1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368
|
# -*- coding: utf-8 -*-
from libcpp cimport bool
from libcpp.string cimport string
from libcpp.vector cimport vector
from libcpp.pair cimport pair
# main
cimport pcl_defs as cpp
from boost_shared_ptr cimport shared_ptr
# Cython - limits.pxd
# from libcpp cimport numeric_limits
# base
from eigen cimport Matrix4f
# registration.h
# template <typename PointSource, typename PointTarget>
# class Registration : public PCLBase<PointSource>
cdef extern from "pcl/registration/registration.h" namespace "pcl" nogil:
cdef cppclass Registration[Source, Target](cpp.PCLBase[Source]):
Registration()
# override?
void setInputCloud(cpp.PointCloudPtr_t ptcloud) except +
# void setInputSource(cpp.PointCloudPtr2_t pt2cloud) except +
# public:
# using PCLBase<PointSource>::initCompute;
# using PCLBase<PointSource>::deinitCompute;
# using PCLBase<PointSource>::input_;
# using PCLBase<PointSource>::indices_;
void setInputTarget(cpp.PointCloudPtr_t ptcloud) except +
# void setInputTarget2(cpp.PointCloudPtr_t pt2cloud) except +
# /** \brief Get a pointer to the input point cloud dataset target. */
# inline PointCloudTargetConstPtr const getInputTarget ()
cpp.PointCloudPtr_t getInputTarget ()
# brief Get the final transformation matrix estimated by the registration method.
Matrix4f getFinalTransformation ()
# /** \brief Get the last incremental transformation matrix estimated by the registration method. */
Matrix4f getLastIncrementalTransformation ()
# Set the maximum number of iterations the internal optimization should run for.
# param nr_iterations the maximum number of iterations the internal optimization should run for
void setMaximumIterations (int nr_iterations) except +
# /** \brief Get the maximum number of iterations the internal optimization should run for, as set by the user. */
int getMaximumIterations ()
# /** \brief Set the number of iterations RANSAC should run for.
# * \param[in] ransac_iterations is the number of iterations RANSAC should run for
# */
void setRANSACIterations (int ransac_iterations)
# /** \brief Get the number of iterations RANSAC should run for, as set by the user. */
# inline double getRANSACIterations ()
double getRANSACIterations ()
# /** \brief Set the inlier distance threshold for the internal RANSAC outlier rejection loop.
# * The method considers a point to be an inlier, if the distance between the target data index and the transformed
# * source index is smaller than the given inlier distance threshold.
# * The value is set by default to 0.05m.
# * \param[in] inlier_threshold the inlier distance threshold for the internal RANSAC outlier rejection loop
# */
# inline void setRANSACOutlierRejectionThreshold (double inlier_threshold) { inlier_threshold_ = inlier_threshold; }
void setRANSACOutlierRejectionThreshold (double inlier_threshold)
# /** \brief Get the inlier distance threshold for the internal outlier rejection loop as set by the user. */
# inline double getRANSACOutlierRejectionThreshold ()
double getRANSACOutlierRejectionThreshold ()
# /** \brief Set the maximum distance threshold between two correspondent points in source <-> target. If the
# * distance is larger than this threshold, the points will be ignored in the alignment process.
# * \param[in] distance_threshold the maximum distance threshold between a point and its nearest neighbor
# * correspondent in order to be considered in the alignment process
# */
# inline void setMaxCorrespondenceDistance (double distance_threshold)
void setMaxCorrespondenceDistance (double distance_threshold)
# /** \brief Get the maximum distance threshold between two correspondent points in source <-> target. If the
# * distance is larger than this threshold, the points will be ignored in the alignment process.
# */
# inline double getMaxCorrespondenceDistance ()
double getMaxCorrespondenceDistance ()
# /** \brief Set the transformation epsilon (maximum allowable difference between two consecutive
# * transformations) in order for an optimization to be considered as having converged to the final
# * solution.
# * \param[in] epsilon the transformation epsilon in order for an optimization to be considered as having
# * converged to the final solution.
# */
# inline void setTransformationEpsilon (double epsilon)
void setTransformationEpsilon (double epsilon)
# /** \brief Get the transformation epsilon (maximum allowable difference between two consecutive
# * transformations) as set by the user.
# */
# inline double getTransformationEpsilon ()
double getTransformationEpsilon ()
# /** \brief Set the maximum allowed Euclidean error between two consecutive steps in the ICP loop, before
# * the algorithm is considered to have converged.
# * The error is estimated as the sum of the differences between correspondences in an Euclidean sense,
# * divided by the number of correspondences.
# * \param[in] epsilon the maximum allowed distance error before the algorithm will be considered to have
# * converged
# */
# inline void setEuclideanFitnessEpsilon (double epsilon)
void setEuclideanFitnessEpsilon (double epsilon)
# /** \brief Get the maximum allowed distance error before the algorithm will be considered to have converged,
# * as set by the user. See \ref setEuclideanFitnessEpsilon
# */
# inline double getEuclideanFitnessEpsilon ()
double getEuclideanFitnessEpsilon ()
#
# /** \brief Provide a boost shared pointer to the PointRepresentation to be used when comparing points
# * \param[in] point_representation the PointRepresentation to be used by the k-D tree
# */
# inline void setPointRepresentation (const PointRepresentationConstPtr &point_representation)
#
# /** \brief Register the user callback function which will be called from registration thread
# * in order to update point cloud obtained after each iteration
# * \param[in] visualizerCallback reference of the user callback function
# */
# template<typename FunctionSignature> inline bool registerVisualizationCallback (boost::function<FunctionSignature> &visualizerCallback)
# /** \brief Obtain the Euclidean fitness score (e.g., sum of squared distances from the source to the target)
# * \param[in] max_range maximum allowable distance between a point and its correspondence in the target
# * (default: double::max)
# */
# double getFitnessScore (double max_range = numeric_limits[double]::max ());
double getFitnessScore() except +
# /** \brief Obtain the Euclidean fitness score (e.g., sum of squared distances from the source to the target)
# * from two sets of correspondence distances (distances between source and target points)
# * \param[in] distances_a the first set of distances between correspondences
# * \param[in] distances_b the second set of distances between correspondences
# */
# inline double getFitnessScore (const std::vector<float> &distances_a, const std::vector<float> &distances_b);
double getFitnessScore (const vector[float] &distances_a, const vector[float] &distances_b)
# /** \brief Return the state of convergence after the last align run */
# inline bool hasConverged ()
bool hasConverged ()
# /** \brief Call the registration algorithm which estimates the transformation and returns the transformed source
# * (input) as \a output.
# * \param[out] output the resultant input transfomed point cloud dataset
# */
# inline void align (PointCloudSource &output);
void align(cpp.PointCloud[Source] &) except +
# /** \brief Call the registration algorithm which estimates the transformation and returns the transformed source
# * (input) as \a output.
# * \param[out] output the resultant input transfomed point cloud dataset
# * \param[in] guess the initial gross estimation of the transformation
# */
# inline void align (PointCloudSource &output, const Matrix4f& guess);
void align (cpp.PointCloud[Source] &output, const Matrix4f& guess)
# /** \brief Abstract class get name method. */
# inline const std::string& getClassName () const
string& getClassName ()
# /** \brief Internal computation initalization. */
# bool initCompute ();
bool initCompute ()
# /** \brief Internal computation when reciprocal lookup is needed */
# bool initComputeReciprocal ();
bool initComputeReciprocal ()
# /** \brief Add a new correspondence rejector to the list
# * \param[in] rejector the new correspondence rejector to concatenate
# inline void addCorrespondenceRejector (const CorrespondenceRejectorPtr &rejector)
# void addCorrespondenceRejector (const CorrespondenceRejectorPtr &rejector)
# /** \brief Get the list of correspondence rejectors. */
# inline std::vector<CorrespondenceRejectorPtr> getCorrespondenceRejectors ()
# vector[CorrespondenceRejectorPtr] getCorrespondenceRejectors ()
# /** \brief Remove the i-th correspondence rejector in the list
# * \param[in] i the position of the correspondence rejector in the list to remove
# inline bool removeCorrespondenceRejector (unsigned int i)
bool removeCorrespondenceRejector (unsigned int i)
# /** \brief Clear the list of correspondence rejectors. */
# inline void clearCorrespondenceRejectors ()
void clearCorrespondenceRejectors ()
###
# warp_point_rigid.h
# template <class PointSourceT, class PointTargetT>
# class WarpPointRigid
cdef extern from "pcl/registration/warp_point_rigid.h" namespace "pcl" nogil:
cdef cppclass WarpPointRigid[Source, Target]:
WarpPointRigid (int nr_dim)
# public:
# virtual void setParam (const Eigen::VectorXf& p) = 0;
# void warpPoint (const PointSourceT& pnt_in, PointSourceT& pnt_out) const
# int getDimension () const {return nr_dim_;}
# const Eigen::Matrix4f& getTransform () const { return transform_matrix_; }
###
# correspondence_rejection.h
# class CorrespondenceRejector
cdef extern from "pcl/registration/correspondence_rejection.h" namespace "pcl::registration" nogil:
cdef cppclass CorrespondenceRejector:
CorrespondenceRejector()
# /** \brief Provide a pointer to the vector of the input correspondences.
# * \param[in] correspondences the const boost shared pointer to a correspondence vector
# */
# virtual inline void setInputCorrespondences (const CorrespondencesConstPtr &correspondences)
# /** \brief Get a pointer to the vector of the input correspondences.
# * \return correspondences the const boost shared pointer to a correspondence vector
# */
# inline CorrespondencesConstPtr getInputCorrespondences ()
# CorrespondencesConstPtr getInputCorrespondences ()
# /** \brief Run correspondence rejection
# * \param[out] correspondences Vector of correspondences that have not been rejected.
# */
# inline void getCorrespondences (pcl::Correspondences &correspondences)
# void getCorrespondences (pcl::Correspondences &correspondences)
# /** \brief Get a list of valid correspondences after rejection from the original set of correspondences.
# * Pure virtual. Compared to \a getCorrespondences this function is
# * stateless, i.e., input correspondences do not need to be provided beforehand,
# * but are directly provided in the function call.
# * \param[in] original_correspondences the set of initial correspondences given
# * \param[out] remaining_correspondences the resultant filtered set of remaining correspondences
# */
# virtual inline void getRemainingCorrespondences (const pcl::Correspondences& original_correspondences, pcl::Correspondences& remaining_correspondences) = 0;
# /** \brief Determine the indices of query points of
# * correspondences that have been rejected, i.e., the difference
# * between the input correspondences (set via \a setInputCorrespondences)
# * and the given correspondence vector.
# * \param[in] correspondences Vector of correspondences after rejection
# * \param[out] indices Vector of query point indices of those correspondences
# * that have been rejected.
# */
# inline void getRejectedQueryIndices (const pcl::Correspondences &correspondences, std::vector<int>& indices)
###
# namespace pcl
# namespace registration
# correspondence_rejection.h
# /** @b DataContainerInterface provides a generic interface for computing correspondence scores between correspondent
# * points in the input and target clouds
# * \ingroup registration
# */
# class DataContainerInterface
# cdef extern from "pcl/registration/correspondence_rejection.h" namespace "pcl::registration" nogil:
# cdef cppclass DataContainerInterface:
# DataContainerInterface()
# public:
# virtual ~DataContainerInterface () {}
# virtual double getCorrespondenceScore (int index) = 0;
# virtual double getCorrespondenceScore (const pcl::Correspondence &) = 0;
#
#
# ###
# # /** @b DataContainer is a container for the input and target point clouds and implements the interface
# # * to compute correspondence scores between correspondent points in the input and target clouds ingroup registration
# # */
# # template <typename PointT, typename NormalT=pcl::PointNormal>
# # class DataContainer : public DataContainerInterface
# cdef extern from "pcl/registration/correspondence_rejection.h" namespace "pcl::registration" nogil:
# cdef cppclass DataContainer[PointT, NormalT](DataContainerInterface):
# DataContainer()
# # typedef typename pcl::PointCloud<PointT>::ConstPtr PointCloudConstPtr;
# # typedef typename pcl::KdTree<PointT>::Ptr KdTreePtr;
# # typedef typename pcl::PointCloud<NormalT>::ConstPtr NormalsPtr;
# # public:
# # /** \brief Empty constructor. */
# # DataContainer ()
# #
# # /** \brief Provide a source point cloud dataset (must contain XYZ data!), used to compute the correspondence distance.
# # * \param[in] cloud a cloud containing XYZ data
# # */
# # inline void setInputCloud (const PointCloudConstPtr &cloud)
# void setInputCloud (const cpp.PointCloud[PointT] &cloud)
#
# # /** \brief Provide a target point cloud dataset (must contain XYZ data!), used to compute the correspondence distance.
# # * \param[in] target a cloud containing XYZ data
# # */
# # inline void setInputTarget (const PointCloudConstPtr &target)
# void setInputTarget (const cpp.PointCloud[PointT] &target)
#
# # /** \brief Set the normals computed on the input point cloud
# # * \param[in] normals the normals computed for the input cloud
# # */
# # inline void setInputNormals (const NormalsPtr &normals)
# void setInputNormals (const NormalsPtr &normals)
#
# # /** \brief Set the normals computed on the target point cloud
# # * \param[in] normals the normals computed for the input cloud
# # */
# # inline void setTargetNormals (const NormalsPtr &normals)
# void setTargetNormals (const cpp.PointCloudNormals[PointT] &normals)
#
# # /** \brief Get the normals computed on the input point cloud */
# # inline NormalsPtr getInputNormals ()
# cpp.NormalsPtr getInputNormals ()
#
# # /** \brief Get the normals computed on the target point cloud */
# # inline NormalsPtr getTargetNormals ()
# cpp.NormalsPtr getTargetNormals ()
#
# # /** \brief Get the correspondence score for a point in the input cloud
# # * \param[index] index of the point in the input cloud
# # */
# # inline double getCorrespondenceScore (int index)
# #
# # /** \brief Get the correspondence score for a given pair of correspondent points
# # * \param[corr] Correspondent points
# # */
# # inline double getCorrespondenceScore (const pcl::Correspondence &corr)
# #
# # /** \brief Get the correspondence score for a given pair of correspondent points based on the angle betweeen the normals.
# # * The normmals for the in put and target clouds must be set before using this function
# # * \param[in] corr Correspondent points
# # */
# # double getCorrespondenceScoreFromNormals (const pcl::Correspondence &corr)
#
#
###
# correspondence_estimation.h
# template <typename PointSource, typename PointTarget>
# class CorrespondenceEstimation : public PCLBase<PointSource>
cdef extern from "pcl/registration/correspondence_estimation.h" namespace "pcl::registration" nogil:
cdef cppclass CorrespondenceEstimation[Source, Target](cpp.PCLBase[Source]):
CorrespondenceEstimation()
# public:
# using PCLBase<PointSource>::initCompute;
# using PCLBase<PointSource>::deinitCompute;
# using PCLBase<PointSource>::input_;
# using PCLBase<PointSource>::indices_;
# typedef typename pcl::KdTree<PointTarget> KdTree;
# typedef typename pcl::KdTree<PointTarget>::Ptr KdTreePtr;
# typedef pcl::PointCloud<PointSource> PointCloudSource;
# typedef typename PointCloudSource::Ptr PointCloudSourcePtr;
# typedef typename PointCloudSource::ConstPtr PointCloudSourceConstPtr;
# typedef pcl::PointCloud<PointTarget> PointCloudTarget;
# typedef typename PointCloudTarget::Ptr PointCloudTargetPtr;
# typedef typename PointCloudTarget::ConstPtr PointCloudTargetConstPtr;
# typedef typename KdTree::PointRepresentationConstPtr PointRepresentationConstPtr;
#
# /** \brief Provide a pointer to the input target (e.g., the point cloud that we want to align the
# * input source to)
# * \param[in] cloud the input point cloud target
# */
# virtual inline void setInputTarget (const PointCloudTargetConstPtr &cloud);
#
# /** \brief Get a pointer to the input point cloud dataset target. */
# inline PointCloudTargetConstPtr const getInputTarget () { return (target_ ); }
#
# /** \brief Provide a boost shared pointer to the PointRepresentation to be used when comparing points
# * \param[in] point_representation the PointRepresentation to be used by the k-D tree
# */
# inline void setPointRepresentation (const PointRepresentationConstPtr &point_representation)
#
# /** \brief Determine the correspondences between input and target cloud.
# * \param[out] correspondences the found correspondences (index of query point, index of target point, distance)
# * \param[in] max_distance maximum distance between correspondences
# */
# virtual void determineCorrespondences (pcl::Correspondences &correspondences, float max_distance = std::numeric_limits<float>::max ());
#
# /** \brief Determine the correspondences between input and target cloud.
# * \param[out] correspondences the found correspondences (index of query and target point, distance)
# */
# virtual void determineReciprocalCorrespondences (pcl::Correspondences &correspondences);
###
### Inheritance ###
# icp.h
# template <typename PointSource, typename PointTarget>
# class IterativeClosestPoint : public Registration<PointSource, PointTarget>
cdef extern from "pcl/registration/icp.h" namespace "pcl" nogil:
cdef cppclass IterativeClosestPoint[Source, Target](Registration[Source, Target]):
IterativeClosestPoint() except +
# ctypedef typename Registration<PointSource, PointTarget>::PointCloudSource PointCloudSource;
# ctypedef typename PointCloudSource::Ptr PointCloudSourcePtr;
# ctypedef typename PointCloudSource::ConstPtr PointCloudSourceConstPtr;
# ctypedef typename Registration<PointSource, PointTarget>::PointCloudTarget PointCloudTarget;
# ctypedef PointIndices::Ptr PointIndicesPtr;
# ctypedef PointIndices::ConstPtr PointIndicesConstPtr;
ctypedef IterativeClosestPoint[cpp.PointXYZ, cpp.PointXYZ] IterativeClosestPoint_t
ctypedef IterativeClosestPoint[cpp.PointXYZI, cpp.PointXYZI] IterativeClosestPoint_PointXYZI_t
ctypedef IterativeClosestPoint[cpp.PointXYZRGB, cpp.PointXYZRGB] IterativeClosestPoint_PointXYZRGB_t
ctypedef IterativeClosestPoint[cpp.PointXYZRGBA, cpp.PointXYZRGBA] IterativeClosestPoint_PointXYZRGBA_t
ctypedef shared_ptr[IterativeClosestPoint[cpp.PointXYZ, cpp.PointXYZ]] IterativeClosestPointPtr_t
ctypedef shared_ptr[IterativeClosestPoint[cpp.PointXYZI, cpp.PointXYZI]] IterativeClosestPoint_PointXYZI_Ptr_t
ctypedef shared_ptr[IterativeClosestPoint[cpp.PointXYZRGB, cpp.PointXYZRGB]] IterativeClosestPoint_PointXYZRGB_Ptr_t
ctypedef shared_ptr[IterativeClosestPoint[cpp.PointXYZRGBA, cpp.PointXYZRGBA]] IterativeClosestPoint_PointXYZRGBA_Ptr_t
###
# gicp.h
cdef extern from "pcl/registration/gicp.h" namespace "pcl" nogil:
cdef cppclass GeneralizedIterativeClosestPoint[Source, Target](Registration[Source, Target]):
GeneralizedIterativeClosestPoint() except +
# typedef pcl::PointCloud<PointSource> PointCloudSource;
# typedef typename PointCloudSource::Ptr PointCloudSourcePtr;
# typedef typename PointCloudSource::ConstPtr PointCloudSourceConstPtr;
# typedef pcl::PointCloud<PointTarget> PointCloudTarget;
# typedef typename PointCloudTarget::Ptr PointCloudTargetPtr;
# typedef typename PointCloudTarget::ConstPtr PointCloudTargetConstPtr;
# typedef PointIndices::Ptr PointIndicesPtr;
# typedef PointIndices::ConstPtr PointIndicesConstPtr;
# typedef typename pcl::KdTree<PointSource> InputKdTree;
# typedef typename pcl::KdTree<PointSource>::Ptr InputKdTreePtr;
# typedef Eigen::Matrix<double, 6, 1> Vector6d;
# public:
# /** \brief Provide a pointer to the input dataset
# * \param cloud the const boost shared pointer to a PointCloud message
# */
# void setInputCloud (cpp.PointCloudPtr_t ptcloud)
# void setInputCloud (cpp.PointCloudPtr_t ptcloud)
# /** \brief Provide a pointer to the input target (e.g., the point cloud that we want to align the input source to)
# * \param[in] target the input point cloud target
# */
# inline void setInputTarget (const PointCloudTargetConstPtr &target)
# void setInputTarget (const PointCloudTargetConstPtr &target)
# /** \brief Estimate a rigid rotation transformation between a source and a target point cloud using an iterative
# * non-linear Levenberg-Marquardt approach.
# * \param[in] cloud_src the source point cloud dataset
# * \param[in] indices_src the vector of indices describing the points of interest in \a cloud_src
# * \param[in] cloud_tgt the target point cloud dataset
# * \param[in] indices_tgt the vector of indices describing the correspondences of the interst points from \a indices_src
# * \param[out] transformation_matrix the resultant transformation matrix
# */
# void estimateRigidTransformationBFGS (
# const PointCloudSource &cloud_src,
# const std::vector<int> &indices_src,
# const PointCloudTarget &cloud_tgt,
# const std::vector<int> &indices_tgt,
# Eigen::Matrix4f &transformation_matrix);
# void estimateRigidTransformationBFGS (
# const PointCloudSource &cloud_src,
# const std::vector<int> &indices_src,
# const PointCloudTarget &cloud_tgt,
# const vector[int] &indices_tgt,
# Matrix4f &transformation_matrix);
# /** \brief \return Mahalanobis distance matrix for the given point index */
# inline const Eigen::Matrix3d& mahalanobis(size_t index) const
# const Matrix3d& mahalanobis(size_t index)
# /** \brief Computes rotation matrix derivative.
# * rotation matrix is obtainded from rotation angles x[3], x[4] and x[5]
# * \return d/d_rx, d/d_ry and d/d_rz respectively in g[3], g[4] and g[5]
# * param x array representing 3D transformation
# * param R rotation matrix
# * param g gradient vector
# */
# void computeRDerivative(const Vector6d &x, const Eigen::Matrix3d &R, Vector6d &g) const;
# void computeRDerivative(const Vector6d &x, const Matrix3d &R, Vector6d &g)
# /** \brief Set the rotation epsilon (maximum allowable difference between two
# * consecutive rotations) in order for an optimization to be considered as having
# * converged to the final solution.
# * \param epsilon the rotation epsilon
# */
# inline void setRotationEpsilon (double epsilon)
void setRotationEpsilon (double epsilon)
# /** \brief Get the rotation epsilon (maximum allowable difference between two
# * consecutive rotations) as set by the user.
# */
# inline double getRotationEpsilon ()
double getRotationEpsilon ()
# /** \brief Set the number of neighbors used when selecting a point neighbourhood
# * to compute covariances.
# * A higher value will bring more accurate covariance matrix but will make
# * covariances computation slower.
# * \param k the number of neighbors to use when computing covariances
# */
void setCorrespondenceRandomness (int k)
# /** \brief Get the number of neighbors used when computing covariances as set by the user
# */
int getCorrespondenceRandomness ()
# /** set maximum number of iterations at the optimization step
# * \param[in] max maximum number of iterations for the optimizer
# */
void setMaximumOptimizerIterations (int max)
# ///\return maximum number of iterations at the optimization step
int getMaximumOptimizerIterations ()
ctypedef GeneralizedIterativeClosestPoint[cpp.PointXYZ, cpp.PointXYZ] GeneralizedIterativeClosestPoint_t
ctypedef GeneralizedIterativeClosestPoint[cpp.PointXYZI, cpp.PointXYZI] GeneralizedIterativeClosestPoint_PointXYZI_t
ctypedef GeneralizedIterativeClosestPoint[cpp.PointXYZRGB, cpp.PointXYZRGB] GeneralizedIterativeClosestPoint_PointXYZRGB_t
ctypedef GeneralizedIterativeClosestPoint[cpp.PointXYZRGBA, cpp.PointXYZRGBA] GeneralizedIterativeClosestPoint_PointXYZRGBA_t
ctypedef shared_ptr[GeneralizedIterativeClosestPoint[cpp.PointXYZ, cpp.PointXYZ]] GeneralizedIterativeClosestPointPtr_t
ctypedef shared_ptr[GeneralizedIterativeClosestPoint[cpp.PointXYZI, cpp.PointXYZI]] GeneralizedIterativeClosestPoint_PointXYZI_Ptr_t
ctypedef shared_ptr[GeneralizedIterativeClosestPoint[cpp.PointXYZRGB, cpp.PointXYZRGB]] GeneralizedIterativeClosestPoint_PointXYZRGB_Ptr_t
ctypedef shared_ptr[GeneralizedIterativeClosestPoint[cpp.PointXYZRGBA, cpp.PointXYZRGBA]] GeneralizedIterativeClosestPoint_PointXYZRGBA_Ptr_t
###
# icp_nl.h
# template <typename PointSource, typename PointTarget>
# class IterativeClosestPointNonLinear : public IterativeClosestPoint<PointSource, PointTarget>
# cdef cppclass IterativeClosestPointNonLinear[Source, Target](Registration[Source, Target]):
cdef extern from "pcl/registration/icp_nl.h" namespace "pcl" nogil:
cdef cppclass IterativeClosestPointNonLinear[Source, Target](IterativeClosestPoint[Source, Target]):
IterativeClosestPointNonLinear() except +
ctypedef IterativeClosestPointNonLinear[cpp.PointXYZ, cpp.PointXYZ] IterativeClosestPointNonLinear_t
ctypedef IterativeClosestPointNonLinear[cpp.PointXYZI, cpp.PointXYZI] IterativeClosestPointNonLinear_PointXYZI_t
ctypedef IterativeClosestPointNonLinear[cpp.PointXYZRGB, cpp.PointXYZRGB] IterativeClosestPointNonLinear_PointXYZRGB_t
ctypedef IterativeClosestPointNonLinear[cpp.PointXYZRGBA, cpp.PointXYZRGBA] IterativeClosestPointNonLinear_PointXYZRGBA_t
ctypedef shared_ptr[IterativeClosestPointNonLinear[cpp.PointXYZ, cpp.PointXYZ]] IterativeClosestPointNonLinearPtr_t
ctypedef shared_ptr[IterativeClosestPointNonLinear[cpp.PointXYZI, cpp.PointXYZI]] IterativeClosestPointNonLinear_PointXYZI_Ptr_t
ctypedef shared_ptr[IterativeClosestPointNonLinear[cpp.PointXYZRGB, cpp.PointXYZRGB]] IterativeClosestPointNonLinear_PointXYZRGB_Ptr_t
ctypedef shared_ptr[IterativeClosestPointNonLinear[cpp.PointXYZRGBA, cpp.PointXYZRGBA]] IterativeClosestPointNonLinear_PointXYZRGBA_Ptr_t
###
# bfgs.h
# template< typename _Scalar >
# PolynomialSolver is Eigen llibrary
# Eigen\include\unsupported\Eigen\src\Polynomials\PolynomialSolver.h(29,12) [SJIS]: * \class PolynomialSolverBase.
# class PolynomialSolver<_Scalar,2> : public PolynomialSolverBase<_Scalar,2>
# cdef extern from "pcl/registration/bfgs.h" namespace "Eigen" nogil:
# cdef cppclass PolynomialSolver[_Scalar, 2](PolynomialSolverBase[_Scalar, 2]):
# PolynomialSolver (int nr_dim)
# public:
# typedef PolynomialSolverBase<_Scalar,2> PS_Base;
# EIGEN_POLYNOMIAL_SOLVER_BASE_INHERITED_TYPES( PS_Base )
# public:
# template< typename OtherPolynomial > inline PolynomialSolver( const OtherPolynomial& poly, bool& hasRealRoot )
# /** Computes the complex roots of a new polynomial. */
# template< typename OtherPolynomial > void compute( const OtherPolynomial& poly, bool& hasRealRoot)
# template< typename OtherPolynomial > void compute( const OtherPolynomial& poly)
###
# bfgs.h
# template<typename _Scalar, int NX=Eigen::Dynamic>
# struct BFGSDummyFunctor
# cdef extern from "pcl/registration/bfgs.h" nogil:
# cdef struct BFGSDummyFunctor[_Scalar, NX]:
# BFGSDummyFunctor ()
# BFGSDummyFunctor(int inputs)
# typedef _Scalar Scalar;
# enum { InputsAtCompileTime = NX };
# typedef Eigen::Matrix<Scalar,InputsAtCompileTime,1> VectorType;
# const int m_inputs;
# int inputs() const { return m_inputs; }
# virtual double operator() (const VectorType &x) = 0;
# virtual void df(const VectorType &x, VectorType &df) = 0;
# virtual void fdf(const VectorType &x, Scalar &f, VectorType &df) = 0;
###
# bfgs.h
# namespace BFGSSpace {
# enum Status {
# NegativeGradientEpsilon = -3,
# NotStarted = -2,
# Running = -1,
# Success = 0,
# NoProgress = 1
# };
# }
#
###
# bfgs.h
# /**
# * BFGS stands for Broydenletcheroldfarbhanno (BFGS) method for solving
# * unconstrained nonlinear optimization problems.
# * For further details please visit: http://en.wikipedia.org/wiki/BFGS_method
# * The method provided here is almost similar to the one provided by GSL.
# * It reproduces Fletcher's original algorithm in Practical Methods of Optimization
# * algorithms : 2.6.2 and 2.6.4 and uses the same politics in GSL with cubic
# * interpolation whenever it is possible else falls to quadratic interpolation for
# * alpha parameter.
# */
# template<typename FunctorType>
# class BFGS
# cdef extern from "pcl/registration/bfgs.h" nogil:
# cdef cppclass BFGS[FunctorType]:
# # BFGS (FunctorType &_functor)
# public:
# typedef typename FunctorType::Scalar Scalar;
# typedef typename FunctorType::VectorType FVectorType;
#
# typedef Eigen::DenseIndex Index;
#
# struct Parameters {
# Parameters()
# : max_iters(400)
# , bracket_iters(100)
# , section_iters(100)
# , rho(0.01)
# , sigma(0.01)
# , tau1(9)
# , tau2(0.05)
# , tau3(0.5)
# , step_size(1)
# , order(3) {}
# Index max_iters; // maximum number of function evaluation
# Index bracket_iters;
# Index section_iters;
# Scalar rho;
# Scalar sigma;
# Scalar tau1;
# Scalar tau2;
# Scalar tau3;
# Scalar step_size;
# Index order;
#
# BFGSSpace::Status minimize(FVectorType &x);
# BFGSSpace::Status minimizeInit(FVectorType &x);
# BFGSSpace::Status minimizeOneStep(FVectorType &x);
# BFGSSpace::Status testGradient(Scalar epsilon);
# void resetParameters(void) { parameters = Parameters(); }
#
# Parameters parameters;
# Scalar f;
# FVectorType gradient;
#
#
# template<typename FunctorType> void
# BFGS<FunctorType>::checkExtremum(const Eigen::Matrix<Scalar, 4, 1>& coefficients, Scalar x, Scalar& xmin, Scalar& fmin)
#
# template<typename FunctorType> void
# BFGS<FunctorType>::moveTo(Scalar alpha)
#
# template<typename FunctorType> typename BFGS<FunctorType>::Scalar
# BFGS<FunctorType>::slope()
#
# template<typename FunctorType> typename BFGS<FunctorType>::Scalar
# BFGS<FunctorType>::applyF(Scalar alpha)
#
# template<typename FunctorType> typename BFGS<FunctorType>::Scalar
# BFGS<FunctorType>::applyDF(Scalar alpha)
#
# template<typename FunctorType> void
# BFGS<FunctorType>::applyFDF(Scalar alpha, Scalar& f, Scalar& df)
#
# template<typename FunctorType> void
# BFGS<FunctorType>::updatePosition (Scalar alpha, FVectorType &x, Scalar &f, FVectorType &g)
#
# template<typename FunctorType> void
# BFGS<FunctorType>::changeDirection ()
#
# template<typename FunctorType> BFGSSpace::Status
# BFGS<FunctorType>::minimize(FVectorType &x)
#
# template<typename FunctorType> BFGSSpace::Status
# BFGS<FunctorType>::minimizeInit(FVectorType &x)
#
# template<typename FunctorType> BFGSSpace::Status
# BFGS<FunctorType>::minimizeOneStep(FVectorType &x)
#
# template<typename FunctorType> typename BFGSSpace::Status
# BFGS<FunctorType>::testGradient(Scalar epsilon)
#
# template<typename FunctorType> typename BFGS<FunctorType>::Scalar
# BFGS<FunctorType>::interpolate (Scalar a, Scalar fa, Scalar fpa,
# Scalar b, Scalar fb, Scalar fpb,
# Scalar xmin, Scalar xmax,
# int order)
#
# template<typename FunctorType> BFGSSpace::Status
# BFGS<FunctorType>::lineSearch(Scalar rho, Scalar sigma,
# Scalar tau1, Scalar tau2, Scalar tau3,
# int order, Scalar alpha1, Scalar &alpha_new)
###
# correspondence_estimation_normal_shooting.h
# template <typename PointSource, typename PointTarget, typename NormalT>
# class CorrespondenceEstimationNormalShooting : public CorrespondenceEstimation <PointSource, PointTarget>
cdef extern from "pcl/registration/correspondence_estimation_normal_shooting.h" namespace "pcl::registration" nogil:
cdef cppclass CorrespondenceEstimationNormalShooting[Source, Target, NormalT](CorrespondenceEstimation[Source, Target]):
CorrespondenceEstimationNormalShooting()
#
# /** \brief Set the normals computed on the input point cloud
# * \param[in] normals the normals computed for the input cloud
# */
# inline void setSourceNormals (const NormalsPtr &normals)
#
# /** \brief Get the normals of the input point cloud
# */
# inline NormalsPtr getSourceNormals () const
#
# /** \brief Determine the correspondences between input and target cloud.
# * \param[out] correspondences the found correspondences (index of query point, index of target point, distance)
# * \param[in] max_distance maximum distance between the normal on the source point cloud and the corresponding point in the target
# * point cloud
# */
# void determineCorrespondences (pcl::Correspondences &correspondences, float max_distance = std::numeric_limits<float>::max ());
#
# /** \brief Set the number of nearest neighbours to be considered in the target point cloud
# * \param[in] k the number of nearest neighbours to be considered
# */
# inline void setKSearch (unsigned int k)
#
# /** \brief Get the number of nearest neighbours considered in the target point cloud for computing correspondence
# */
# inline void getKSearch ()
###
# correspondence_rejection_distance.h
# class CorrespondenceRejectorDistance: public CorrespondenceRejector
cdef extern from "pcl/registration/correspondence_rejection_distance.h" namespace "pcl::registration" nogil:
cdef cppclass CorrespondenceRejectorDistance(CorrespondenceRejector):
CorrespondenceRejectorDistance()
# using CorrespondenceRejector::input_correspondences_;
# using CorrespondenceRejector::rejection_name_;
# using CorrespondenceRejector::getClassName;
# public:
# /** \brief Get a list of valid correspondences after rejection from the original set of correspondences.
# * \param[in] original_correspondences the set of initial correspondences given
# * \param[out] remaining_correspondences the resultant filtered set of remaining correspondences
# */
# inline void getRemainingCorrespondences (const pcl::Correspondences& original_correspondences, pcl::Correspondences& remaining_correspondences);
#
# /** \brief Set the maximum distance used for thresholding in correspondence rejection.
# * \param[in] distance Distance to be used as maximum distance between correspondences.
# * Correspondences with larger distances are rejected.
# * \note Internally, the distance will be stored squared.
# */
# virtual inline void setMaximumDistance (float distance)
#
# /** \brief Get the maximum distance used for thresholding in correspondence rejection. */
# inline float getMaximumDistance ()
#
# /** \brief Provide a source point cloud dataset (must contain XYZ
# * data!), used to compute the correspondence distance.
# * \param[in] cloud a cloud containing XYZ data
# */
# template <typename PointT> inline void setInputCloud (const typename pcl::PointCloud<PointT>::ConstPtr &cloud)
#
# /** \brief Provide a target point cloud dataset (must contain XYZ
# * data!), used to compute the correspondence distance.
# * \param[in] target a cloud containing XYZ data
# */
# template <typename PointT> inline void setInputTarget (const typename pcl::PointCloud<PointT>::ConstPtr &target)
###
# correspondence_rejection_features.h
# class CorrespondenceRejectorFeatures: public CorrespondenceRejector
cdef extern from "pcl/registration/correspondence_rejection_distance.h" namespace "pcl::registration" nogil:
cdef cppclass CorrespondenceRejectorFeatures(CorrespondenceRejector):
CorrespondenceRejectorFeatures()
# using CorrespondenceRejector::input_correspondences_;
# using CorrespondenceRejector::rejection_name_;
# using CorrespondenceRejector::getClassName;
# /** \brief Get a list of valid correspondences after rejection from the original set of correspondences
# * \param[in] original_correspondences the set of initial correspondences given
# * \param[out] remaining_correspondences the resultant filtered set of remaining correspondences
# */
# void getRemainingCorrespondences (const pcl::Correspondences& original_correspondences, pcl::Correspondences& remaining_correspondences);
#
# /** \brief Provide a pointer to a cloud of feature descriptors associated with the source point cloud
# * \param[in] source_feature a cloud of feature descriptors associated with the source point cloud
# * \param[in] key a string that uniquely identifies the feature
# */
# template <typename FeatureT> inline void setSourceFeature (const typename pcl::PointCloud<FeatureT>::ConstPtr &source_feature, const std::string &key);
#
# /** \brief Get a pointer to the source cloud's feature descriptors, specified by the given \a key
# * \param[in] key a string that uniquely identifies the feature (must match the key provided by setSourceFeature)
# */
# template <typename FeatureT> inline typename pcl::PointCloud<FeatureT>::ConstPtr getSourceFeature (const std::string &key);
#
# /** \brief Provide a pointer to a cloud of feature descriptors associated with the target point cloud
# * \param[in] target_feature a cloud of feature descriptors associated with the target point cloud
# * \param[in] key a string that uniquely identifies the feature
# */
# template <typename FeatureT> inline void setTargetFeature (const typename pcl::PointCloud<FeatureT>::ConstPtr &target_feature, const std::string &key);
#
# /** \brief Get a pointer to the source cloud's feature descriptors, specified by the given \a key
# * \param[in] key a string that uniquely identifies the feature (must match the key provided by setTargetFeature)
# */
# template <typename FeatureT> inline typename pcl::PointCloud<FeatureT>::ConstPtr getTargetFeature (const std::string &key);
#
# /** \brief Set a hard distance threshold in the feature \a FeatureT space, between source and target
# * features. Any feature correspondence that is above this threshold will be considered bad and will be
# * filtered out.
# * \param[in] thresh the distance threshold
# * \param[in] key a string that uniquely identifies the feature
# */
# template <typename FeatureT> inline void setDistanceThreshold (double thresh, const std::string &key);
#
# /** \brief Test that all features are valid (i.e., does each key have a valid source cloud, target cloud,
# * and search method)
# */
# inline bool hasValidFeatures ();
#
# /** \brief Provide a boost shared pointer to a PointRepresentation to be used when comparing features
# * \param[in] key a string that uniquely identifies the feature
# * \param[in] fr the point feature representation to be used
# */
# template <typename FeatureT> inline void setFeatureRepresentation (const typename pcl::PointRepresentation<FeatureT>::ConstPtr &fr, const std::string &key);
###
# correspondence_rejection_median_distance.h
# class CorrespondenceRejectorMedianDistance: public CorrespondenceRejector
cdef extern from "pcl/registration/correspondence_rejection_median_distance.h" namespace "pcl::registration" nogil:
cdef cppclass CorrespondenceRejectorMedianDistance(CorrespondenceRejector):
CorrespondenceRejectorMedianDistance()
# using CorrespondenceRejector::input_correspondences_;
# using CorrespondenceRejector::rejection_name_;
# using CorrespondenceRejector::getClassName;
# public:
# /** \brief Get a list of valid correspondences after rejection from the original set of correspondences.
# * \param[in] original_correspondences the set of initial correspondences given
# * \param[out] remaining_correspondences the resultant filtered set of remaining correspondences
# */
# inline void
# getRemainingCorrespondences (const pcl::Correspondences& original_correspondences,
# pcl::Correspondences& remaining_correspondences);
#
# /** \brief Get the median distance used for thresholding in correspondence rejection. */
# inline double getMedianDistance () const
#
# /** \brief Provide a source point cloud dataset (must contain XYZ
# * data!), used to compute the correspondence distance.
# * \param[in] cloud a cloud containing XYZ data
# */
# template <typename PointT> inline void
# setInputCloud (const typename pcl::PointCloud<PointT>::ConstPtr &cloud)
#
# /** \brief Provide a target point cloud dataset (must contain XYZ
# * data!), used to compute the correspondence distance.
# * \param[in] target a cloud containing XYZ data
# */
# template <typename PointT> inline void
# setInputTarget (const typename pcl::PointCloud<PointT>::ConstPtr &target)
#
# /** \brief Set the factor for correspondence rejection. Points with distance greater than median times factor
# * will be rejected
# * \param[in] factor value
# */
# inline void setMedianFactor (double factor)
#
# /** \brief Get the factor used for thresholding in correspondence rejection. */
# inline double getMedianFactor () const { return factor_; };
#
###
# correspondence_rejection_one_to_one.h
# class CorrespondenceRejectorOneToOne: public CorrespondenceRejector
cdef extern from "pcl/registration/correspondence_rejection_one_to_one.h" namespace "pcl::registration" nogil:
cdef cppclass CorrespondenceRejectorOneToOne(CorrespondenceRejector):
CorrespondenceRejectorOneToOne()
# using CorrespondenceRejector::input_correspondences_;
# using CorrespondenceRejector::rejection_name_;
# using CorrespondenceRejector::getClassName;
# public:
# /** \brief Get a list of valid correspondences after rejection from the original set of correspondences.
# * \param[in] original_correspondences the set of initial correspondences given
# * \param[out] remaining_correspondences the resultant filtered set of remaining correspondences
# */
# inline void
# getRemainingCorrespondences (const pcl::Correspondences& original_correspondences,
# pcl::Correspondences& remaining_correspondences);
#
# protected:
# /** \brief Apply the rejection algorithm.
# * \param[out] correspondences the set of resultant correspondences.
# */
# inline void
# applyRejection (pcl::Correspondences &correspondences)
# {
# getRemainingCorrespondences (*input_correspondences_, correspondences);
# }
# };
#
###
# correspondence_rejection_sample_consensus.h
# template <typename PointT>
# class CorrespondenceRejectorSampleConsensus: public CorrespondenceRejector
cdef extern from "pcl/registration/correspondence_rejection_sample_consensus.h" namespace "pcl::registration" nogil:
cdef cppclass CorrespondenceRejectorSampleConsensus[T](CorrespondenceRejector):
CorrespondenceRejectorSampleConsensus()
# using CorrespondenceRejector::input_correspondences_;
# using CorrespondenceRejector::rejection_name_;
# using CorrespondenceRejector::getClassName;
# typedef pcl::PointCloud<PointT> PointCloud;
# typedef typename PointCloud::Ptr PointCloudPtr;
# typedef typename PointCloud::ConstPtr PointCloudConstPtr;
# public:
# /** \brief Get a list of valid correspondences after rejection from the original set of correspondences.
# * \param[in] original_correspondences the set of initial correspondences given
# * \param[out] remaining_correspondences the resultant filtered set of remaining correspondences
# */
# inline void
# getRemainingCorrespondences (const pcl::Correspondences& original_correspondences,
# pcl::Correspondences& remaining_correspondences);
#
# /** \brief Provide a source point cloud dataset (must contain XYZ data!)
# * \param[in] cloud a cloud containing XYZ data
# */
# virtual inline void
# setInputCloud (const PointCloudConstPtr &cloud) { input_ = cloud; }
#
# /** \brief Provide a target point cloud dataset (must contain XYZ data!)
# * \param[in] cloud a cloud containing XYZ data
# */
# virtual inline void
# setTargetCloud (const PointCloudConstPtr &cloud) { target_ = cloud; }
#
# /** \brief Set the maximum distance between corresponding points.
# * Correspondences with distances below the threshold are considered as inliers.
# * \param[in] threshold Distance threshold in the same dimension as source and target data sets.
# */
# inline void
# setInlierThreshold (double threshold) { inlier_threshold_ = threshold; };
#
# /** \brief Get the maximum distance between corresponding points.
# * \return Distance threshold in the same dimension as source and target data sets.
# */
# inline double
# getInlierThreshold() { return inlier_threshold_; };
#
# /** \brief Set the maximum number of iterations.
# * \param[in] max_iterations Maximum number if iterations to run
# */
# inline void
# setMaxIterations (int max_iterations) {max_iterations_ = std::max(max_iterations, 0); };
#
# /** \brief Get the maximum number of iterations.
# * \return max_iterations Maximum number if iterations to run
# */
# inline int
# getMaxIterations () { return max_iterations_; };
#
# /** \brief Get the best transformation after RANSAC rejection.
# * \return The homogeneous 4x4 transformation yielding the largest number of inliers.
# */
# inline Eigen::Matrix4f
# getBestTransformation () { return best_transformation_; };
#
###
# correspondence_rejection_surface_normal.h
# class CorrespondenceRejectorSurfaceNormal : public CorrespondenceRejector
cdef extern from "pcl/registration/correspondence_rejection_surface_normal.h" namespace "pcl::registration" nogil:
cdef cppclass CorrespondenceRejectorSurfaceNormal(CorrespondenceRejector):
CorrespondenceRejectorSurfaceNormal()
# using CorrespondenceRejector::input_correspondences_;
# using CorrespondenceRejector::rejection_name_;
# using CorrespondenceRejector::getClassName;
# public:
# /** \brief Get a list of valid correspondences after rejection from the original set of correspondences.
# * \param[in] original_correspondences the set of initial correspondences given
# * \param[out] remaining_correspondences the resultant filtered set of remaining correspondences
# */
# inline void
# getRemainingCorrespondences (const pcl::Correspondences& original_correspondences,
# pcl::Correspondences& remaining_correspondences);
#
# /** \brief Set the thresholding angle between the normals for correspondence rejection.
# * \param[in] threshold cosine of the thresholding angle between the normals for rejection
# */
# inline void
# setThreshold (double threshold) { threshold_ = threshold; };
#
# /** \brief Get the thresholding angle between the normals for correspondence rejection. */
# inline double
# getThreshold () const { return threshold_; };
#
# /** \brief Initialize the data container object for the point type and the normal type
# */
# template <typename PointT, typename NormalT> inline void
# initializeDataContainer ()
#
# /** \brief Provide a source point cloud dataset (must contain XYZ
# * data!), used to compute the correspondence distance.
# * \param[in] cloud a cloud containing XYZ data
# */
# template <typename PointT> inline void
# setInputCloud (const typename pcl::PointCloud<PointT>::ConstPtr &input)
#
# /** \brief Provide a target point cloud dataset (must contain XYZ
# * data!), used to compute the correspondence distance.
# * \param[in] target a cloud containing XYZ data
# */
# template <typename PointT> inline void
# setInputTarget (const typename pcl::PointCloud<PointT>::ConstPtr &target)
#
# /** \brief Set the normals computed on the input point cloud
# * \param[in] normals the normals computed for the input cloud
# */
# template <typename PointT, typename NormalT> inline void
# setInputNormals (const typename pcl::PointCloud<NormalT>::ConstPtr &normals)
#
# /** \brief Set the normals computed on the target point cloud
# * \param[in] normals the normals computed for the input cloud
# */
# template <typename PointT, typename NormalT> inline void
# setTargetNormals (const typename pcl::PointCloud<NormalT>::ConstPtr &normals)
#
# /** \brief Get the normals computed on the input point cloud */
# template <typename NormalT> inline typename pcl::PointCloud<NormalT>::Ptr
# getInputNormals () const { return boost::static_pointer_cast<DataContainer<pcl::PointXYZ, NormalT> > (data_container_)->getInputNormals (); }
#
# /** \brief Get the normals computed on the target point cloud */
# template <typename NormalT> inline typename pcl::PointCloud<NormalT>::Ptr
# getTargetNormals () const { return boost::static_pointer_cast<DataContainer<pcl::PointXYZ, NormalT> > (data_container_)->getTargetNormals (); }
###
# correspondence_rejection_trimmed.h
# class CorrespondenceRejectorTrimmed: public CorrespondenceRejector
cdef extern from "pcl/registration/correspondence_rejection_trimmed.h" namespace "pcl::registration" nogil:
cdef cppclass CorrespondenceRejectorTrimmed(CorrespondenceRejector):
CorrespondenceRejectorTrimmed()
# using CorrespondenceRejector::input_correspondences_;
# using CorrespondenceRejector::rejection_name_;
# using CorrespondenceRejector::getClassName;
# public:
# /** \brief Set the expected ratio of overlap between point clouds (in
# * terms of correspondences).
# * \param[in] ratio ratio of overlap between 0 (no overlap, no
# * correspondences) and 1 (full overlap, all correspondences)
# */
# virtual inline void setOverlapRadio (float ratio)
#
# /** \brief Get the maximum distance used for thresholding in correspondence rejection. */
# inline float getOverlapRadio ()
#
# /** \brief Set a minimum number of correspondences. If the specified overlap ratio causes to have
# * less correspondences, \a CorrespondenceRejectorTrimmed will try to return at least
# * \a nr_min_correspondences_ correspondences (or all correspondences in case \a nr_min_correspondences_
# * is less than the number of given correspondences).
# * \param[in] min_correspondences the minimum number of correspondences
# */
# inline void setMinCorrespondences (unsigned int min_correspondences) { nr_min_correspondences_ = min_correspondences; };
#
# /** \brief Get the minimum number of correspondences. */
# inline unsigned int getMinCorrespondences ()
#
# /** \brief Get a list of valid correspondences after rejection from the original set of correspondences.
# * \param[in] original_correspondences the set of initial correspondences given
# * \param[out] remaining_correspondences the resultant filtered set of remaining correspondences
# */
# inline void
# getRemainingCorrespondences (const pcl::Correspondences& original_correspondences,
# pcl::Correspondences& remaining_correspondences);
# protected:
# /** \brief Apply the rejection algorithm.
# * \param[out] correspondences the set of resultant correspondences.
# */
# inline void
# applyRejection (pcl::Correspondences &correspondences)
# {
# getRemainingCorrespondences (*input_correspondences_, correspondences);
# }
#
# /** Overlap Ratio in [0..1] */
# float overlap_ratio_;
#
# /** Minimum number of correspondences. */
# unsigned int nr_min_correspondences_;
###
# correspondence_rejection_var_trimmed.h
# class CorrespondenceRejectorVarTrimmed: public CorrespondenceRejector
cdef extern from "pcl/registration/correspondence_rejection_var_trimmed.h" namespace "pcl::registration" nogil:
cdef cppclass CorrespondenceRejectorVarTrimmed(CorrespondenceRejector):
CorrespondenceRejectorVarTrimmed()
# using CorrespondenceRejector::input_correspondences_;
# using CorrespondenceRejector::rejection_name_;
# using CorrespondenceRejector::getClassName;
# public:
# /** \brief Get a list of valid correspondences after rejection from the original set of correspondences.
# * \param[in] original_correspondences the set of initial correspondences given
# * \param[out] remaining_correspondences the resultant filtered set of remaining correspondences
# */
# inline void
# getRemainingCorrespondences (const pcl::Correspondences& original_correspondences,
# pcl::Correspondences& remaining_correspondences);
#
# /** \brief Get the trimmed distance used for thresholding in correspondence rejection. */
# inline double
# getTrimmedDistance () const { return trimmed_distance_; };
#
# /** \brief Provide a source point cloud dataset (must contain XYZ
# * data!), used to compute the correspondence distance.
# * \param[in] cloud a cloud containing XYZ data
# */
# template <typename PointT> inline void
# setInputCloud (const typename pcl::PointCloud<PointT>::ConstPtr &cloud)
#
# /** \brief Provide a target point cloud dataset (must contain XYZ
# * data!), used to compute the correspondence distance.
# * \param[in] target a cloud containing XYZ data
# */
# template <typename PointT> inline void
# setInputTarget (const typename pcl::PointCloud<PointT>::ConstPtr &target)
#
# /** \brief Get the computed inlier ratio used for thresholding in correspondence rejection. */
# inline double
# getTrimFactor () const { return factor_; }
#
# /** brief set the minimum overlap ratio
# * \param[in] ratio the overlap ratio [0..1]
# */
# inline void
# setMinRatio (double ratio) { min_ratio_ = ratio; }
#
# /** brief get the minimum overlap ratio
# */
# inline double
# getMinRatio () const { return min_ratio_; }
#
# /** brief set the maximum overlap ratio
# * \param[in] ratio the overlap ratio [0..1]
# */
# inline void
# setMaxRatio (double ratio) { max_ratio_ = ratio; }
#
# /** brief get the maximum overlap ratio
# */
# inline double
# getMaxRatio () const { return max_ratio_; }
# protected:
# /** \brief Apply the rejection algorithm.
# * \param[out] correspondences the set of resultant correspondences.
# */
# inline void
# applyRejection (pcl::Correspondences &correspondences)
# {
# getRemainingCorrespondences (*input_correspondences_, correspondences);
# }
#
# /** \brief The inlier distance threshold (based on the computed trim factor) between two correspondent points in source <-> target.
# */
# double trimmed_distance_;
#
# /** \brief The factor for correspondence rejection. Only factor times the total points sorted based on
# * the correspondence distances will be considered as inliers. Remaining points are rejected. This factor is
# * computed internally
# */
# double factor_;
#
# /** \brief The minimum overlap ratio between the input and target clouds
# */
# double min_ratio_;
#
# /** \brief The maximum overlap ratio between the input and target clouds
# */
# double max_ratio_;
#
# /** \brief part of the term that balances the root mean square difference. This is an internal parameter
# */
# double lambda_;
#
# typedef boost::shared_ptr<DataContainerInterface> DataContainerPtr;
#
# /** \brief A pointer to the DataContainer object containing the input and target point clouds */
# DataContainerPtr data_container_;
#
###
# correspondence_sorting.h
# /** @b sortCorrespondencesByQueryIndex : a functor for sorting correspondences by query index
# * \author Dirk Holz
# * \ingroup registration
# */
# struct sortCorrespondencesByQueryIndex : public std::binary_function<pcl::Correspondence, pcl::Correspondence, bool>
# {
# bool
# operator()( pcl::Correspondence a, pcl::Correspondence b)
# {
# return (a.index_query < b.index_query);
# }
# };
#
# /** @b sortCorrespondencesByMatchIndex : a functor for sorting correspondences by match index
# * \author Dirk Holz
# * \ingroup registration
# */
# struct sortCorrespondencesByMatchIndex : public std::binary_function<pcl::Correspondence, pcl::Correspondence, bool>
# {
# bool
# operator()( pcl::Correspondence a, pcl::Correspondence b)
# {
# return (a.index_match < b.index_match);
# }
# };
#
# /** @b sortCorrespondencesByDistance : a functor for sorting correspondences by distance
# * \author Dirk Holz
# * \ingroup registration
# */
# struct sortCorrespondencesByDistance : public std::binary_function<pcl::Correspondence, pcl::Correspondence, bool>
# {
# bool
# operator()( pcl::Correspondence a, pcl::Correspondence b)
# {
# return (a.distance < b.distance);
# }
# };
#
# /** @b sortCorrespondencesByQueryIndexAndDistance : a functor for sorting correspondences by query index _and_ distance
# * \author Dirk Holz
# * \ingroup registration
# */
# struct sortCorrespondencesByQueryIndexAndDistance : public std::binary_function<pcl::Correspondence, pcl::Correspondence, bool>
# {
# inline bool
# operator()( pcl::Correspondence a, pcl::Correspondence b)
# {
# if (a.index_query < b.index_query)
# return (true);
# else if ( (a.index_query == b.index_query) && (a.distance < b.distance) )
# return (true);
# return (false);
# }
# };
#
# /** @b sortCorrespondencesByMatchIndexAndDistance : a functor for sorting correspondences by match index _and_ distance
# * \author Dirk Holz
# * \ingroup registration
# */
# struct sortCorrespondencesByMatchIndexAndDistance : public std::binary_function<pcl::Correspondence, pcl::Correspondence, bool>
# {
# inline bool
# operator()( pcl::Correspondence a, pcl::Correspondence b)
# {
# if (a.index_match < b.index_match)
# return (true);
# else if ( (a.index_match == b.index_match) && (a.distance < b.distance) )
# return (true);
# return (false);
# }
# };
#
###
# correspondence_types.h
# /** \brief calculates the mean and standard deviation of descriptor distances from correspondences
# * \param[in] correspondences list of correspondences
# * \param[out] mean the mean descriptor distance of correspondences
# * \param[out] stddev the standard deviation of descriptor distances.
# * \note The sample varaiance is used to determine the standard deviation
# */
# inline void
# getCorDistMeanStd (const pcl::Correspondences& correspondences, double &mean, double &stddev);
#
# /** \brief extracts the query indices
# * \param[in] correspondences list of correspondences
# * \param[out] indices array of extracted indices.
# * \note order of indices corresponds to input list of descriptor correspondences
# */
# inline void
# getQueryIndices (const pcl::Correspondences& correspondences, std::vector<int>& indices);
#
# /** \brief extracts the match indices
# * \param[in] correspondences list of correspondences
# * \param[out] indices array of extracted indices.
# * \note order of indices corresponds to input list of descriptor correspondences
# */
# inline void
# getMatchIndices (const pcl::Correspondences& correspondences, std::vector<int>& indices);
#
###
# distances.h
# /** \brief Compute the median value from a set of doubles
# * \param[in] fvec the set of doubles
# * \param[in] m the number of doubles in the set
# */
# inline double
# computeMedian (double *fvec, int m)
# {
# // Copy the values to vectors for faster sorting
# std::vector<double> data (m);
# memcpy (&data[0], fvec, sizeof (double) * m);
#
# std::nth_element(data.begin(), data.begin() + (data.size () >> 1), data.end());
# return (data[data.size () >> 1]);
# }
#
# /** \brief Use a Huber kernel to estimate the distance between two vectors
# * \param[in] p_src the first eigen vector
# * \param[in] p_tgt the second eigen vector
# * \param[in] sigma the sigma value
# */
# inline double
# huber (const Eigen::Vector4f &p_src, const Eigen::Vector4f &p_tgt, double sigma)
# {
# Eigen::Array4f diff = (p_tgt.array () - p_src.array ()).abs ();
# double norm = 0.0;
# for (int i = 0; i < 3; ++i)
# {
# if (diff[i] < sigma)
# norm += diff[i] * diff[i];
# else
# norm += 2.0 * sigma * diff[i] - sigma * sigma;
# }
# return (norm);
# }
#
# /** \brief Use a Huber kernel to estimate the distance between two vectors
# * \param[in] diff the norm difference between two vectors
# * \param[in] sigma the sigma value
# */
# inline double
# huber (double diff, double sigma)
# {
# double norm = 0.0;
# if (diff < sigma)
# norm += diff * diff;
# else
# norm += 2.0 * sigma * diff - sigma * sigma;
# return (norm);
# }
#
# /** \brief Use a Gedikli kernel to estimate the distance between two vectors
# * (for more information, see
# * \param[in] val the norm difference between two vectors
# * \param[in] clipping the clipping value
# * \param[in] slope the slope. Default: 4
# */
# inline double
# gedikli (double val, double clipping, double slope = 4)
# {
# return (1.0 / (1.0 + pow (fabs(val) / clipping, slope)));
# }
#
# /** \brief Compute the Manhattan distance between two eigen vectors.
# * \param[in] p_src the first eigen vector
# * \param[in] p_tgt the second eigen vector
# */
# inline double
# l1 (const Eigen::Vector4f &p_src, const Eigen::Vector4f &p_tgt)
# {
# return ((p_src.array () - p_tgt.array ()).abs ().sum ());
# }
#
# /** \brief Compute the Euclidean distance between two eigen vectors.
# * \param[in] p_src the first eigen vector
# * \param[in] p_tgt the second eigen vector
# */
# inline double
# l2 (const Eigen::Vector4f &p_src, const Eigen::Vector4f &p_tgt)
# {
# return ((p_src - p_tgt).norm ());
# }
#
# /** \brief Compute the squared Euclidean distance between two eigen vectors.
# * \param[in] p_src the first eigen vector
# * \param[in] p_tgt the second eigen vector
# */
# inline double
# l2Sqr (const Eigen::Vector4f &p_src, const Eigen::Vector4f &p_tgt)
# {
# return ((p_src - p_tgt).squaredNorm ());
# }
#
# ###
# eigen.h
# #
# #include <Eigen/Core>
# #include <Eigen/Geometry>
# #include <unsupported/Eigen/Polynomials>
# #include <Eigen/Dense>
###
# elch.h
# template <typename PointT>
# class ELCH : public PCLBase<PointT>
cdef extern from "pcl/registration/elch.h" namespace "pcl::registration" nogil:
cdef cppclass ELCH[T](cpp.PCLBase[T]):
ELCH()
# public:
# typedef boost::shared_ptr< ELCH<PointT> > Ptr;
# typedef boost::shared_ptr< const ELCH<PointT> > ConstPtr;
# typedef pcl::PointCloud<PointT> PointCloud;
# typedef typename PointCloud::Ptr PointCloudPtr;
# typedef typename PointCloud::ConstPtr PointCloudConstPtr;
# struct Vertex
# {
# Vertex () : cloud () {}
# PointCloudPtr cloud;
# };
#
# /** \brief graph structure to hold the SLAM graph */
# typedef boost::adjacency_list<
# boost::listS, boost::vecS, boost::undirectedS,
# Vertex,
# boost::no_property>
# LoopGraph;
# typedef boost::shared_ptr< LoopGraph > LoopGraphPtr;
# typedef typename pcl::Registration<PointT, PointT> Registration;
# typedef typename Registration::Ptr RegistrationPtr;
# typedef typename Registration::ConstPtr RegistrationConstPtr;
#
# /** \brief Add a new point cloud to the internal graph.
# * \param[in] cloud the new point cloud
# */
# inline void
# addPointCloud (PointCloudPtr cloud)
#
# /** \brief Getter for the internal graph. */
# inline LoopGraphPtr
# getLoopGraph ()
#
# /** \brief Setter for a new internal graph.
# * \param[in] loop_graph the new graph
# */
# inline void
# setLoopGraph (LoopGraphPtr loop_graph)
#
# /** \brief Getter for the first scan of a loop. */
# inline typename boost::graph_traits<LoopGraph>::vertex_descriptor
# getLoopStart ()
#
# /** \brief Setter for the first scan of a loop.
# * \param[in] loop_start the scan that starts the loop
# */
# inline void
# setLoopStart (const typename boost::graph_traits<LoopGraph>::vertex_descriptor &loop_start)
#
# /** \brief Getter for the last scan of a loop. */
# inline typename boost::graph_traits<LoopGraph>::vertex_descriptor
# getLoopEnd ()
#
# /** \brief Setter for the last scan of a loop.
# * \param[in] loop_end the scan that ends the loop
# */
# inline void
# setLoopEnd (const typename boost::graph_traits<LoopGraph>::vertex_descriptor &loop_end)
#
# /** \brief Getter for the registration algorithm. */
# inline RegistrationPtr
# getReg ()
#
# /** \brief Setter for the registration algorithm.
# * \param[in] reg the registration algorithm used to compute the transformation between the start and the end of the loop
# */
# inline void setReg (RegistrationPtr reg)
#
# /** \brief Getter for the transformation between the first and the last scan. */
# inline Eigen::Matrix4f getLoopTransform ()
#
# /** \brief Setter for the transformation between the first and the last scan.
# * \param[in] loop_transform the transformation between the first and the last scan
# */
# inline void setLoopTransform (const Eigen::Matrix4f &loop_transform)
#
# /** \brief Computes now poses for all point clouds by closing the loop
# * between start and end point cloud. This will transform all given point
# * clouds for now!
# */
# void compute ();
# protected:
# using PCLBase<PointT>::deinitCompute;
#
# /** \brief This method should get called before starting the actual computation. */
# virtual bool initCompute ();
# public:
# EIGEN_MAKE_ALIGNED_OPERATOR_NEW
###
#
# # exceptions.h
# # pcl/exceptions
# # /** \class SolverDidntConvergeException
# # * \brief An exception that is thrown when the non linear solver didn't converge
# # */
# # class PCL_EXPORTS SolverDidntConvergeException : public PCLException
# # {
# # public:
# #
# # SolverDidntConvergeException (const std::string& error_description,
# # const std::string& file_name = "",
# # const std::string& function_name = "" ,
# # unsigned line_number = 0) throw ()
# # : pcl::PCLException (error_description, file_name, function_name, line_number) { }
# # } ;
# #
# # /** \class NotEnoughPointsException
# # * \brief An exception that is thrown when the number of correspondants is not equal
# # * to the minimum required
# # */
# # class PCL_EXPORTS NotEnoughPointsException : public PCLException
# # {
# # public:
# #
# # NotEnoughPointsException (const std::string& error_description,
# # const std::string& file_name = "",
# # const std::string& function_name = "" ,
# # unsigned line_number = 0) throw ()
# # : pcl::PCLException (error_description, file_name, function_name, line_number) { }
# # } ;
# #
# ###
# ia_ransac.h
# template <typename PointSource, typename PointTarget, typename FeatureT>
# class SampleConsensusInitialAlignment : public Registration<PointSource, PointTarget>
cdef extern from "pcl/registration/ia_ransac.h" namespace "pcl" nogil:
cdef cppclass SampleConsensusInitialAlignment[Source, Target, Feature](Registration[Source, Target]):
SampleConsensusInitialAlignment() except +
# public:
# using Registration<PointSource, PointTarget>::reg_name_;
# using Registration<PointSource, PointTarget>::input_;
# using Registration<PointSource, PointTarget>::indices_;
# using Registration<PointSource, PointTarget>::target_;
# using Registration<PointSource, PointTarget>::final_transformation_;
# using Registration<PointSource, PointTarget>::transformation_;
# using Registration<PointSource, PointTarget>::corr_dist_threshold_;
# using Registration<PointSource, PointTarget>::min_number_correspondences_;
# using Registration<PointSource, PointTarget>::max_iterations_;
# using Registration<PointSource, PointTarget>::tree_;
# using Registration<PointSource, PointTarget>::transformation_estimation_;
# using Registration<PointSource, PointTarget>::getClassName;
# ctypedef typename Registration<PointSource, PointTarget>::PointCloudSource PointCloudSource;
# ctypedef typename PointCloudSource::Ptr PointCloudSourcePtr;
# ctypedef typename PointCloudSource::ConstPtr PointCloudSourceConstPtr;
# ctypedef typename Registration<PointSource, PointTarget>::PointCloudTarget PointCloudTarget;
# ctypedef PointIndices::Ptr PointIndicesPtr;
# ctypedef PointIndices::ConstPtr PointIndicesConstPtr;
# ctypedef pcl::PointCloud<FeatureT> FeatureCloud;
# ctypedef typename FeatureCloud::Ptr FeatureCloudPtr;
# ctypedef typename FeatureCloud::ConstPtr FeatureCloudConstPtr;
# cdef cppclass ErrorFunctor
# {
# public:
# virtual ~ErrorFunctor () {}
# virtual float operator () (float d) const = 0;
# };
# class HuberPenalty : public ErrorFunctor
# cdef cppclass HuberPenalty(ErrorFunctor)
# HuberPenalty ()
# public:
# HuberPenalty (float threshold)
# virtual float operator () (float e) const
# {
# if (e <= threshold_)
# return (0.5 * e*e);
# else
# return (0.5 * threshold_ * (2.0 * fabs (e) - threshold_));
# }
# protected:
# float threshold_;
# };
# class TruncatedError : public ErrorFunctor
# cdef cppclass TruncatedError(ErrorFunctor)
# TruncatedError ()
# public:
# virtual ~TruncatedError () {}
# TruncatedError (float threshold) : threshold_ (threshold) {}
# virtual float operator () (float e) const
# {
# if (e <= threshold_)
# return (e / threshold_);
# else
# return (1.0);
# }
# protected:
# float threshold_;
# };
# typedef typename KdTreeFLANN<FeatureT>::Ptr FeatureKdTreePtr;
# /** \brief Provide a boost shared pointer to the source point cloud's feature descriptors
# * \param features the source point cloud's features
# */
# void
# setSourceFeatures (const FeatureCloudConstPtr &features);
# /** \brief Get a pointer to the source point cloud's features */
# inline FeatureCloudConstPtr const
# getSourceFeatures () { return (input_features_); }
# /** \brief Provide a boost shared pointer to the target point cloud's feature descriptors
# * \param features the target point cloud's features
# */
# void
# setTargetFeatures (const FeatureCloudConstPtr &features);
# /** \brief Get a pointer to the target point cloud's features */
# inline FeatureCloudConstPtr const
# getTargetFeatures () { return (target_features_); }
# /** \brief Set the minimum distances between samples
# * \param min_sample_distance the minimum distances between samples
# */
# void
# setMinSampleDistance (float min_sample_distance) { min_sample_distance_ = min_sample_distance; }
# /** \brief Get the minimum distances between samples, as set by the user */
# float
# getMinSampleDistance () { return (min_sample_distance_); }
# /** \brief Set the number of samples to use during each iteration
# * \param nr_samples the number of samples to use during each iteration
# */
# void
# setNumberOfSamples (int nr_samples) { nr_samples_ = nr_samples; }
# /** \brief Get the number of samples to use during each iteration, as set by the user */
# int
# getNumberOfSamples () { return (nr_samples_); }
# /** \brief Set the number of neighbors to use when selecting a random feature correspondence. A higher value will
# * add more randomness to the feature matching.
# * \param k the number of neighbors to use when selecting a random feature correspondence.
# */
# void
# setCorrespondenceRandomness (int k) { k_correspondences_ = k; }
# /** \brief Get the number of neighbors used when selecting a random feature correspondence, as set by the user */
# int
# getCorrespondenceRandomness () { return (k_correspondences_); }
# /** \brief Specify the error function to minimize
# * \note This call is optional. TruncatedError will be used by default
# * \param[in] error_functor a shared pointer to a subclass of SampleConsensusInitialAlignment::ErrorFunctor
# */
# void
# setErrorFunction (const boost::shared_ptr<ErrorFunctor> & error_functor) { error_functor_ = error_functor; }
# /** \brief Get a shared pointer to the ErrorFunctor that is to be minimized
# * \return A shared pointer to a subclass of SampleConsensusInitialAlignment::ErrorFunctor
# */
# boost::shared_ptr<ErrorFunctor>
# getErrorFunction () { return (error_functor_); }
# protected:
# /** \brief Choose a random index between 0 and n-1
# * \param n the number of possible indices to choose from
# */
# inline int
# getRandomIndex (int n) { return (static_cast<int> (n * (rand () / (RAND_MAX + 1.0)))); };
# /** \brief Select \a nr_samples sample points from cloud while making sure that their pairwise distances are
# * greater than a user-defined minimum distance, \a min_sample_distance.
# * \param cloud the input point cloud
# * \param nr_samples the number of samples to select
# * \param min_sample_distance the minimum distance between any two samples
# * \param sample_indices the resulting sample indices
# */
# void
# selectSamples (const PointCloudSource &cloud, int nr_samples, float min_sample_distance,
# std::vector<int> &sample_indices);
# /** \brief For each of the sample points, find a list of points in the target cloud whose features are similar to
# * the sample points' features. From these, select one randomly which will be considered that sample point's
# * correspondence.
# * \param input_features a cloud of feature descriptors
# * \param sample_indices the indices of each sample point
# * \param corresponding_indices the resulting indices of each sample's corresponding point in the target cloud
# */
# void
# findSimilarFeatures (const FeatureCloud &input_features, const std::vector<int> &sample_indices,
# std::vector<int> &corresponding_indices);
# /** \brief An error metric for that computes the quality of the alignment between the given cloud and the target.
# * \param cloud the input cloud
# * \param threshold distances greater than this value are capped
# */
# float
# computeErrorMetric (const PointCloudSource &cloud, float threshold);
# /** \brief Rigid transformation computation method.
# * \param output the transformed input point cloud dataset using the rigid transformation found
# */
# virtual void
# computeTransformation (PointCloudSource &output, const Eigen::Matrix4f& guess);
# /** \brief The source point cloud's feature descriptors. */
# FeatureCloudConstPtr input_features_;
# /** \brief The target point cloud's feature descriptors. */
# FeatureCloudConstPtr target_features_;
# /** \brief The number of samples to use during each iteration. */
# int nr_samples_;
# /** \brief The minimum distances between samples. */
# float min_sample_distance_;
# /** \brief The number of neighbors to use when selecting a random feature correspondence. */
# int k_correspondences_;
# /** \brief The KdTree used to compare feature descriptors. */
# FeatureKdTreePtr feature_tree_;
# /** */
# boost::shared_ptr<ErrorFunctor> error_functor_;
# public:
# EIGEN_MAKE_ALIGNED_OPERATOR_NEW
###
# ppf_registration.h
# template <typename PointSource, typename PointTarget>
# class PPFRegistration : public Registration<PointSource, PointTarget>
cdef extern from "pcl/registration/ppf_registration.h" namespace "pcl" nogil:
cdef cppclass PPFRegistration[Source, Target](Registration[Source, Target]):
PPFRegistration() except +
# public:
# cdef struct PoseWithVotes
# PoseWithVotes(Eigen::Affine3f &a_pose, unsigned int &a_votes)
# Eigen::Affine3f pose;
# unsigned int votes;
# ctypedef std::vector<PoseWithVotes, Eigen::aligned_allocator<PoseWithVotes> > PoseWithVotesList;
# /// input_ is the model cloud
# using Registration<PointSource, PointTarget>::input_;
# /// target_ is the scene cloud
# using Registration<PointSource, PointTarget>::target_;
# using Registration<PointSource, PointTarget>::converged_;
# using Registration<PointSource, PointTarget>::final_transformation_;
# using Registration<PointSource, PointTarget>::transformation_;
# ctypedef pcl::PointCloud<PointSource> PointCloudSource;
# ctypedef typename PointCloudSource::Ptr PointCloudSourcePtr;
# ctypedef typename PointCloudSource::ConstPtr PointCloudSourceConstPtr;
# ctypedef pcl::PointCloud<PointTarget> PointCloudTarget;
# ctypedef typename PointCloudTarget::Ptr PointCloudTargetPtr;
# ctypedef typename PointCloudTarget::ConstPtr PointCloudTargetConstPtr;
# /** \brief Method for setting the position difference clustering parameter
# * \param clustering_position_diff_threshold distance threshold below which two poses are
# * considered close enough to be in the same cluster (for the clustering phase of the algorithm)
# */
# inline void setPositionClusteringThreshold (float clustering_position_diff_threshold)
# /** \brief Returns the parameter defining the position difference clustering parameter -
# * distance threshold below which two poses are considered close enough to be in the same cluster
# * (for the clustering phase of the algorithm)
# */
# inline float getPositionClusteringThreshold ()
# /** \brief Method for setting the rotation clustering parameter
# * \param clustering_rotation_diff_threshold rotation difference threshold below which two
# * poses are considered to be in the same cluster (for the clustering phase of the algorithm)
# */
# inline void setRotationClusteringThreshold (float clustering_rotation_diff_threshold)
# /** \brief Returns the parameter defining the rotation clustering threshold
# */
# inline float getRotationClusteringThreshold ()
# /** \brief Method for setting the scene reference point sampling rate
# * \param scene_reference_point_sampling_rate sampling rate for the scene reference point
# */
# inline void setSceneReferencePointSamplingRate (unsigned int scene_reference_point_sampling_rate) { scene_reference_point_sampling_rate_ = scene_reference_point_sampling_rate; }
# /** \brief Returns the parameter for the scene reference point sampling rate of the algorithm */
# inline unsigned int getSceneReferencePointSamplingRate ()
# /** \brief Function that sets the search method for the algorithm
# * \note Right now, the only available method is the one initially proposed by
# * the authors - by using a hash map with discretized feature vectors
# * \param search_method smart pointer to the search method to be set
# */
# inline void setSearchMethod (PPFHashMapSearch::Ptr search_method)
# /** \brief Getter function for the search method of the class */
# inline PPFHashMapSearch::Ptr getSearchMethod ()
# /** \brief Provide a pointer to the input target (e.g., the point cloud that we want to align the input source to)
# * \param cloud the input point cloud target
# */
# void setInputTarget (const PointCloudTargetConstPtr &cloud);
###
# pyramid_feature_matching.h
# template <typename PointFeature>
# class PyramidFeatureHistogram : public PCLBase<PointFeature>
# cdef cppclass PyramidFeatureHistogram[PointFeature](PCLBase[PointFeature]):
cdef extern from "pcl/registration/pyramid_feature_matching.h" namespace "pcl" nogil:
cdef cppclass PyramidFeatureHistogram[PointFeature]:
PyramidFeatureHistogram() except +
# public:
# using PCLBase<PointFeature>::input_;
# ctypedef boost::shared_ptr<PyramidFeatureHistogram<PointFeature> > Ptr;
# ctypedef Ptr PyramidFeatureHistogramPtr;
# ctypedef boost::shared_ptr<const pcl::PointRepresentation<PointFeature> > FeatureRepresentationConstPtr;
# /** \brief Method for setting the input dimension range parameter.
# * \note Please check the PyramidHistogram class description for more details about this parameter.
# */
# inline void setInputDimensionRange (std::vector<std::pair<float, float> > &dimension_range_input)
# void setInputDimensionRange (vector[pair[float, float] ] &dimension_range_input)
# /** \brief Method for retrieving the input dimension range vector */
# inline std::vector<std::pair<float, float> > getInputDimensionRange () { return dimension_range_input_; }
# vector[pair[float, float] ] getInputDimensionRange ()
# /** \brief Method to set the target dimension range parameter.
# * \note Please check the PyramidHistogram class description for more details about this parameter.
# */
# inline void setTargetDimensionRange (std::vector<std::pair<float, float> > &dimension_range_target)
void setTargetDimensionRange (vector[pair[float, float] ] &dimension_range_target)
# /** \brief Method for retrieving the target dimension range vector */
# inline std::vector<std::pair<float, float> > getTargetDimensionRange () { return dimension_range_target_; }
vector[pair[float, float] ] getTargetDimensionRange ()
# /** \brief Provide a pointer to the feature representation to use to convert features to k-D vectors.
# * \param feature_representation the const boost shared pointer to a PointRepresentation
# */
# inline void setPointRepresentation (const FeatureRepresentationConstPtr& feature_representation) { feature_representation_ = feature_representation; }
# /** \brief Get a pointer to the feature representation used when converting features into k-D vectors. */
# inline FeatureRepresentationConstPtr const getPointRepresentation () { return feature_representation_; }
# /** \brief The central method for inserting the feature set inside the pyramid and obtaining the complete pyramid */
# void compute ();
# /** \brief Checks whether the pyramid histogram has been computed */
# inline bool isComputed () { return is_computed_; }
# /** \brief Static method for comparing two pyramid histograms that returns a floating point value between 0 and 1,
# * representing the similiarity between the feature sets on which the two pyramid histograms are based.
# * \param pyramid_a Pointer to the first pyramid to be compared (needs to be computed already).
# * \param pyramid_b Pointer to the second pyramid to be compared (needs to be computed already).
# */
# static float comparePyramidFeatureHistograms (const PyramidFeatureHistogramPtr &pyramid_a, const PyramidFeatureHistogramPtr &pyramid_b);
###
# transformation_estimation.h
# template <typename PointSource, typename PointTarget>
# class TransformationEstimation
cdef extern from "pcl/registration/transformation_estimation.h" namespace "pcl" nogil:
cdef cppclass TransformationEstimation[Source, Target](Registration[Source, Target]):
TransformationEstimation() except +
# public:
# /** \brief Estimate a rigid rotation transformation between a source and a target point cloud.
# * \param[in] cloud_src the source point cloud dataset
# * \param[in] cloud_tgt the target point cloud dataset
# * \param[out] transformation_matrix the resultant transformation matrix
# */
# virtual void
# estimateRigidTransformation (
# const pcl::PointCloud<PointSource> &cloud_src,
# const pcl::PointCloud<PointTarget> &cloud_tgt,
# Eigen::Matrix4f &transformation_matrix) = 0;
# /** \brief Estimate a rigid rotation transformation between a source and a target point cloud.
# * \param[in] cloud_src the source point cloud dataset
# * \param[in] indices_src the vector of indices describing the points of interest in \a cloud_src
# * \param[in] cloud_tgt the target point cloud dataset
# * \param[out] transformation_matrix the resultant transformation matrix
# */
# virtual void
# estimateRigidTransformation (
# const pcl::PointCloud<PointSource> &cloud_src,
# const std::vector<int> &indices_src,
# const pcl::PointCloud<PointTarget> &cloud_tgt,
# Eigen::Matrix4f &transformation_matrix) = 0;
# /** \brief Estimate a rigid rotation transformation between a source and a target point cloud.
# * \param[in] cloud_src the source point cloud dataset
# * \param[in] indices_src the vector of indices describing the points of interest in \a cloud_src
# * \param[in] cloud_tgt the target point cloud dataset
# * \param[in] indices_tgt the vector of indices describing the correspondences of the interst points from \a indices_src
# * \param[out] transformation_matrix the resultant transformation matrix
# */
# virtual void
# estimateRigidTransformation (
# const pcl::PointCloud<PointSource> &cloud_src,
# const std::vector<int> &indices_src,
# const pcl::PointCloud<PointTarget> &cloud_tgt,
# const std::vector<int> &indices_tgt,
# Eigen::Matrix4f &transformation_matrix) = 0;
# /** \brief Estimate a rigid rotation transformation between a source and a target point cloud.
# * \param[in] cloud_src the source point cloud dataset
# * \param[in] cloud_tgt the target point cloud dataset
# * \param[in] correspondences the vector of correspondences between source and target point cloud
# * \param[out] transformation_matrix the resultant transformation matrix
# */
# virtual void
# estimateRigidTransformation (
# const pcl::PointCloud<PointSource> &cloud_src,
# const pcl::PointCloud<PointTarget> &cloud_tgt,
# const pcl::Correspondences &correspondences,
# Eigen::Matrix4f &transformation_matrix) = 0;
# ctypedef shared_ptr[TransformationEstimation<PointSource, PointTarget> > Ptr;
# ctypedef shared_ptr[const TransformationEstimation<PointSource, PointTarget> > ConstPtr;
###
# transformation_estimation_lm.h
# template <typename PointSource, typename PointTarget>
# class TransformationEstimationLM : public TransformationEstimation<PointSource, PointTarget>
cdef extern from "pcl/registration/transformation_estimation_lm.h" namespace "pcl" nogil:
cdef cppclass TransformationEstimationLM[Source, Target](TransformationEstimation[Source, Target]):
TransformationEstimationLM() except +
# ctypedef pcl::PointCloud<PointSource> PointCloudSource;
# ctypedef typename PointCloudSource::Ptr PointCloudSourcePtr;
# ctypedef typename PointCloudSource::ConstPtr PointCloudSourceConstPtr;
# ctypedef pcl::PointCloud<PointTarget> PointCloudTarget;
# ctypedef PointIndices::Ptr PointIndicesPtr;
# ctypedef PointIndices::ConstPtr PointIndicesConstPtr;
# public:
# TransformationEstimationLM (const TransformationEstimationLM &src)
# TransformationEstimationLM& operator = (const TransformationEstimationLM &src)
# /** \brief Estimate a rigid rotation transformation between a source and a target point cloud using LM.
# * \param[in] cloud_src the source point cloud dataset
# * \param[in] cloud_tgt the target point cloud dataset
# * \param[out] transformation_matrix the resultant transformation matrix
# */
# inline void estimateRigidTransformation (
# const pcl::PointCloud<PointSource> &cloud_src,
# const pcl::PointCloud<PointTarget> &cloud_tgt,
# Eigen::Matrix4f &transformation_matrix);
# /** \brief Estimate a rigid rotation transformation between a source and a target point cloud using LM.
# * \param[in] cloud_src the source point cloud dataset
# * \param[in] indices_src the vector of indices describing the points of interest in \a cloud_src
# * \param[in] cloud_tgt the target point cloud dataset
# * \param[out] transformation_matrix the resultant transformation matrix
# */
# inline void estimateRigidTransformation (
# const pcl::PointCloud<PointSource> &cloud_src,
# const std::vector<int> &indices_src,
# const pcl::PointCloud<PointTarget> &cloud_tgt,
# Eigen::Matrix4f &transformation_matrix);
# /** \brief Estimate a rigid rotation transformation between a source and a target point cloud using LM.
# * \param[in] cloud_src the source point cloud dataset
# * \param[in] indices_src the vector of indices describing the points of interest in \a cloud_src
# * \param[in] cloud_tgt the target point cloud dataset
# * \param[in] indices_tgt the vector of indices describing the correspondences of the interst points from
# * \a indices_src
# * \param[out] transformation_matrix the resultant transformation matrix
# */
# inline void estimateRigidTransformation (
# const pcl::PointCloud<PointSource> &cloud_src,
# const std::vector<int> &indices_src,
# const pcl::PointCloud<PointTarget> &cloud_tgt,
# const std::vector<int> &indices_tgt,
# Eigen::Matrix4f &transformation_matrix);
# /** \brief Estimate a rigid rotation transformation between a source and a target point cloud using LM.
# * \param[in] cloud_src the source point cloud dataset
# * \param[in] cloud_tgt the target point cloud dataset
# * \param[in] correspondences the vector of correspondences between source and target point cloud
# * \param[out] transformation_matrix the resultant transformation matrix
# */
# inline void estimateRigidTransformation (
# const pcl::PointCloud<PointSource> &cloud_src,
# const pcl::PointCloud<PointTarget> &cloud_tgt,
# const pcl::Correspondences &correspondences,
# Eigen::Matrix4f &transformation_matrix);
# /** \brief Set the function we use to warp points. Defaults to rigid 6D warp.
# * \param[in] warp_fcn a shared pointer to an object that warps points
# */
# void setWarpFunction (const boost::shared_ptr<WarpPointRigid<PointSource, PointTarget> > &warp_fcn)
# /** Base functor all the models that need non linear optimization must
# * define their own one and implement operator() (const Eigen::VectorXd& x, Eigen::VectorXd& fvec)
# * or operator() (const Eigen::VectorXf& x, Eigen::VectorXf& fvec) dependening on the choosen _Scalar
# */
# template<typename _Scalar, int NX=Eigen::Dynamic, int NY=Eigen::Dynamic>
# struct Functor
# {
# typedef _Scalar Scalar;
# enum
# {
# InputsAtCompileTime = NX,
# ValuesAtCompileTime = NY
# };
# typedef Eigen::Matrix<Scalar,InputsAtCompileTime,1> InputType;
# typedef Eigen::Matrix<Scalar,ValuesAtCompileTime,1> ValueType;
# typedef Eigen::Matrix<Scalar,ValuesAtCompileTime,InputsAtCompileTime> JacobianType;
#
# /** \brief Empty Construtor. */
# Functor () : m_data_points_ (ValuesAtCompileTime) {}
# /** \brief Constructor
# * \param[in] m_data_points number of data points to evaluate.
# */
# Functor (int m_data_points) : m_data_points_ (m_data_points) {}
#
# /** \brief Destructor. */
# virtual ~Functor () {}
#
# /** \brief Get the number of values. */
# int
# values () const { return (m_data_points_); }
#
# protected:
# int m_data_points_;
# };
#
# struct OptimizationFunctor : public Functor<double>
# {
# using Functor<double>::values;
# /** Functor constructor
# * \param[in] m_data_points the number of data points to evaluate
# * \param[in,out] estimator pointer to the estimator object
# */
# OptimizationFunctor (int m_data_points, TransformationEstimationLM<PointSource, PointTarget> *estimator) :
# Functor<double> (m_data_points), estimator_ (estimator) {}
# /** Copy constructor
# * \param[in] the optimization functor to copy into this
# */
# inline OptimizationFunctor (const OptimizationFunctor &src) :
# Functor<double> (src.m_data_points_), estimator_ ()
# {
# *this = src;
# }
# /** Copy operator
# * \param[in] the optimization functor to copy into this
# */
# inline OptimizationFunctor&
# operator = (const OptimizationFunctor &src)
# {
# Functor<double>::operator=(src);
# estimator_ = src.estimator_;
# return (*this);
# }
# /** \brief Destructor. */
# virtual ~OptimizationFunctor () {}
# /** Fill fvec from x. For the current state vector x fill the f values
# * \param[in] x state vector
# * \param[out] fvec f values vector
# */
# int
# operator () (const Eigen::VectorXd &x, Eigen::VectorXd &fvec) const;
#
# TransformationEstimationLM<PointSource, PointTarget> *estimator_;
# };
# struct OptimizationFunctorWithIndices : public Functor<double>
# {
# using Functor<double>::values;
# /** Functor constructor
# * \param[in] m_data_points the number of data points to evaluate
# * \param[in,out] estimator pointer to the estimator object
# */
# OptimizationFunctorWithIndices (int m_data_points, TransformationEstimationLM *estimator) :
# Functor<double> (m_data_points), estimator_ (estimator) {}
# /** Copy constructor
# * \param[in] the optimization functor to copy into this
# */
# inline OptimizationFunctorWithIndices (const OptimizationFunctorWithIndices &src) :
# Functor<double> (src.m_data_points_), estimator_ ()
# {
# *this = src;
# }
# /** Copy operator
# * \param[in] the optimization functor to copy into this
# */
# inline OptimizationFunctorWithIndices&
# operator = (const OptimizationFunctorWithIndices &src)
# {
# Functor<double>::operator=(src);
# estimator_ = src.estimator_;
# return (*this);
# }
#
# /** \brief Destructor. */
# virtual ~OptimizationFunctorWithIndices () {}
#
# /** Fill fvec from x. For the current state vector x fill the f values
# * \param[in] x state vector
# * \param[out] fvec f values vector
# */
# int
# operator () (const Eigen::VectorXd &x, Eigen::VectorXd &fvec) const;
# TransformationEstimationLM<PointSource, PointTarget> *estimator_;
# };
# public:
# EIGEN_MAKE_ALIGNED_OPERATOR_NEW
###
# transformation_estimation_point_to_plane.h
# template <typename PointSource, typename PointTarget>
# class TransformationEstimationPointToPlane : public TransformationEstimationLM<PointSource, PointTarget>
cdef extern from "pcl/registration/transformation_estimation_point_to_plane.h" namespace "pcl" nogil:
cdef cppclass TransformationEstimationPointToPlane[Source, Target](TransformationEstimationLM[Source, Target]):
TransformationEstimationPointToPlane ()
# public:
# ctypedef boost::shared_ptr<TransformationEstimationPointToPlane<PointSource, PointTarget> > Ptr;
# ctypedef pcl::PointCloud<PointSource> PointCloudSource;
# ctypedef typename PointCloudSource::Ptr PointCloudSourcePtr;
# ctypedef typename PointCloudSource::ConstPtr PointCloudSourceConstPtr;
# ctypedef pcl::PointCloud<PointTarget> PointCloudTarget;
# ctypedef PointIndices::Ptr PointIndicesPtr;
# ctypedef PointIndices::ConstPtr PointIndicesConstPtr;
###
# transformation_estimation_point_to_plane_lls.h
# template <typename PointSource, typename PointTarget>
# class TransformationEstimationPointToPlaneLLS : public TransformationEstimation<PointSource, PointTarget>
cdef extern from "pcl/registration/transformation_estimation_point_to_plane_lls.h" namespace "pcl" nogil:
cdef cppclass TransformationEstimationPointToPlaneLLS[Source, Target](TransformationEstimation[Source, Target]):
TransformationEstimationPointToPlaneLLS ()
# inline void estimateRigidTransformation (
# const pcl::PointCloud<PointSource> &cloud_src,
# const pcl::PointCloud<PointTarget> &cloud_tgt,
# Eigen::Matrix4f &transformation_matrix);
# /** \brief Estimate a rigid rotation transformation between a source and a target point cloud using SVD.
# * \param[in] cloud_src the source point cloud dataset
# * \param[in] indices_src the vector of indices describing the points of interest in \a cloud_src
# * \param[in] cloud_tgt the target point cloud dataset
# * \param[out] transformation_matrix the resultant transformation matrix
# */
# inline void estimateRigidTransformation (
# const pcl::PointCloud<PointSource> &cloud_src,
# const std::vector<int> &indices_src,
# const pcl::PointCloud<PointTarget> &cloud_tgt,
# Eigen::Matrix4f &transformation_matrix);
# /** \brief Estimate a rigid rotation transformation between a source and a target point cloud using SVD.
# * \param[in] cloud_src the source point cloud dataset
# * \param[in] indices_src the vector of indices describing the points of interest in \a cloud_src
# * \param[in] cloud_tgt the target point cloud dataset
# * \param[in] indices_tgt the vector of indices describing the correspondences of the interst points from \a indices_src
# * \param[out] transformation_matrix the resultant transformation matrix
# */
# inline void estimateRigidTransformation (
# const pcl::PointCloud<PointSource> &cloud_src,
# const std::vector<int> &indices_src,
# const pcl::PointCloud<PointTarget> &cloud_tgt,
# const std::vector<int> &indices_tgt,
# Eigen::Matrix4f &transformation_matrix);
# /** \brief Estimate a rigid rotation transformation between a source and a target point cloud using SVD.
# * \param[in] cloud_src the source point cloud dataset
# * \param[in] cloud_tgt the target point cloud dataset
# * \param[in] correspondences the vector of correspondences between source and target point cloud
# * \param[out] transformation_matrix the resultant transformation matrix
# */
# inline void estimateRigidTransformation (
# const pcl::PointCloud<PointSource> &cloud_src,
# const pcl::PointCloud<PointTarget> &cloud_tgt,
# const pcl::Correspondences &correspondences,
# Eigen::Matrix4f &transformation_matrix);
###
# transformation_estimation_svd.h
# template <typename PointSource, typename PointTarget>
# class TransformationEstimationSVD : public TransformationEstimation<PointSource, PointTarget>
cdef extern from "pcl/registration/transformation_estimation_svd.h" namespace "pcl" nogil:
cdef cppclass TransformationEstimationSVD[Source, Target](TransformationEstimation[Source, Target]):
TransformationEstimationSVD ()
# /** \brief Estimate a rigid rotation transformation between a source and a target point cloud using SVD.
# * \param[in] cloud_src the source point cloud dataset
# * \param[in] cloud_tgt the target point cloud dataset
# * \param[out] transformation_matrix the resultant transformation matrix
# */
# inline void estimateRigidTransformation (
# const pcl::PointCloud<PointSource> &cloud_src,
# const pcl::PointCloud<PointTarget> &cloud_tgt,
# Eigen::Matrix4f &transformation_matrix);
# /** \brief Estimate a rigid rotation transformation between a source and a target point cloud using SVD.
# * \param[in] cloud_src the source point cloud dataset
# * \param[in] indices_src the vector of indices describing the points of interest in \a cloud_src
# * \param[in] cloud_tgt the target point cloud dataset
# * \param[out] transformation_matrix the resultant transformation matrix
# */
# inline void estimateRigidTransformation (
# const pcl::PointCloud<PointSource> &cloud_src,
# const std::vector<int> &indices_src,
# const pcl::PointCloud<PointTarget> &cloud_tgt,
# Eigen::Matrix4f &transformation_matrix);
# /** \brief Estimate a rigid rotation transformation between a source and a target point cloud using SVD.
# * \param[in] cloud_src the source point cloud dataset
# * \param[in] indices_src the vector of indices describing the points of interest in \a cloud_src
# * \param[in] cloud_tgt the target point cloud dataset
# * \param[in] indices_tgt the vector of indices describing the correspondences of the interst points from \a indices_src
# * \param[out] transformation_matrix the resultant transformation matrix
# */
# inline void estimateRigidTransformation (
# const pcl::PointCloud<PointSource> &cloud_src,
# const std::vector<int> &indices_src,
# const pcl::PointCloud<PointTarget> &cloud_tgt,
# const std::vector<int> &indices_tgt,
# Eigen::Matrix4f &transformation_matrix);
# /** \brief Estimate a rigid rotation transformation between a source and a target point cloud using SVD.
# * \param[in] cloud_src the source point cloud dataset
# * \param[in] cloud_tgt the target point cloud dataset
# * \param[in] correspondences the vector of correspondences between source and target point cloud
# * \param[out] transformation_matrix the resultant transformation matrix
# */
# void estimateRigidTransformation (
# const pcl::PointCloud<PointSource> &cloud_src,
# const pcl::PointCloud<PointTarget> &cloud_tgt,
# const pcl::Correspondences &correspondences,
# Eigen::Matrix4f &transformation_matrix);
###
# transformation_validation.h
# template <typename PointSource, typename PointTarget>
# class TransformationValidation
cdef extern from "pcl/registration/transformation_validation.h" namespace "pcl" nogil:
cdef cppclass TransformationValidation[Source, Target]:
TransformationValidation ()
# public:
# ctypedef pcl::PointCloud<PointSource> PointCloudSource;
# ctypedef typename PointCloudSource::Ptr PointCloudSourcePtr;
# ctypedef typename PointCloudSource::ConstPtr PointCloudSourceConstPtr;
# ctypedef pcl::PointCloud<PointTarget> PointCloudTarget;
# ctypedef typename PointCloudTarget::Ptr PointCloudTargetPtr;
# ctypedef typename PointCloudTarget::ConstPtr PointCloudTargetConstPtr;
# /** \brief Validate the given transformation with respect to the input cloud data, and return a score.
# * \param[in] cloud_src the source point cloud dataset
# * \param[in] cloud_tgt the target point cloud dataset
# * \param[out] transformation_matrix the resultant transformation matrix
# * \return the score or confidence measure for the given
# * transformation_matrix with respect to the input data
# */
# virtual double validateTransformation (
# const cpp.PointCloudPtr_t &cloud_src,
# const cpp.PointCloudPtr_t &cloud_tgt,
# const Matrix4f &transformation_matrix) = 0;
#
# ctypedef shared_ptr[TransformationValidation[PointSource, PointTarget] ] Ptr;
# ctypedef shared_ptr[const TransformationValidation[PointSource, PointTarget] ] ConstPtr;
###
# transformation_validation_euclidean.h
# template <typename PointSource, typename PointTarget>
# class TransformationValidationEuclidean
cdef extern from "pcl/registration/transformation_validation_euclidean.h" namespace "pcl" nogil:
cdef cppclass TransformationValidationEuclidean[Source, Target]:
TransformationValidationEuclidean ()
# public:
# ctypedef boost::shared_ptr<TransformationValidation<PointSource, PointTarget> > Ptr;
# ctypedef boost::shared_ptr<const TransformationValidation<PointSource, PointTarget> > ConstPtr;
# ctypedef typename pcl::KdTree<PointTarget> KdTree;
# ctypedef typename pcl::KdTree<PointTarget>::Ptr KdTreePtr;
# ctypedef typename KdTree::PointRepresentationConstPtr PointRepresentationConstPtr;
# ctypedef typename TransformationValidation<PointSource, PointTarget>::PointCloudSourceConstPtr PointCloudSourceConstPtr;
# ctypedef typename TransformationValidation<PointSource, PointTarget>::PointCloudTargetConstPtr PointCloudTargetConstPtr;
inline void setMaxRange (double max_range)
double validateTransformation (
const cpp.PointCloudPtr_t &cloud_src,
const cpp.PointCloudPtr_t &cloud_tgt,
const Matrix4f &transformation_matrix)
###
# transforms.h
# common/transforms.h
###
# warp_point_rigid_3d.h
# template <class PointSourceT, class PointTargetT>
# class WarpPointRigid3D : public WarpPointRigid<PointSourceT, PointTargetT>
cdef extern from "pcl/registration/warp_point_rigid_3d.h" namespace "pcl" nogil:
cdef cppclass WarpPointRigid3D[Source, Target](WarpPointRigid[Source, Target]):
WarpPointRigid3D ()
# public:
# virtual void setParam (const Eigen::VectorXf & p)
###
# warp_point_rigid_6d.h
# template <class PointSourceT, class PointTargetT>
# class WarpPointRigid6D : public WarpPointRigid<PointSourceT, PointTargetT>
cdef extern from "pcl/registration/warp_point_rigid_6d.h" namespace "pcl" nogil:
cdef cppclass WarpPointRigid6D[Source, Target](WarpPointRigid[Source, Target]):
WarpPointRigid6D ()
# public:
# virtual void setParam (const Eigen::VectorXf & p)
###
###############################################################################
# Enum
###############################################################################
# bfgs.h
# template<typename _Scalar, int NX=Eigen::Dynamic>
# struct BFGSDummyFunctor
# cdef extern from "pcl/registration/bfgs.h" nogil:
# # cdef struct BFGSDummyFunctor[_Scalar, NX]:
# # enum { InputsAtCompileTime = NX };
#
# cdef extern from "pcl/registration/bfgs.h" namespace "pcl":
# ctypedef enum "pcl::BFGSDummyFunctor":
# INPUTSATCOMPILETIME "pcl::BFGSDummyFunctor::InputsAtCompileTime"
#
###
# bfgs.h
# namespace BFGSSpace {
# enum Status {
# NegativeGradientEpsilon = -3,
# NotStarted = -2,
# Running = -1,
# Success = 0,
# NoProgress = 1
# };
# }
cdef extern from "pcl/registration/bfgs.h" namespace "pcl":
cdef enum Status:
NegativeGradientEpsilon = -3
NotStarted = -2
Running = -1
Success = 0
NoProgress = 1
# /** Base functor all the models that need non linear optimization must
# * define their own one and implement operator() (const Eigen::VectorXd& x, Eigen::VectorXd& fvec)
# * or operator() (const Eigen::VectorXf& x, Eigen::VectorXf& fvec) dependening on the choosen _Scalar
# */
# template<typename _Scalar, int NX=Eigen::Dynamic, int NY=Eigen::Dynamic>
# struct Functor
# {
# typedef _Scalar Scalar;
# enum
# {
# InputsAtCompileTime = NX,
# ValuesAtCompileTime = NY
# };
# typedef Eigen::Matrix<Scalar,InputsAtCompileTime,1> InputType;
# typedef Eigen::Matrix<Scalar,ValuesAtCompileTime,1> ValueType;
# typedef Eigen::Matrix<Scalar,ValuesAtCompileTime,InputsAtCompileTime> JacobianType;
#
# /** \brief Empty Construtor. */
# Functor () : m_data_points_ (ValuesAtCompileTime) {}
# /** \brief Constructor
# * \param[in] m_data_points number of data points to evaluate.
# */
# Functor (int m_data_points) : m_data_points_ (m_data_points) {}
#
# /** \brief Destructor. */
# virtual ~Functor () {}
#
# /** \brief Get the number of values. */
# int
# values () const { return (m_data_points_); }
#
# protected:
# int m_data_points_;
# };
#####
###############################################################################
# Activation
###############################################################################
|