1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822
|
# -*- coding: utf-8 -*-
from libc.stddef cimport size_t
from libcpp.vector cimport vector
from libcpp.string cimport string
from libcpp cimport bool
from libcpp.memory cimport shared_ptr
cimport eigen as eigen3
# main
cimport pcl_defs as cpp
cimport pcl_kdtree as pclkdt
cimport pcl_range_image as pcl_r_img
###############################################################################
# Types
###############################################################################
### base class ###
# feature.h
# class Feature : public PCLBase<PointInT>
cdef extern from "pcl/features/feature.h" namespace "pcl":
cdef cppclass Feature[In, Out](cpp.PCLBase[In]):
Feature ()
# public:
# using PCLBase<PointInT>::indices_;
# using PCLBase<PointInT>::input_;
# ctypedef PCLBase<PointInT> BaseClass;
# ctypedef boost::shared_ptr< Feature<PointInT, PointOutT> > Ptr;
# ctypedef boost::shared_ptr< const Feature<PointInT, PointOutT> > ConstPtr;
# ctypedef typename pcl::search::Search<PointInT> KdTree;
# ctypedef typename pcl::search::Search<PointInT>::Ptr KdTreePtr;
# ctypedef pcl::PointCloud<PointInT> PointCloudIn;
# ctypedef typename PointCloudIn::Ptr PointCloudInPtr;
# ctypedef typename PointCloudIn::ConstPtr PointCloudInConstPtr;
# ctypedef pcl::PointCloud<PointOutT> PointCloudOut;
# ctypedef boost::function<int (size_t, double, std::vector<int> &, std::vector<float> &)> SearchMethod;
# ctypedef boost::function<int (const PointCloudIn &cloud, size_t index, double, std::vector<int> &, std::vector<float> &)> SearchMethodSurface;
# public:
# inline void setSearchSurface (const cpp.PointCloudPtr_t &)
# inline cpp.PointCloudPtr_t getSearchSurface () const
void setSearchSurface (const In &)
In getSearchSurface () const
# inline void setSearchMethod (const KdTreePtr &tree)
# void setSearchMethod (pclkdt.KdTreePtr_t tree)
# void setSearchMethod (pclkdt.KdTreeFLANNPtr_t tree)
# void setSearchMethod (pclkdt.KdTreeFLANNConstPtr_t &tree)
void setSearchMethod (const pclkdt.KdTreePtr_t &tree)
# inline KdTreePtr getSearchMethod () const
# pclkdt.KdTreePtr_t getSearchMethod ()
# pclkdt.KdTreeFLANNPtr_t getSearchMethod ()
# pclkdt.KdTreeFLANNConstPtr_t getSearchMethod ()
double getSearchParameter ()
void setKSearch (int search)
int getKSearch () const
void setRadiusSearch (double radius)
double getRadiusSearch ()
# void compute (PointCloudOut &output);
# void compute (cpp.PointCloudPtr_t output)
# void compute (cpp.PointCloud_PointXYZI_Ptr_t output)
# void compute (cpp.PointCloud_PointXYZRGB_Ptr_t output)
# void compute (cpp.PointCloud_PointXYZRGBA_Ptr_t output)
void compute (cpp.PointCloud[Out] &output)
# void computeEigen (cpp.PointCloud[Eigen::MatrixXf] &output);
ctypedef Feature[cpp.PointXYZ, cpp.Normal] Feature_t
ctypedef Feature[cpp.PointXYZI, cpp.Normal] Feature_PointXYZI_t
ctypedef Feature[cpp.PointXYZRGB, cpp.Normal] Feature_PointXYZRGB_t
ctypedef Feature[cpp.PointXYZRGBA, cpp.Normal] Feature_PointXYZRGBA_t
###
# template <typename PointInT, typename PointNT, typename PointOutT>
# class FeatureFromNormals : public Feature<PointInT, PointOutT>
# cdef cppclass FeatureFromNormals(Feature[In, Out]):
cdef extern from "pcl/features/feature.h" namespace "pcl":
cdef cppclass FeatureFromNormals[In, NT, Out](Feature[In, Out]):
FeatureFromNormals()
# ctypedef typename Feature<PointInT, PointOutT>::PointCloudIn PointCloudIn;
# ctypedef typename PointCloudIn::Ptr PointCloudInPtr;
# ctypedef typename PointCloudIn::ConstPtr PointCloudInConstPtr;
# ctypedef typename Feature<PointInT, PointOutT>::PointCloudOut PointCloudOut;
# public:
# ctypedef typename pcl::PointCloud<PointNT> PointCloudN;
# ctypedef typename PointCloudN::Ptr PointCloudNPtr;
# ctypedef typename PointCloudN::ConstPtr PointCloudNConstPtr;
# ctypedef boost::shared_ptr< FeatureFromNormals<PointInT, PointNT, PointOutT> > Ptr;
# ctypedef boost::shared_ptr< const FeatureFromNormals<PointInT, PointNT, PointOutT> > ConstPtr;
# // Members derived from the base class
# using Feature<PointInT, PointOutT>::input_;
# using Feature<PointInT, PointOutT>::surface_;
# using Feature<PointInT, PointOutT>::getClassName;
# /** \brief Provide a pointer to the input dataset that contains the point normals of
# * the XYZ dataset.
# * In case of search surface is set to be different from the input cloud,
# * normals should correspond to the search surface, not the input cloud!
# * \param[in] normals the const boost shared pointer to a PointCloud of normals.
# * By convention, L2 norm of each normal should be 1.
# inline void setInputNormals (const PointCloudNConstPtr &normals)
void setInputNormals (cpp.PointCloud_Normal_Ptr_t normals)
# /** \brief Get a pointer to the normals of the input XYZ point cloud dataset. */
# inline PointCloudNConstPtr getInputNormals ()
###
# 3dsc.h
# class ShapeContext3DEstimation : public FeatureFromNormals<PointInT, PointNT, PointOutT>
cdef extern from "pcl/features/3dsc.h" namespace "pcl":
cdef cppclass ShapeContext3DEstimation[In, NT, Out](FeatureFromNormals[In, NT, Out]):
ShapeContext3DEstimation(bool)
# public:
# using Feature<PointInT, PointOutT>::feature_name_;
# using Feature<PointInT, PointOutT>::getClassName;
# using Feature<PointInT, PointOutT>::indices_;
# using Feature<PointInT, PointOutT>::search_parameter_;
# using Feature<PointInT, PointOutT>::search_radius_;
# using Feature<PointInT, PointOutT>::surface_;
# using Feature<PointInT, PointOutT>::input_;
# using Feature<PointInT, PointOutT>::searchForNeighbors;
# using FeatureFromNormals<PointInT, PointNT, PointOutT>::normals_;
# ctypedef typename Feature<PointInT, PointOutT>::PointCloudOut PointCloudOut;
# ctypedef typename Feature<PointInT, PointOutT>::PointCloudIn PointCloudIn;
##
# brief Set the number of bins along the azimuth to \a bins.
# param[in] bins the number of bins along the azimuth
void setAzimuthBins (size_t bins)
# return the number of bins along the azimuth
size_t getAzimuthBins ()
# brief Set the number of bins along the elevation to \a bins.
# param[in] bins the number of bins along the elevation
void setElevationBins (size_t )
# return The number of bins along the elevation
size_t getElevationBins ()
# brief Set the number of bins along the radii to \a bins.
# param[in] bins the number of bins along the radii
void setRadiusBins (size_t )
# return The number of bins along the radii direction
size_t getRadiusBins ()
# brief The minimal radius value for the search sphere (rmin) in the original paper
# param[in] radius the desired minimal radius
void setMinimalRadius (double radius)
# return The minimal sphere radius
double getMinimalRadius ()
# brief This radius is used to compute local point density
# density = number of points within this radius
# param[in] radius value of the point density search radius
void setPointDensityRadius (double radius)
# return The point density search radius
double getPointDensityRadius ()
###
# feature.h
# cdef extern from "pcl/features/feature.h" namespace "pcl":
# cdef inline void solvePlaneParameters (const Eigen::Matrix3f &covariance_matrix,
# const Eigen::Vector4f &point,
# Eigen::Vector4f &plane_parameters, float &curvature);
# cdef inline void solvePlaneParameters (const Eigen::Matrix3f &covariance_matrix,
# float &nx, float &ny, float &nz, float &curvature);
# template <typename PointInT, typename PointLT, typename PointOutT>
# class FeatureFromLabels : public Feature<PointInT, PointOutT>
cdef extern from "pcl/features/feature.h" namespace "pcl":
cdef cppclass FeatureFromLabels[In, LT, Out](Feature[In, Out]):
FeatureFromLabels()
# ctypedef typename Feature<PointInT, PointOutT>::PointCloudIn PointCloudIn;
# ctypedef typename PointCloudIn::Ptr PointCloudInPtr;
# ctypedef typename PointCloudIn::ConstPtr PointCloudInConstPtr;
# ctypedef typename pcl::PointCloud<PointLT> PointCloudL;
# ctypedef typename PointCloudL::Ptr PointCloudNPtr;
# ctypedef typename PointCloudL::ConstPtr PointCloudLConstPtr;
# ctypedef typename Feature<PointInT, PointOutT>::PointCloudOut PointCloudOut;
# public:
# ctypedef boost::shared_ptr< FeatureFromLabels<PointInT, PointLT, PointOutT> > Ptr;
# ctypedef boost::shared_ptr< const FeatureFromLabels<PointInT, PointLT, PointOutT> > ConstPtr;
# // Members derived from the base class
# using Feature<PointInT, PointOutT>::input_;
# using Feature<PointInT, PointOutT>::surface_;
# using Feature<PointInT, PointOutT>::getClassName;
# using Feature<PointInT, PointOutT>::k_;
# /** \brief Provide a pointer to the input dataset that contains the point labels of
# * the XYZ dataset.
# * In case of search surface is set to be different from the input cloud,
# * labels should correspond to the search surface, not the input cloud!
# * \param[in] labels the const boost shared pointer to a PointCloud of labels.
# */
# inline void setInputLabels (const PointCloudLConstPtr &labels)
# inline PointCloudLConstPtr getInputLabels () const
###
### Inheritance class ###
# 3dsc.h
# class ShapeContext3DEstimation<PointInT, PointNT, Eigen::MatrixXf> : public ShapeContext3DEstimation<PointInT, PointNT, pcl::SHOT>
# cdef extern from "pcl/features/3dsc.h" namespace "pcl":
# cdef cppclass ShapeContext3DEstimation[T, N, M]:
# ShapeContext3DEstimation(bool)
# # public:
# # using ShapeContext3DEstimation<PointInT, PointNT, pcl::SHOT>::feature_name_;
# # using ShapeContext3DEstimation<PointInT, PointNT, pcl::SHOT>::indices_;
# # using ShapeContext3DEstimation<PointInT, PointNT, pcl::SHOT>::descriptor_length_;
# # using ShapeContext3DEstimation<PointInT, PointNT, pcl::SHOT>::normals_;
# # using ShapeContext3DEstimation<PointInT, PointNT, pcl::SHOT>::input_;
# # using ShapeContext3DEstimation<PointInT, PointNT, pcl::SHOT>::compute;
###
# class BoundaryEstimation: public FeatureFromNormals<PointInT, PointNT, PointOutT>
cdef extern from "pcl/features/boundary.h" namespace "pcl":
cdef cppclass BoundaryEstimation[In, NT, Out](FeatureFromNormals[In, NT, Out]):
BoundaryEstimation ()
# public:
# using Feature<PointInT, PointOutT>::feature_name_;
# using Feature<PointInT, PointOutT>::getClassName;
# using Feature<PointInT, PointOutT>::input_;
# using Feature<PointInT, PointOutT>::indices_;
# using Feature<PointInT, PointOutT>::k_;
# using Feature<PointInT, PointOutT>::tree_;
# using Feature<PointInT, PointOutT>::search_radius_;
# using Feature<PointInT, PointOutT>::search_parameter_;
# using Feature<PointInT, PointOutT>::surface_;
# using FeatureFromNormals<PointInT, PointNT, PointOutT>::normals_;
# ctypedef typename Feature<PointInT, PointOutT>::PointCloudOut PointCloudOut;
##
# brief Check whether a point is a boundary point in a planar patch of projected points given by indices.
# note A coordinate system u-v-n must be computed a-priori using \a getCoordinateSystemOnPlane
# param[in] cloud a pointer to the input point cloud
# param[in] q_idx the index of the query point in \a cloud
# param[in] indices the estimated point neighbors of the query point
# param[in] u the u direction
# param[in] v the v direction
# param[in] angle_threshold the threshold angle (default \f$\pi / 2.0\f$)
# bool isBoundaryPoint (const cpp.PointCloud[In] &cloud,
# int q_idx, const vector[int] &indices,
# const Eigen::Vector4f &u, const Eigen::Vector4f &v, const float angle_threshold);
# brief Check whether a point is a boundary point in a planar patch of projected points given by indices.
# note A coordinate system u-v-n must be computed a-priori using \a getCoordinateSystemOnPlane
# param[in] cloud a pointer to the input point cloud
# param[in] q_point a pointer to the querry point
# param[in] indices the estimated point neighbors of the query point
# param[in] u the u direction
# param[in] v the v direction
# param[in] angle_threshold the threshold angle (default \f$\pi / 2.0\f$)
# bool isBoundaryPoint (const cpp.PointCloud[In] &cloud,
# const [In] &q_point,
# const vector[int] &indices,
# const Eigen::Vector4f &u, const Eigen::Vector4f &v, const float angle_threshold);
# brief Set the decision boundary (angle threshold) that marks points as boundary or regular.
# (default \f$\pi / 2.0\f$)
# param[in] angle the angle threshold
inline void setAngleThreshold (float angle)
inline float getAngleThreshold ()
# brief Get a u-v-n coordinate system that lies on a plane defined by its normal
# param[in] p_coeff the plane coefficients (containing the plane normal)
# param[out] u the resultant u direction
# param[out] v the resultant v direction
# inline void getCoordinateSystemOnPlane (const PointNT &p_coeff,
# Eigen::Vector4f &u, Eigen::Vector4f &v)
###
# class CVFHEstimation : public FeatureFromNormals<PointInT, PointNT, PointOutT>
# cdef extern from "pcl/features/cvfh.h" namespace "pcl":
# cdef cppclass CVFHEstimation[In, NT, Out](FeatureFromNormals[In, NT, Out]):
# CVFHEstimation()
# # public:
# # using Feature<PointInT, PointOutT>::feature_name_;
# # using Feature<PointInT, PointOutT>::getClassName;
# # using Feature<PointInT, PointOutT>::indices_;
# # using Feature<PointInT, PointOutT>::k_;
# # using Feature<PointInT, PointOutT>::search_radius_;
# # using Feature<PointInT, PointOutT>::surface_;
# # using FeatureFromNormals<PointInT, PointNT, PointOutT>::normals_;
# # ctypedef typename Feature<PointInT, PointOutT>::PointCloudOut PointCloudOut;
# # ctypedef typename pcl::search::Search<PointNormal>::Ptr KdTreePtr;
# # ctypedef typename pcl::NormalEstimation<PointNormal, PointNormal> NormalEstimator;
# # ctypedef typename pcl::VFHEstimation<PointInT, PointNT, pcl::VFHSignature308> VFHEstimator;
# ##
# # brief Removes normals with high curvature caused by real edges or noisy data
# # param[in] cloud pointcloud to be filtered
# # param[out] indices_out the indices of the points with higher curvature than threshold
# # param[out] indices_in the indices of the remaining points after filtering
# # param[in] threshold threshold value for curvature
# void filterNormalsWithHighCurvature (
# const cpp.PointCloud[NT] & cloud,
# vector[int] &indices, vector[int] &indices2,
# vector[int] &, float);
# # brief Set the viewpoint.
# # param[in] vpx the X coordinate of the viewpoint
# # param[in] vpy the Y coordinate of the viewpoint
# # param[in] vpz the Z coordinate of the viewpoint
# inline void setViewPoint (float x, float y, float z)
# # brief Set the radius used to compute normals
# # param[in] radius_normals the radius
# inline void setRadiusNormals (float radius)
# # brief Get the viewpoint.
# # param[out] vpx the X coordinate of the viewpoint
# # param[out] vpy the Y coordinate of the viewpoint
# # param[out] vpz the Z coordinate of the viewpoint
# inline void getViewPoint (float &x, float &y, float &z)
# # brief Get the centroids used to compute different CVFH descriptors
# # param[out] centroids vector to hold the centroids
# # inline void getCentroidClusters (vector[Eigen::Vector3f] &)
# # brief Get the normal centroids used to compute different CVFH descriptors
# # param[out] centroids vector to hold the normal centroids
# # inline void getCentroidNormalClusters (vector[Eigen::Vector3f] &)
# # brief Sets max. Euclidean distance between points to be added to the cluster
# # param[in] d the maximum Euclidean distance
# inline void setClusterTolerance (float tolerance)
# # brief Sets max. deviation of the normals between two points so they can be clustered together
# # param[in] d the maximum deviation
# inline void setEPSAngleThreshold (float angle)
# # brief Sets curvature threshold for removing normals
# # param[in] d the curvature threshold
# inline void setCurvatureThreshold (float curve)
# # brief Set minimum amount of points for a cluster to be considered
# # param[in] min the minimum amount of points to be set
# inline void setMinPoints (size_t points)
# # brief Sets wether if the CVFH signatures should be normalized or not
# # param[in] normalize true if normalization is required, false otherwise
# inline void setNormalizeBins (bool bins)
# # brief Overloaded computed method from pcl::Feature.
# # param[out] output the resultant point cloud model dataset containing the estimated features
# # void compute (cpp.PointCloud[Out] &);
###
# esf.h
# class ESFEstimation: public Feature<PointInT, PointOutT>
cdef extern from "pcl/features/esf.h" namespace "pcl":
cdef cppclass ESFEstimation[In, Out](Feature[In, Out]):
ESFEstimation ()
# public:
# using Feature<PointInT, PointOutT>::feature_name_;
# using Feature<PointInT, PointOutT>::getClassName;
# using Feature<PointInT, PointOutT>::indices_;
# using Feature<PointInT, PointOutT>::k_;
# using Feature<PointInT, PointOutT>::search_radius_;
# using Feature<PointInT, PointOutT>::input_;
# using Feature<PointInT, PointOutT>::surface_;
# ctypedef typename pcl::PointCloud<PointInT> PointCloudIn;
# ctypedef typename Feature<PointInT, PointOutT>::PointCloudOut PointCloudOut;
# void compute (cpp.PointCloud[Out] &output)
###
# template <typename PointInT, typename PointRFT>
# class FeatureWithLocalReferenceFrames
cdef extern from "pcl/features/feature.h" namespace "pcl":
cdef cppclass FeatureWithLocalReferenceFrames[T, REF]:
FeatureWithLocalReferenceFrames ()
# public:
# ctypedef cpp.PointCloud[RFT] PointCloudLRF;
# ctypedef typename PointCloudLRF::Ptr PointCloudLRFPtr;
# ctypedef typename PointCloudLRF::ConstPtr PointCloudLRFConstPtr;
# inline void setInputReferenceFrames (const PointCloudLRFConstPtr &frames)
# inline PointCloudLRFConstPtr getInputReferenceFrames () const
# protected:
# /** \brief A boost shared pointer to the local reference frames. */
# PointCloudLRFConstPtr frames_;
# /** \brief The user has never set the frames. */
# bool frames_never_defined_;
# /** \brief Check if frames_ has been correctly initialized and compute it if needed.
# * \param input the subclass' input cloud dataset.
# * \param lrf_estimation a pointer to a local reference frame estimation class to be used as default.
# * \return true if frames_ has been correctly initialized.
# */
# typedef typename Feature<PointInT, PointRFT>::Ptr LRFEstimationPtr;
# virtual bool
# initLocalReferenceFrames (const size_t& indices_size,
# const LRFEstimationPtr& lrf_estimation = LRFEstimationPtr());
###
# fpfh
# template <typename PointInT, typename PointNT, typename PointOutT = pcl::FPFHSignature33>
# class FPFHEstimation : public FeatureFromNormals<PointInT, PointNT, PointOutT>
cdef extern from "pcl/features/fpfh.h" namespace "pcl":
cdef cppclass FPFHEstimation[In, NT, Out](FeatureFromNormals[In, NT, Out]):
FPFHEstimation()
# public:
# using Feature<PointInT, PointOutT>::feature_name_;
# using Feature<PointInT, PointOutT>::getClassName;
# using Feature<PointInT, PointOutT>::indices_;
# using Feature<PointInT, PointOutT>::k_;
# using Feature<PointInT, PointOutT>::search_parameter_;
# using Feature<PointInT, PointOutT>::input_;
# using Feature<PointInT, PointOutT>::surface_;
# using FeatureFromNormals<PointInT, PointNT, PointOutT>::normals_;
# ctypedef typename Feature<PointInT, PointOutT>::PointCloudOut PointCloudOut;
# * represented by Cartesian coordinates and normals.
# * \note For explanations about the features, please see the literature mentioned above (the order of the
# * features might be different).
# * \param[in] cloud the dataset containing the XYZ Cartesian coordinates of the two points
# * \param[in] normals the dataset containing the surface normals (assuming normalized vectors) at each point in cloud
# * \param[in] p_idx the index of the first point (source)
# * \param[in] q_idx the index of the second point (target)
# * \param[out] f1 the first angular feature (angle between the projection of nq_idx and u)
# * \param[out] f2 the second angular feature (angle between nq_idx and v)
# * \param[out] f3 the third angular feature (angle between np_idx and |p_idx - q_idx|)
# * \param[out] f4 the distance feature (p_idx - q_idx)
# bool computePairFeatures (const pcl::PointCloud<PointInT> &cloud, const pcl::PointCloud<PointNT> &normals, int p_idx, int q_idx, float &f1, float &f2, float &f3, float &f4);
# \brief Estimate the SPFH (Simple Point Feature Histograms) individual signatures of the three angular
# (f1, f2, f3) features for a given point based on its spatial neighborhood of 3D points with normals
# \param[in] cloud the dataset containing the XYZ Cartesian coordinates of the two points
# \param[in] normals the dataset containing the surface normals at each point in \a cloud
# \param[in] p_idx the index of the query point (source)
# \param[in] row the index row in feature histogramms
# \param[in] indices the k-neighborhood point indices in the dataset
# \param[out] hist_f1 the resultant SPFH histogram for feature f1
# \param[out] hist_f2 the resultant SPFH histogram for feature f2
# \param[out] hist_f3 the resultant SPFH histogram for feature f3
# void computePointSPFHSignature (
# const pcl::PointCloud<PointInT> &cloud,
# const pcl::PointCloud<PointNT> &normals, int p_idx, int row,
# const std::vector<int> &indices,
# Eigen::MatrixXf &hist_f1, Eigen::MatrixXf &hist_f2, Eigen::MatrixXf &hist_f3);
# \brief Weight the SPFH (Simple Point Feature Histograms) individual histograms to create the final FPFH
# (Fast Point Feature Histogram) for a given point based on its 3D spatial neighborhood
# \param[in] hist_f1 the histogram feature vector of \a f1 values over the given patch
# \param[in] hist_f2 the histogram feature vector of \a f2 values over the given patch
# \param[in] hist_f3 the histogram feature vector of \a f3 values over the given patch
# \param[in] indices the point indices of p_idx's k-neighborhood in the point cloud
# \param[in] dists the distances from p_idx to all its k-neighbors
# \param[out] fpfh_histogram the resultant FPFH histogram representing the feature at the query point
# void weightPointSPFHSignature (
# const Eigen::MatrixXf &hist_f1,
# const Eigen::MatrixXf &hist_f2,
# const Eigen::MatrixXf &hist_f3,
# const std::vector<int> &indices,
# const std::vector<float> &dists,
# Eigen::VectorXf &fpfh_histogram);
# \brief Set the number of subdivisions for each angular feature interval.
# \param[in] nr_bins_f1 number of subdivisions for the first angular feature
# \param[in] nr_bins_f2 number of subdivisions for the second angular feature
# \param[in] nr_bins_f3 number of subdivisions for the third angular feature
inline void setNrSubdivisions (int , int , int )
# \brief Get the number of subdivisions for each angular feature interval.
# \param[out] nr_bins_f1 number of subdivisions for the first angular feature
# \param[out] nr_bins_f2 number of subdivisions for the second angular feature
# \param[out] nr_bins_f3 number of subdivisions for the third angular feature
inline void getNrSubdivisions (int &, int &, int &)
ctypedef FPFHEstimation[cpp.PointXYZ, cpp.Normal, cpp.PFHSignature125] FPFHEstimation_t
ctypedef shared_ptr[FPFHEstimation[cpp.PointXYZ, cpp.Normal, cpp.PFHSignature125]] FPFHEstimationPtr_t
# template <typename PointInT, typename PointNT>
# class FPFHEstimation<PointInT, PointNT, Eigen::MatrixXf> : public FPFHEstimation<PointInT, PointNT, pcl::FPFHSignature33>
# cdef extern from "pcl/features/feature.h" namespace "pcl":
# cdef cppclass FPFHEstimation[T, NT]:
# FPFHEstimation()
# ctypedef FPFHEstimation[cpp.PointXYZ, cpp.Normal, eigen3.MatrixXf] FPFHEstimation2_t
# ctypedef shared_ptr[FPFHEstimation[cpp.PointXYZ, cpp.Normal, eigen3.MatrixXf]] FPFHEstimation2Ptr_t
###
# fpfh_omp
# template <typename PointInT, typename PointNT, typename PointOutT>
# class FPFHEstimationOMP : public FPFHEstimation<PointInT, PointNT, PointOutT>
cdef extern from "pcl/features/fpfh_omp.h" namespace "pcl":
cdef cppclass FPFHEstimationOMP[In, NT, Out](FPFHEstimation[In, NT, Out]):
FPFHEstimationOMP ()
# FPFHEstimationOMP (unsigned int )
# public:
# using Feature<PointInT, PointOutT>::feature_name_;
# using Feature<PointInT, PointOutT>::getClassName;
# using Feature<PointInT, PointOutT>::indices_;
# using Feature<PointInT, PointOutT>::k_;
# using Feature<PointInT, PointOutT>::search_parameter_;
# using Feature<PointInT, PointOutT>::input_;
# using Feature<PointInT, PointOutT>::surface_;
# using FeatureFromNormals<PointInT, PointNT, PointOutT>::normals_;
# using FPFHEstimation<PointInT, PointNT, PointOutT>::hist_f1_;
# using FPFHEstimation<PointInT, PointNT, PointOutT>::hist_f2_;
# using FPFHEstimation<PointInT, PointNT, PointOutT>::hist_f3_;
# using FPFHEstimation<PointInT, PointNT, PointOutT>::weightPointSPFHSignature;
# ctypedef typename Feature<PointInT, PointOutT>::PointCloudOut PointCloudOut;
# * \brief Initialize the scheduler and set the number of threads to use.
# * \param[in] nr_threads the number of hardware threads to use (-1 sets the value back to automatic)
inline void setNumberOfThreads (unsigned threads)
# public:
# * \brief The number of subdivisions for each angular feature interval. */
# int nr_bins_f1_, nr_bins_f2_, nr_bins_f3_;
###
# integral_image_normal.h
# template <typename PointInT, typename PointOutT>
# class IntegralImageNormalEstimation : public Feature<PointInT, PointOutT>
cdef extern from "pcl/features/integral_image_normal.h" namespace "pcl":
cdef cppclass IntegralImageNormalEstimation[In, Out](Feature[In, Out]):
IntegralImageNormalEstimation ()
# public:
# ctypedef typename Feature<PointInT, PointOutT>::PointCloudIn PointCloudIn;
# ctypedef typename Feature<PointInT, PointOutT>::PointCloudOut PointCloudOut;
#
# * \brief Set the regions size which is considered for normal estimation.
# * \param[in] width the width of the search rectangle
# * \param[in] height the height of the search rectangle
void setRectSize (const int width, const int height)
# * \brief Sets the policy for handling borders.
# * \param[in] border_policy the border policy.
# minipcl
# void setBorderPolicy (BorderPolicy border_policy)
# * \brief Computes the normal at the specified position.
# * \param[in] pos_x x position (pixel)
# * \param[in] pos_y y position (pixel)
# * \param[in] point_index the position index of the point
# * \param[out] normal the output estimated normal
void computePointNormal (const int pos_x, const int pos_y, const unsigned point_index, Out &normal)
# * \brief Computes the normal at the specified position with mirroring for border handling.
# * \param[in] pos_x x position (pixel)
# * \param[in] pos_y y position (pixel)
# * \param[in] point_index the position index of the point
# * \param[out] normal the output estimated normal
void computePointNormalMirror (const int pos_x, const int pos_y, const unsigned point_index, Out &normal)
# * \brief The depth change threshold for computing object borders
# * \param[in] max_depth_change_factor the depth change threshold for computing object borders based on
# * depth changes
void setMaxDepthChangeFactor (float max_depth_change_factor)
# * \brief Set the normal smoothing size
# * \param[in] normal_smoothing_size factor which influences the size of the area used to smooth normals
# * (depth dependent if useDepthDependentSmoothing is true)
void setNormalSmoothingSize (float normal_smoothing_size)
# TODO : use minipcl.cpp/h
# * \brief Set the normal estimation method. The current implemented algorithms are:
# * <ul>
# * <li><b>COVARIANCE_MATRIX</b> - creates 9 integral images to compute the normal for a specific point
# * from the covariance matrix of its local neighborhood.</li>
# * <li><b>AVERAGE_3D_GRADIENT</b> - creates 6 integral images to compute smoothed versions of
# * horizontal and vertical 3D gradients and computes the normals using the cross-product between these
# * two gradients.
# * <li><b>AVERAGE_DEPTH_CHANGE</b> - creates only a single integral image and computes the normals
# * from the average depth changes.
# * </ul>
# * \param[in] normal_estimation_method the method used for normal estimation
# void setNormalEstimationMethod (NormalEstimationMethod2 normal_estimation_method)
# brief Set whether to use depth depending smoothing or not
# param[in] use_depth_dependent_smoothing decides whether the smoothing is depth dependent
void setDepthDependentSmoothing (bool use_depth_dependent_smoothing)
# brief Provide a pointer to the input dataset (overwrites the PCLBase::setInputCloud method)
# \param[in] cloud the const boost shared pointer to a PointCloud message
# void setInputCloud (const typename PointCloudIn::ConstPtr &cloud)
void setInputCloud (In cloud)
# brief Returns a pointer to the distance map which was computed internally
inline float* getDistanceMap ()
# * \brief Set the viewpoint.
# * \param vpx the X coordinate of the viewpoint
# * \param vpy the Y coordinate of the viewpoint
# * \param vpz the Z coordinate of the viewpoint
inline void setViewPoint (float vpx, float vpy, float vpz)
# * \brief Get the viewpoint.
# * \param [out] vpx x-coordinate of the view point
# * \param [out] vpy y-coordinate of the view point
# * \param [out] vpz z-coordinate of the view point
# * \note this method returns the currently used viewpoint for normal flipping.
# * If the viewpoint is set manually using the setViewPoint method, this method will return the set view point coordinates.
# * If an input cloud is set, it will return the sensor origin otherwise it will return the origin (0, 0, 0)
inline void getViewPoint (float &vpx, float &vpy, float &vpz)
# * \brief sets whether the sensor origin or a user given viewpoint should be used. After this method, the
# * normal estimation method uses the sensor origin of the input cloud.
# * to use a user defined view point, use the method setViewPoint
inline void useSensorOriginAsViewPoint ()
ctypedef IntegralImageNormalEstimation[cpp.PointXYZ, cpp.Normal] IntegralImageNormalEstimation_t
ctypedef IntegralImageNormalEstimation[cpp.PointXYZI, cpp.Normal] IntegralImageNormalEstimation_PointXYZI_t
ctypedef IntegralImageNormalEstimation[cpp.PointXYZRGB, cpp.Normal] IntegralImageNormalEstimation_PointXYZRGB_t
ctypedef IntegralImageNormalEstimation[cpp.PointXYZRGBA, cpp.Normal] IntegralImageNormalEstimation_PointXYZRGBA_t
ctypedef shared_ptr[IntegralImageNormalEstimation[cpp.PointXYZ, cpp.Normal]] IntegralImageNormalEstimationPtr_t
ctypedef shared_ptr[IntegralImageNormalEstimation[cpp.PointXYZI, cpp.Normal]] IntegralImageNormalEstimation_PointXYZI_Ptr_t
ctypedef shared_ptr[IntegralImageNormalEstimation[cpp.PointXYZRGB, cpp.Normal]] IntegralImageNormalEstimation_PointXYZRGB_Ptr_t
ctypedef shared_ptr[IntegralImageNormalEstimation[cpp.PointXYZRGBA, cpp.Normal]] IntegralImageNormalEstimation_PointXYZRGBA_Ptr_t
###
# integral_image2D.h
# template <class DataType, unsigned Dimension>
# class IntegralImage2D
cdef extern from "pcl/features/integral_image_normal.h" namespace "pcl":
cdef cppclass IntegralImage2D[Type, Dim]:
# IntegralImage2D ()
IntegralImage2D (bool flag)
# public:
# static const unsigned second_order_size = (Dimension * (Dimension + 1)) >> 1;
# ctypedef Eigen::Matrix<typename IntegralImageTypeTraits<DataType>::IntegralType, Dimension, 1> ElementType;
# ctypedef Eigen::Matrix<typename IntegralImageTypeTraits<DataType>::IntegralType, second_order_size, 1> SecondOrderType;
# void setSecondOrderComputation (bool compute_second_order_integral_images);
# * \brief Set the input data to compute the integral image for
# * \param[in] data the input data
# * \param[in] width the width of the data
# * \param[in] height the height of the data
# * \param[in] element_stride the element stride of the data
# * \param[in] row_stride the row stride of the data
# void setInput (const DataType * data, unsigned width, unsigned height, unsigned element_stride, unsigned row_stride)
# * \brief Compute the first order sum within a given rectangle
# * \param[in] start_x x position of rectangle
# * \param[in] start_y y position of rectangle
# * \param[in] width width of rectangle
# * \param[in] height height of rectangle
# inline ElementType getFirstOrderSum (unsigned start_x, unsigned start_y, unsigned width, unsigned height) const
# /** \brief Compute the first order sum within a given rectangle
# * \param[in] start_x x position of the start of the rectangle
# * \param[in] start_y x position of the start of the rectangle
# * \param[in] end_x x position of the end of the rectangle
# * \param[in] end_y x position of the end of the rectangle
# inline ElementType getFirstOrderSumSE (unsigned start_x, unsigned start_y, unsigned end_x, unsigned end_y) const
# /** \brief Compute the second order sum within a given rectangle
# * \param[in] start_x x position of rectangle
# * \param[in] start_y y position of rectangle
# * \param[in] width width of rectangle
# * \param[in] height height of rectangle
# inline SecondOrderType getSecondOrderSum (unsigned start_x, unsigned start_y, unsigned width, unsigned height) const
# /** \brief Compute the second order sum within a given rectangle
# * \param[in] start_x x position of the start of the rectangle
# * \param[in] start_y x position of the start of the rectangle
# * \param[in] end_x x position of the end of the rectangle
# * \param[in] end_y x position of the end of the rectangle
# inline SecondOrderType getSecondOrderSumSE (unsigned start_x, unsigned start_y, unsigned end_x, unsigned end_y) const
# /** \brief Compute the number of finite elements within a given rectangle
# * \param[in] start_x x position of rectangle
# * \param[in] start_y y position of rectangle
# * \param[in] width width of rectangle
# * \param[in] height height of rectangle
inline unsigned getFiniteElementsCount (unsigned start_x, unsigned start_y, unsigned width, unsigned height) const
# /** \brief Compute the number of finite elements within a given rectangle
# * \param[in] start_x x position of the start of the rectangle
# * \param[in] start_y x position of the start of the rectangle
# * \param[in] end_x x position of the end of the rectangle
# * \param[in] end_y x position of the end of the rectangle
inline unsigned getFiniteElementsCountSE (unsigned start_x, unsigned start_y, unsigned end_x, unsigned end_y) const
###
# template <class DataType>
# class IntegralImage2D <DataType, 1>
# cdef extern from "pcl/features/integral_image_normal.h" namespace "pcl":
# cdef cppclass IntegralImage2D[Type]:
# # IntegralImage2D ()
# IntegralImage2D (bool flag)
# # public:
# # static const unsigned second_order_size = 1;
# # ctypedef typename IntegralImageTypeTraits<DataType>::IntegralType ElementType;
# # ctypedef typename IntegralImageTypeTraits<DataType>::IntegralType SecondOrderType;
# # /** \brief Set the input data to compute the integral image for
# # * \param[in] data the input data
# # * \param[in] width the width of the data
# # * \param[in] height the height of the data
# # * \param[in] element_stride the element stride of the data
# # * \param[in] row_stride the row stride of the data
# # */
# # void setInput (const DataType * data, unsigned width, unsigned height, unsigned element_stride, unsigned row_stride);
# # /** \brief Compute the first order sum within a given rectangle
# # * \param[in] start_x x position of rectangle
# # * \param[in] start_y y position of rectangle
# # * \param[in] width width of rectangle
# # * \param[in] height height of rectangle
# # */
# # inline ElementType getFirstOrderSum (unsigned start_x, unsigned start_y, unsigned width, unsigned height) const;
# # /** \brief Compute the first order sum within a given rectangle
# # * \param[in] start_x x position of the start of the rectangle
# # * \param[in] start_y x position of the start of the rectangle
# # * \param[in] end_x x position of the end of the rectangle
# # * \param[in] end_y x position of the end of the rectangle
# # */
# # inline ElementType getFirstOrderSumSE (unsigned start_x, unsigned start_y, unsigned end_x, unsigned end_y) const;
# # /** \brief Compute the second order sum within a given rectangle
# # * \param[in] start_x x position of rectangle
# # * \param[in] start_y y position of rectangle
# # * \param[in] width width of rectangle
# # * \param[in] height height of rectangle
# # */
# # inline SecondOrderType getSecondOrderSum (unsigned start_x, unsigned start_y, unsigned width, unsigned height) const;
# # /** \brief Compute the second order sum within a given rectangle
# # * \param[in] start_x x position of the start of the rectangle
# # * \param[in] start_y x position of the start of the rectangle
# # * \param[in] end_x x position of the end of the rectangle
# # * \param[in] end_y x position of the end of the rectangle
# # inline SecondOrderType getSecondOrderSumSE (unsigned start_x, unsigned start_y, unsigned end_x, unsigned end_y) const;
# # /** \brief Compute the number of finite elements within a given rectangle
# # * \param[in] start_x x position of rectangle
# # * \param[in] start_y y position of rectangle
# # * \param[in] width width of rectangle
# # * \param[in] height height of rectangle
# # */
# inline unsigned getFiniteElementsCount (unsigned start_x, unsigned start_y, unsigned width, unsigned height) const;
# # /** \brief Compute the number of finite elements within a given rectangle
# # * \param[in] start_x x position of the start of the rectangle
# # * \param[in] start_y x position of the start of the rectangle
# # * \param[in] end_x x position of the end of the rectangle
# # * \param[in] end_y x position of the end of the rectangle
# # */
# inline unsigned getFiniteElementsCountSE (unsigned start_x, unsigned start_y, unsigned end_x, unsigned end_y) const;
###
# intensity_gradient.h
# template <typename PointInT, typename PointNT, typename PointOutT, typename IntensitySelectorT = pcl::common::IntensityFieldAccessor<PointInT> >
# class IntensityGradientEstimation : public FeatureFromNormals<PointInT, PointNT, PointOutT>
cdef extern from "pcl/features/intensity_gradient.h" namespace "pcl":
cdef cppclass IntensityGradientEstimation[In, NT, Out, Intensity](FeatureFromNormals[In, NT, Out]):
IntensityGradientEstimation ()
# public:
# using Feature<PointInT, PointOutT>::feature_name_;
# using Feature<PointInT, PointOutT>::getClassName;
# using Feature<PointInT, PointOutT>::indices_;
# using Feature<PointInT, PointOutT>::surface_;
# using Feature<PointInT, PointOutT>::k_;
# using Feature<PointInT, PointOutT>::search_parameter_;
# using FeatureFromNormals<PointInT, PointNT, PointOutT>::normals_;
# typedef typename Feature<PointInT, PointOutT>::PointCloudOut PointCloudOut;
# brief Initialize the scheduler and set the number of threads to use.
# param nr_threads the number of hardware threads to use (-1 sets the value back to automatic)
# inline void setNumberOfThreads (int nr_threads)
###
# template <typename PointInT, typename PointNT>
# class IntensityGradientEstimation<PointInT, PointNT, Eigen::MatrixXf>: public IntensityGradientEstimation<PointInT, PointNT, pcl::IntensityGradient>
# cdef extern from "pcl/features/intensity_gradient.h" namespace "pcl":
# cdef cppclass IntensityGradientEstimation[In, NT]:
# IntensityGradientEstimation ()
# # public:
# # using IntensityGradientEstimation<PointInT, PointNT, pcl::IntensityGradient>::indices_;
# # using IntensityGradientEstimation<PointInT, PointNT, pcl::IntensityGradient>::normals_;
# # using IntensityGradientEstimation<PointInT, PointNT, pcl::IntensityGradient>::input_;
# # using IntensityGradientEstimation<PointInT, PointNT, pcl::IntensityGradient>::surface_;
# # using IntensityGradientEstimation<PointInT, PointNT, pcl::IntensityGradient>::k_;
# # using IntensityGradientEstimation<PointInT, PointNT, pcl::IntensityGradient>::search_parameter_;
# # using IntensityGradientEstimation<PointInT, PointNT, pcl::IntensityGradient>::compute;
###
# intensity_spin.h
# template <typename PointInT, typename PointOutT>
# class IntensitySpinEstimation: public Feature<PointInT, PointOutT>
cdef extern from "pcl/features/intensity_spin.h" namespace "pcl":
cdef cppclass IntensitySpinEstimation[In, Out](Feature[In, Out]):
IntensitySpinEstimation ()
# public:
# using Feature<PointInT, PointOutT>::feature_name_;
# using Feature<PointInT, PointOutT>::getClassName;
# using Feature<PointInT, PointOutT>::input_;
# using Feature<PointInT, PointOutT>::indices_;
# using Feature<PointInT, PointOutT>::surface_;
# using Feature<PointInT, PointOutT>::tree_;
# using Feature<PointInT, PointOutT>::search_radius_;
# ctypedef typename pcl::PointCloud<PointInT> PointCloudIn;
# ctypedef typename Feature<PointInT, PointOutT>::PointCloudOut PointCloudOut;
##
# /** \brief Estimate the intensity-domain spin image descriptor for a given point based on its spatial
# * neighborhood of 3D points and their intensities.
# * \param[in] cloud the dataset containing the Cartesian coordinates and intensity values of the points
# * \param[in] radius the radius of the feature
# * \param[in] sigma the standard deviation of the Gaussian smoothing kernel to use during the soft histogram update
# * \param[in] k the number of neighbors to use from \a indices and \a squared_distances
# * \param[in] indices the indices of the points that comprise the query point's neighborhood
# * \param[in] squared_distances the squared distances from the query point to each point in the neighborhood
# * \param[out] intensity_spin_image the resultant intensity-domain spin image descriptor
# */
# void computeIntensitySpinImage (const PointCloudIn &cloud,
# float radius, float sigma, int k,
# const std::vector<int> &indices,
# const std::vector<float> &squared_distances,
# Eigen::MatrixXf &intensity_spin_image);
# /** \brief Set the number of bins to use in the distance dimension of the spin image
# * \param[in] nr_distance_bins the number of bins to use in the distance dimension of the spin image
# */
# inline void setNrDistanceBins (size_t nr_distance_bins) { nr_distance_bins_ = static_cast<int> (nr_distance_bins); };
# /** \brief Returns the number of bins in the distance dimension of the spin image. */
# inline int getNrDistanceBins ()
# /** \brief Set the number of bins to use in the intensity dimension of the spin image.
# * \param[in] nr_intensity_bins the number of bins to use in the intensity dimension of the spin image
# */
# inline void setNrIntensityBins (size_t nr_intensity_bins)
# /** \brief Returns the number of bins in the intensity dimension of the spin image. */
# inline int getNrIntensityBins ()
# /** \brief Set the standard deviation of the Gaussian smoothing kernel to use when constructing the spin images.
# * \param[in] sigma the standard deviation of the Gaussian smoothing kernel to use when constructing the spin images
# inline void setSmoothingBandwith (float sigma)
# /** \brief Returns the standard deviation of the Gaussian smoothing kernel used to construct the spin images. */
# inline float getSmoothingBandwith ()
# /** \brief Estimate the intensity-domain descriptors at a set of points given by <setInputCloud (), setIndices ()>
# * using the surface in setSearchSurface (), and the spatial locator in setSearchMethod ().
# * \param[out] output the resultant point cloud model dataset that contains the intensity-domain spin image features
# void computeFeature (PointCloudOut &output);
# /** \brief The number of distance bins in the descriptor. */
# int nr_distance_bins_;
# /** \brief The number of intensity bins in the descriptor. */
# int nr_intensity_bins_;
# /** \brief The standard deviation of the Gaussian smoothing kernel used to construct the spin images. */
# float sigma_;
###
# template <typename PointInT>
# class IntensitySpinEstimation<PointInT, Eigen::MatrixXf>: public IntensitySpinEstimation<PointInT, pcl::Histogram<20> >
# cdef extern from "pcl/features/intensity_spin.h" namespace "pcl":
# cdef cppclass IntensitySpinEstimation[In](IntensitySpinEstimation[In]):
# IntensitySpinEstimation ()
# # public:
# # using IntensitySpinEstimation<PointInT, pcl::Histogram<20> >::getClassName;
# # using IntensitySpinEstimation<PointInT, pcl::Histogram<20> >::input_;
# # using IntensitySpinEstimation<PointInT, pcl::Histogram<20> >::indices_;
# # using IntensitySpinEstimation<PointInT, pcl::Histogram<20> >::surface_;
# # using IntensitySpinEstimation<PointInT, pcl::Histogram<20> >::search_radius_;
# # using IntensitySpinEstimation<PointInT, pcl::Histogram<20> >::nr_intensity_bins_;
# # using IntensitySpinEstimation<PointInT, pcl::Histogram<20> >::nr_distance_bins_;
# # using IntensitySpinEstimation<PointInT, pcl::Histogram<20> >::tree_;
# # using IntensitySpinEstimation<PointInT, pcl::Histogram<20> >::sigma_;
# # using IntensitySpinEstimation<PointInT, pcl::Histogram<20> >::compute;
###
# moment_invariants.h
# template <typename PointInT, typename PointOutT>
# class MomentInvariantsEstimation: public Feature<PointInT, PointOutT>
cdef extern from "pcl/features/moment_invariants.h" namespace "pcl":
cdef cppclass MomentInvariantsEstimation[In, Out](Feature[In, Out]):
MomentInvariantsEstimation ()
# public:
# using Feature<PointInT, PointOutT>::feature_name_;
# using Feature<PointInT, PointOutT>::getClassName;
# using Feature<PointInT, PointOutT>::indices_;
# using Feature<PointInT, PointOutT>::k_;
# using Feature<PointInT, PointOutT>::search_parameter_;
# using Feature<PointInT, PointOutT>::surface_;
# using Feature<PointInT, PointOutT>::input_;
# typedef typename Feature<PointInT, PointOutT>::PointCloudOut PointCloudOut;
# /** \brief Compute the 3 moment invariants (j1, j2, j3) for a given set of points, using their indices.
# * \param[in] cloud the input point cloud
# * \param[in] indices the point cloud indices that need to be used
# * \param[out] j1 the resultant first moment invariant
# * \param[out] j2 the resultant second moment invariant
# * \param[out] j3 the resultant third moment invariant
# */
# void computePointMomentInvariants (const pcl::PointCloud<PointInT> &cloud,
# const std::vector<int> &indices,
# float &j1, float &j2, float &j3);
# * \brief Compute the 3 moment invariants (j1, j2, j3) for a given set of points, using their indices.
# * \param[in] cloud the input point cloud
# * \param[out] j1 the resultant first moment invariant
# * \param[out] j2 the resultant second moment invariant
# * \param[out] j3 the resultant third moment invariant
# void computePointMomentInvariants (const pcl::PointCloud<PointInT> &cloud,
# float &j1, float &j2, float &j3);
###
# template <typename PointInT>
# class MomentInvariantsEstimation<PointInT, Eigen::MatrixXf>: public MomentInvariantsEstimation<PointInT, pcl::MomentInvariants>
# cdef extern from "pcl/features/moment_invariants.h" namespace "pcl":
# cdef cppclass MomentInvariantsEstimation[In, Out](MomentInvariantsEstimation[In]):
# MomentInvariantsEstimation ()
# public:
# using MomentInvariantsEstimation<PointInT, pcl::MomentInvariants>::k_;
# using MomentInvariantsEstimation<PointInT, pcl::MomentInvariants>::indices_;
# using MomentInvariantsEstimation<PointInT, pcl::MomentInvariants>::search_parameter_;
# using MomentInvariantsEstimation<PointInT, pcl::MomentInvariants>::surface_;
# using MomentInvariantsEstimation<PointInT, pcl::MomentInvariants>::input_;
# using MomentInvariantsEstimation<PointInT, pcl::MomentInvariants>::compute;
###
# multiscale_feature_persistence.h
# template <typename PointSource, typename PointFeature>
# class MultiscaleFeaturePersistence : public PCLBase<PointSource>
cdef extern from "pcl/features/multiscale_feature_persistence.h" namespace "pcl":
cdef cppclass MultiscaleFeaturePersistence[Source, Feature](cpp.PCLBase[Source]):
MultiscaleFeaturePersistence ()
# public:
# typedef pcl::PointCloud<PointFeature> FeatureCloud;
# typedef typename pcl::PointCloud<PointFeature>::Ptr FeatureCloudPtr;
# typedef typename pcl::Feature<PointSource, PointFeature>::Ptr FeatureEstimatorPtr;
# typedef boost::shared_ptr<const pcl::PointRepresentation <PointFeature> > FeatureRepresentationConstPtr;
# using pcl::PCLBase<PointSource>::input_;
#
# /** \brief Method that calls computeFeatureAtScale () for each scale parameter */
# void computeFeaturesAtAllScales ();
# /** \brief Central function that computes the persistent features
# * \param output_features a cloud containing the persistent features
# * \param output_indices vector containing the indices of the points in the input cloud
# * that have persistent features, under a one-to-one correspondence with the output_features cloud
# */
# void determinePersistentFeatures (FeatureCloud &output_features, boost::shared_ptr<std::vector<int> > &output_indices);
# /** \brief Method for setting the scale parameters for the algorithm
# * \param scale_values vector of scales to determine the characteristic of each scaling step
# */
inline void setScalesVector (vector[float] &scale_values)
# /** \brief Method for getting the scale parameters vector */
inline vector[float] getScalesVector ()
# /** \brief Setter method for the feature estimator
# * \param feature_estimator pointer to the feature estimator instance that will be used
# * \note the feature estimator instance should already have the input data given beforehand
# * and everything set, ready to be given the compute () command
# */
# inline void setFeatureEstimator (FeatureEstimatorPtr feature_estimator)
# /** \brief Getter method for the feature estimator */
# inline FeatureEstimatorPtr getFeatureEstimator ()
# \brief Provide a pointer to the feature representation to use to convert features to k-D vectors.
# \param feature_representation the const boost shared pointer to a PointRepresentation
# inline void setPointRepresentation (const FeatureRepresentationConstPtr& feature_representation)
# \brief Get a pointer to the feature representation used when converting features into k-D vectors. */
# inline FeatureRepresentationConstPtr const getPointRepresentation ()
# \brief Sets the alpha parameter
# \param alpha value to replace the current alpha with
inline void setAlpha (float alpha)
# /** \brief Get the value of the alpha parameter */
inline float getAlpha ()
# /** \brief Method for setting the distance metric that will be used for computing the difference between feature vectors
# * \param distance_metric the new distance metric chosen from the NormType enum
# inline void setDistanceMetric (NormType distance_metric)
# /** \brief Returns the distance metric that is currently used to calculate the difference between feature vectors */
# inline NormType getDistanceMetric ()
###
# narf.h
# namespace pcl
# {
# // Forward declarations
# class RangeImage;
# struct InterestPoint;
#
# #define NARF_DEFAULT_SURFACE_PATCH_PIXEL_SIZE 10
# narf.h
# namespace pcl
# /**
# * \brief NARF (Normal Aligned Radial Features) is a point feature descriptor type for 3D data.
# * Please refer to pcl/features/narf_descriptor.h if you want the class derived from pcl Feature.
# * See B. Steder, R. B. Rusu, K. Konolige, and W. Burgard
# * Point Feature Extraction on 3D Range Scans Taking into Account Object Boundaries
# * In Proc. of the IEEE Int. Conf. on Robotics &Automation (ICRA). 2011.
# * \author Bastian Steder
# * \ingroup features
# */
# class PCL_EXPORTS Narf
# public:
# // =====CONSTRUCTOR & DESTRUCTOR=====
# //! Constructor
# Narf();
# //! Copy Constructor
# Narf(const Narf& other);
# //! Destructor
# ~Narf();
#
# // =====Operators=====
# //! Assignment operator
# const Narf& operator=(const Narf& other);
#
# // =====STATIC=====
# /** The maximum number of openmp threads that can be used in this class */
# static int max_no_of_threads;
#
# /** Add features extracted at the given interest point and add them to the list */
# static void extractFromRangeImageAndAddToList (const RangeImage& range_image, const Eigen::Vector3f& interest_point, int descriptor_size, float support_size, bool rotation_invariant, std::vector<Narf*>& feature_list);
#
# /** Same as above */
# static void extractFromRangeImageAndAddToList (const RangeImage& range_image, float image_x, float image_y, int descriptor_size,float support_size, bool rotation_invariant, std::vector<Narf*>& feature_list);
#
# /** Get a list of features from the given interest points. */
# static void extractForInterestPoints (const RangeImage& range_image, const PointCloud<InterestPoint>& interest_points, int descriptor_size, float support_size, bool rotation_invariant, std::vector<Narf*>& feature_list);
#
# /** Extract an NARF for every point in the range image. */
# static void extractForEveryRangeImagePointAndAddToList (const RangeImage& range_image, int descriptor_size, float support_size, bool rotation_invariant, std::vector<Narf*>& feature_list);
#
# // =====PUBLIC METHODS=====
# /** Method to extract a NARF feature from a certain 3D point using a range image.
# * pose determines the coordinate system of the feature, whereas it transforms a point from the world into the feature system.
# * This means the interest point at which the feature is extracted will be the inverse application of pose onto (0,0,0).
# * descriptor_size_ determines the size of the descriptor,
# * support_size determines the support size of the feature, meaning the size in the world it covers */
# bool extractFromRangeImage (const RangeImage& range_image, const Eigen::Affine3f& pose, int descriptor_size, float support_size,int surface_patch_world_size=NARF_DEFAULT_SURFACE_PATCH_PIXEL_SIZE);
#
# //! Same as above, but determines the transformation from the surface in the range image
# bool extractFromRangeImage (const RangeImage& range_image, float x, float y, int descriptor_size, float support_size);
#
# //! Same as above
# bool extractFromRangeImage (const RangeImage& range_image, const InterestPoint& interest_point, int descriptor_size, float support_size);
#
# //! Same as above
# bool extractFromRangeImage (const RangeImage& range_image, const Eigen::Vector3f& interest_point, int descriptor_size, float support_size);
#
# /** Same as above, but using the rotational invariant version by choosing the best extracted rotation around the normal.
# * Use extractFromRangeImageAndAddToList if you want to enable the system to return multiple features with different rotations. */
# bool extractFromRangeImageWithBestRotation (const RangeImage& range_image, const Eigen::Vector3f& interest_point, int descriptor_size, float support_size);
#
# /* Get the dominant rotations of the current descriptor
# * \param rotations the returned rotations
# * \param strength values describing how pronounced the corresponding rotations are
# */
# void getRotations (std::vector<float>& rotations, std::vector<float>& strengths) const;
#
# /* Get the feature with a different rotation around the normal
# * You are responsible for deleting the new features!
# * \param range_image the source from which the feature is extracted
# * \param rotations list of angles (in radians)
# * \param rvps returned features
# */
# void getRotatedVersions (const RangeImage& range_image, const std::vector<float>& rotations, std::vector<Narf*>& features) const;
#
# //! Calculate descriptor distance, value in [0,1] with 0 meaning identical and 1 every cell above maximum distance
# inline float getDescriptorDistance (const Narf& other) const;
#
# //! How many points on each beam of the gradient star are used to calculate the descriptor?
# inline int getNoOfBeamPoints () const { return (static_cast<int> (pcl_lrint (ceil (0.5f * float (surface_patch_pixel_size_))))); }
#
# //! Copy the descriptor and pose to the point struct Narf36
# inline void copyToNarf36 (Narf36& narf36) const;
#
# /** Write to file */
# void saveBinary (const std::string& filename) const;
#
# /** Write to output stream */
# void saveBinary (std::ostream& file) const;
#
# /** Read from file */
# void loadBinary (const std::string& filename);
# /** Read from input stream */
# void loadBinary (std::istream& file);
#
# //! Create the descriptor from the already set other members
# bool extractDescriptor (int descriptor_size);
#
# // =====GETTERS=====
# //! Getter (const) for the descriptor
# inline const float* getDescriptor () const { return descriptor_;}
# //! Getter for the descriptor
# inline float* getDescriptor () { return descriptor_;}
# //! Getter (const) for the descriptor length
# inline const int& getDescriptorSize () const { return descriptor_size_;}
# //! Getter for the descriptor length
# inline int& getDescriptorSize () { return descriptor_size_;}
# //! Getter (const) for the position
# inline const Eigen::Vector3f& getPosition () const { return position_;}
# //! Getter for the position
# inline Eigen::Vector3f& getPosition () { return position_;}
# //! Getter (const) for the 6DoF pose
# inline const Eigen::Affine3f& getTransformation () const { return transformation_;}
# //! Getter for the 6DoF pose
# inline Eigen::Affine3f& getTransformation () { return transformation_;}
# //! Getter (const) for the pixel size of the surface patch (only one dimension)
# inline const int& getSurfacePatchPixelSize () const { return surface_patch_pixel_size_;}
# //! Getter for the pixel size of the surface patch (only one dimension)
# inline int& getSurfacePatchPixelSize () { return surface_patch_pixel_size_;}
# //! Getter (const) for the world size of the surface patch
# inline const float& getSurfacePatchWorldSize () const { return surface_patch_world_size_;}
# //! Getter for the world size of the surface patch
# inline float& getSurfacePatchWorldSize () { return surface_patch_world_size_;}
# //! Getter (const) for the rotation of the surface patch
# inline const float& getSurfacePatchRotation () const { return surface_patch_rotation_;}
# //! Getter for the rotation of the surface patch
# inline float& getSurfacePatchRotation () { return surface_patch_rotation_;}
# //! Getter (const) for the surface patch
# inline const float* getSurfacePatch () const { return surface_patch_;}
# //! Getter for the surface patch
# inline float* getSurfacePatch () { return surface_patch_;}
# //! Method to erase the surface patch and free the memory
# inline void freeSurfacePatch () { delete[] surface_patch_; surface_patch_=NULL; surface_patch_pixel_size_=0; }
#
# // =====SETTERS=====
# //! Setter for the descriptor
# inline void setDescriptor (float* descriptor) { descriptor_ = descriptor;}
# //! Setter for the surface patch
# inline void setSurfacePatch (float* surface_patch) { surface_patch_ = surface_patch;}
#
# // =====PUBLIC MEMBER VARIABLES=====
#
# // =====PUBLIC STRUCTS=====
# struct FeaturePointRepresentation : public PointRepresentation<Narf*>
# {
# typedef Narf* PointT;
# FeaturePointRepresentation(int nr_dimensions) { this->nr_dimensions_ = nr_dimensions; }
# /** \brief Empty destructor */
# virtual ~FeaturePointRepresentation () {}
# virtual void copyToFloatArray (const PointT& p, float* out) const { memcpy(out, p->getDescriptor(), sizeof(*p->getDescriptor())*this->nr_dimensions_); }
# };
###
# narf_descriptor.h
# namespace pcl
# // Forward declarations
# class RangeImage;
##
# narf_descriptor.h
# namespace pcl
# /** @b Computes NARF feature descriptors for points in a range image
# * See B. Steder, R. B. Rusu, K. Konolige, and W. Burgard
# * Point Feature Extraction on 3D Range Scans Taking into Account Object Boundaries
# * In Proc. of the IEEE Int. Conf. on Robotics &Automation (ICRA). 2011.
# * \author Bastian Steder
# * \ingroup features
# */
# class PCL_EXPORTS NarfDescriptor : public Feature<PointWithRange,Narf36>
# public:
# typedef boost::shared_ptr<NarfDescriptor> Ptr;
# typedef boost::shared_ptr<const NarfDescriptor> ConstPtr;
# // =====TYPEDEFS=====
# typedef Feature<PointWithRange,Narf36> BaseClass;
#
# // =====STRUCTS/CLASSES=====
# struct Parameters
# {
# Parameters() : support_size(-1.0f), rotation_invariant(true) {}
# float support_size;
# bool rotation_invariant;
# };
#
# // =====CONSTRUCTOR & DESTRUCTOR=====
# /** Constructor */
# NarfDescriptor (const RangeImage* range_image=NULL, const std::vector<int>* indices=NULL);
# /** Destructor */
# virtual ~NarfDescriptor();
#
# // =====METHODS=====
# //! Set input data
# void setRangeImage (const RangeImage* range_image, const std::vector<int>* indices=NULL);
#
# //! Overwrite the compute function of the base class
# void compute (cpp.PointCloud[Out]& output);
#
# // =====GETTER=====
# //! Get a reference to the parameters struct
# Parameters& getParameters () { return parameters_;}
###
# normal_3d.h
# cdef extern from "pcl/features/normal_3d.h" namespace "pcl":
# cdef cppclass NormalEstimation[I, N, O]:
# NormalEstimation()
#
# template <typename PointT> inline void
# computePointNormal (const pcl::PointCloud<PointT> &cloud,
# Eigen::Vector4f &plane_parameters, float &curvature)
# /** \brief Compute the Least-Squares plane fit for a given set of points, using their indices,
# * and return the estimated plane parameters together with the surface curvature.
# * \param cloud the input point cloud
# * \param indices the point cloud indices that need to be used
# * \param plane_parameters the plane parameters as: a, b, c, d (ax + by + cz + d = 0)
# * \param curvature the estimated surface curvature as a measure of
# * \f[
# * \lambda_0 / (\lambda_0 + \lambda_1 + \lambda_2)
# * \f]
# * \ingroup features
# */
# template <typename PointT> inline void
# computePointNormal (const pcl::PointCloud<PointT> &cloud, const std::vector<int> &indices,
# Eigen::Vector4f &plane_parameters, float &curvature)
#
# /** \brief Flip (in place) the estimated normal of a point towards a given viewpoint
# * \param point a given point
# * \param vp_x the X coordinate of the viewpoint
# * \param vp_y the X coordinate of the viewpoint
# * \param vp_z the X coordinate of the viewpoint
# * \param normal the plane normal to be flipped
# * \ingroup features
# */
# template <typename PointT, typename Scalar> inline void
# flipNormalTowardsViewpoint (const PointT &point, float vp_x, float vp_y, float vp_z,
# Eigen::Matrix<Scalar, 4, 1>& normal)
#
# /** \brief Flip (in place) the estimated normal of a point towards a given viewpoint
# * \param point a given point
# * \param vp_x the X coordinate of the viewpoint
# * \param vp_y the X coordinate of the viewpoint
# * \param vp_z the X coordinate of the viewpoint
# * \param normal the plane normal to be flipped
# * \ingroup features
# */
# template <typename PointT, typename Scalar> inline void
# flipNormalTowardsViewpoint (const PointT &point, float vp_x, float vp_y, float vp_z,
# Eigen::Matrix<Scalar, 3, 1>& normal)
#
# /** \brief Flip (in place) the estimated normal of a point towards a given viewpoint
# * \param point a given point
# * \param vp_x the X coordinate of the viewpoint
# * \param vp_y the X coordinate of the viewpoint
# * \param vp_z the X coordinate of the viewpoint
# * \param nx the resultant X component of the plane normal
# * \param ny the resultant Y component of the plane normal
# * \param nz the resultant Z component of the plane normal
# * \ingroup features
# */
# template <typename PointT> inline void
# flipNormalTowardsViewpoint (const PointT &point, float vp_x, float vp_y, float vp_z,
# float &nx, float &ny, float &nz)
#
# template <typename PointInT, typename PointOutT>
# class NormalEstimation : public Feature<PointInT, PointOutT>
cdef extern from "pcl/features/normal_3d.h" namespace "pcl":
cdef cppclass NormalEstimation[In, Out](Feature[In, Out]):
NormalEstimation ()
# public:
# using Feature<PointInT, PointOutT>::feature_name_;
# using Feature<PointInT, PointOutT>::getClassName;
# using Feature<PointInT, PointOutT>::indices_;
# using Feature<PointInT, PointOutT>::input_;
# using Feature<PointInT, PointOutT>::surface_;
# using Feature<PointInT, PointOutT>::k_;
# using Feature<PointInT, PointOutT>::search_radius_;
# using Feature<PointInT, PointOutT>::search_parameter_;
# typedef typename Feature<PointInT, PointOutT>::PointCloudOut PointCloudOut;
# typedef typename Feature<PointInT, PointOutT>::PointCloudConstPtr PointCloudConstPtr;
# * \brief Compute the Least-Squares plane fit for a given set of points, using their indices,
# * and return the estimated plane parameters together with the surface curvature.
# * \param cloud the input point cloud
# * \param indices the point cloud indices that need to be used
# * \param plane_parameters the plane parameters as: a, b, c, d (ax + by + cz + d = 0)
# * \param curvature the estimated surface curvature as a measure of
# * \f[
# * \lambda_0 / (\lambda_0 + \lambda_1 + \lambda_2)
# * \f]
# inline void computePointNormal (const cpp.PointCloud[In] &cloud, const vector[int] &indices, Eigen::Vector4f &plane_parameters, float &curvature)
# void computePointNormal (const cpp.PointCloud[In] &cloud, const vector[int] &indices, eigen3.Vector4f &plane_parameters, float &curvature)
# * \brief Compute the Least-Squares plane fit for a given set of points, using their indices,
# * and return the estimated plane parameters together with the surface curvature.
# * \param cloud the input point cloud
# * \param indices the point cloud indices that need to be used
# * \param nx the resultant X component of the plane normal
# * \param ny the resultant Y component of the plane normal
# * \param nz the resultant Z component of the plane normal
# * \param curvature the estimated surface curvature as a measure of
# * \f[
# * \lambda_0 / (\lambda_0 + \lambda_1 + \lambda_2)
# * \f]
# inline void computePointNormal (const cpp.PointCloud[In] &cloud, const vector[int] &indices, float &nx, float &ny, float &nz, float &curvature)
void computePointNormal (const cpp.PointCloud[In] &cloud, const vector[int] &indices, float &nx, float &ny, float &nz, float &curvature)
# * \brief Provide a pointer to the input dataset
# * \param cloud the const boost shared pointer to a PointCloud message
# virtual inline void setInputCloud (const PointCloudConstPtr &cloud)
# * \brief Set the viewpoint.
# * \param vpx the X coordinate of the viewpoint
# * \param vpy the Y coordinate of the viewpoint
# * \param vpz the Z coordinate of the viewpoint
inline void setViewPoint (float vpx, float vpy, float vpz)
# * \brief Get the viewpoint.
# * \param [out] vpx x-coordinate of the view point
# * \param [out] vpy y-coordinate of the view point
# * \param [out] vpz z-coordinate of the view point
# * \note this method returns the currently used viewpoint for normal flipping.
# * If the viewpoint is set manually using the setViewPoint method, this method will return the set view point coordinates.
# * If an input cloud is set, it will return the sensor origin otherwise it will return the origin (0, 0, 0)
inline void getViewPoint (float &vpx, float &vpy, float &vpz)
# * \brief sets whether the sensor origin or a user given viewpoint should be used. After this method, the
# * normal estimation method uses the sensor origin of the input cloud.
# * to use a user defined view point, use the method setViewPoint
inline void useSensorOriginAsViewPoint ()
ctypedef NormalEstimation[cpp.PointXYZ, cpp.Normal] NormalEstimation_t
ctypedef NormalEstimation[cpp.PointXYZI, cpp.Normal] NormalEstimation_PointXYZI_t
ctypedef NormalEstimation[cpp.PointXYZRGB, cpp.Normal] NormalEstimation_PointXYZRGB_t
ctypedef NormalEstimation[cpp.PointXYZRGBA, cpp.Normal] NormalEstimation_PointXYZRGBA_t
ctypedef shared_ptr[NormalEstimation[cpp.PointXYZ, cpp.Normal]] NormalEstimationPtr_t
ctypedef shared_ptr[NormalEstimation[cpp.PointXYZI, cpp.Normal]] NormalEstimation_PointXYZI_Ptr_t
ctypedef shared_ptr[NormalEstimation[cpp.PointXYZRGB, cpp.Normal]] NormalEstimation_PointXYZRGB_Ptr_t
ctypedef shared_ptr[NormalEstimation[cpp.PointXYZRGBA, cpp.Normal]] NormalEstimation_PointXYZRGBA_Ptr_t
###
# template <typename PointInT>
# class NormalEstimation<PointInT, Eigen::MatrixXf>: public NormalEstimation<PointInT, pcl::Normal>
# cdef extern from "pcl/features/normal_3d.h" namespace "pcl":
# cdef cppclass NormalEstimation[In, Eigen::MatrixXf](NormalEstimation[In, pcl::Normal]):
# NormalEstimation ()
# public:
# using NormalEstimation<PointInT, pcl::Normal>::indices_;
# using NormalEstimation<PointInT, pcl::Normal>::input_;
# using NormalEstimation<PointInT, pcl::Normal>::surface_;
# using NormalEstimation<PointInT, pcl::Normal>::k_;
# using NormalEstimation<PointInT, pcl::Normal>::search_parameter_;
# using NormalEstimation<PointInT, pcl::Normal>::vpx_;
# using NormalEstimation<PointInT, pcl::Normal>::vpy_;
# using NormalEstimation<PointInT, pcl::Normal>::vpz_;
# using NormalEstimation<PointInT, pcl::Normal>::computePointNormal;
# using NormalEstimation<PointInT, pcl::Normal>::compute;
###
# normal_3d_omp.h
# template <typename PointInT, typename PointOutT>
# class NormalEstimationOMP: public NormalEstimation<PointInT, PointOutT>
cdef extern from "pcl/features/normal_3d_omp.h" namespace "pcl":
cdef cppclass NormalEstimationOMP[In, Out](NormalEstimation[In, Out]):
NormalEstimationOMP ()
NormalEstimationOMP (unsigned int nr_threads)
# public:
# using NormalEstimation<PointInT, PointOutT>::feature_name_;
# using NormalEstimation<PointInT, PointOutT>::getClassName;
# using NormalEstimation<PointInT, PointOutT>::indices_;
# using NormalEstimation<PointInT, PointOutT>::input_;
# using NormalEstimation<PointInT, PointOutT>::k_;
# using NormalEstimation<PointInT, PointOutT>::search_parameter_;
# using NormalEstimation<PointInT, PointOutT>::surface_;
# using NormalEstimation<PointInT, PointOutT>::getViewPoint;
# typedef typename NormalEstimation<PointInT, PointOutT>::PointCloudOut PointCloudOut;
# public:
# /** \brief Initialize the scheduler and set the number of threads to use.
# * \param nr_threads the number of hardware threads to use (-1 sets the value back to automatic)
# */
inline void setNumberOfThreads (unsigned int nr_threads)
###
# template <typename PointInT>
# class NormalEstimationOMP<PointInT, Eigen::MatrixXf>: public NormalEstimationOMP<PointInT, pcl::Normal>
# public:
# using NormalEstimationOMP<PointInT, pcl::Normal>::indices_;
# using NormalEstimationOMP<PointInT, pcl::Normal>::search_parameter_;
# using NormalEstimationOMP<PointInT, pcl::Normal>::k_;
# using NormalEstimationOMP<PointInT, pcl::Normal>::input_;
# using NormalEstimationOMP<PointInT, pcl::Normal>::surface_;
# using NormalEstimationOMP<PointInT, pcl::Normal>::getViewPoint;
# using NormalEstimationOMP<PointInT, pcl::Normal>::threads_;
# using NormalEstimationOMP<PointInT, pcl::Normal>::compute;
#
# /** \brief Default constructor.
# */
# NormalEstimationOMP () : NormalEstimationOMP<PointInT, pcl::Normal> () {}
#
# /** \brief Initialize the scheduler and set the number of threads to use.
# * \param nr_threads the number of hardware threads to use (-1 sets the value back to automatic)
# */
# NormalEstimationOMP (unsigned int nr_threads) : NormalEstimationOMP<PointInT, pcl::Normal> (nr_threads) {}
#
###
# normal_based_signature.h
# template <typename PointT, typename PointNT, typename PointFeature>
# class NormalBasedSignatureEstimation : public FeatureFromNormals<PointT, PointNT, PointFeature>
cdef extern from "pcl/features/normal_based_signature.h" namespace "pcl":
cdef cppclass NormalBasedSignatureEstimation[In, NT, Feature](FeatureFromNormals[In, NT, Feature]):
NormalBasedSignatureEstimation ()
# public:
# using Feature<PointT, PointFeature>::input_;
# using Feature<PointT, PointFeature>::tree_;
# using Feature<PointT, PointFeature>::search_radius_;
# using PCLBase<PointT>::indices_;
# using FeatureFromNormals<PointT, PointNT, PointFeature>::normals_;
# typedef pcl::PointCloud<PointFeature> FeatureCloud;
# typedef typename boost::shared_ptr<NormalBasedSignatureEstimation<PointT, PointNT, PointFeature> > Ptr;
# typedef typename boost::shared_ptr<const NormalBasedSignatureEstimation<PointT, PointNT, PointFeature> > ConstPtr;
# /** \brief Setter method for the N parameter - the length of the columns used for the Discrete Fourier Transform.
# * \param[in] n the length of the columns used for the Discrete Fourier Transform.
inline void setN (size_t n)
# /** \brief Returns the N parameter - the length of the columns used for the Discrete Fourier Transform. */
# inline size_t getN ()
# /** \brief Setter method for the M parameter - the length of the rows used for the Discrete Cosine Transform.
# * \param[in] m the length of the rows used for the Discrete Cosine Transform.
inline void setM (size_t m)
# /** \brief Returns the M parameter - the length of the rows used for the Discrete Cosine Transform */
inline size_t getM ()
# /** \brief Setter method for the N' parameter - the number of columns to be taken from the matrix of DFT and DCT
# * values that will be contained in the output feature vector
# * \note This value directly influences the dimensions of the type of output points (PointFeature)
# * \param[in] n_prime the number of columns from the matrix of DFT and DCT that will be contained in the output
inline void setNPrime (size_t n_prime)
# /** \brief Returns the N' parameter - the number of rows to be taken from the matrix of DFT and DCT
# * values that will be contained in the output feature vector
# * \note This value directly influences the dimensions of the type of output points (PointFeature)
inline size_t getNPrime ()
# * \brief Setter method for the M' parameter - the number of rows to be taken from the matrix of DFT and DCT
# * values that will be contained in the output feature vector
# * \note This value directly influences the dimensions of the type of output points (PointFeature)
# * \param[in] m_prime the number of rows from the matrix of DFT and DCT that will be contained in the output
inline void setMPrime (size_t m_prime)
# * \brief Returns the M' parameter - the number of rows to be taken from the matrix of DFT and DCT
# * values that will be contained in the output feature vector
# * \note This value directly influences the dimensions of the type of output points (PointFeature)
inline size_t getMPrime ()
# * \brief Setter method for the scale parameter - used to determine the radius of the sampling disc around the
# * point of interest - linked to the smoothing scale of the input cloud
inline void setScale (float scale)
# * \brief Returns the scale parameter - used to determine the radius of the sampling disc around the
# * point of interest - linked to the smoothing scale of the input cloud
inline float getScale ()
###
# pfh.h
# template <typename PointInT, typename PointNT, typename PointOutT = pcl::PFHSignature125>
# class PFHEstimation : public FeatureFromNormals<PointInT, PointNT, PointOutT>
cdef extern from "pcl/features/pfh.h" namespace "pcl":
cdef cppclass PFHEstimation[In, NT, Out](FeatureFromNormals[In, NT, Out]):
PFHEstimation ()
# public:
# using Feature<PointInT, PointOutT>::feature_name_;
# using Feature<PointInT, PointOutT>::getClassName;
# using Feature<PointInT, PointOutT>::indices_;
# using Feature<PointInT, PointOutT>::k_;
# using Feature<PointInT, PointOutT>::search_parameter_;
# using Feature<PointInT, PointOutT>::surface_;
# using Feature<PointInT, PointOutT>::input_;
# using FeatureFromNormals<PointInT, PointNT, PointOutT>::normals_;
# typedef typename Feature<PointInT, PointOutT>::PointCloudOut PointCloudOut;
# typedef typename Feature<PointInT, PointOutT>::PointCloudIn PointCloudIn;
# * \brief Set the maximum internal cache size. Defaults to 2GB worth of entries.
# * \param[in] cache_size maximum cache size
inline void setMaximumCacheSize (unsigned int cache_size)
# /** \brief Get the maximum internal cache size. */
inline unsigned int getMaximumCacheSize ()
# * \brief Set whether to use an internal cache mechanism for removing redundant calculations or not.
# * \note Depending on how the point cloud is ordered and how the nearest
# * neighbors are estimated, using a cache could have a positive or a
# * negative influence. Please test with and without a cache on your
# * data, and choose whatever works best!
# * See \ref setMaximumCacheSize for setting the maximum cache size
# * \param[in] use_cache set to true to use the internal cache, false otherwise
inline void setUseInternalCache (bool use_cache)
# /** \brief Get whether the internal cache is used or not for computing the PFH features. */
inline bool getUseInternalCache ()
# * \brief Compute the 4-tuple representation containing the three angles and one distance between two points
# * represented by Cartesian coordinates and normals.
# * \note For explanations about the features, please see the literature mentioned above (the order of the
# * features might be different).
# * \param[in] cloud the dataset containing the XYZ Cartesian coordinates of the two points
# * \param[in] normals the dataset containing the surface normals (assuming normalized vectors) at each point in cloud
# * \param[in] p_idx the index of the first point (source)
# * \param[in] q_idx the index of the second point (target)
# * \param[out] f1 the first angular feature (angle between the projection of nq_idx and u)
# * \param[out] f2 the second angular feature (angle between nq_idx and v)
# * \param[out] f3 the third angular feature (angle between np_idx and |p_idx - q_idx|)
# * \param[out] f4 the distance feature (p_idx - q_idx)
# * \note For efficiency reasons, we assume that the point data passed to the method is finite.
bool computePairFeatures (const cpp.PointCloud[In] &cloud, const cpp.PointCloud[NT] &normals,
int p_idx, int q_idx, float &f1, float &f2, float &f3, float &f4);
# * \brief Estimate the PFH (Point Feature Histograms) individual signatures of the three angular (f1, f2, f3)
# * features for a given point based on its spatial neighborhood of 3D points with normals
# * \param[in] cloud the dataset containing the XYZ Cartesian coordinates of the two points
# * \param[in] normals the dataset containing the surface normals at each point in \a cloud
# * \param[in] indices the k-neighborhood point indices in the dataset
# * \param[in] nr_split the number of subdivisions for each angular feature interval
# * \param[out] pfh_histogram the resultant (combinatorial) PFH histogram representing the feature at the query point
# void computePointPFHSignature (const cpp.PointCloud[In] &cloud, const cpp.PointCloud[NT] &normals,
# const vector[int] &indices, int nr_split, Eigen::VectorXf &pfh_histogram);
###
# template <typename PointInT, typename PointNT>
# class PFHEstimation<PointInT, PointNT, Eigen::MatrixXf> : public PFHEstimation<PointInT, PointNT, pcl::PFHSignature125>
# public:
# using PFHEstimation<PointInT, PointNT, pcl::PFHSignature125>::pfh_histogram_;
# using PFHEstimation<PointInT, PointNT, pcl::PFHSignature125>::nr_subdiv_;
# using PFHEstimation<PointInT, PointNT, pcl::PFHSignature125>::k_;
# using PFHEstimation<PointInT, PointNT, pcl::PFHSignature125>::indices_;
# using PFHEstimation<PointInT, PointNT, pcl::PFHSignature125>::search_parameter_;
# using PFHEstimation<PointInT, PointNT, pcl::PFHSignature125>::surface_;
# using PFHEstimation<PointInT, PointNT, pcl::PFHSignature125>::input_;
# using PFHEstimation<PointInT, PointNT, pcl::PFHSignature125>::normals_;
# using PFHEstimation<PointInT, PointNT, pcl::PFHSignature125>::computePointPFHSignature;
# using PFHEstimation<PointInT, PointNT, pcl::PFHSignature125>::compute;
# using PFHEstimation<PointInT, PointNT, pcl::PFHSignature125>::feature_map_;
# using PFHEstimation<PointInT, PointNT, pcl::PFHSignature125>::key_list_;
###
# pfhrgb.h
# template <typename PointInT, typename PointNT, typename PointOutT = pcl::PFHRGBSignature250>
# class PFHRGBEstimation : public FeatureFromNormals<PointInT, PointNT, PointOutT>
cdef extern from "pcl/features/pfhrgb.h" namespace "pcl":
cdef cppclass PFHRGBEstimation[In, NT, Out](FeatureFromNormals[In, NT, Out]):
PFHRGBEstimation ()
# public:
# using PCLBase<PointInT>::indices_;
# using Feature<PointInT, PointOutT>::feature_name_;
# using Feature<PointInT, PointOutT>::surface_;
# using Feature<PointInT, PointOutT>::k_;
# using Feature<PointInT, PointOutT>::search_parameter_;
# using FeatureFromNormals<PointInT, PointNT, PointOutT>::normals_;
# typedef typename Feature<PointInT, PointOutT>::PointCloudOut PointCloudOut;
bool computeRGBPairFeatures (const cpp.PointCloud[In] &cloud, const cpp.PointCloud[NT] &normals,
int p_idx, int q_idx,
float &f1, float &f2, float &f3, float &f4, float &f5, float &f6, float &f7)
# void computePointPFHRGBSignature (const cpp.PointCloud[In] &cloud, const cpp.PointCloud[NT] &normals,
# const vector[int] &indices, int nr_split, Eigen::VectorXf &pfhrgb_histogram)
###
# ppf.h
# template <typename PointInT, typename PointNT, typename PointOutT>
# class PPFEstimation : public FeatureFromNormals<PointInT, PointNT, PointOutT>
cdef extern from "pcl/features/ppf.h" namespace "pcl":
cdef cppclass PPFEstimation[In, NT, Out](FeatureFromNormals[In, NT, Out]):
PPFEstimation ()
# public:
# using PCLBase<PointInT>::indices_;
# using Feature<PointInT, PointOutT>::input_;
# using Feature<PointInT, PointOutT>::feature_name_;
# using Feature<PointInT, PointOutT>::getClassName;
# using FeatureFromNormals<PointInT, PointNT, PointOutT>::normals_;
# typedef pcl::PointCloud<PointOutT> PointCloudOut;
# template <typename PointInT, typename PointNT>
# class PPFEstimation<PointInT, PointNT, Eigen::MatrixXf> : public PPFEstimation<PointInT, PointNT, pcl::PPFSignature>
# public:
# using PPFEstimation<PointInT, PointNT, pcl::PPFSignature>::getClassName;
# using PPFEstimation<PointInT, PointNT, pcl::PPFSignature>::input_;
# using PPFEstimation<PointInT, PointNT, pcl::PPFSignature>::normals_;
# using PPFEstimation<PointInT, PointNT, pcl::PPFSignature>::indices_;
#
###
# ppfrgb.h
# template <typename PointInT, typename PointNT, typename PointOutT>
# class PPFRGBEstimation : public FeatureFromNormals<PointInT, PointNT, PointOutT>
cdef extern from "pcl/features/ppfrgb.h" namespace "pcl":
cdef cppclass PPFRGBEstimation[In, NT, Out](FeatureFromNormals[In, NT, Out]):
PPFRGBEstimation ()
# public:
# using PCLBase<PointInT>::indices_;
# using Feature<PointInT, PointOutT>::input_;
# using Feature<PointInT, PointOutT>::feature_name_;
# using Feature<PointInT, PointOutT>::getClassName;
# using FeatureFromNormals<PointInT, PointNT, PointOutT>::normals_;
# typedef pcl::PointCloud<PointOutT> PointCloudOut;
# template <typename PointInT, typename PointNT, typename PointOutT>
# class PPFRGBRegionEstimation : public FeatureFromNormals<PointInT, PointNT, PointOutT>
# PPFRGBRegionEstimation ();
# public:
# using PCLBase<PointInT>::indices_;
# using Feature<PointInT, PointOutT>::input_;
# using Feature<PointInT, PointOutT>::feature_name_;
# using Feature<PointInT, PointOutT>::search_radius_;
# using Feature<PointInT, PointOutT>::tree_;
# using Feature<PointInT, PointOutT>::getClassName;
# using FeatureFromNormals<PointInT, PointNT, PointOutT>::normals_;
# typedef pcl::PointCloud<PointOutT> PointCloudOut;
###
# principal_curvatures.h
# template <typename PointInT, typename PointNT, typename PointOutT = pcl::PrincipalCurvatures>
# class PrincipalCurvaturesEstimation : public FeatureFromNormals<PointInT, PointNT, PointOutT>
cdef extern from "pcl/features/principal_curvatures.h" namespace "pcl":
cdef cppclass PrincipalCurvaturesEstimation[In, NT, Out](FeatureFromNormals[In, NT, Out]):
PrincipalCurvaturesEstimation ()
# public:
# using Feature<PointInT, PointOutT>::feature_name_;
# using Feature<PointInT, PointOutT>::getClassName;
# using Feature<PointInT, PointOutT>::indices_;
# using Feature<PointInT, PointOutT>::k_;
# using Feature<PointInT, PointOutT>::search_parameter_;
# using Feature<PointInT, PointOutT>::surface_;
# using Feature<PointInT, PointOutT>::input_;
# using FeatureFromNormals<PointInT, PointNT, PointOutT>::normals_;
# typedef typename Feature<PointInT, PointOutT>::PointCloudOut PointCloudOut;
# typedef pcl::PointCloud<PointInT> PointCloudIn;
# /** \brief Perform Principal Components Analysis (PCA) on the point normals of a surface patch in the tangent
# * plane of the given point normal, and return the principal curvature (eigenvector of the max eigenvalue),
# * along with both the max (pc1) and min (pc2) eigenvalues
# * \param[in] normals the point cloud normals
# * \param[in] p_idx the query point at which the least-squares plane was estimated
# * \param[in] indices the point cloud indices that need to be used
# * \param[out] pcx the principal curvature X direction
# * \param[out] pcy the principal curvature Y direction
# * \param[out] pcz the principal curvature Z direction
# * \param[out] pc1 the max eigenvalue of curvature
# * \param[out] pc2 the min eigenvalue of curvature
# */
# void computePointPrincipalCurvatures (const pcl::PointCloud<PointNT> &normals,
# int p_idx, const std::vector<int> &indices,
# float &pcx, float &pcy, float &pcz, float &pc1, float &pc2);
# template <typename PointInT, typename PointNT>
# class PrincipalCurvaturesEstimation<PointInT, PointNT, Eigen::MatrixXf> : public PrincipalCurvaturesEstimation<PointInT, PointNT, pcl::PrincipalCurvatures>
# public:
# using PrincipalCurvaturesEstimation<PointInT, PointNT, pcl::PrincipalCurvatures>::indices_;
# using PrincipalCurvaturesEstimation<PointInT, PointNT, pcl::PrincipalCurvatures>::k_;
# using PrincipalCurvaturesEstimation<PointInT, PointNT, pcl::PrincipalCurvatures>::search_parameter_;
# using PrincipalCurvaturesEstimation<PointInT, PointNT, pcl::PrincipalCurvatures>::surface_;
# using PrincipalCurvaturesEstimation<PointInT, PointNT, pcl::PrincipalCurvatures>::compute;
# using PrincipalCurvaturesEstimation<PointInT, PointNT, pcl::PrincipalCurvatures>::input_;
# using PrincipalCurvaturesEstimation<PointInT, PointNT, pcl::PrincipalCurvatures>::normals_;
###
# range_image_border_extractor.h
# namespace pcl
# class RangeImage;
# template <typename PointType>
# class PointCloud;
# class PCL_EXPORTS RangeImageBorderExtractor : public Feature<PointWithRange, BorderDescription>
cdef extern from "pcl/features/range_image_border_extractor.h" namespace "pcl":
cdef cppclass RangeImageBorderExtractor(Feature[cpp.PointWithRange, cpp.BorderDescription]):
RangeImageBorderExtractor ()
RangeImageBorderExtractor (const pcl_r_img.RangeImage range_image)
# =====CONSTRUCTOR & DESTRUCTOR=====
# Constructor
# RangeImageBorderExtractor (const RangeImage* range_image = NULL)
# /** Destructor */
# ~RangeImageBorderExtractor ();
#
# public:
# // =====PUBLIC STRUCTS=====
# Stores some information extracted from the neighborhood of a point
# struct LocalSurface
# {
# LocalSurface () :
# normal (), neighborhood_mean (), eigen_values (), normal_no_jumps (),
# neighborhood_mean_no_jumps (), eigen_values_no_jumps (), max_neighbor_distance_squared () {}
#
# Eigen::Vector3f normal;
# Eigen::Vector3f neighborhood_mean;
# Eigen::Vector3f eigen_values;
# Eigen::Vector3f normal_no_jumps;
# Eigen::Vector3f neighborhood_mean_no_jumps;
# Eigen::Vector3f eigen_values_no_jumps;
# float max_neighbor_distance_squared;
# };
# Stores the indices of the shadow border corresponding to obstacle borders
# struct ShadowBorderIndices
# {
# ShadowBorderIndices () : left (-1), right (-1), top (-1), bottom (-1) {}
# int left, right, top, bottom;
# };
# Parameters used in this class
# struct Parameters
# {
# Parameters () : max_no_of_threads(1), pixel_radius_borders (3), pixel_radius_plane_extraction (2), pixel_radius_border_direction (2),
# minimum_border_probability (0.8f), pixel_radius_principal_curvature (2) {}
# int max_no_of_threads;
# int pixel_radius_borders;
# int pixel_radius_plane_extraction;
# int pixel_radius_border_direction;
# float minimum_border_probability;
# int pixel_radius_principal_curvature;
# };
# =====STATIC METHODS=====
# brief Take the information from BorderTraits to calculate the local direction of the border
# param border_traits contains the information needed to calculate the border angle
#
# static inline float getObstacleBorderAngle (const BorderTraits& border_traits);
# // =====METHODS=====
# /** \brief Provide a pointer to the range image
# * \param range_image a pointer to the range_image
# void setRangeImage (const RangeImage* range_image);
void setRangeImage (const pcl_r_img.RangeImage range_image)
# brief Erase all data calculated for the current range image
void clearData ()
# brief Get the 2D directions in the range image from the border directions - probably mainly useful for
# visualization
# float* getAnglesImageForBorderDirections ();
# float[] getAnglesImageForBorderDirections ()
# brief Get the 2D directions in the range image from the surface change directions - probably mainly useful for visualization
# float* getAnglesImageForSurfaceChangeDirections ();
# float[] getAnglesImageForSurfaceChangeDirections ()
# /** Overwrite the compute function of the base class */
# void compute (PointCloudOut& output);
# void compute (cpp.PointCloud[Out]& output)
# =====GETTER=====
# Parameters& getParameters () { return (parameters_); }
# Parameters& getParameters ()
#
# bool hasRangeImage () const { return range_image_ != NULL; }
bool hasRangeImage ()
# const RangeImage& getRangeImage () const { return *range_image_; }
const pcl_r_img.RangeImage getRangeImage ()
# float* getBorderScoresLeft () { extractBorderScoreImages (); return border_scores_left_; }
# float* getBorderScoresRight () { extractBorderScoreImages (); return border_scores_right_; }
# float* getBorderScoresTop () { extractBorderScoreImages (); return border_scores_top_; }
# float* getBorderScoresBottom () { extractBorderScoreImages (); return border_scores_bottom_; }
#
# LocalSurface** getSurfaceStructure () { extractLocalSurfaceStructure (); return surface_structure_; }
# PointCloudOut& getBorderDescriptions () { classifyBorders (); return *border_descriptions_; }
# ShadowBorderIndices** getShadowBorderInformations () { findAndEvaluateShadowBorders (); return shadow_border_informations_; }
# Eigen::Vector3f** getBorderDirections () { calculateBorderDirections (); return border_directions_; }
# float* getSurfaceChangeScores () { calculateSurfaceChanges (); return surface_change_scores_; }
# Eigen::Vector3f* getSurfaceChangeDirections () { calculateSurfaceChanges (); return surface_change_directions_; }
###
# rift.h
# template <typename PointInT, typename GradientT, typename PointOutT>
# class RIFTEstimation: public Feature<PointInT, PointOutT>
cdef extern from "pcl/features/rift.h" namespace "pcl":
cdef cppclass RIFTEstimation[In, GradientT, Out](Feature[In, Out]):
RIFTEstimation ()
# public:
# using Feature<PointInT, PointOutT>::feature_name_;
# using Feature<PointInT, PointOutT>::getClassName;
# using Feature<PointInT, PointOutT>::surface_;
# using Feature<PointInT, PointOutT>::indices_;
# using Feature<PointInT, PointOutT>::tree_;
# using Feature<PointInT, PointOutT>::search_radius_;
# typedef typename pcl::PointCloud<PointInT> PointCloudIn;
# typedef typename Feature<PointInT, PointOutT>::PointCloudOut PointCloudOut;
# typedef typename pcl::PointCloud<GradientT> PointCloudGradient;
# typedef typename PointCloudGradient::Ptr PointCloudGradientPtr;
# typedef typename PointCloudGradient::ConstPtr PointCloudGradientConstPtr;
# typedef typename boost::shared_ptr<RIFTEstimation<PointInT, GradientT, PointOutT> > Ptr;
# typedef typename boost::shared_ptr<const RIFTEstimation<PointInT, GradientT, PointOutT> > ConstPtr;
# brief Provide a pointer to the input gradient data
# param[in] gradient a pointer to the input gradient data
# inline void setInputGradient (const PointCloudGradientConstPtr &gradient)
# /** \brief Returns a shared pointer to the input gradient data */
# inline PointCloudGradientConstPtr getInputGradient () const
# brief Set the number of bins to use in the distance dimension of the RIFT descriptor
# param[in] nr_distance_bins the number of bins to use in the distance dimension of the RIFT descriptor
# inline void setNrDistanceBins (int nr_distance_bins)
# /** \brief Returns the number of bins in the distance dimension of the RIFT descriptor. */
# inline int getNrDistanceBins () const
# /** \brief Set the number of bins to use in the gradient orientation dimension of the RIFT descriptor
# * \param[in] nr_gradient_bins the number of bins to use in the gradient orientation dimension of the RIFT descriptor
# inline void setNrGradientBins (int nr_gradient_bins)
# /** \brief Returns the number of bins in the gradient orientation dimension of the RIFT descriptor. */
# inline int getNrGradientBins () const
# /** \brief Estimate the Rotation Invariant Feature Transform (RIFT) descriptor for a given point based on its
# * spatial neighborhood of 3D points and the corresponding intensity gradient vector field
# * \param[in] cloud the dataset containing the Cartesian coordinates of the points
# * \param[in] gradient the dataset containing the intensity gradient at each point in \a cloud
# * \param[in] p_idx the index of the query point in \a cloud (i.e. the center of the neighborhood)
# * \param[in] radius the radius of the RIFT feature
# * \param[in] indices the indices of the points that comprise \a p_idx's neighborhood in \a cloud
# * \param[in] squared_distances the squared distances from the query point to each point in the neighborhood
# * \param[out] rift_descriptor the resultant RIFT descriptor
# void computeRIFT (const PointCloudIn &cloud, const PointCloudGradient &gradient, int p_idx, float radius,
# const std::vector<int> &indices, const std::vector<float> &squared_distances,
# Eigen::MatrixXf &rift_descriptor);
# ctypedef
#
###
# template <typename PointInT, typename GradientT>
# class RIFTEstimation<PointInT, GradientT, Eigen::MatrixXf>: public RIFTEstimation<PointInT, GradientT, pcl::Histogram<32> >
# public:
# using RIFTEstimation<PointInT, GradientT, pcl::Histogram<32> >::getClassName;
# using RIFTEstimation<PointInT, GradientT, pcl::Histogram<32> >::surface_;
# using RIFTEstimation<PointInT, GradientT, pcl::Histogram<32> >::indices_;
# using RIFTEstimation<PointInT, GradientT, pcl::Histogram<32> >::tree_;
# using RIFTEstimation<PointInT, GradientT, pcl::Histogram<32> >::search_radius_;
# using RIFTEstimation<PointInT, GradientT, pcl::Histogram<32> >::gradient_;
# using RIFTEstimation<PointInT, GradientT, pcl::Histogram<32> >::nr_gradient_bins_;
# using RIFTEstimation<PointInT, GradientT, pcl::Histogram<32> >::nr_distance_bins_;
# using RIFTEstimation<PointInT, GradientT, pcl::Histogram<32> >::compute;
###
# shot.h
# template <typename PointInT, typename PointNT, typename PointOutT, typename PointRFT = pcl::ReferenceFrame>
# class SHOTEstimationBase : public FeatureFromNormals<PointInT, PointNT, PointOutT>,
# public FeatureWithLocalReferenceFrames<PointInT, PointRFT>
cdef extern from "pcl/features/shot.h" namespace "pcl":
cdef cppclass SHOTEstimationBase[In, NT, Out, RET](Feature[In, Out]):
SHOTEstimationBase ()
# public:
# using Feature<PointInT, PointOutT>::feature_name_;
# using Feature<PointInT, PointOutT>::getClassName;
# using Feature<PointInT, PointOutT>::input_;
# using Feature<PointInT, PointOutT>::indices_;
# using Feature<PointInT, PointOutT>::k_;
# using Feature<PointInT, PointOutT>::search_parameter_;
# using Feature<PointInT, PointOutT>::search_radius_;
# using Feature<PointInT, PointOutT>::surface_;
# using Feature<PointInT, PointOutT>::fake_surface_;
# using FeatureFromNormals<PointInT, PointNT, PointOutT>::normals_;
# using FeatureWithLocalReferenceFrames<PointInT, PointRFT>::frames_;
# typedef typename Feature<PointInT, PointOutT>::PointCloudIn PointCloudIn;
# protected:
# /** \brief Empty constructor.
# * \param[in] nr_shape_bins the number of bins in the shape histogram
# */
# SHOTEstimationBase (int nr_shape_bins = 10) :
# nr_shape_bins_ (nr_shape_bins),
# shot_ (),
# sqradius_ (0), radius3_4_ (0), radius1_4_ (0), radius1_2_ (0),
# nr_grid_sector_ (32),
# maxAngularSectors_ (28),
# descLength_ (0)
# {
# feature_name_ = "SHOTEstimation";
# };
# public:
# /** \brief Estimate the SHOT descriptor for a given point based on its spatial neighborhood of 3D points with normals
# * \param[in] index the index of the point in indices_
# * \param[in] indices the k-neighborhood point indices in surface_
# * \param[in] sqr_dists the k-neighborhood point distances in surface_
# * \param[out] shot the resultant SHOT descriptor representing the feature at the query point
# */
# virtual void
# computePointSHOT (const int index,
# const std::vector<int> &indices,
# const std::vector<float> &sqr_dists,
# Eigen::VectorXf &shot) = 0;
###
# template <typename PointInT, typename PointNT, typename PointOutT = pcl::SHOT352, typename PointRFT = pcl::ReferenceFrame>
# class SHOTEstimation : public SHOTEstimationBase<PointInT, PointNT, PointOutT, PointRFT>
cdef extern from "pcl/features/shot.h" namespace "pcl":
cdef cppclass SHOTEstimation[In, NT, Out, RFT](SHOTEstimationBase[In, NT, Out, RFT]):
SHOTEstimation ()
# public:
# using SHOTEstimationBase<PointInT, PointNT, PointOutT, PointRFT>::feature_name_;
# using SHOTEstimationBase<PointInT, PointNT, PointOutT, PointRFT>::getClassName;
# using SHOTEstimationBase<PointInT, PointNT, PointOutT, PointRFT>::indices_;
# using SHOTEstimationBase<PointInT, PointNT, PointOutT, PointRFT>::k_;
# using SHOTEstimationBase<PointInT, PointNT, PointOutT, PointRFT>::search_parameter_;
# using SHOTEstimationBase<PointInT, PointNT, PointOutT, PointRFT>::search_radius_;
# using SHOTEstimationBase<PointInT, PointNT, PointOutT, PointRFT>::surface_;
# using SHOTEstimationBase<PointInT, PointNT, PointOutT, PointRFT>::input_;
# using SHOTEstimationBase<PointInT, PointNT, PointOutT, PointRFT>::normals_;
# using SHOTEstimationBase<PointInT, PointNT, PointOutT, PointRFT>::descLength_;
# using SHOTEstimationBase<PointInT, PointNT, PointOutT, PointRFT>::nr_grid_sector_;
# using SHOTEstimationBase<PointInT, PointNT, PointOutT, PointRFT>::nr_shape_bins_;
# using SHOTEstimationBase<PointInT, PointNT, PointOutT, PointRFT>::sqradius_;
# using SHOTEstimationBase<PointInT, PointNT, PointOutT, PointRFT>::radius3_4_;
# using SHOTEstimationBase<PointInT, PointNT, PointOutT, PointRFT>::radius1_4_;
# using SHOTEstimationBase<PointInT, PointNT, PointOutT, PointRFT>::radius1_2_;
# using SHOTEstimationBase<PointInT, PointNT, PointOutT, PointRFT>::maxAngularSectors_;
# using SHOTEstimationBase<PointInT, PointNT, PointOutT, PointRFT>::interpolateSingleChannel;
# using SHOTEstimationBase<PointInT, PointNT, PointOutT, PointRFT>::shot_;
# using FeatureWithLocalReferenceFrames<PointInT, PointRFT>::frames_;
# typedef typename Feature<PointInT, PointOutT>::PointCloudIn PointCloudIn;
#
# /** \brief Estimate the SHOT descriptor for a given point based on its spatial neighborhood of 3D points with normals
# * \param[in] index the index of the point in indices_
# * \param[in] indices the k-neighborhood point indices in surface_
# * \param[in] sqr_dists the k-neighborhood point distances in surface_
# * \param[out] shot the resultant SHOT descriptor representing the feature at the query point
# */
# virtual void computePointSHOT (const int index,
# const std::vector<int> &indices,
# const std::vector<float> &sqr_dists,
# Eigen::VectorXf &shot);
###
# template <typename PointInT, typename PointNT, typename PointRFT>
# class PCL_DEPRECATED_CLASS (SHOTEstimation, "SHOTEstimation<..., pcl::SHOT, ...> IS DEPRECATED, USE SHOTEstimation<..., pcl::SHOT352, ...> INSTEAD")
# <PointInT, PointNT, pcl::SHOT, PointRFT>
# : public SHOTEstimationBase<PointInT, PointNT, pcl::SHOT, PointRFT>
# cdef extern from "pcl/features/shot.h" namespace "pcl":
# cdef cppclass PCL_DEPRECATED_CLASS[In, NT, RFT](SHOTEstimation[In, NT, pcl::SHOT, RFT]):
# SHOTEstimation ()
# public:
# using SHOTEstimationBase<PointInT, PointNT, pcl::SHOT, PointRFT>::feature_name_;
# using SHOTEstimationBase<PointInT, PointNT, pcl::SHOT, PointRFT>::getClassName;
# using SHOTEstimationBase<PointInT, PointNT, pcl::SHOT, PointRFT>::indices_;
# using SHOTEstimationBase<PointInT, PointNT, pcl::SHOT, PointRFT>::k_;
# using SHOTEstimationBase<PointInT, PointNT, pcl::SHOT, PointRFT>::search_parameter_;
# using SHOTEstimationBase<PointInT, PointNT, pcl::SHOT, PointRFT>::search_radius_;
# using SHOTEstimationBase<PointInT, PointNT, pcl::SHOT, PointRFT>::surface_;
# using SHOTEstimationBase<PointInT, PointNT, pcl::SHOT, PointRFT>::input_;
# using SHOTEstimationBase<PointInT, PointNT, pcl::SHOT, PointRFT>::normals_;
# using SHOTEstimationBase<PointInT, PointNT, pcl::SHOT, PointRFT>::descLength_;
# using SHOTEstimationBase<PointInT, PointNT, pcl::SHOT, PointRFT>::nr_grid_sector_;
# using SHOTEstimationBase<PointInT, PointNT, pcl::SHOT, PointRFT>::nr_shape_bins_;
# using SHOTEstimationBase<PointInT, PointNT, pcl::SHOT, PointRFT>::sqradius_;
# using SHOTEstimationBase<PointInT, PointNT, pcl::SHOT, PointRFT>::radius3_4_;
# using SHOTEstimationBase<PointInT, PointNT, pcl::SHOT, PointRFT>::radius1_4_;
# using SHOTEstimationBase<PointInT, PointNT, pcl::SHOT, PointRFT>::radius1_2_;
# using SHOTEstimationBase<PointInT, PointNT, pcl::SHOT, PointRFT>::maxAngularSectors_;
# using SHOTEstimationBase<PointInT, PointNT, pcl::SHOT, PointRFT>::interpolateSingleChannel;
# using SHOTEstimationBase<PointInT, PointNT, pcl::SHOT, PointRFT>::shot_;
# using FeatureWithLocalReferenceFrames<PointInT, PointRFT>::frames_;
# typedef typename Feature<PointInT, pcl::SHOT>::PointCloudIn PointCloudIn;
#
# /** \brief Empty constructor.
# * \param[in] nr_shape_bins the number of bins in the shape histogram
# */
# SHOTEstimation (int nr_shape_bins = 10) : SHOTEstimationBase<PointInT, PointNT, pcl::SHOT, PointRFT> (nr_shape_bins)
# {
# feature_name_ = "SHOTEstimation";
# };
#
# /** \brief Estimate the SHOT descriptor for a given point based on its spatial neighborhood of 3D points with normals
# * \param[in] index the index of the point in indices_
# * \param[in] indices the k-neighborhood point indices in surface_
# * \param[in] sqr_dists the k-neighborhood point distances in surface_
# * \param[out] shot the resultant SHOT descriptor representing the feature at the query point
# */
# virtual void
# computePointSHOT (const int index,
# const std::vector<int> &indices,
# const std::vector<float> &sqr_dists,
# Eigen::VectorXf &shot);
#
###
# template <typename PointInT, typename PointNT, typename PointRFT>
# class SHOTEstimation<PointInT, PointNT, Eigen::MatrixXf, PointRFT> : public SHOTEstimation<PointInT, PointNT, pcl::SHOT352, PointRFT>
# public:
# using SHOTEstimation<PointInT, PointNT, pcl::SHOT352, PointRFT>::feature_name_;
# using SHOTEstimation<PointInT, PointNT, pcl::SHOT352, PointRFT>::getClassName;
# using SHOTEstimation<PointInT, PointNT, pcl::SHOT352, PointRFT>::indices_;
# using SHOTEstimation<PointInT, PointNT, pcl::SHOT352, PointRFT>::k_;
# using SHOTEstimation<PointInT, PointNT, pcl::SHOT352, PointRFT>::search_parameter_;
# using SHOTEstimation<PointInT, PointNT, pcl::SHOT352, PointRFT>::search_radius_;
# using SHOTEstimation<PointInT, PointNT, pcl::SHOT352, PointRFT>::surface_;
# using SHOTEstimation<PointInT, PointNT, pcl::SHOT352, PointRFT>::input_;
# using SHOTEstimation<PointInT, PointNT, pcl::SHOT352, PointRFT>::normals_;
# using SHOTEstimation<PointInT, PointNT, pcl::SHOT352, PointRFT>::descLength_;
# using SHOTEstimation<PointInT, PointNT, pcl::SHOT352, PointRFT>::nr_grid_sector_;
# using SHOTEstimation<PointInT, PointNT, pcl::SHOT352, PointRFT>::nr_shape_bins_;
# using SHOTEstimation<PointInT, PointNT, pcl::SHOT352, PointRFT>::sqradius_;
# using SHOTEstimation<PointInT, PointNT, pcl::SHOT352, PointRFT>::radius3_4_;
# using SHOTEstimation<PointInT, PointNT, pcl::SHOT352, PointRFT>::radius1_4_;
# using SHOTEstimation<PointInT, PointNT, pcl::SHOT352, PointRFT>::radius1_2_;
# using SHOTEstimation<PointInT, PointNT, pcl::SHOT352, PointRFT>::maxAngularSectors_;
# using SHOTEstimation<PointInT, PointNT, pcl::SHOT352, PointRFT>::interpolateSingleChannel;
# using SHOTEstimation<PointInT, PointNT, pcl::SHOT352, PointRFT>::shot_;
# using FeatureWithLocalReferenceFrames<PointInT, PointRFT>::frames_;
#
# /** \brief Empty constructor. */
# SHOTEstimation (int nr_shape_bins = 10) : SHOTEstimation<PointInT, PointNT, pcl::SHOT352, PointRFT> ()
# {
# feature_name_ = "SHOTEstimation";
# nr_shape_bins_ = nr_shape_bins;
# };
#
# /** \brief Base method for feature estimation for all points given in
# * <setInputCloud (), setIndices ()> using the surface in setSearchSurface ()
# * and the spatial locator in setSearchMethod ()
# * \param[out] output the resultant point cloud model dataset containing the estimated features
# */
# void
# computeEigen (pcl::PointCloud<Eigen::MatrixXf> &output)
# {
# pcl::SHOTEstimation<PointInT, PointNT, pcl::SHOT352, PointRFT>::computeEigen (output);
# }
#
# /** \brief Estimate the SHOT descriptor for a given point based on its spatial neighborhood of 3D points with normals
# * \param[in] index the index of the point in indices_
# * \param[in] indices the k-neighborhood point indices in surface_
# * \param[in] sqr_dists the k-neighborhood point distances in surface_
# * \param[out] shot the resultant SHOT descriptor representing the feature at the query point
# */
# //virtual void
# //computePointSHOT (const int index,
# //const std::vector<int> &indices,
# //const std::vector<float> &sqr_dists,
# //Eigen::VectorXf &shot);
#
# void computeFeatureEigen (pcl::PointCloud<Eigen::MatrixXf> &output);
#
#
# /** \brief Make the compute (&PointCloudOut); inaccessible from outside the class
# * \param[out] output the output point cloud
# */
# void compute (pcl::PointCloud<pcl::SHOT352> &) { assert(0); }
# };
###
# template <typename PointInT, typename PointNT, typename PointOutT = pcl::SHOT1344, typename PointRFT = pcl::ReferenceFrame>
# class SHOTColorEstimation : public SHOTEstimationBase<PointInT, PointNT, PointOutT, PointRFT>
cdef extern from "pcl/features/shot.h" namespace "pcl":
cdef cppclass SHOTColorEstimation[In, NT, Out, RFT](SHOTEstimationBase[In, NT, Out, RFT]):
SHOTColorEstimation ()
# SHOTColorEstimation (bool describe_shape = true,
# bool describe_color = true)
# using SHOTEstimationBase<PointInT, PointNT, PointOutT, PointRFT>::feature_name_;
# using SHOTEstimationBase<PointInT, PointNT, PointOutT, PointRFT>::getClassName;
# using SHOTEstimationBase<PointInT, PointNT, PointOutT, PointRFT>::indices_;
# using SHOTEstimationBase<PointInT, PointNT, PointOutT, PointRFT>::k_;
# using SHOTEstimationBase<PointInT, PointNT, PointOutT, PointRFT>::search_parameter_;
# using SHOTEstimationBase<PointInT, PointNT, PointOutT, PointRFT>::search_radius_;
# using SHOTEstimationBase<PointInT, PointNT, PointOutT, PointRFT>::surface_;
# using SHOTEstimationBase<PointInT, PointNT, PointOutT, PointRFT>::input_;
# using SHOTEstimationBase<PointInT, PointNT, PointOutT, PointRFT>::normals_;
# using SHOTEstimationBase<PointInT, PointNT, PointOutT, PointRFT>::descLength_;
# using SHOTEstimationBase<PointInT, PointNT, PointOutT, PointRFT>::nr_grid_sector_;
# using SHOTEstimationBase<PointInT, PointNT, PointOutT, PointRFT>::nr_shape_bins_;
# using SHOTEstimationBase<PointInT, PointNT, PointOutT, PointRFT>::sqradius_;
# using SHOTEstimationBase<PointInT, PointNT, PointOutT, PointRFT>::radius3_4_;
# using SHOTEstimationBase<PointInT, PointNT, PointOutT, PointRFT>::radius1_4_;
# using SHOTEstimationBase<PointInT, PointNT, PointOutT, PointRFT>::radius1_2_;
# using SHOTEstimationBase<PointInT, PointNT, PointOutT, PointRFT>::maxAngularSectors_;
# using SHOTEstimationBase<PointInT, PointNT, PointOutT, PointRFT>::interpolateSingleChannel;
# using SHOTEstimationBase<PointInT, PointNT, PointOutT, PointRFT>::shot_;
# using FeatureWithLocalReferenceFrames<PointInT, PointRFT>::frames_;
# typedef typename Feature<PointInT, PointOutT>::PointCloudIn PointCloudIn;
#
# /** \brief Estimate the SHOT descriptor for a given point based on its spatial neighborhood of 3D points with normals
# * \param[in] index the index of the point in indices_
# * \param[in] indices the k-neighborhood point indices in surface_
# * \param[in] sqr_dists the k-neighborhood point distances in surface_
# * \param[out] shot the resultant SHOT descriptor representing the feature at the query point
# */
# virtual void
# computePointSHOT (const int index,
# const std::vector<int> &indices,
# const std::vector<float> &sqr_dists,
# Eigen::VectorXf &shot);
# public:
# /** \brief Converts RGB triplets to CIELab space.
# * \param[in] R the red channel
# * \param[in] G the green channel
# * \param[in] B the blue channel
# * \param[out] L the lightness
# * \param[out] A the first color-opponent dimension
# * \param[out] B2 the second color-opponent dimension
# */
# static void
# RGB2CIELAB (unsigned char R, unsigned char G, unsigned char B, float &L, float &A, float &B2);
#
# static float sRGB_LUT[256];
# static float sXYZ_LUT[4000];
###
# template <typename PointInT, typename PointNT, typename PointRFT>
# class SHOTColorEstimation<PointInT, PointNT, Eigen::MatrixXf, PointRFT> : public SHOTColorEstimation<PointInT, PointNT, pcl::SHOT1344, PointRFT>
# cdef extern from "pcl/features/shot.h" namespace "pcl":
# cdef cppclass SHOTColorEstimation[In, NT, Out, RFT](SHOTColorEstimation[In, NT, Out, RFT]):
# SHOTColorEstimation ()
# public:
# using SHOTColorEstimation<PointInT, PointNT, pcl::SHOT1344, PointRFT>::feature_name_;
# using SHOTColorEstimation<PointInT, PointNT, pcl::SHOT1344, PointRFT>::getClassName;
# using SHOTColorEstimation<PointInT, PointNT, pcl::SHOT1344, PointRFT>::indices_;
# using SHOTColorEstimation<PointInT, PointNT, pcl::SHOT1344, PointRFT>::k_;
# using SHOTColorEstimation<PointInT, PointNT, pcl::SHOT1344, PointRFT>::search_parameter_;
# using SHOTColorEstimation<PointInT, PointNT, pcl::SHOT1344, PointRFT>::search_radius_;
# using SHOTColorEstimation<PointInT, PointNT, pcl::SHOT1344, PointRFT>::surface_;
# using SHOTColorEstimation<PointInT, PointNT, pcl::SHOT1344, PointRFT>::input_;
# using SHOTColorEstimation<PointInT, PointNT, pcl::SHOT1344, PointRFT>::normals_;
# using SHOTColorEstimation<PointInT, PointNT, pcl::SHOT1344, PointRFT>::descLength_;
# using SHOTColorEstimation<PointInT, PointNT, pcl::SHOT1344, PointRFT>::nr_grid_sector_;
# using SHOTColorEstimation<PointInT, PointNT, pcl::SHOT1344, PointRFT>::nr_shape_bins_;
# using SHOTColorEstimation<PointInT, PointNT, pcl::SHOT1344, PointRFT>::sqradius_;
# using SHOTColorEstimation<PointInT, PointNT, pcl::SHOT1344, PointRFT>::radius3_4_;
# using SHOTColorEstimation<PointInT, PointNT, pcl::SHOT1344, PointRFT>::radius1_4_;
# using SHOTColorEstimation<PointInT, PointNT, pcl::SHOT1344, PointRFT>::radius1_2_;
# using SHOTColorEstimation<PointInT, PointNT, pcl::SHOT1344, PointRFT>::maxAngularSectors_;
# using SHOTColorEstimation<PointInT, PointNT, pcl::SHOT1344, PointRFT>::interpolateSingleChannel;
# using SHOTColorEstimation<PointInT, PointNT, pcl::SHOT1344, PointRFT>::shot_;
# using SHOTColorEstimation<PointInT, PointNT, pcl::SHOT1344, PointRFT>::b_describe_shape_;
# using SHOTColorEstimation<PointInT, PointNT, pcl::SHOT1344, PointRFT>::b_describe_color_;
# using SHOTColorEstimation<PointInT, PointNT, pcl::SHOT1344, PointRFT>::nr_color_bins_;
# using FeatureWithLocalReferenceFrames<PointInT, PointRFT>::frames_;
#
# /** \brief Empty constructor.
# * \param[in] describe_shape
# * \param[in] describe_color
# */
# SHOTColorEstimation (bool describe_shape = true,
# bool describe_color = true,
# int nr_shape_bins = 10,
# int nr_color_bins = 30)
# : SHOTColorEstimation<PointInT, PointNT, pcl::SHOT1344, PointRFT> (describe_shape, describe_color)
# {
# feature_name_ = "SHOTColorEstimation";
# nr_shape_bins_ = nr_shape_bins;
# nr_color_bins_ = nr_color_bins;
# };
#
# /** \brief Base method for feature estimation for all points given in
# * <setInputCloud (), setIndices ()> using the surface in setSearchSurface ()
# * and the spatial locator in setSearchMethod ()
# * \param[out] output the resultant point cloud model dataset containing the estimated features
# */
# void
# computeEigen (pcl::PointCloud<Eigen::MatrixXf> &output)
# {
# pcl::SHOTColorEstimation<PointInT, PointNT, pcl::SHOT1344, PointRFT>::computeEigen (output);
# }
#
###
# template <typename PointNT, typename PointRFT>
# class PCL_DEPRECATED_CLASS (SHOTEstimation, "SHOTEstimation<pcl::PointXYZRGBA,...,pcl::SHOT,...> IS DEPRECATED, USE SHOTEstimation<pcl::PointXYZRGBA,...,pcl::SHOT352,...> FOR SHAPE AND SHOTColorEstimation<pcl::PointXYZRGBA,...,pcl::SHOT1344,...> FOR SHAPE+COLOR INSTEAD")
# <pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>
# : public SHOTEstimationBase<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>
# public:
# using SHOTEstimationBase<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::feature_name_;
# using SHOTEstimationBase<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::indices_;
# using SHOTEstimationBase<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::k_;
# using SHOTEstimationBase<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::search_parameter_;
# using SHOTEstimationBase<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::search_radius_;
# using SHOTEstimationBase<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::surface_;
# using SHOTEstimationBase<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::input_;
# using FeatureFromNormals<pcl::PointXYZRGBA, PointNT, pcl::SHOT>::normals_;
# using FeatureWithLocalReferenceFrames<pcl::PointXYZRGBA, PointRFT>::frames_;
# using SHOTEstimationBase<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::getClassName;
# using SHOTEstimationBase<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::descLength_;
# using SHOTEstimationBase<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::nr_grid_sector_;
# using SHOTEstimationBase<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::nr_shape_bins_;
# using SHOTEstimationBase<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::sqradius_;
# using SHOTEstimationBase<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::radius3_4_;
# using SHOTEstimationBase<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::radius1_4_;
# using SHOTEstimationBase<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::radius1_2_;
# using SHOTEstimationBase<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::maxAngularSectors_;
# using SHOTEstimationBase<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::interpolateSingleChannel;
# using SHOTEstimationBase<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::shot_;
#
# typedef typename Feature<pcl::PointXYZRGBA, pcl::SHOT>::PointCloudOut PointCloudOut;
# typedef typename Feature<pcl::PointXYZRGBA, pcl::SHOT>::PointCloudIn PointCloudIn;
#
# /** \brief Empty constructor.
# * \param[in] describe_shape
# * \param[in] describe_color
# * \param[in] nr_shape_bins
# * \param[in] nr_color_bins
# */
# SHOTEstimation (bool describe_shape = true,
# bool describe_color = false,
# const int nr_shape_bins = 10,
# const int nr_color_bins = 30)
# : SHOTEstimationBase<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT> (nr_shape_bins),
# b_describe_shape_ (describe_shape),
# b_describe_color_ (describe_color),
# nr_color_bins_ (nr_color_bins)
# {
# feature_name_ = "SHOTEstimation";
# };
#
# /** \brief Estimate the SHOT descriptor for a given point based on its spatial neighborhood of 3D points with normals
# * \param[in] index the index of the point in indices_
# * \param[in] indices the k-neighborhood point indices in surface_
# * \param[in] sqr_dists the k-neighborhood point distances in surface_
# * \param[out] shot the resultant SHOT descriptor representing the feature at the query point
# */
# virtual void
# computePointSHOT (const int index,
# const std::vector<int> &indices,
# const std::vector<float> &sqr_dists,
# Eigen::VectorXf &shot);
# /** \brief Quadrilinear interpolation; used when color and shape descriptions are both activated
# * \param[in] indices the neighborhood point indices
# * \param[in] sqr_dists the neighborhood point distances
# * \param[in] index the index of the point in indices_
# * \param[out] binDistanceShape the resultant distance shape histogram
# * \param[out] binDistanceColor the resultant color shape histogram
# * \param[in] nr_bins_shape the number of bins in the shape histogram
# * \param[in] nr_bins_color the number of bins in the color histogram
# * \param[out] shot the resultant SHOT histogram
# */
# void
# interpolateDoubleChannel (const std::vector<int> &indices,
# const std::vector<float> &sqr_dists,
# const int index,
# std::vector<double> &binDistanceShape,
# std::vector<double> &binDistanceColor,
# const int nr_bins_shape,
# const int nr_bins_color,
# Eigen::VectorXf &shot);
#
# /** \brief Converts RGB triplets to CIELab space.
# * \param[in] R the red channel
# * \param[in] G the green channel
# * \param[in] B the blue channel
# * \param[out] L the lightness
# * \param[out] A the first color-opponent dimension
# * \param[out] B2 the second color-opponent dimension
# */
# static void
# RGB2CIELAB (unsigned char R, unsigned char G, unsigned char B, float &L, float &A, float &B2);
#
# /** \brief Compute shape descriptor. */
# bool b_describe_shape_;
#
# /** \brief Compute color descriptor. */
# bool b_describe_color_;
#
# /** \brief The number of bins in each color histogram. */
# int nr_color_bins_;
#
# public:
# static float sRGB_LUT[256];
# static float sXYZ_LUT[4000];
# };
###
# template <typename PointNT, typename PointRFT>
# class PCL_DEPRECATED_CLASS (SHOTEstimation, "SHOTEstimation<pcl::PointXYZRGBA,...,Eigen::MatrixXf,...> IS DEPRECATED, USE SHOTColorEstimation<pcl::PointXYZRGBA,...,Eigen::MatrixXf,...> FOR SHAPE AND SHAPE+COLOR INSTEAD")
# <pcl::PointXYZRGBA, PointNT, Eigen::MatrixXf, PointRFT>
# : public SHOTEstimation<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>
# public:
# using SHOTEstimation<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::feature_name_;
# using SHOTEstimation<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::getClassName;
# using SHOTEstimation<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::indices_;
# using SHOTEstimation<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::k_;
# using SHOTEstimation<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::search_parameter_;
# using SHOTEstimation<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::search_radius_;
# using SHOTEstimation<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::surface_;
# using SHOTEstimation<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::input_;
# using SHOTEstimation<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::descLength_;
# using SHOTEstimation<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::nr_grid_sector_;
# using SHOTEstimation<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::nr_shape_bins_;
# using SHOTEstimation<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::sqradius_;
# using SHOTEstimation<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::radius3_4_;
# using SHOTEstimation<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::radius1_4_;
# using SHOTEstimation<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::radius1_2_;
# using SHOTEstimation<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::maxAngularSectors_;
# using SHOTEstimation<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::interpolateSingleChannel;
# using SHOTEstimation<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::shot_;
# using SHOTEstimation<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::b_describe_shape_;
# using SHOTEstimation<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::b_describe_color_;
# using SHOTEstimation<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::nr_color_bins_;
# using FeatureWithLocalReferenceFrames<pcl::PointXYZRGBA, PointRFT>::frames_;
#
# /** \brief Empty constructor.
# * \param[in] describe_shape
# * \param[in] describe_color
# * \param[in] nr_shape_bins
# * \param[in] nr_color_bins
# */
# SHOTEstimation (bool describe_shape = true,
# bool describe_color = false,
# const int nr_shape_bins = 10,
# const int nr_color_bins = 30)
# : SHOTEstimation<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT> (describe_shape, describe_color, nr_shape_bins, nr_color_bins) {};
#
###
# shot_lrf.h
# template<typename PointInT, typename PointOutT = ReferenceFrame>
# class SHOTLocalReferenceFrameEstimation : public Feature<PointInT, PointOutT>
cdef extern from "pcl/features/shot_lrf.h" namespace "pcl":
cdef cppclass SHOTLocalReferenceFrameEstimation[In, Out](Feature[In, Out]):
PrincipalCurvaturesEstimation ()
# protected:
# using Feature<PointInT, PointOutT>::feature_name_;
# using Feature<PointInT, PointOutT>::getClassName;
# //using Feature<PointInT, PointOutT>::searchForNeighbors;
# using Feature<PointInT, PointOutT>::input_;
# using Feature<PointInT, PointOutT>::indices_;
# using Feature<PointInT, PointOutT>::surface_;
# using Feature<PointInT, PointOutT>::tree_;
# using Feature<PointInT, PointOutT>::search_parameter_;
# typedef typename Feature<PointInT, PointOutT>::PointCloudIn PointCloudIn;
# typedef typename Feature<PointInT, PointOutT>::PointCloudOut PointCloudOut;
# * \brief Computes disambiguated local RF for a point index
# * \param[in] cloud input point cloud
# * \param[in] search_radius the neighborhood radius
# * \param[in] central_point the point from the input_ cloud at which the local RF is computed
# * \param[in] indices the neighbours indices
# * \param[in] dists the squared distances to the neighbours
# * \param[out] rf reference frame to compute
# float getLocalRF (const int &index, Eigen::Matrix3f &rf)
# * \brief Feature estimation method.
# \param[out] output the resultant features
# virtual void computeFeature (PointCloudOut &output)
# * \brief Feature estimation method.
# * \param[out] output the resultant features
# virtual void computeFeatureEigen (pcl::PointCloud<Eigen::MatrixXf> &output)
###
# template <typename PointInT, typename PointNT>
# class PrincipalCurvaturesEstimation<PointInT, PointNT, Eigen::MatrixXf> : public PrincipalCurvaturesEstimation<PointInT, PointNT, pcl::PrincipalCurvatures>
# public:
# using PrincipalCurvaturesEstimation<PointInT, PointNT, pcl::PrincipalCurvatures>::indices_;
# using PrincipalCurvaturesEstimation<PointInT, PointNT, pcl::PrincipalCurvatures>::k_;
# using PrincipalCurvaturesEstimation<PointInT, PointNT, pcl::PrincipalCurvatures>::search_parameter_;
# using PrincipalCurvaturesEstimation<PointInT, PointNT, pcl::PrincipalCurvatures>::surface_;
# using PrincipalCurvaturesEstimation<PointInT, PointNT, pcl::PrincipalCurvatures>::compute;
# using PrincipalCurvaturesEstimation<PointInT, PointNT, pcl::PrincipalCurvatures>::input_;
# using PrincipalCurvaturesEstimation<PointInT, PointNT, pcl::PrincipalCurvatures>::normals_;
###
# shot_lrf_omp.h
# template<typename PointInT, typename PointOutT = ReferenceFrame>
# class SHOTLocalReferenceFrameEstimationOMP : public SHOTLocalReferenceFrameEstimation<PointInT, PointOutT>
cdef extern from "pcl/features/shot_lrf_omp.h" namespace "pcl":
cdef cppclass SHOTLocalReferenceFrameEstimationOMP[In, Out](SHOTLocalReferenceFrameEstimation[In, Out]):
SHOTLocalReferenceFrameEstimationOMP ()
# public:
# brief Initialize the scheduler and set the number of threads to use.
# param nr_threads the number of hardware threads to use (-1 sets the value back to automatic)
# inline void setNumberOfThreads (unsigned int nr_threads)
###
# shot_omp.h
# template <typename PointInT, typename PointNT, typename PointOutT = pcl::SHOT352, typename PointRFT = pcl::ReferenceFrame>
# class SHOTEstimationOMP : public SHOTEstimation<PointInT, PointNT, PointOutT, PointRFT>
cdef extern from "pcl/features/shot_omp.h" namespace "pcl":
cdef cppclass SHOTEstimationOMP[In, NT, Out, RFT](SHOTEstimation[In, NT, Out, RFT]):
SHOTEstimationOMP ()
# SHOTEstimationOMP (unsigned int nr_threads = - 1)
# public:
# using Feature<PointInT, PointOutT>::feature_name_;
# using Feature<PointInT, PointOutT>::getClassName;
# using Feature<PointInT, PointOutT>::input_;
# using Feature<PointInT, PointOutT>::indices_;
# using Feature<PointInT, PointOutT>::k_;
# using Feature<PointInT, PointOutT>::search_parameter_;
# using Feature<PointInT, PointOutT>::search_radius_;
# using Feature<PointInT, PointOutT>::surface_;
# using Feature<PointInT, PointOutT>::fake_surface_;
# using FeatureFromNormals<PointInT, PointNT, PointOutT>::normals_;
# using FeatureWithLocalReferenceFrames<PointInT, PointRFT>::frames_;
# using SHOTEstimation<PointInT, PointNT, PointOutT, PointRFT>::descLength_;
# using SHOTEstimation<PointInT, PointNT, PointOutT, PointRFT>::nr_grid_sector_;
# using SHOTEstimation<PointInT, PointNT, PointOutT, PointRFT>::nr_shape_bins_;
# using SHOTEstimation<PointInT, PointNT, PointOutT, PointRFT>::sqradius_;
# using SHOTEstimation<PointInT, PointNT, PointOutT, PointRFT>::radius3_4_;
# using SHOTEstimation<PointInT, PointNT, PointOutT, PointRFT>::radius1_4_;
# using SHOTEstimation<PointInT, PointNT, PointOutT, PointRFT>::radius1_2_;
# typedef typename Feature<PointInT, PointOutT>::PointCloudOut PointCloudOut;
# typedef typename Feature<PointInT, PointOutT>::PointCloudIn PointCloudIn;
#
# /** \brief Initialize the scheduler and set the number of threads to use.
# * \param nr_threads the number of hardware threads to use (-1 sets the value back to automatic)
inline void setNumberOfThreads (unsigned int nr_threads)
###
# template <typename PointInT, typename PointNT, typename PointOutT = pcl::SHOT1344, typename PointRFT = pcl::ReferenceFrame>
# class SHOTColorEstimationOMP : public SHOTColorEstimation<PointInT, PointNT, PointOutT, PointRFT>
# public:
# using Feature<PointInT, PointOutT>::feature_name_;
# using Feature<PointInT, PointOutT>::getClassName;
# using Feature<PointInT, PointOutT>::input_;
# using Feature<PointInT, PointOutT>::indices_;
# using Feature<PointInT, PointOutT>::k_;
# using Feature<PointInT, PointOutT>::search_parameter_;
# using Feature<PointInT, PointOutT>::search_radius_;
# using Feature<PointInT, PointOutT>::surface_;
# using Feature<PointInT, PointOutT>::fake_surface_;
# using FeatureFromNormals<PointInT, PointNT, PointOutT>::normals_;
# using FeatureWithLocalReferenceFrames<PointInT, PointRFT>::frames_;
# using SHOTColorEstimation<PointInT, PointNT, PointOutT, PointRFT>::descLength_;
# using SHOTColorEstimation<PointInT, PointNT, PointOutT, PointRFT>::nr_grid_sector_;
# using SHOTColorEstimation<PointInT, PointNT, PointOutT, PointRFT>::nr_shape_bins_;
# using SHOTColorEstimation<PointInT, PointNT, PointOutT, PointRFT>::sqradius_;
# using SHOTColorEstimation<PointInT, PointNT, PointOutT, PointRFT>::radius3_4_;
# using SHOTColorEstimation<PointInT, PointNT, PointOutT, PointRFT>::radius1_4_;
# using SHOTColorEstimation<PointInT, PointNT, PointOutT, PointRFT>::radius1_2_;
# using SHOTColorEstimation<PointInT, PointNT, PointOutT, PointRFT>::b_describe_shape_;
# using SHOTColorEstimation<PointInT, PointNT, PointOutT, PointRFT>::b_describe_color_;
# using SHOTColorEstimation<PointInT, PointNT, PointOutT, PointRFT>::nr_color_bins_;
# typedef typename Feature<PointInT, PointOutT>::PointCloudOut PointCloudOut;
# typedef typename Feature<PointInT, PointOutT>::PointCloudIn PointCloudIn;
#
# /** \brief Empty constructor. */
# SHOTColorEstimationOMP (bool describe_shape = true,
# bool describe_color = true,
# unsigned int nr_threads = - 1)
#
# /** \brief Initialize the scheduler and set the number of threads to use.
# * \param nr_threads the number of hardware threads to use (-1 sets the value back to automatic)
# */
# inline void setNumberOfThreads (unsigned int nr_threads)
###
# template <typename PointInT, typename PointNT, typename PointRFT>
# class PCL_DEPRECATED_CLASS (SHOTEstimationOMP, "SHOTEstimationOMP<..., pcl::SHOT, ...> IS DEPRECATED, USE SHOTEstimationOMP<..., pcl::SHOT352, ...> INSTEAD")
# <PointInT, PointNT, pcl::SHOT, PointRFT>
# : public SHOTEstimation<PointInT, PointNT, pcl::SHOT, PointRFT>
# public:
# using Feature<PointInT, pcl::SHOT>::feature_name_;
# using Feature<PointInT, pcl::SHOT>::getClassName;
# using Feature<PointInT, pcl::SHOT>::input_;
# using Feature<PointInT, pcl::SHOT>::indices_;
# using Feature<PointInT, pcl::SHOT>::k_;
# using Feature<PointInT, pcl::SHOT>::search_parameter_;
# using Feature<PointInT, pcl::SHOT>::search_radius_;
# using Feature<PointInT, pcl::SHOT>::surface_;
# using Feature<PointInT, pcl::SHOT>::fake_surface_;
# using FeatureFromNormals<PointInT, PointNT, pcl::SHOT>::normals_;
# using FeatureWithLocalReferenceFrames<PointInT, PointRFT>::frames_;
# using SHOTEstimation<PointInT, PointNT, pcl::SHOT, PointRFT>::descLength_;
# using SHOTEstimation<PointInT, PointNT, pcl::SHOT, PointRFT>::nr_grid_sector_;
# using SHOTEstimation<PointInT, PointNT, pcl::SHOT, PointRFT>::nr_shape_bins_;
# using SHOTEstimation<PointInT, PointNT, pcl::SHOT, PointRFT>::sqradius_;
# using SHOTEstimation<PointInT, PointNT, pcl::SHOT, PointRFT>::radius3_4_;
# using SHOTEstimation<PointInT, PointNT, pcl::SHOT, PointRFT>::radius1_4_;
# using SHOTEstimation<PointInT, PointNT, pcl::SHOT, PointRFT>::radius1_2_;
# typedef typename Feature<PointInT, pcl::SHOT>::PointCloudOut PointCloudOut;
# typedef typename Feature<PointInT, pcl::SHOT>::PointCloudIn PointCloudIn;
# /** \brief Empty constructor. */
# SHOTEstimationOMP (unsigned int nr_threads = - 1, int nr_shape_bins = 10)
# : SHOTEstimation<PointInT, PointNT, pcl::SHOT, PointRFT> (nr_shape_bins), threads_ ()
#
# /** \brief Initialize the scheduler and set the number of threads to use.
# * \param nr_threads the number of hardware threads to use (-1 sets the value back to automatic)
# */
# inline void setNumberOfThreads (unsigned int nr_threads)
#
###
# template <typename PointNT, typename PointRFT>
# class PCL_DEPRECATED_CLASS (SHOTEstimationOMP, "SHOTEstimationOMP<pcl::PointXYZRGBA,...,pcl::SHOT,...> IS DEPRECATED, USE SHOTEstimationOMP<pcl::PointXYZRGBA,...,pcl::SHOT352,...> FOR SHAPE AND SHOTColorEstimationOMP<pcl::PointXYZRGBA,...,pcl::SHOT1344,...> FOR SHAPE+COLOR INSTEAD")
# <pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>
# : public SHOTEstimation<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>
# public:
# using SHOTEstimation<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::feature_name_;
# using SHOTEstimation<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::getClassName;
# using SHOTEstimation<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::input_;
# using SHOTEstimation<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::indices_;
# using SHOTEstimation<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::k_;
# using SHOTEstimation<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::search_parameter_;
# using SHOTEstimation<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::search_radius_;
# using SHOTEstimation<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::surface_;
# using FeatureFromNormals<pcl::PointXYZRGBA, PointNT, pcl::SHOT>::normals_;
# using FeatureWithLocalReferenceFrames<pcl::PointXYZRGBA, PointRFT>::frames_;
# using SHOTEstimation<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::descLength_;
# using SHOTEstimation<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::nr_grid_sector_;
# using SHOTEstimation<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::nr_shape_bins_;
# using SHOTEstimation<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::sqradius_;
# using SHOTEstimation<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::radius3_4_;
# using SHOTEstimation<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::radius1_4_;
# using SHOTEstimation<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::radius1_2_;
# using SHOTEstimation<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::b_describe_shape_;
# using SHOTEstimation<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::b_describe_color_;
# using SHOTEstimation<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT>::nr_color_bins_;
# typedef typename Feature<pcl::PointXYZRGBA, pcl::SHOT>::PointCloudOut PointCloudOut;
# typedef typename Feature<pcl::PointXYZRGBA, pcl::SHOT>::PointCloudIn PointCloudIn;
#
# /** \brief Empty constructor. */
# SHOTEstimationOMP (bool describeShape = true,
# bool describeColor = false,
# unsigned int nr_threads = - 1,
# const int nr_shape_bins = 10,
# const int nr_color_bins = 30)
# : SHOTEstimation<pcl::PointXYZRGBA, PointNT, pcl::SHOT, PointRFT> (describeShape, describeColor, nr_shape_bins, nr_color_bins),
# threads_ ()
#
# /** \brief Initialize the scheduler and set the number of threads to use.
# * \param nr_threads the number of hardware threads to use (-1 sets the value back to automatic)
# */
# inline void
# setNumberOfThreads (unsigned int nr_threads)
###
# spin_image.h
# template <typename PointInT, typename PointNT, typename PointOutT>
# class SpinImageEstimation : public Feature<PointInT, PointOutT>
cdef extern from "pcl/features/spin_image.h" namespace "pcl":
cdef cppclass SpinImageEstimation[In, NT, Out](Feature[In, Out]):
SpinImageEstimation ()
# SpinImageEstimation (unsigned int image_width = 8,
# double support_angle_cos = 0.0, // when 0, this is bogus, so not applied
# unsigned int min_pts_neighb = 0);
# public:
# using Feature<PointInT, PointOutT>::feature_name_;
# using Feature<PointInT, PointOutT>::getClassName;
# using Feature<PointInT, PointOutT>::indices_;
# using Feature<PointInT, PointOutT>::search_radius_;
# using Feature<PointInT, PointOutT>::k_;
# using Feature<PointInT, PointOutT>::surface_;
# using Feature<PointInT, PointOutT>::fake_surface_;
# using PCLBase<PointInT>::input_;
# typedef typename Feature<PointInT, PointOutT>::PointCloudOut PointCloudOut;
# typedef typename pcl::PointCloud<PointNT> PointCloudN;
# typedef typename PointCloudN::Ptr PointCloudNPtr;
# typedef typename PointCloudN::ConstPtr PointCloudNConstPtr;
# typedef typename pcl::PointCloud<PointInT> PointCloudIn;
# typedef typename PointCloudIn::Ptr PointCloudInPtr;
# typedef typename PointCloudIn::ConstPtr PointCloudInConstPtr;
# typedef typename boost::shared_ptr<SpinImageEstimation<PointInT, PointNT, PointOutT> > Ptr;
# typedef typename boost::shared_ptr<const SpinImageEstimation<PointInT, PointNT, PointOutT> > ConstPtr;
# /** \brief Sets spin-image resolution.
# * \param[in] bin_count spin-image resolution, number of bins along one dimension
void setImageWidth (unsigned int bin_count)
# /** \brief Sets the maximum angle for the point normal to get to support region.
# * \param[in] support_angle_cos minimal allowed cosine of the angle between
# * the normals of input point and search surface point for the point
# * to be retained in the support
void setSupportAngle (double support_angle_cos)
# /** \brief Sets minimal points count for spin image computation.
# * \param[in] min_pts_neighb min number of points in the support to correctly estimate
# * spin-image. If at some point the support contains less points, exception is thrown
void setMinPointCountInNeighbourhood (unsigned int min_pts_neighb)
# /** \brief Provide a pointer to the input dataset that contains the point normals of
# * the input XYZ dataset given by \ref setInputCloud
# * \attention The input normals given by \ref setInputNormals have to match
# * the input point cloud given by \ref setInputCloud. This behavior is
# * different than feature estimation methods that extend \ref
# * FeatureFromNormals, which match the normals with the search surface.
# * \param[in] normals the const boost shared pointer to a PointCloud of normals.
# * By convention, L2 norm of each normal should be 1.
# inline void setInputNormals (const PointCloudNConstPtr &normals)
# /** \brief Sets single vector a rotation axis for all input points.
# * It could be useful e.g. when the vertical axis is known.
# * \param[in] axis unit-length vector that serves as rotation axis for reference frame
# void setRotationAxis (const PointNT& axis)
# /** \brief Sets array of vectors as rotation axes for input points.
# * Useful e.g. when one wants to use tangents instead of normals as rotation axes
# * \param[in] axes unit-length vectors that serves as rotation axes for
# * the corresponding input points' reference frames
# void setInputRotationAxes (const PointCloudNConstPtr& axes)
# /** \brief Sets input normals as rotation axes (default setting). */
void useNormalsAsRotationAxis ()
# /** \brief Sets/unsets flag for angular spin-image domain.
# * Angular spin-image differs from the vanilla one in the way that not
# * the points are collected in the bins but the angles between their
# * normals and the normal to the reference point. For further
# * information please see
# * Endres, F., Plagemann, C., Stachniss, C., & Burgard, W. (2009).
# * Unsupervised Discovery of Object Classes from Range Data using Latent Dirichlet Allocation.
# * In Robotics: Science and Systems. Seattle, USA.
# * \param[in] is_angular true for angular domain, false for point domain
void setAngularDomain (bool is_angular = true)
# /** \brief Sets/unsets flag for radial spin-image structure.
# *
# * Instead of rectangular coordinate system for reference frame
# * polar coordinates are used. Binning is done depending on the distance and
# * inclination angle from the reference point
# * \param[in] is_radial true for radial spin-image structure, false for rectangular
# */
void setRadialStructure (bool is_radial = true)
####
# template <typename PointInT, typename PointNT>
# class SpinImageEstimation<PointInT, PointNT, Eigen::MatrixXf> : public SpinImageEstimation<PointInT, PointNT, pcl::Histogram<153> >
# cdef extern from "pcl/features/spin_image.h" namespace "pcl":
# cdef cppclass SpinImageEstimation[In, NT, Eigen::MatrixXf](SpinImageEstimation[In, NT, pcl::Histogram<153>]):
# SpinImageEstimation ()
# public:
# using SpinImageEstimation<PointInT, PointNT, pcl::Histogram<153> >::indices_;
# using SpinImageEstimation<PointInT, PointNT, pcl::Histogram<153> >::search_radius_;
# using SpinImageEstimation<PointInT, PointNT, pcl::Histogram<153> >::k_;
# using SpinImageEstimation<PointInT, PointNT, pcl::Histogram<153> >::surface_;
# using SpinImageEstimation<PointInT, PointNT, pcl::Histogram<153> >::fake_surface_;
# using SpinImageEstimation<PointInT, PointNT, pcl::Histogram<153> >::compute;
#
# /** \brief Constructs empty spin image estimator.
# *
# * \param[in] image_width spin-image resolution, number of bins along one dimension
# * \param[in] support_angle_cos minimal allowed cosine of the angle between
# * the normals of input point and search surface point for the point
# * to be retained in the support
# * \param[in] min_pts_neighb min number of points in the support to correctly estimate
# * spin-image. If at some point the support contains less points, exception is thrown
# */
# SpinImageEstimation (unsigned int image_width = 8,
# double support_angle_cos = 0.0, // when 0, this is bogus, so not applied
# unsigned int min_pts_neighb = 0) :
# SpinImageEstimation<PointInT, PointNT, pcl::Histogram<153> > (image_width, support_angle_cos, min_pts_neighb) {}
###
# statistical_multiscale_interest_region_extraction.h
# template <typename PointT>
# class StatisticalMultiscaleInterestRegionExtraction : public PCLBase<PointT>
cdef extern from "pcl/features/statistical_multiscale_interest_region_extraction.h" namespace "pcl":
cdef cppclass StatisticalMultiscaleInterestRegionExtraction[T](cpp.PCLBase[T]):
StatisticalMultiscaleInterestRegionExtraction ()
# public:
# typedef boost::shared_ptr <std::vector<int> > IndicesPtr;
# typedef typename boost::shared_ptr<StatisticalMultiscaleInterestRegionExtraction<PointT> > Ptr;
# typedef typename boost::shared_ptr<const StatisticalMultiscaleInterestRegionExtraction<PointT> > ConstPtr;
# brief Method that generates the underlying nearest neighbor graph based on the input point cloud
void generateCloudGraph ()
# brief The method to be called in order to run the algorithm and produce the resulting
# set of regions of interest
# void computeRegionsOfInterest (list[IndicesPtr_t]& rois)
# brief Method for setting the scale parameters for the algorithm
# param scale_values vector of scales to determine the size of each scaling step
inline void setScalesVector (vector[float] &scale_values)
# brief Method for getting the scale parameters vector */
inline vector[float] getScalesVector ()
###
# usc.h
# template <typename PointInT, typename PointOutT, typename PointRFT = pcl::ReferenceFrame>
# class UniqueShapeContext : public Feature<PointInT, PointOutT>,
# public FeatureWithLocalReferenceFrames<PointInT, PointRFT>
# cdef extern from "pcl/features/usc.h" namespace "pcl":
# cdef cppclass UniqueShapeContext[In, Out, RFT](Feature[In, Out], FeatureWithLocalReferenceFrames[In, RFT]):
# VFHEstimation ()
# public:
# using Feature<PointInT, PointOutT>::feature_name_;
# using Feature<PointInT, PointOutT>::getClassName;
# using Feature<PointInT, PointOutT>::indices_;
# using Feature<PointInT, PointOutT>::search_parameter_;
# using Feature<PointInT, PointOutT>::search_radius_;
# using Feature<PointInT, PointOutT>::surface_;
# using Feature<PointInT, PointOutT>::fake_surface_;
# using Feature<PointInT, PointOutT>::input_;
# using Feature<PointInT, PointOutT>::searchForNeighbors;
# using FeatureWithLocalReferenceFrames<PointInT, PointRFT>::frames_;
# typedef typename Feature<PointInT, PointOutT>::PointCloudOut PointCloudOut;
# typedef typename Feature<PointInT, PointOutT>::PointCloudIn PointCloudIn;
# typedef typename boost::shared_ptr<UniqueShapeContext<PointInT, PointOutT, PointRFT> > Ptr;
# typedef typename boost::shared_ptr<const UniqueShapeContext<PointInT, PointOutT, PointRFT> > ConstPtr;
# /** \brief Constructor. */
# UniqueShapeContext () :
# /** \brief Set the number of bins along the azimuth
# * \param[in] bins the number of bins along the azimuth
# inline void setAzimuthBins (size_t bins)
# /** \return The number of bins along the azimuth. */
# inline size_t getAzimuthBins () const
# /** \brief Set the number of bins along the elevation
# * \param[in] bins the number of bins along the elevation
# */
# inline void setElevationBins (size_t bins)
# /** \return The number of bins along the elevation */
# inline size_t getElevationBins () const
# /** \brief Set the number of bins along the radii
# * \param[in] bins the number of bins along the radii
# inline void setRadiusBins (size_t bins)
# /** \return The number of bins along the radii direction. */
# inline size_t getRadiusBins () const
# /** The minimal radius value for the search sphere (rmin) in the original paper
# * \param[in] radius the desired minimal radius
# inline void setMinimalRadius (double radius)
# /** \return The minimal sphere radius. */
# inline double
# getMinimalRadius () const
# /** This radius is used to compute local point density
# * density = number of points within this radius
# * \param[in] radius Value of the point density search radius
# inline void setPointDensityRadius (double radius)
# /** \return The point density search radius. */
# inline double getPointDensityRadius () const
# /** Set the local RF radius value
# * \param[in] radius the desired local RF radius
# inline void setLocalRadius (double radius)
# /** \return The local RF radius. */
# inline double getLocalRadius () const
#
###
# usc.h
# template <typename PointInT, typename PointRFT>
# class UniqueShapeContext<PointInT, Eigen::MatrixXf, PointRFT> : public UniqueShapeContext<PointInT, pcl::SHOT, PointRFT>
# cdef extern from "pcl/features/usc.h" namespace "pcl":
# cdef cppclass UniqueShapeContext[In, Eigen::MatrixXf, RET](UniqueShapeContext[In, pcl::SHOT, RET]):
# UniqueShapeContext ()
# public:
# using FeatureWithLocalReferenceFrames<PointInT, PointRFT>::frames_;
# using UniqueShapeContext<PointInT, pcl::SHOT, PointRFT>::indices_;
# using UniqueShapeContext<PointInT, pcl::SHOT, PointRFT>::descriptor_length_;
# using UniqueShapeContext<PointInT, pcl::SHOT, PointRFT>::compute;
# using UniqueShapeContext<PointInT, pcl::SHOT, PointRFT>::computePointDescriptor;
###
# vfh.h
# template<typename PointInT, typename PointNT, typename PointOutT = pcl::VFHSignature308>
# class VFHEstimation : public FeatureFromNormals<PointInT, PointNT, PointOutT>
cdef extern from "pcl/features/vfh.h" namespace "pcl":
cdef cppclass VFHEstimation[In, NT, Out](FeatureFromNormals[In, NT, Out]):
VFHEstimation ()
# public:
# /** \brief Estimate the SPFH (Simple Point Feature Histograms) signatures of the angular
# * (f1, f2, f3) and distance (f4) features for a given point from its neighborhood
# * \param[in] centroid_p the centroid point
# * \param[in] centroid_n the centroid normal
# * \param[in] cloud the dataset containing the XYZ Cartesian coordinates of the two points
# * \param[in] normals the dataset containing the surface normals at each point in \a cloud
# * \param[in] indices the k-neighborhood point indices in the dataset
# void computePointSPFHSignature (const Eigen::Vector4f ¢roid_p, const Eigen::Vector4f ¢roid_n,
# const pcl::PointCloud<PointInT> &cloud, const pcl::PointCloud<PointNT> &normals,
# const std::vector<int> &indices);
#
# /** \brief Set the viewpoint.
# * \param[in] vpx the X coordinate of the viewpoint
# * \param[in] vpy the Y coordinate of the viewpoint
# * \param[in] vpz the Z coordinate of the viewpoint
# inline void setViewPoint (float vpx, float vpy, float vpz)
#
# /** \brief Get the viewpoint. */
# inline void getViewPoint (float &vpx, float &vpy, float &vpz)
#
# /** \brief Set use_given_normal_
# * \param[in] use Set to true if you want to use the normal passed to setNormalUse(normal)
# */
# inline void setUseGivenNormal (bool use)
#
# /** \brief Set the normal to use
# * \param[in] normal Sets the normal to be used in the VFH computation. It is is used
# * to build the Darboux Coordinate system.
# */
# inline void setNormalToUse (const Eigen::Vector3f &normal)
#
# /** \brief Set use_given_centroid_
# * \param[in] use Set to true if you want to use the centroid passed through setCentroidToUse(centroid)
# */
# inline void setUseGivenCentroid (bool use)
#
# /** \brief Set centroid_to_use_
# * \param[in] centroid Centroid to be used in the VFH computation. It is used to compute the distances
# * from all points to this centroid.
# */
# inline void setCentroidToUse (const Eigen::Vector3f ¢roid)
#
# /** \brief set normalize_bins_
# * \param[in] normalize If true, the VFH bins are normalized using the total number of points
# */
# inline void setNormalizeBins (bool normalize)
#
# /** \brief set normalize_distances_
# * \param[in] normalize If true, the 4th component of VFH (shape distribution component) get normalized
# * by the maximum size between the centroid and the point cloud
# */
# inline void setNormalizeDistance (bool normalize)
#
# /** \brief set size_component_
# * \param[in] fill_size True if the 4th component of VFH (shape distribution component) needs to be filled.
# * Otherwise, it is set to zero.
# */
# inline void setFillSizeComponent (bool fill_size)
#
# /** \brief Overloaded computed method from pcl::Feature.
# * \param[out] output the resultant point cloud model dataset containing the estimated features
# */
# void compute (cpp.PointCloud[Out] &output);
ctypedef VFHEstimation[cpp.PointXYZ, cpp.Normal, cpp.VFHSignature308] VFHEstimation_t
ctypedef VFHEstimation[cpp.PointXYZI, cpp.Normal, cpp.VFHSignature308] VFHEstimation_PointXYZI_t
ctypedef VFHEstimation[cpp.PointXYZRGB, cpp.Normal, cpp.VFHSignature308] VFHEstimation_PointXYZRGB_t
ctypedef VFHEstimation[cpp.PointXYZRGBA, cpp.Normal, cpp.VFHSignature308] VFHEstimation_PointXYZRGBA_t
###
###############################################################################
# Enum
###############################################################################
# Template
# # enum CoordinateFrame
# # CAMERA_FRAME = 0,
# # LASER_FRAME = 1
# Start
# cdef extern from "pcl/range_image/range_image.h" namespace "pcl":
# ctypedef enum CoordinateFrame2 "pcl::RangeImage::CoordinateFrame":
# COORDINATEFRAME_CAMERA "pcl::RangeImage::CAMERA_FRAME"
# COORDINATEFRAME_LASER "pcl::RangeImage::LASER_FRAME"
###
# integral_image_normal.h
# cdef extern from "pcl/features/integral_image_normal.h" namespace "pcl::IntegralImageNormalEstimation":
# cdef enum BorderPolicy:
# BORDER_POLICY_IGNORE
# BORDER_POLICY_MIRROR
# NG : IntegralImageNormalEstimation use Template
# cdef extern from "pcl/features/integral_image_normal.h" namespace "pcl::IntegralImageNormalEstimation":
# ctypedef enum BorderPolicy2 "pcl::IntegralImageNormalEstimation::BorderPolicy":
# BORDERPOLICY_IGNORE "pcl::IntegralImageNormalEstimation::BORDER_POLICY_IGNORE"
# BORDERPOLICY_MIRROR "pcl::IntegralImageNormalEstimation::BORDER_POLICY_MIRROR"
###
# cdef extern from "pcl/features/integral_image_normal.h" namespace "pcl::IntegralImageNormalEstimation":
# cdef enum NormalEstimationMethod:
# COVARIANCE_MATRIX
# AVERAGE_3D_GRADIENT
# AVERAGE_DEPTH_CHANGE
# SIMPLE_3D_GRADIENT
#
# NG : IntegralImageNormalEstimation use Template
# cdef extern from "pcl/features/integral_image_normal.h" namespace "pcl":
# ctypedef enum NormalEstimationMethod2 "pcl::IntegralImageNormalEstimation::NormalEstimationMethod":
# ESTIMATIONMETHOD_COVARIANCE_MATRIX "pcl::IntegralImageNormalEstimation::COVARIANCE_MATRIX"
# ESTIMATIONMETHOD_AVERAGE_3D_GRADIENT "pcl::IntegralImageNormalEstimation::AVERAGE_3D_GRADIENT"
# ESTIMATIONMETHOD_AVERAGE_DEPTH_CHANGE "pcl::IntegralImageNormalEstimation::AVERAGE_DEPTH_CHANGE"
# ESTIMATIONMETHOD_SIMPLE_3D_GRADIENT "pcl::IntegralImageNormalEstimation::SIMPLE_3D_GRADIENT"
# NG : (Test Cython 0.24.1)
# define __PYX_VERIFY_RETURN_INT/__PYX_VERIFY_RETURN_INT_EXC etc... , Convert Error "pcl::IntegralImageNormalEstimation<pcl::PointXYZ, pcl::Normal>::NormalEstimationMethod"
# cdef extern from "pcl/features/integral_image_normal.h" namespace "pcl::IntegralImageNormalEstimation":
# ctypedef enum NormalEstimationMethod2 "pcl::IntegralImageNormalEstimation<pcl::PointXYZ, pcl::Normal>::NormalEstimationMethod":
# ESTIMATIONMETHOD_COVARIANCE_MATRIX "pcl::IntegralImageNormalEstimation<pcl::PointXYZ, pcl::Normal>::COVARIANCE_MATRIX"
# ESTIMATIONMETHOD_AVERAGE_3D_GRADIENT "pcl::IntegralImageNormalEstimation<pcl::PointXYZ, pcl::Normal>::AVERAGE_3D_GRADIENT"
# ESTIMATIONMETHOD_AVERAGE_DEPTH_CHANGE "pcl::IntegralImageNormalEstimation<pcl::PointXYZ, pcl::Normal>::AVERAGE_DEPTH_CHANGE"
# ESTIMATIONMETHOD_SIMPLE_3D_GRADIENT "pcl::IntegralImageNormalEstimation<pcl::PointXYZ, pcl::Normal>::SIMPLE_3D_GRADIENT"
###
###############################################################################
# Activation
###############################################################################
|