationBase[In, NT, Out, RET](Feature[In, Out]):
        SHOTEstimationBase ()
#     public:
#       using Feature<PointInT, PointOutT>::feature_name_;
#       using Feature<PointInT, PointOutT>::getClassName;
#       using Feature<PointInT, PointOutT>::input_;
#       using Feature<PointInT, PointOutT>::indices_;
#       using Feature<PointInT, PointOutT>::k_;
#       using Feature<PointInT, PointOutT>::search_parameter_;
#       using Feature<PointInT, PointOutT>::search_radius_;
#       using Feature<PointInT, PointOutT>::surface_;
#       using Feature<PointInT, PointOutT>::fake_surface_;
#       using FeatureFromNormals<PointInT, PointNT, PointOutT>::normals_;
#       using FeatureWithLocalReferenceFrames<PointInT, PointRFT>::frames_;
#       typedef typename Feature<PointInT, PointOutT>::PointCloudIn PointCloudIn;
#     protected:
#       /** \brief Empty constructor.
#         * \param[in] nr_shape_bins the number of bins in the shape histogram
#         */
#       SHOTEstimationBase (int nr_shape_bins = 10) :
#         nr_shape_bins_ (nr_shape_bins),
#         shot_ (),
#         sqradius_ (0), radius3_4_ (0), radius1_4_ (0), radius1_2_ (0),
#         nr_grid_sector_ (32),
#         maxAngularSectors_ (28),
#         descLength_ (0)
#       {
#         feature_name_ = "SHOTEstimation";
#       };
#     public:
#        /** \brief Estimate the SHOT descriptor for a given point based on its spatial neighborhood of 3D points with normals
#          * \param[in] index the index of the point in indices_
#          * \param[in] indices the k-neighborhood point indices in surface_
#          * \param[in] sqr_dists the k-neighborhood point distances in surface_
#          * \param[out] shot the resultant SHOT descriptor representing the feature at the query point
#          */
#       virtual void
#       computePointSHOT (const int index,
#                         const std::vector<int> &indices,
#                         const std::vector<float> &sqr_dists,
#                         Eigen::VectorXf &shot) = 0;
###

# template <typename PointInT, typename PointNT, typename PointOutT = pcl::SHOT352, typename PointRFT = pcl::ReferenceFrame>
# class SHOTEstimation : public SHOTEstimationBase<PointInT, PointNT, PointOutT, PointRFT>
cdef extern from "pcl/features/shot.h" namespace "pcl":
    cdef cppclass SHOTEstimation[In, NT, Out, RFT](SHOTEstimationBase[In, NT, Out, RFT]):
        SHOTEstimation ()
#     public:
#       using SHOTEstimationBase<PointInT, PointNT, PointOutT, PointRFT>::feature_name_;
#       using SHOTEstimationBase<PointInT, PointNT, PointOutT, PointRFT>::getClassName;
#       using SHOTEstimationBase<PointInT, PointNT, PointOutT, PointRFT>::indices_;
#       using SHOTEstimationBase<PointInT, PointNT, PointOutT, PointRFT>::k_;
#       using SHOTEstimationBase<PointInT, PointNT, PointOutT, PointRFT>::search_parameter_;
#       using SHOTEstimationBase<PointInT, PointNT, PointOutT, PointRFT>::search_radius_;
#       using SHOTEstimationBase<PointInT, PointNT, PointOutT, PointRFT>::surface_;
#       using SHOTEstimationBase<PointInT, PointNT, PointOutT, PointRFT>::input_;
#       using SHOTEstimationBase<PointInT, PointNT, PointOutT, PointRFT>::normals_;
#       using SHOTEstimationBase<PointInT, PointNT, PointOutT, PointRFT>::descLength_;
#       using SHOTEstimationBase<PointInT, PointNT, PointOutT, PointRFT>::nr_grid_sector_;
#       using SHOTEstimationBase<PointInT, PointNT, PointOutT, PointRFT>::nr_shape_bins_;
#       using SHOTEstimationBase<PointInT, PointNT, PointOutT, PointRFT>::sqradius_;
#       using SHOTEstimationBase<PointInT, PointNT, PointOutT, PointRFT>::radius3_4_;
#       using SHOTEstimationBase<PointInT, PointNT, PointOutT, PointRFT>::radius1_4_;
#       using SHOTEstimationBase<PointInT, PointNT, PointOutT, PointRFT>::radius1_2_;
#       using SHOTEstimationBase<PointInT, PointNT, PointOutT, PointRFT>::maxAngularSectors_;
#       using SHOTEstimationBase<PointInT, PointNT, PointOutT, PointRFT>::interpolateSingleChannel;
#       using SHOTEstimationBase<PointInT, PointNT, PointOutT, PointRFT>::shot_;
#       using FeatureWithLocalReferenceFrames<PointInT, PointRFT>::frames_;
#       typedef typename Feature<PointInT, PointOutT>::PointCloudIn PointCloudIn;
# 
#       /** \brief Estimate the SHOT descriptor for a given point based on its spatial neighborhood of 3D points with normals
#         * \param[in] index the index of the point in indices_
#         * \param[in] indices the k-neighborhood point indices in surface_
#         * \param[in] sqr_dists the k-neighborhood point distances in surface_
#         * \param[out] shot the resultant SHOT descriptor representing the feature at the query point
#         */
#       virtual void computePointSHOT (const int index,
#                         const std::vector<int> &indices,
#                         const std::vector<float> &sqr_dists,
#                         Eigen::VectorXf &shot);


###

# template <typename PointInT, typename PointNT, typename PointRFT>
# class PCL_DEPRECATED_CLASS (SHOTEstimation, "SHOTEstimation<..., pcl::SHOT, ...> IS DEPRECATED, USE SHOTEstimation<..., pcl::SHOT352, ...> INSTEAD")
# <PointInT, PointNT, pcl::SHOT, PointRFT>
# : public SHOTEstimationBase<PointInT, PointNT, pcl::SHOT, PointRFT>
# cdef extern from "pcl/features/shot.h" namespace "pcl":
#    cdef cppclass PCL_DEPRECATED_CLASS[In, NT, RFT](SHOTEstimation[In, NT, pcl::SHOT, RFT]):
#        SHOTEstimation ()
#     public:
#       using SHOTEstimationBase<PointInT, PointNT, pcl::SHOT, PointRFT>::feature_name_;
#       using SHOTEstimationBase<PointInT, PointNT, pcl::SHOT, PointRFT>::getClassName;
#       using SHOTEstimationBase<PointInT, PointNT, pcl::SHOT, PointRFT>::indices_;
#       using SHOTEstimationBase<PointInT, PointNT, pcl::SHOT, PointRFT>::k_;
#       using SHOTEstimationBase<PointInT, PointNT, pcl::SHOT, PointRFT>::search_parameter_;
#       using SHOTEstimationBase<PointInT, PointNT, pcl::SHOT, PointRFT>::search_radius_;
#       using SHOTEstimationBase<PointInT, PointNT, pcl::SHOT, PointRFT>::surface_;
#       using SHOTEstimationBase<PointInT, PointNT, pcl::SHOT, PointRFT>::input_;
#       using SHOTEstimationBase<PointInT, PointNT, pcl::SHOT, PointRFT>::normals_;
#       using SHOTEstimationBase<PointInT, PointNT, pcl::SHOT, PointRFT>::descLength_;
#       using SHOTEstimationBase<PointInT, PointNT, pcl::SHOT, PointRFT>::nr_grid_sector_;
#       using SHOTEstimationBase<PointInT, PointNT, pcl::SHOT, PointRFT>::nr_shape_bins_;
#       using SHOTEstimationBase<PointInT, PointNT, pcl::SHOT, PointRFT>::sqradius_;
#       using SHOTEstimationBase<PointInT, PointNT, pcl::SHOT, PointRFT>::radius3_4_;
#       using SHOTEstimationBase<PointInT, PointNT, pcl::SHOT, PointRFT>::radius1_4_;
#       using SHOTEstimationBase<PointInT, PointNT, pcl::SHOT, PointRFT>::radius1_2_;
#       using SHOTEstimationBase<PointInT, PointNT, pcl::SHOT, PointRFT>::maxAngularSectors_;
#       using SHOTEstimationBase<PointInT, PointNT, pcl::SHOT, PointRFT>::interpolateSingleChannel;
#       using SHOTEstimationBase<PointInT, PointNT, pcl::SHOT, PointRFT>::shot_;
#       using FeatureWithLocalReferenceFrames<PointInT, PointRFT>::frames_;
#       typedef typename Feature<PointInT, pcl::SHOT>::PointCloudIn PointCloudIn;
#
#       /** \brief Empty constructor.
#         * \param[in] nr_shape_bins the number of bins in the shape histogram
#         */
#       SHOTEstimation (int nr_shape_bins = 10) : SHOTEstimationBase<PointInT, PointNT, pcl::SHOT, PointRFT> (nr_shape_bins)
#       {
#         feature_name_ = "SHOTEstimation";
#       };
# 
#       /** \brief Estimate the SHOT descriptor for a given point based on its spatial neighborhood of 3D points with normals
#         * \param[in] index the index of the point in indices_
#         * \param[in] indices the k-neighborhood point indices in surface_
#         * \param[in] sqr_dists the k-neighborhood point distances in surface_
#         * \param[out] shot the resultant SHOT descriptor representing the feature at the query point
#         */
#       virtual void
#       computePointSHOT (const int index,
#                         const std::vector<int> &indices,
#                         const std::vector<float> &sqr_dists,
#                         Eigen::VectorXf &shot);
# 


###

# template <typename PointInT, typename PointNT, typename PointRFT>
# class SHOTEstimation<PointInT, PointNT, Eigen::MatrixXf, PointRFT> : public SHOTEstimation<PointInT, PointNT, pcl::SHOT352, PointRFT>
#     public:
#       using SHOTEstimation<PointInT, PointNT, pcl::SHOT352, PointRFT>::feature_name_;
#       using SHOTEstimation<PointInT, PointNT, pcl::SHOT352, PointRFT>::getClassName;
#       using SHOTEstimation<PointInT, PointNT, pcl::SHOT352, PointRFT>::indices_;
#       using SHOTEstimation<PointInT, PointNT, pcl::SHOT352, PointRFT>::k_;
#       using SHOTEstimation<PointInT, PointNT, pcl::SHOT352, PointRFT>::search_parameter_;
#       using SHOTEstimation<PointInT, PointNT, pcl::SHOT352, PointRFT>::search_radius_;
#       using SHOTEstimation<PointInT, PointNT, pcl::SHOT352, PointRFT>::surface_;
#       using SHOTEstimation<PointInT, PointNT, pcl::SHOT352, PointRFT>::input_;
#       using SHOTEstimation<PointInT, PointNT, pcl::SHOT352, PointRFT>::normals_;
#       using SHOTEstimation<PointInT, PointNT, pcl::SHOT352, PointRFT>::descLength_;
#       using SHOTEstimation<PointInT, PointNT, pcl::SHOT352, PointRFT>::nr_grid_sector_;
#       using SHOTEstimation<PointInT, PointNT, pcl::SHOT352, PointRFT>::nr_shape_bins_;
#       using SHOTEstimation<PointInT, PointNT, pcl::SHOT352, PointRFT>::sqradius_;
#       using SHOTEstimation<PointInT, PointNT, pcl::SHOT352, PointRFT>::radius3_4_;
#       using SHOTEstimation<PointInT, PointNT, pcl::SHOT352, PointRFT>::radius1_4_;
#       using SHOTEstimation<PointInT, PointNT, pcl::SHOT352, PointRFT>::radius1_2_;
#       using SHOTEstimation<PointInT, PointNT, pcl::SHOT352, PointRFT>::maxAngularSectors_;
#       using SHOTEstimation<PointInT, PointNT, pcl::SHOT352, PointRFT>::interpolateSingleChannel;
#       using SHOTEstimation<PointInT, PointNT, pcl::SHOT352, PointRFT>::shot_;
#       using FeatureWithLocalReferenceFrames<PointInT, PointRFT>::frames_;
# 
#       /** \brief Empty constructor. */
#       SHOTEstimation (int nr_shape_bins = 10) : SHOTEstimation<PointInT, PointNT, pcl::SHOT352, PointRFT> ()
#       {
#         feature_name_ = "SHOTEstimation";
#         nr_shape_bins_ = nr_shape_bins;
#       };
# 
#       /** \brief Base method for feature estimation for all points given in
#         * <setInputCloud (), setIndices ()> using the surface in setSearchSurface ()
#         * and the spatial locator in setSearchMethod ()
#         * \param[out] output the resultant point cloud model dataset containing the estimated features
#         */
#       void
#       computeEigen (pcl::PointCloud<Eigen::MatrixXf> &output)
#       {
#         pcl::SHOTEstimation<PointInT, PointNT, pcl::SHOT352, PointRFT>::computeEigen (output);
#       }
# 
#       /** \brief Estimate the SHOT descriptor for a given point based on its spatial neighborhood of 3D points with normals
#         * \param[in] index the index of the point in indices_
#         * \param[in] indices the k-neighborhood point indices in surface_
#         * \param[in] sqr_dists the k-neighborhood point distances in surface_
#         * \param[out] shot the resultant SHOT descriptor representing the feature at the query point
#         */
#       //virtual void
#       //computePointSHOT (const int index,
#                         //const std::vector<int> &indices,
#                         //const std::vector<float> &sqr_dists,
#                         //Eigen::VectorXf &shot);
# 
#       void computeFeatureEigen (pcl::PointCloud<Eigen::MatrixXf> &output);
# 
#     
#       /** \brief Make the compute (&PointCloudOut); inaccessible from outside the class
#         * \param[out] output the output point cloud
#         */
#       void compute (pcl::PointCloud<pcl::SHOT352> &) { assert(0); }
#   };


###

# template <typename PointInT, typename PointNT, typename PointOutT = pcl::SHOT1344, typename PointRFT = pcl::ReferenceFrame>
# class SHOTColorEstimation : public SHOTEstimationBase<PointInT, PointNT, PointOutT, PointRFT>
cdef extern from "pcl/features/shot.h" namespace "pcl":
    cdef cppclass SHOTColorEstimation[In, NT, Out, RFT](SHOTEstimationBase[In, NT, Out, RFT]):
        SHOTColorEstimation ()
        #       SHOTColorEstimation (bool describe_shape = true,
        #                            bool describe_color = true)
        #       using SHOTEstimationBase<PointInT, PointNT, PointOutT, PointRFT>::feature_name_;
        #       using SHOTEstimationBase<PointInT, PointNT, PointOutT, PointRFT>::getClassName;
        #       using SHOTEstimationBase<PointInT, PointNT, PointOutT, PointRFT>::indices_;
        #       using SHOTEstimationBase<PointInT, PointNT, PointOutT, PointRFT>::k_;
        #       using SHOTEstimationBase<PointInT, PointNT, PointOutT, PointRFT>::search_parameter_;
        #       using SHOTEstimationBase<PointInT, PointNT, PointOutT, PointRFT>::search_radius_;
        #       using SHOTEstimationBase<PointInT, PointNT, PointOutT, PointRFT>::surface_;
        #       using SHOTEstimationBase<PointInT, PointNT, PointOutT, PointRFT>::input_;
        #       using SHOTEstimationBase<PointInT, PointNT, PointOutT, PointRFT>::normals_;
        #       using SHOTEstimationBase<PointInT, PointNT, PointOutT, PointRFT>::descLength_;
        #       using SHOTEstimationBase<PointInT, PointNT, PointOutT, PointRFT>::nr_grid_sector_;
        #       using SHOTEstimationBase<PointInT, PointNT, PointOutT, PointRFT>::nr_shape_bins_;
        #       using SHOTEstimationBase<PointInT, PointNT, PointOutT, PointRFT>::sqradius_;
        #       using SHOTEstimationBase<PointInT, PointNT, PointOutT, PointRFT>::radius3_4_;
        #       using SHOTEstimationBase<PointInT, PointNT, PointOutT, PointRFT>::radius1_4_;
        #       using SHOTEstimationBase<PointInT, PointNT, PointOutT, PointRFT>::radius1_2_;
        #       using SHOTEstimationBase<PointInT, PointNT, PointOutT, PointRFT>::maxAngularSectors_;
        #       using SHOTEstimationBase<PointInT, PointNT, PointOutT, PointRFT>::interpolateSingleChannel;
        #       using SHOTEstimationBase<PointInT, PointNT, PointOutT, PointRFT>::shot_;
        #       using FeatureWithLocalReferenceFrames<PointInT, PointRFT>::frames_;
        #       typedef typename Feature<PointInT, PointOutT>::PointCloudIn PointCloudIn;
        # 
        #       /** \brief Estimate the SHOT descriptor for a given point based on its spatial neighborhood of 3D points with normals
        #         * \param[in] index the index of the point in indices_
        #         * \param[in] indices the k-neighborhood point indices in surface_
        #         * \param[in] sqr_dists the k-neighborhood point distances in surface_
        #         * \param[out] shot the resultant SHOT descriptor representing the feature at the query point
        #         */
        #       virtual void
        #       computePointSHOT (const int index,
        #                         const std::vector<int> &indices,
        #                         const std::vector<float> &sqr_dists,
        #                         Eigen::VectorXf &shot);
        #     public:
        #       /** \brief Converts RGB triplets to CIELab space.
        #         * \param[in] R the red channel
        #         * \param[in] G the green channel
        #         * \param[in] B the blue channel
        #         * \param[out] L the lightness
        #         * \param[out] A the first color-opponent dimension
        #         * \param[out] B2 the second color-opponent dimension
        #         */
        #       static void
        #       RGB2CIELAB (unsigned char R, unsigned char G, unsigned char B, float &L, float &A, float &B2);
        # 
        #       static float sRGB_LUT[256];
        #       static float sXYZ_LUT[4000];
###

# template <typename PointInT, typename PointNT, typename PointRFT>
# class SHOTColorEstimation<PointInT, PointNT, Eigen::MatrixXf, PointRFT> : public SHOTColorEstimation<PointInT, PointNT, pcl::SHOT1344, PointRFT>
# cdef extern from "pcl/features/shot.h" namespace "pcl":
#     cdef cppclass SHOTColorEstimation[In, NT, Out, RFT](SHOTColorEstimation[In, NT, Out, RFT]):
#         SHOTColorEstimation ()
#     public:
#       using SHOTColorEstimation<PointInT, PointNT, pcl::SHOT1344, PointRFT>::feature_name_;
#       using SHOTColorEstimation<PointInT, PointNT, pcl::SHOT1344, PointRFT>::getClassName;
#       using SHOTColorEstimation<PointInT, PointNT, pcl::SHOT1344, PointRFT>::indices_;
#       using SHOTColorEstimation<PointInT, PointNT, pcl::SHOT1344, PointRFT>::k_;
#       using SHOTColorEstimation<PointInT, PointNT, pcl::SHOT1344, PointRFT>::search_parameter_;
#       using SHOTColorEstimation<PointInT, PointNT, pcl::SHOT1344, PointRFT>::search_radius_;
#       using SHOTColorEstimation<PointInT, PointNT, pcl::SHOT1344, PointRFT>::surface_;
#       using SHOTColorEstimation<PointInT, PointNT, pcl::SHOT1344, PointRFT>::input_;
#       using SHOTColorEstimation<PointInT, PointNT, pcl::SHOT1344, PointRFT>::normals_;
#       using SHOTColorEstimation<PointInT, PointNT, pcl::SHOT1344, PointRFT>::descLength_;
#       using SHOTColorEstimation<PointInT, PointNT, pcl::SHOT1344, PointRFT>::nr_grid_sector_;
#       using SHOTColorEstimation<PointInT, PointNT, pcl::SHOT1344, PointRFT>::nr_shape_bins_;
#       using SHOTColorEstimation<PointInT, PointNT, pcl::SHOT1344, PointRFT>::sqradius_;
#       using SHOTColorEstimation<PointInT, PointNT, pcl::SHOT1344, PointRFT>::radius3_4_;
#       using SHOTColorEstimation<PointInT, PointNT, pcl::SHOT1344, PointRFT>::radius1_4_;
#       using SHOTColorEstimation<PointInT, PointNT, pcl::SHOT1344, PointRFT>::radius1_2_;
#       using SHOTColorEstimation<PointInT, PointNT, pcl::SHOT1344, PointRFT>::maxAngularSectors_;
#       using SHOTColorEstimation<PointInT, PointNT, pcl::SHOT1344, PointRFT>::interpolateSingleChannel;
#       using SHOTColorEstimation<PointInT, PointNT, pcl::SHOT1344, PointRFT>::shot_;
#       using SHOTColorEstimation<PointInT, PointNT, pcl::SHOT1344, PointRFT>::b_describe_shape_;
#       using SHOTColorEstimation<PointInT, PointNT, pcl::SHOT1344, PointRFT>::b_describe_color_;
#       using SHOTColorEstimation<PointInT, PointNT, pcl::SHOT1344, PointRFT>::nr_color_bins_;
#       using FeatureWithLocalReferenceFrames<PointInT, PointRFT>::frames_;
# 
#       /** \brief Empty constructor.
#         * \param[in] describe_shape
#         * \param[in] describe_color
#         */
#       SHOTColorEstimation (bool describe_shape = true,
#                            bool describe_color = true,
#                            int nr_shape_bins = 10,
#                            int nr_color_bins = 30)
#         : SHOTColorEstimation<PointInT, PointNT, pcl::SHOT1344, PointRFT> (describe_shape, describe_color)
#       {
#         feature_name_ = "SHOTColorEstimation";
#         nr_shape_bins_ = nr_shape_bins;
#         nr_color_bins_ = nr_color_bins;
#       };
# 
#       /** \brief Base method for feature estimation for all points given in
#         * <setInputCloud (), setIndices ()> using the surface in setSearchSurface ()
#         * and the spatial locator in setSearchMethod ()
#         * \param[out] output the resultant point cloud model dataset containing the estimated features
#         */
#       void
#       computeEigen (pcl::PointCloud<Eigen::MatrixXf> &output)
#       {
#         pcl::SHOTColorEstimation<PointInT, PointNT, pcl::SHOT1344, PointRFT>::computeEigen (output);
#       }
# 
###

# template <typename PointNT, typename PointRFT>
# class PCL_DEPRECATED_CLASS (SHOTEstimation, "SHOTEstimation<pcl::PointXYZRGBA,...,pcl::SHOT,...> IS DEPRECATED, USE SHOTEstimation<pcl::PointXYZRGBA,...,pcl::SHOT352,...> FOR SHAPE AND SHOTColorEstimation<pcl::PointXYZRGBA,...,pcl::SHOT1344,...> FOR SHAPE+COLOR INSTEAD")
#   <pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>
#   : public SHOTEstimationBase<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT> 
#     public:
#       using SHOTEstimationBase<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::feature_name_;
#       using SHOTEstimationBase<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::indices_;
#       using SHOTEstimationBase<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::k_;
#       using SHOTEstimationBase<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::search_parameter_;
#       using SHOTEstimationBase<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::search_radius_;
#       using SHOTEstimationBase<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::surface_;
#       using SHOTEstimationBase<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::input_;
#       using FeatureFromNormals<pcl::PointXYZRGBA, PointNT, pcl::SHOT>::normals_;
#       using FeatureWithLocalReferenceFrames<pcl::PointXYZRGBA, PointRFT>::frames_;
#       using SHOTEstimationBase<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::getClassName;
#       using SHOTEstimationBase<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::descLength_;
#       using SHOTEstimationBase<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::nr_grid_sector_;
#       using SHOTEstimationBase<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::nr_shape_bins_;
#       using SHOTEstimationBase<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::sqradius_;
#       using SHOTEstimationBase<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::radius3_4_;
#       using SHOTEstimationBase<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::radius1_4_;
#       using SHOTEstimationBase<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::radius1_2_;
#       using SHOTEstimationBase<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::maxAngularSectors_;
#       using SHOTEstimationBase<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::interpolateSingleChannel;
#       using SHOTEstimationBase<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::shot_;
# 
#       typedef typename Feature<pcl::PointXYZRGBA, pcl::SHOT>::PointCloudOut PointCloudOut;
#       typedef typename Feature<pcl::PointXYZRGBA, pcl::SHOT>::PointCloudIn PointCloudIn;
# 
#       /** \brief Empty constructor.
#         * \param[in] describe_shape
#         * \param[in] describe_color
#         * \param[in] nr_shape_bins
#         * \param[in] nr_color_bins
#         */
#       SHOTEstimation (bool describe_shape = true,
#                       bool describe_color = false,
#                       const int nr_shape_bins = 10,
#                       const int nr_color_bins = 30)
#         : SHOTEstimationBase<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT> (nr_shape_bins),
#           b_describe_shape_ (describe_shape),
#           b_describe_color_ (describe_color),
#           nr_color_bins_ (nr_color_bins)
#       {
#         feature_name_ = "SHOTEstimation";
#       };
# 
#       /** \brief Estimate the SHOT descriptor for a given point based on its spatial neighborhood of 3D points with normals
#         * \param[in] index the index of the point in indices_
#         * \param[in] indices the k-neighborhood point indices in surface_
#         * \param[in] sqr_dists the k-neighborhood point distances in surface_
#         * \param[out] shot the resultant SHOT descriptor representing the feature at the query point
#         */
#       virtual void
#       computePointSHOT (const int index,
#                         const std::vector<int> &indices,
#                         const std::vector<float> &sqr_dists,
#                         Eigen::VectorXf &shot);
#       /** \brief Quadrilinear interpolation; used when color and shape descriptions are both activated
#         * \param[in] indices the neighborhood point indices
#         * \param[in] sqr_dists the neighborhood point distances
#         * \param[in] index the index of the point in indices_
#         * \param[out] binDistanceShape the resultant distance shape histogram
#         * \param[out] binDistanceColor the resultant color shape histogram
#         * \param[in] nr_bins_shape the number of bins in the shape histogram
#         * \param[in] nr_bins_color the number of bins in the color histogram
#         * \param[out] shot the resultant SHOT histogram
#         */
#       void
#       interpolateDoubleChannel (const std::vector<int> &indices,
#                                 const std::vector<float> &sqr_dists,
#                                 const int index,
#                                 std::vector<double> &binDistanceShape,
#                                 std::vector<double> &binDistanceColor,
#                                 const int nr_bins_shape,
#                                 const int nr_bins_color,
#                                 Eigen::VectorXf &shot);
# 
#       /** \brief Converts RGB triplets to CIELab space.
#         * \param[in] R the red channel
#         * \param[in] G the green channel
#         * \param[in] B the blue channel
#         * \param[out] L the lightness
#         * \param[out] A the first color-opponent dimension
#         * \param[out] B2 the second color-opponent dimension
#         */
#       static void
#       RGB2CIELAB (unsigned char R, unsigned char G, unsigned char B, float &L, float &A, float &B2);
# 
#       /** \brief Compute shape descriptor. */
#       bool b_describe_shape_;
# 
#       /** \brief Compute color descriptor. */
#       bool b_describe_color_;
# 
#       /** \brief The number of bins in each color histogram. */
#       int nr_color_bins_;
# 
#     public:
#       static float sRGB_LUT[256];
#       static float sXYZ_LUT[4000];
#   };

###

# template <typename PointNT, typename PointRFT>
# class PCL_DEPRECATED_CLASS (SHOTEstimation, "SHOTEstimation<pcl::PointXYZRGBA,...,Eigen::MatrixXf,...> IS DEPRECATED, USE SHOTColorEstimation<pcl::PointXYZRGBA,...,Eigen::MatrixXf,...> FOR SHAPE AND SHAPE+COLOR INSTEAD")
# <pcl::PointXYZRGBA, PointNT, Eigen::MatrixXf, PointRFT>
# : public SHOTEstimation<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>
#     public:
#       using SHOTEstimation<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::feature_name_;
#       using SHOTEstimation<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::getClassName;
#       using SHOTEstimation<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::indices_;
#       using SHOTEstimation<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::k_;
#       using SHOTEstimation<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::search_parameter_;
#       using SHOTEstimation<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::search_radius_;
#       using SHOTEstimation<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::surface_;
#       using SHOTEstimation<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::input_;
#       using SHOTEstimation<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::descLength_;
#       using SHOTEstimation<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::nr_grid_sector_;
#       using SHOTEstimation<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::nr_shape_bins_;
#       using SHOTEstimation<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::sqradius_;
#       using SHOTEstimation<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::radius3_4_;
#       using SHOTEstimation<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::radius1_4_;
#       using SHOTEstimation<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::radius1_2_;
#       using SHOTEstimation<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::maxAngularSectors_;
#       using SHOTEstimation<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::interpolateSingleChannel;
#       using SHOTEstimation<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::shot_;
#       using SHOTEstimation<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::b_describe_shape_;
#       using SHOTEstimation<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::b_describe_color_;
#       using SHOTEstimation<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::nr_color_bins_;
#       using FeatureWithLocalReferenceFrames<pcl::PointXYZRGBA, PointRFT>::frames_;
# 
#       /** \brief Empty constructor.
#         * \param[in] describe_shape
#         * \param[in] describe_color
#         * \param[in] nr_shape_bins
#         * \param[in] nr_color_bins
#         */
#       SHOTEstimation (bool describe_shape = true,
#                       bool describe_color = false,
#                       const int nr_shape_bins = 10,
#                       const int nr_color_bins = 30)
#         : SHOTEstimation<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT> (describe_shape, describe_color, nr_shape_bins, nr_color_bins) {};
# 
###

# shot_lrf.h
#  template<typename PointInT, typename PointOutT = ReferenceFrame>
#  class SHOTLocalReferenceFrameEstimation : public Feature<PointInT, PointOutT>
cdef extern from "pcl/features/shot_lrf.h" namespace "pcl":
    cdef cppclass SHOTLocalReferenceFrameEstimation[In, Out](Feature[In, Out]):
        PrincipalCurvaturesEstimation ()
        # protected:
        # using Feature<PointInT, PointOutT>::feature_name_;
        # using Feature<PointInT, PointOutT>::getClassName;
        # //using Feature<PointInT, PointOutT>::searchForNeighbors;
        # using Feature<PointInT, PointOutT>::input_;
        # using Feature<PointInT, PointOutT>::indices_;
        # using Feature<PointInT, PointOutT>::surface_;
        # using Feature<PointInT, PointOutT>::tree_;
        # using Feature<PointInT, PointOutT>::search_parameter_;
        # typedef typename Feature<PointInT, PointOutT>::PointCloudIn PointCloudIn;
        # typedef typename Feature<PointInT, PointOutT>::PointCloudOut PointCloudOut;
        # * \brief Computes disambiguated local RF for a point index
        # * \param[in] cloud input point cloud
        # * \param[in] search_radius the neighborhood radius
        # * \param[in] central_point the point from the input_ cloud at which the local RF is computed
        # * \param[in] indices the neighbours indices
        # * \param[in] dists the squared distances to the neighbours
        # * \param[out] rf reference frame to compute
        # float getLocalRF (const int &index, Eigen::Matrix3f &rf)
        # * \brief Feature estimation method.
        # \param[out] output the resultant features
        # virtual void computeFeature (PointCloudOut &output)
        # * \brief Feature estimation method.
        # * \param[out] output the resultant features
        # virtual void computeFeatureEigen (pcl::PointCloud<Eigen::MatrixXf> &output)
###

# template <typename PointInT, typename PointNT>
# class PrincipalCurvaturesEstimation<PointInT, PointNT, Eigen::MatrixXf> : public PrincipalCurvaturesEstimation<PointInT, PointNT, pcl::PrincipalCurvatures>
#     public:
#       using PrincipalCurvaturesEstimation<PointInT, PointNT, pcl::PrincipalCurvatures>::indices_;
#       using PrincipalCurvaturesEstimation<PointInT, PointNT, pcl::PrincipalCurvatures>::k_;
#       using PrincipalCurvaturesEstimation<PointInT, PointNT, pcl::PrincipalCurvatures>::search_parameter_;
#       using PrincipalCurvaturesEstimation<PointInT, PointNT, pcl::PrincipalCurvatures>::surface_;
#       using PrincipalCurvaturesEstimation<PointInT, PointNT, pcl::PrincipalCurvatures>::compute;
#       using PrincipalCurvaturesEstimation<PointInT, PointNT, pcl::PrincipalCurvatures>::input_;
#       using PrincipalCurvaturesEstimation<PointInT, PointNT, pcl::PrincipalCurvatures>::normals_;
###

# shot_lrf_omp.h
# template<typename PointInT, typename PointOutT = ReferenceFrame>
# class SHOTLocalReferenceFrameEstimationOMP : public SHOTLocalReferenceFrameEstimation<PointInT, PointOutT>
cdef extern from "pcl/features/shot_lrf_omp.h" namespace "pcl":
    cdef cppclass SHOTLocalReferenceFrameEstimationOMP[In, Out](SHOTLocalReferenceFrameEstimation[In, Out]):
        SHOTLocalReferenceFrameEstimationOMP ()
        # public:
        # brief Initialize the scheduler and set the number of threads to use.
        # param nr_threads the number of hardware threads to use (-1 sets the value back to automatic)
        # inline void setNumberOfThreads (unsigned int nr_threads)

###

# shot_omp.h
# template <typename PointInT, typename PointNT, typename PointOutT = pcl::SHOT352, typename PointRFT = pcl::ReferenceFrame>
# class SHOTEstimationOMP : public SHOTEstimation<PointInT, PointNT, PointOutT, PointRFT>
cdef extern from "pcl/features/shot_omp.h" namespace "pcl":
    cdef cppclass SHOTEstimationOMP[In, NT, Out, RFT](SHOTEstimation[In, NT, Out, RFT]):
        SHOTEstimationOMP ()
        # SHOTEstimationOMP (unsigned int nr_threads = - 1)
        # public:
        # using Feature<PointInT, PointOutT>::feature_name_;
        # using Feature<PointInT, PointOutT>::getClassName;
        # using Feature<PointInT, PointOutT>::input_;
        # using Feature<PointInT, PointOutT>::indices_;
        # using Feature<PointInT, PointOutT>::k_;
        # using Feature<PointInT, PointOutT>::search_parameter_;
        # using Feature<PointInT, PointOutT>::search_radius_;
        # using Feature<PointInT, PointOutT>::surface_;
        # using Feature<PointInT, PointOutT>::fake_surface_;
        # using FeatureFromNormals<PointInT, PointNT, PointOutT>::normals_;
        # using FeatureWithLocalReferenceFrames<PointInT, PointRFT>::frames_;
        # using SHOTEstimation<PointInT, PointNT, PointOutT, PointRFT>::descLength_;
        # using SHOTEstimation<PointInT, PointNT, PointOutT, PointRFT>::nr_grid_sector_;
        # using SHOTEstimation<PointInT, PointNT, PointOutT, PointRFT>::nr_shape_bins_;
        # using SHOTEstimation<PointInT, PointNT, PointOutT, PointRFT>::sqradius_;
        # using SHOTEstimation<PointInT, PointNT, PointOutT, PointRFT>::radius3_4_;
        # using SHOTEstimation<PointInT, PointNT, PointOutT, PointRFT>::radius1_4_;
        # using SHOTEstimation<PointInT, PointNT, PointOutT, PointRFT>::radius1_2_;
        # typedef typename Feature<PointInT, PointOutT>::PointCloudOut PointCloudOut;
        # typedef typename Feature<PointInT, PointOutT>::PointCloudIn PointCloudIn;
        # 
        # /** \brief Initialize the scheduler and set the number of threads to use.
        #  * \param nr_threads the number of hardware threads to use (-1 sets the value back to automatic)
        inline void setNumberOfThreads (unsigned int nr_threads)
        
###

# template <typename PointInT, typename PointNT, typename PointOutT = pcl::SHOT1344, typename PointRFT = pcl::ReferenceFrame>
# class SHOTColorEstimationOMP : public SHOTColorEstimation<PointInT, PointNT, PointOutT, PointRFT>
#     public:
#       using Feature<PointInT, PointOutT>::feature_name_;
#       using Feature<PointInT, PointOutT>::getClassName;
#       using Feature<PointInT, PointOutT>::input_;
#       using Feature<PointInT, PointOutT>::indices_;
#       using Feature<PointInT, PointOutT>::k_;
#       using Feature<PointInT, PointOutT>::search_parameter_;
#       using Feature<PointInT, PointOutT>::search_radius_;
#       using Feature<PointInT, PointOutT>::surface_;
#       using Feature<PointInT, PointOutT>::fake_surface_;
#       using FeatureFromNormals<PointInT, PointNT, PointOutT>::normals_;
#       using FeatureWithLocalReferenceFrames<PointInT, PointRFT>::frames_;
#       using SHOTColorEstimation<PointInT, PointNT, PointOutT, PointRFT>::descLength_;
#       using SHOTColorEstimation<PointInT, PointNT, PointOutT, PointRFT>::nr_grid_sector_;
#       using SHOTColorEstimation<PointInT, PointNT, PointOutT, PointRFT>::nr_shape_bins_;
#       using SHOTColorEstimation<PointInT, PointNT, PointOutT, PointRFT>::sqradius_;
#       using SHOTColorEstimation<PointInT, PointNT, PointOutT, PointRFT>::radius3_4_;
#       using SHOTColorEstimation<PointInT, PointNT, PointOutT, PointRFT>::radius1_4_;
#       using SHOTColorEstimation<PointInT, PointNT, PointOutT, PointRFT>::radius1_2_;
#       using SHOTColorEstimation<PointInT, PointNT, PointOutT, PointRFT>::b_describe_shape_;
#       using SHOTColorEstimation<PointInT, PointNT, PointOutT, PointRFT>::b_describe_color_;
#       using SHOTColorEstimation<PointInT, PointNT, PointOutT, PointRFT>::nr_color_bins_;
#       typedef typename Feature<PointInT, PointOutT>::PointCloudOut PointCloudOut;
#       typedef typename Feature<PointInT, PointOutT>::PointCloudIn PointCloudIn;
# 
#       /** \brief Empty constructor. */
#       SHOTColorEstimationOMP (bool describe_shape = true,
#                               bool describe_color = true,
#                               unsigned int nr_threads = - 1)
# 
#       /** \brief Initialize the scheduler and set the number of threads to use.
#         * \param nr_threads the number of hardware threads to use (-1 sets the value back to automatic)
#         */
#       inline void setNumberOfThreads (unsigned int nr_threads)
###

# template <typename PointInT, typename PointNT, typename PointRFT>
# class PCL_DEPRECATED_CLASS (SHOTEstimationOMP, "SHOTEstimationOMP<..., pcl::SHOT, ...> IS DEPRECATED, USE SHOTEstimationOMP<..., pcl::SHOT352, ...> INSTEAD")
# <PointInT, PointNT, pcl::SHOT, PointRFT>
# : public SHOTEstimation<PointInT, PointNT, pcl::SHOT, PointRFT>
#     public:
#       using Feature<PointInT, pcl::SHOT>::feature_name_;
#       using Feature<PointInT, pcl::SHOT>::getClassName;
#       using Feature<PointInT, pcl::SHOT>::input_;
#       using Feature<PointInT, pcl::SHOT>::indices_;
#       using Feature<PointInT, pcl::SHOT>::k_;
#       using Feature<PointInT, pcl::SHOT>::search_parameter_;
#       using Feature<PointInT, pcl::SHOT>::search_radius_;
#       using Feature<PointInT, pcl::SHOT>::surface_;
#       using Feature<PointInT, pcl::SHOT>::fake_surface_;
#       using FeatureFromNormals<PointInT, PointNT, pcl::SHOT>::normals_;
#       using FeatureWithLocalReferenceFrames<PointInT, PointRFT>::frames_;
#       using SHOTEstimation<PointInT, PointNT, pcl::SHOT, PointRFT>::descLength_;
#       using SHOTEstimation<PointInT, PointNT, pcl::SHOT, PointRFT>::nr_grid_sector_;
#       using SHOTEstimation<PointInT, PointNT, pcl::SHOT, PointRFT>::nr_shape_bins_;
#       using SHOTEstimation<PointInT, PointNT, pcl::SHOT, PointRFT>::sqradius_;
#       using SHOTEstimation<PointInT, PointNT, pcl::SHOT, PointRFT>::radius3_4_;
#       using SHOTEstimation<PointInT, PointNT, pcl::SHOT, PointRFT>::radius1_4_;
#       using SHOTEstimation<PointInT, PointNT, pcl::SHOT, PointRFT>::radius1_2_;
#       typedef typename Feature<PointInT, pcl::SHOT>::PointCloudOut PointCloudOut;
#       typedef typename Feature<PointInT, pcl::SHOT>::PointCloudIn PointCloudIn;
#       /** \brief Empty constructor. */
#       SHOTEstimationOMP (unsigned int nr_threads = - 1, int nr_shape_bins = 10)
#         : SHOTEstimation<PointInT, PointNT, pcl::SHOT, PointRFT> (nr_shape_bins), threads_ ()
# 
#       /** \brief Initialize the scheduler and set the number of threads to use.
#         * \param nr_threads the number of hardware threads to use (-1 sets the value back to automatic)
#         */
#       inline void setNumberOfThreads (unsigned int nr_threads)
# 
###

# template <typename PointNT, typename PointRFT>
# class PCL_DEPRECATED_CLASS (SHOTEstimationOMP, "SHOTEstimationOMP<pcl::PointXYZRGBA,...,pcl::SHOT,...> IS DEPRECATED, USE SHOTEstimationOMP<pcl::PointXYZRGBA,...,pcl::SHOT352,...> FOR SHAPE AND SHOTColorEstimationOMP<pcl::PointXYZRGBA,...,pcl::SHOT1344,...> FOR SHAPE+COLOR INSTEAD")
# <pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>
# : public SHOTEstimation<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>
#       public:
#       using SHOTEstimation<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::feature_name_;
#       using SHOTEstimation<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::getClassName;
#       using SHOTEstimation<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::input_;
#       using SHOTEstimation<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::indices_;
#       using SHOTEstimation<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::k_;
#       using SHOTEstimation<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::search_parameter_;
#       using SHOTEstimation<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::search_radius_;
#       using SHOTEstimation<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::surface_;
#       using FeatureFromNormals<pcl::PointXYZRGBA, PointNT, pcl::SHOT>::normals_;
#       using FeatureWithLocalReferenceFrames<pcl::PointXYZRGBA, PointRFT>::frames_;
#       using SHOTEstimation<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::descLength_;
#       using SHOTEstimation<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::nr_grid_sector_;
#       using SHOTEstimation<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::nr_shape_bins_;
#       using SHOTEstimation<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::sqradius_;
#       using SHOTEstimation<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::radius3_4_;
#       using SHOTEstimation<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::radius1_4_;
#       using SHOTEstimation<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::radius1_2_;
#       using SHOTEstimation<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::b_describe_shape_;
#       using SHOTEstimation<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::b_describe_color_;
#       using SHOTEstimation<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::nr_color_bins_;
#       typedef typename Feature<pcl::PointXYZRGBA, pcl::SHOT>::PointCloudOut PointCloudOut;
#       typedef typename Feature<pcl::PointXYZRGBA, pcl::SHOT>::PointCloudIn PointCloudIn;
# 
#       /** \brief Empty constructor. */
#       SHOTEstimationOMP (bool describeShape = true,
#                          bool describeColor = false,
#                          unsigned int nr_threads = - 1,
#                          const int nr_shape_bins = 10,
#                          const int nr_color_bins = 30)
#         : SHOTEstimation<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT> (describeShape, describeColor, nr_shape_bins, nr_color_bins),
#           threads_ ()
# 
#       /** \brief Initialize the scheduler and set the number of threads to use.
#         * \param nr_threads the number of hardware threads to use (-1 sets the value back to automatic)
#         */
#       inline void
#       setNumberOfThreads (unsigned int nr_threads)
###

# spin_image.h
# template <typename PointInT, typename PointNT, typename PointOutT>
# class SpinImageEstimation : public Feature<PointInT, PointOutT>
cdef extern from "pcl/features/spin_image.h" namespace "pcl":
    cdef cppclass SpinImageEstimation[In, NT, Out](Feature[In, Out]):
        SpinImageEstimation ()
        # SpinImageEstimation (unsigned int image_width = 8,
        #                    double support_angle_cos = 0.0,   // when 0, this is bogus, so not applied
        #                    unsigned int min_pts_neighb = 0);
        # public:
        # using Feature<PointInT, PointOutT>::feature_name_;
        # using Feature<PointInT, PointOutT>::getClassName;
        # using Feature<PointInT, PointOutT>::indices_;
        # using Feature<PointInT, PointOutT>::search_radius_;
        # using Feature<PointInT, PointOutT>::k_;
        # using Feature<PointInT, PointOutT>::surface_;
        # using Feature<PointInT, PointOutT>::fake_surface_;
        # using PCLBase<PointInT>::input_;
        # typedef typename Feature<PointInT, PointOutT>::PointCloudOut PointCloudOut;
        # typedef typename pcl::PointCloud<PointNT> PointCloudN;
        # typedef typename PointCloudN::Ptr PointCloudNPtr;
        # typedef typename PointCloudN::ConstPtr PointCloudNConstPtr;
        # typedef typename pcl::PointCloud<PointInT> PointCloudIn;
        # typedef typename PointCloudIn::Ptr PointCloudInPtr;
        # typedef typename PointCloudIn::ConstPtr PointCloudInConstPtr;
        # typedef typename boost::shared_ptr<SpinImageEstimation<PointInT, PointNT, PointOutT> > Ptr;
        # typedef typename boost::shared_ptr<const SpinImageEstimation<PointInT, PointNT, PointOutT> > ConstPtr;
        # /** \brief Sets spin-image resolution.
        #  * \param[in] bin_count spin-image resolution, number of bins along one dimension
        void setImageWidth (unsigned int bin_count)
        # /** \brief Sets the maximum angle for the point normal to get to support region.
        #   * \param[in] support_angle_cos minimal allowed cosine of the angle between 
        #   *   the normals of input point and search surface point for the point 
        #   *   to be retained in the support
        void setSupportAngle (double support_angle_cos)
        # /** \brief Sets minimal points count for spin image computation.
        #   * \param[in] min_pts_neighb min number of points in the support to correctly estimate 
        #   *   spin-image. If at some point the support contains less points, exception is thrown
        void setMinPointCountInNeighbourhood (unsigned int min_pts_neighb)
        # /** \brief Provide a pointer to the input dataset that contains the point normals of 
        #  * the input XYZ dataset given by \ref setInputCloud
        #  * \attention The input normals given by \ref setInputNormals have to match
        #  * the input point cloud given by \ref setInputCloud. This behavior is
        #  * different than feature estimation methods that extend \ref
        #  * FeatureFromNormals, which match the normals with the search surface.
        #  * \param[in] normals the const boost shared pointer to a PointCloud of normals. 
        #  * By convention, L2 norm of each normal should be 1. 
        # inline void setInputNormals (const PointCloudNConstPtr &normals)
        # /** \brief Sets single vector a rotation axis for all input points.
        #   * It could be useful e.g. when the vertical axis is known.
        #   * \param[in] axis unit-length vector that serves as rotation axis for reference frame
        # void setRotationAxis (const PointNT& axis)
        # /** \brief Sets array of vectors as rotation axes for input points.
        #  * Useful e.g. when one wants to use tangents instead of normals as rotation axes
        #  * \param[in] axes unit-length vectors that serves as rotation axes for 
        #  *   the corresponding input points' reference frames
        # void setInputRotationAxes (const PointCloudNConstPtr& axes)
        # /** \brief Sets input normals as rotation axes (default setting). */
        void useNormalsAsRotationAxis () 
        # /** \brief Sets/unsets flag for angular spin-image domain.
        #   * Angular spin-image differs from the vanilla one in the way that not 
        #   * the points are collected in the bins but the angles between their
        #   * normals and the normal to the reference point. For further
        #   * information please see 
        #   * Endres, F., Plagemann, C., Stachniss, C., & Burgard, W. (2009). 
        #   * Unsupervised Discovery of Object Classes from Range Data using Latent Dirichlet Allocation. 
        #   * In Robotics: Science and Systems. Seattle, USA.
        #   * \param[in] is_angular true for angular domain, false for point domain
        void setAngularDomain (bool is_angular = true)
        # /** \brief Sets/unsets flag for radial spin-image structure.
        #   * 
        #   * Instead of rectangular coordinate system for reference frame 
        #   * polar coordinates are used. Binning is done depending on the distance and 
        #   * inclination angle from the reference point
        #   * \param[in] is_radial true for radial spin-image structure, false for rectangular
        # */
        void setRadialStructure (bool is_radial = true)


####

# template <typename PointInT, typename PointNT>
# class SpinImageEstimation<PointInT, PointNT, Eigen::MatrixXf> : public SpinImageEstimation<PointInT, PointNT, pcl::Histogram<153> >
# cdef extern from "pcl/features/spin_image.h" namespace "pcl":
#    cdef cppclass SpinImageEstimation[In, NT, Eigen::MatrixXf](SpinImageEstimation[In, NT, pcl::Histogram<153>]):
#       SpinImageEstimation ()
#       public:
#       using SpinImageEstimation<PointInT, PointNT, pcl::Histogram<153> >::indices_;
#       using SpinImageEstimation<PointInT, PointNT, pcl::Histogram<153> >::search_radius_;
#       using SpinImageEstimation<PointInT, PointNT, pcl::Histogram<153> >::k_;
#       using SpinImageEstimation<PointInT, PointNT, pcl::Histogram<153> >::surface_;
#       using SpinImageEstimation<PointInT, PointNT, pcl::Histogram<153> >::fake_surface_;
#       using SpinImageEstimation<PointInT, PointNT, pcl::Histogram<153> >::compute;
# 
#       /** \brief Constructs empty spin image estimator.
#         * 
#         * \param[in] image_width spin-image resolution, number of bins along one dimension
#         * \param[in] support_angle_cos minimal allowed cosine of the angle between 
#         *   the normals of input point and search surface point for the point 
#         *   to be retained in the support
#         * \param[in] min_pts_neighb min number of points in the support to correctly estimate 
#         *   spin-image. If at some point the support contains less points, exception is thrown
#         */
#       SpinImageEstimation (unsigned int image_width = 8,
#                            double support_angle_cos = 0.0,   // when 0, this is bogus, so not applied
#                            unsigned int min_pts_neighb = 0) : 
#       SpinImageEstimation<PointInT, PointNT, pcl::Histogram<153> > (image_width, support_angle_cos, min_pts_neighb) {}
###

# statistical_multiscale_interest_region_extraction.h
# template <typename PointT>
# class StatisticalMultiscaleInterestRegionExtraction : public PCLBase<PointT>
cdef extern from "pcl/features/statistical_multiscale_interest_region_extraction.h" namespace "pcl":
    cdef cppclass StatisticalMultiscaleInterestRegionExtraction[T](cpp.PCLBase[T]):
        StatisticalMultiscaleInterestRegionExtraction ()
        # public:
        # typedef boost::shared_ptr <std::vector<int> > IndicesPtr;
        # typedef typename boost::shared_ptr<StatisticalMultiscaleInterestRegionExtraction<PointT> > Ptr;
        # typedef typename boost::shared_ptr<const StatisticalMultiscaleInterestRegionExtraction<PointT> > ConstPtr;
        
        # brief Method that generates the underlying nearest neighbor graph based on the input point cloud
        void generateCloudGraph ()
        
        # brief The method to be called in order to run the algorithm and produce the resulting
        # set of regions of interest
        # void computeRegionsOfInterest (list[IndicesPtr_t]& rois)
        
        # brief Method for setting the scale parameters for the algorithm
        # param scale_values vector of scales to determine the size of each scaling step
        inline void setScalesVector (vector[float] &scale_values)
        
        # brief Method for getting the scale parameters vector */
        inline vector[float] getScalesVector ()
###

# usc.h
# template <typename PointInT, typename PointOutT, typename PointRFT = pcl::ReferenceFrame>
# class UniqueShapeContext : public Feature<PointInT, PointOutT>,
#                            public FeatureWithLocalReferenceFrames<PointInT, PointRFT>
# cdef extern from "pcl/features/usc.h" namespace "pcl":
#     cdef cppclass UniqueShapeContext[In, Out, RFT](Feature[In, Out], FeatureWithLocalReferenceFrames[In, RFT]):
#        VFHEstimation ()
#        public:
#        using Feature<PointInT, PointOutT>::feature_name_;
#        using Feature<PointInT, PointOutT>::getClassName;
#        using Feature<PointInT, PointOutT>::indices_;
#        using Feature<PointInT, PointOutT>::search_parameter_;
#        using Feature<PointInT, PointOutT>::search_radius_;
#        using Feature<PointInT, PointOutT>::surface_;
#        using Feature<PointInT, PointOutT>::fake_surface_;
#        using Feature<PointInT, PointOutT>::input_;
#        using Feature<PointInT, PointOutT>::searchForNeighbors;
#        using FeatureWithLocalReferenceFrames<PointInT, PointRFT>::frames_;
#        typedef typename Feature<PointInT, PointOutT>::PointCloudOut PointCloudOut;
#        typedef typename Feature<PointInT, PointOutT>::PointCloudIn PointCloudIn;
#        typedef typename boost::shared_ptr<UniqueShapeContext<PointInT, PointOutT, PointRFT> > Ptr;
#        typedef typename boost::shared_ptr<const UniqueShapeContext<PointInT, PointOutT, PointRFT> > ConstPtr;
#        /** \brief Constructor. */
#        UniqueShapeContext () :
#       /** \brief Set the number of bins along the azimuth
#         * \param[in] bins the number of bins along the azimuth
#       inline void setAzimuthBins (size_t bins)
#       /** \return The number of bins along the azimuth. */
#       inline size_t getAzimuthBins () const
#       /** \brief Set the number of bins along the elevation
#         * \param[in] bins the number of bins along the elevation
#         */
#       inline void setElevationBins (size_t bins)
#       /** \return The number of bins along the elevation */
#       inline size_t getElevationBins () const
#       /** \brief Set the number of bins along the radii
#         * \param[in] bins the number of bins along the radii
#       inline void setRadiusBins (size_t bins)
#       /** \return The number of bins along the radii direction. */
#       inline size_t getRadiusBins () const
#       /** The minimal radius value for the search sphere (rmin) in the original paper
#         * \param[in] radius the desired minimal radius
#       inline void setMinimalRadius (double radius)
#       /** \return The minimal sphere radius. */
#       inline double
#       getMinimalRadius () const
#       /** This radius is used to compute local point density
#         * density = number of points within this radius
#         * \param[in] radius Value of the point density search radius
#       inline void setPointDensityRadius (double radius)
#       /** \return The point density search radius. */
#       inline double getPointDensityRadius () const
#       /** Set the local RF radius value
#         * \param[in] radius the desired local RF radius
#       inline void setLocalRadius (double radius)
#       /** \return The local RF radius. */
#       inline double getLocalRadius () const
#
###

# usc.h
# template <typename PointInT, typename PointRFT>
# class UniqueShapeContext<PointInT, Eigen::MatrixXf, PointRFT> : public UniqueShapeContext<PointInT, pcl::SHOT, PointRFT>
# cdef extern from "pcl/features/usc.h" namespace "pcl":
#     cdef cppclass UniqueShapeContext[In, Eigen::MatrixXf, RET](UniqueShapeContext[In, pcl::SHOT, RET]):
#       UniqueShapeContext ()
#       public:
#       using FeatureWithLocalReferenceFrames<PointInT, PointRFT>::frames_;
#       using UniqueShapeContext<PointInT, pcl::SHOT, PointRFT>::indices_;
#       using UniqueShapeContext<PointInT, pcl::SHOT, PointRFT>::descriptor_length_;
#       using UniqueShapeContext<PointInT, pcl::SHOT, PointRFT>::compute;
#       using UniqueShapeContext<PointInT, pcl::SHOT, PointRFT>::computePointDescriptor;
###

# vfh.h
# template<typename PointInT, typename PointNT, typename PointOutT = pcl::VFHSignature308>
# class VFHEstimation : public FeatureFromNormals<PointInT, PointNT, PointOutT>
cdef extern from "pcl/features/vfh.h" namespace "pcl":
    cdef cppclass VFHEstimation[In, NT, Out](FeatureFromNormals[In, NT, Out]):
        VFHEstimation ()
        # public:
        # /** \brief Estimate the SPFH (Simple Point Feature Histograms) signatures of the angular
        #   * (f1, f2, f3) and distance (f4) features for a given point from its neighborhood
        #   * \param[in] centroid_p the centroid point
        #   * \param[in] centroid_n the centroid normal
        #   * \param[in] cloud the dataset containing the XYZ Cartesian coordinates of the two points
        #   * \param[in] normals the dataset containing the surface normals at each point in \a cloud
        #   * \param[in] indices the k-neighborhood point indices in the dataset
        # void computePointSPFHSignature (const Eigen::Vector4f &centroid_p, const Eigen::Vector4f &centroid_n,
        #                            const pcl::PointCloud<PointInT> &cloud, const pcl::PointCloud<PointNT> &normals,
        #                            const std::vector<int> &indices);
        # 
        # /** \brief Set the viewpoint.
        #   * \param[in] vpx the X coordinate of the viewpoint
        #   * \param[in] vpy the Y coordinate of the viewpoint
        #   * \param[in] vpz the Z coordinate of the viewpoint
        # inline void setViewPoint (float vpx, float vpy, float vpz)
        # 
        # /** \brief Get the viewpoint. */
        # inline void getViewPoint (float &vpx, float &vpy, float &vpz)
        # 
        # /** \brief Set use_given_normal_
        #   * \param[in] use Set to true if you want to use the normal passed to setNormalUse(normal)
        #   */
        # inline void setUseGivenNormal (bool use)
        # 
        # /** \brief Set the normal to use
        #   * \param[in] normal Sets the normal to be used in the VFH computation. It is is used
        #   * to build the Darboux Coordinate system.
        #   */
        # inline void setNormalToUse (const Eigen::Vector3f &normal)
        # 
        # /** \brief Set use_given_centroid_
        #   * \param[in] use Set to true if you want to use the centroid passed through setCentroidToUse(centroid)
        #   */
        # inline void setUseGivenCentroid (bool use)
        # 
        # /** \brief Set centroid_to_use_
        #   * \param[in] centroid Centroid to be used in the VFH computation. It is used to compute the distances
        #   * from all points to this centroid.
        #   */
        # inline void setCentroidToUse (const Eigen::Vector3f &centroid)
        # 
        # /** \brief set normalize_bins_
        #   * \param[in] normalize If true, the VFH bins are normalized using the total number of points
        #   */
        # inline void setNormalizeBins (bool normalize)
        # 
        # /** \brief set normalize_distances_
        #   * \param[in] normalize If true, the 4th component of VFH (shape distribution component) get normalized
        #   * by the maximum size between the centroid and the point cloud
        #   */
        # inline void setNormalizeDistance (bool normalize)
        # 
        # /** \brief set size_component_
        #   * \param[in] fill_size True if the 4th component of VFH (shape distribution component) needs to be filled.
        #   * Otherwise, it is set to zero.
        #   */
        # inline void setFillSizeComponent (bool fill_size)
        # 
        # /** \brief Overloaded computed method from pcl::Feature.
        #   * \param[out] output the resultant point cloud model dataset containing the estimated features
        #   */
        # void compute (cpp.PointCloud[Out] &output);


ctypedef VFHEstimation[cpp.PointXYZ, cpp.Normal, cpp.VFHSignature308] VFHEstimation_t
ctypedef VFHEstimation[cpp.PointXYZI, cpp.Normal, cpp.VFHSignature308] VFHEstimation_PointXYZI_t
ctypedef VFHEstimation[cpp.PointXYZRGB, cpp.Normal, cpp.VFHSignature308] VFHEstimation_PointXYZRGB_t
ctypedef VFHEstimation[cpp.PointXYZRGBA, cpp.Normal, cpp.VFHSignature308] VFHEstimation_PointXYZRGBA_t
###


###############################################################################
# Enum
###############################################################################

# Template
# # enum CoordinateFrame
# # CAMERA_FRAME = 0,
# # LASER_FRAME = 1
# Start
# cdef extern from "pcl/range_image/range_image.h" namespace "pcl":
#     ctypedef enum CoordinateFrame2 "pcl::RangeImage::CoordinateFrame":
#         COORDINATEFRAME_CAMERA "pcl::RangeImage::CAMERA_FRAME"
#         COORDINATEFRAME_LASER "pcl::RangeImage::LASER_FRAME"
###

# integral_image_normal.h
# cdef extern from "pcl/features/integral_image_normal.h" namespace "pcl::IntegralImageNormalEstimation":
#         cdef enum BorderPolicy:
#             BORDER_POLICY_IGNORE
#             BORDER_POLICY_MIRROR
# NG : IntegralImageNormalEstimation use Template
# cdef extern from "pcl/features/integral_image_normal.h" namespace "pcl::IntegralImageNormalEstimation":
#     ctypedef enum BorderPolicy2 "pcl::IntegralImageNormalEstimation::BorderPolicy":
#         BORDERPOLICY_IGNORE "pcl::IntegralImageNormalEstimation::BORDER_POLICY_IGNORE"
#         BORDERPOLICY_MIRROR "pcl::IntegralImageNormalEstimation::BORDER_POLICY_MIRROR"
###

# cdef extern from "pcl/features/integral_image_normal.h" namespace "pcl::IntegralImageNormalEstimation":
#         cdef enum NormalEstimationMethod:
#             COVARIANCE_MATRIX
#             AVERAGE_3D_GRADIENT
#             AVERAGE_DEPTH_CHANGE
#             SIMPLE_3D_GRADIENT
# 
# NG : IntegralImageNormalEstimation use Template
# cdef extern from "pcl/features/integral_image_normal.h" namespace "pcl":
#     ctypedef enum NormalEstimationMethod2 "pcl::IntegralImageNormalEstimation::NormalEstimationMethod":
#         ESTIMATIONMETHOD_COVARIANCE_MATRIX "pcl::IntegralImageNormalEstimation::COVARIANCE_MATRIX"
#         ESTIMATIONMETHOD_AVERAGE_3D_GRADIENT "pcl::IntegralImageNormalEstimation::AVERAGE_3D_GRADIENT"
#         ESTIMATIONMETHOD_AVERAGE_DEPTH_CHANGE "pcl::IntegralImageNormalEstimation::AVERAGE_DEPTH_CHANGE"
#         ESTIMATIONMETHOD_SIMPLE_3D_GRADIENT "pcl::IntegralImageNormalEstimation::SIMPLE_3D_GRADIENT"
# NG : (Test Cython 0.24.1)
# define __PYX_VERIFY_RETURN_INT/__PYX_VERIFY_RETURN_INT_EXC etc... , Convert Error "pcl::IntegralImageNormalEstimation<pcl::PointXYZ, pcl::Normal>::NormalEstimationMethod"
# cdef extern from "pcl/features/integral_image_normal.h" namespace "pcl::IntegralImageNormalEstimation":
#     ctypedef enum NormalEstimationMethod2 "pcl::IntegralImageNormalEstimation<pcl::PointXYZ, pcl::Normal>::NormalEstimationMethod":
#         ESTIMATIONMETHOD_COVARIANCE_MATRIX "pcl::IntegralImageNormalEstimation<pcl::PointXYZ, pcl::Normal>::COVARIANCE_MATRIX"
#         ESTIMATIONMETHOD_AVERAGE_3D_GRADIENT "pcl::IntegralImageNormalEstimation<pcl::PointXYZ, pcl::Normal>::AVERAGE_3D_GRADIENT"
#         ESTIMATIONMETHOD_AVERAGE_DEPTH_CHANGE "pcl::IntegralImageNormalEstimation<pcl::PointXYZ, pcl::Normal>::AVERAGE_DEPTH_CHANGE"
#         ESTIMATIONMETHOD_SIMPLE_3D_GRADIENT "pcl::IntegralImageNormalEstimation<pcl::PointXYZ, pcl::Normal>::SIMPLE_3D_GRADIENT"
###


###############################################################################
# Activation
###############################################################################