File: pcl_registration_160.pxd

package info (click to toggle)
python-pcl 0.3.0~rc1%2Bdfsg-9
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 31,388 kB
  • sloc: python: 3,102; cpp: 283; makefile: 181; sh: 24; ansic: 12
file content (2368 lines) | stat: -rw-r--r-- 119,041 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
# -*- coding: utf-8 -*-

from libcpp cimport bool
from libcpp.string cimport string
from libcpp.vector cimport vector
from libcpp.pair cimport pair

# main
cimport pcl_defs as cpp
from boost_shared_ptr cimport shared_ptr

# Cython - limits.pxd
# from libcpp cimport numeric_limits

# base
from eigen cimport Matrix4f

# registration.h
# template <typename PointSource, typename PointTarget>
# class Registration : public PCLBase<PointSource>
cdef extern from "pcl/registration/registration.h" namespace "pcl" nogil:
    cdef cppclass Registration[Source, Target](cpp.PCLBase[Source]):
        Registration()
        # override?
        void setInputCloud(cpp.PointCloudPtr_t ptcloud) except +
        # void setInputSource(cpp.PointCloudPtr2_t pt2cloud) except +
        # public:
        # using PCLBase<PointSource>::initCompute;
        # using PCLBase<PointSource>::deinitCompute;
        # using PCLBase<PointSource>::input_;
        # using PCLBase<PointSource>::indices_;
        void setInputTarget(cpp.PointCloudPtr_t ptcloud) except +
        # void setInputTarget2(cpp.PointCloudPtr_t pt2cloud) except +
        
        # /** \brief Get a pointer to the input point cloud dataset target. */
        # inline PointCloudTargetConstPtr const getInputTarget ()
        cpp.PointCloudPtr_t getInputTarget ()
        
        # brief Get the final transformation matrix estimated by the registration method.
        Matrix4f getFinalTransformation ()
        
        # /** \brief Get the last incremental transformation matrix estimated by the registration method. */
        Matrix4f getLastIncrementalTransformation ()
        
        # Set the maximum number of iterations the internal optimization should run for.
        # param nr_iterations the maximum number of iterations the internal optimization should run for
        void setMaximumIterations (int nr_iterations) except +
        
        # /** \brief Get the maximum number of iterations the internal optimization should run for, as set by the user. */
        int getMaximumIterations () 
        
        # /** \brief Set the number of iterations RANSAC should run for.
        #   * \param[in] ransac_iterations is the number of iterations RANSAC should run for
        #   */
        void setRANSACIterations (int ransac_iterations)
        
        # /** \brief Get the number of iterations RANSAC should run for, as set by the user. */
        # inline double getRANSACIterations ()
        double getRANSACIterations ()
        
        # /** \brief Set the inlier distance threshold for the internal RANSAC outlier rejection loop.
        #   * The method considers a point to be an inlier, if the distance between the target data index and the transformed 
        #   * source index is smaller than the given inlier distance threshold. 
        #   * The value is set by default to 0.05m.
        #   * \param[in] inlier_threshold the inlier distance threshold for the internal RANSAC outlier rejection loop
        #   */
        # inline void setRANSACOutlierRejectionThreshold (double inlier_threshold) { inlier_threshold_ = inlier_threshold; }
        void setRANSACOutlierRejectionThreshold (double inlier_threshold)
        
        # /** \brief Get the inlier distance threshold for the internal outlier rejection loop as set by the user. */
        # inline double getRANSACOutlierRejectionThreshold ()
        double getRANSACOutlierRejectionThreshold ()
        
        # /** \brief Set the maximum distance threshold between two correspondent points in source <-> target. If the 
        #   * distance is larger than this threshold, the points will be ignored in the alignment process.
        #   * \param[in] distance_threshold the maximum distance threshold between a point and its nearest neighbor 
        #   * correspondent in order to be considered in the alignment process
        #   */
        # inline void setMaxCorrespondenceDistance (double distance_threshold)
        void setMaxCorrespondenceDistance (double distance_threshold)
        
        # /** \brief Get the maximum distance threshold between two correspondent points in source <-> target. If the 
        #   * distance is larger than this threshold, the points will be ignored in the alignment process.
        #   */
        # inline double getMaxCorrespondenceDistance ()
        double getMaxCorrespondenceDistance ()
        
        # /** \brief Set the transformation epsilon (maximum allowable difference between two consecutive 
        #   * transformations) in order for an optimization to be considered as having converged to the final 
        #   * solution.
        #   * \param[in] epsilon the transformation epsilon in order for an optimization to be considered as having 
        #   * converged to the final solution.
        #   */
        # inline void setTransformationEpsilon (double epsilon)
        void setTransformationEpsilon (double epsilon)
        
        # /** \brief Get the transformation epsilon (maximum allowable difference between two consecutive 
        #   * transformations) as set by the user.
        #   */
        # inline double getTransformationEpsilon ()
        double getTransformationEpsilon ()
        
        # /** \brief Set the maximum allowed Euclidean error between two consecutive steps in the ICP loop, before 
        #   * the algorithm is considered to have converged. 
        #   * The error is estimated as the sum of the differences between correspondences in an Euclidean sense, 
        #   * divided by the number of correspondences.
        #   * \param[in] epsilon the maximum allowed distance error before the algorithm will be considered to have
        #   * converged
        #   */
        # inline void setEuclideanFitnessEpsilon (double epsilon)
        void setEuclideanFitnessEpsilon (double epsilon)
        
        # /** \brief Get the maximum allowed distance error before the algorithm will be considered to have converged,
        #   * as set by the user. See \ref setEuclideanFitnessEpsilon
        #   */
        # inline double getEuclideanFitnessEpsilon ()
        double getEuclideanFitnessEpsilon ()
        
        # 
        # /** \brief Provide a boost shared pointer to the PointRepresentation to be used when comparing points
        #   * \param[in] point_representation the PointRepresentation to be used by the k-D tree
        #   */
        # inline void setPointRepresentation (const PointRepresentationConstPtr &point_representation)
        # 
        # /** \brief Register the user callback function which will be called from registration thread
        #  * in order to update point cloud obtained after each iteration
        #  * \param[in] visualizerCallback reference of the user callback function
        #  */
        # template<typename FunctionSignature> inline bool registerVisualizationCallback (boost::function<FunctionSignature> &visualizerCallback)
        
        # /** \brief Obtain the Euclidean fitness score (e.g., sum of squared distances from the source to the target)
        #   * \param[in] max_range maximum allowable distance between a point and its correspondence in the target 
        #   * (default: double::max)
        #   */
        # double getFitnessScore (double max_range = numeric_limits[double]::max ());
        double getFitnessScore() except +
        
        # /** \brief Obtain the Euclidean fitness score (e.g., sum of squared distances from the source to the target)
        #   * from two sets of correspondence distances (distances between source and target points)
        #   * \param[in] distances_a the first set of distances between correspondences
        #   * \param[in] distances_b the second set of distances between correspondences
        #   */
        # inline double getFitnessScore (const std::vector<float> &distances_a, const std::vector<float> &distances_b);
        double getFitnessScore (const vector[float] &distances_a, const vector[float] &distances_b)
        
        # /** \brief Return the state of convergence after the last align run */
        # inline bool hasConverged ()
        bool hasConverged ()
        
        # /** \brief Call the registration algorithm which estimates the transformation and returns the transformed source 
        #   * (input) as \a output.
        #   * \param[out] output the resultant input transfomed point cloud dataset
        #   */
        # inline void align (PointCloudSource &output);
        void align(cpp.PointCloud[Source] &) except +
        
        # /** \brief Call the registration algorithm which estimates the transformation and returns the transformed source 
        #   * (input) as \a output.
        #   * \param[out] output the resultant input transfomed point cloud dataset
        #   * \param[in] guess the initial gross estimation of the transformation
        #   */
        # inline void align (PointCloudSource &output, const Matrix4f& guess);
        void align (cpp.PointCloud[Source] &output, const Matrix4f& guess)
        
        # /** \brief Abstract class get name method. */
        # inline const std::string& getClassName () const
        string& getClassName ()
        
        # /** \brief Internal computation initalization. */
        # bool initCompute ();
        bool initCompute ()
        
        # /** \brief Internal computation when reciprocal lookup is needed */
        # bool initComputeReciprocal ();
        bool initComputeReciprocal ()
        
        # /** \brief Add a new correspondence rejector to the list
        #   * \param[in] rejector the new correspondence rejector to concatenate
        # inline void addCorrespondenceRejector (const CorrespondenceRejectorPtr &rejector)
        # void addCorrespondenceRejector (const CorrespondenceRejectorPtr &rejector)
        
        # /** \brief Get the list of correspondence rejectors. */
        # inline std::vector<CorrespondenceRejectorPtr> getCorrespondenceRejectors ()
        # vector[CorrespondenceRejectorPtr] getCorrespondenceRejectors ()
        
        # /** \brief Remove the i-th correspondence rejector in the list
        #   * \param[in] i the position of the correspondence rejector in the list to remove
        # inline bool removeCorrespondenceRejector (unsigned int i)
        bool removeCorrespondenceRejector (unsigned int i)
        
        # /** \brief Clear the list of correspondence rejectors. */
        # inline void clearCorrespondenceRejectors ()
        void clearCorrespondenceRejectors ()


###

# warp_point_rigid.h
# template <class PointSourceT, class PointTargetT>
# class WarpPointRigid
cdef extern from "pcl/registration/warp_point_rigid.h" namespace "pcl" nogil:
    cdef cppclass WarpPointRigid[Source, Target]:
        WarpPointRigid (int nr_dim)
        # public:
        # virtual void setParam (const Eigen::VectorXf& p) = 0;
        # void warpPoint (const PointSourceT& pnt_in, PointSourceT& pnt_out) const
        # int getDimension () const {return nr_dim_;}
        # const Eigen::Matrix4f& getTransform () const { return transform_matrix_; }


###

# correspondence_rejection.h
# class CorrespondenceRejector
cdef extern from "pcl/registration/correspondence_rejection.h" namespace "pcl::registration" nogil:
    cdef cppclass CorrespondenceRejector:
        CorrespondenceRejector()
        # /** \brief Provide a pointer to the vector of the input correspondences.
        #   * \param[in] correspondences the const boost shared pointer to a correspondence vector
        #   */
        # virtual inline void setInputCorrespondences (const CorrespondencesConstPtr &correspondences) 
        
        # /** \brief Get a pointer to the vector of the input correspondences.
        #   * \return correspondences the const boost shared pointer to a correspondence vector
        #   */
        # inline CorrespondencesConstPtr getInputCorrespondences ()
        # CorrespondencesConstPtr getInputCorrespondences ()
        
        # /** \brief Run correspondence rejection
        #   * \param[out] correspondences Vector of correspondences that have not been rejected.
        #   */
        # inline void getCorrespondences (pcl::Correspondences &correspondences)
        # void getCorrespondences (pcl::Correspondences &correspondences)
        
        # /** \brief Get a list of valid correspondences after rejection from the original set of correspondences.
        #   * Pure virtual. Compared to \a getCorrespondences this function is
        #   * stateless, i.e., input correspondences do not need to be provided beforehand,
        #   * but are directly provided in the function call.
        #   * \param[in] original_correspondences the set of initial correspondences given
        #   * \param[out] remaining_correspondences the resultant filtered set of remaining correspondences
        #   */
        # virtual inline void getRemainingCorrespondences (const pcl::Correspondences& original_correspondences, pcl::Correspondences& remaining_correspondences) = 0;
        
        # /** \brief Determine the indices of query points of
        #   * correspondences that have been rejected, i.e., the difference
        #   * between the input correspondences (set via \a setInputCorrespondences)
        #   * and the given correspondence vector.
        #   * \param[in] correspondences Vector of correspondences after rejection
        #   * \param[out] indices Vector of query point indices of those correspondences
        #   * that have been rejected.
        #   */
        # inline void getRejectedQueryIndices (const pcl::Correspondences &correspondences, std::vector<int>& indices)


###

# namespace pcl
# namespace registration
# correspondence_rejection.h
# /** @b DataContainerInterface provides a generic interface for computing correspondence scores between correspondent
#   * points in the input and target clouds
#   * \ingroup registration
#   */
# class DataContainerInterface
# cdef extern from "pcl/registration/correspondence_rejection.h" namespace "pcl::registration" nogil:
#     cdef cppclass DataContainerInterface:
#         DataContainerInterface()
#         public:
#         virtual ~DataContainerInterface () {}
#         virtual double getCorrespondenceScore (int index) = 0;
#         virtual double getCorrespondenceScore (const pcl::Correspondence &) = 0;
# 
# 
# ###

# # /** @b DataContainer is a container for the input and target point clouds and implements the interface 
# #   * to compute correspondence scores between correspondent points in the input and target clouds ingroup registration
# #   */
# # template <typename PointT, typename NormalT=pcl::PointNormal>
# # class DataContainer : public DataContainerInterface
# cdef extern from "pcl/registration/correspondence_rejection.h" namespace "pcl::registration" nogil:
#     cdef cppclass DataContainer[PointT, NormalT](DataContainerInterface):
#         DataContainer()
#         # typedef typename pcl::PointCloud<PointT>::ConstPtr PointCloudConstPtr;
#         # typedef typename pcl::KdTree<PointT>::Ptr KdTreePtr;
#         # typedef typename pcl::PointCloud<NormalT>::ConstPtr NormalsPtr;
#         # public:
#         # /** \brief Empty constructor. */
#         # DataContainer ()
#         # 
#         # /** \brief Provide a source point cloud dataset (must contain XYZ data!), used to compute the correspondence distance.  
#         #  * \param[in] cloud a cloud containing XYZ data
#         #  */
#         # inline void setInputCloud (const PointCloudConstPtr &cloud)
#         void setInputCloud (const cpp.PointCloud[PointT] &cloud)
#         
#         # /** \brief Provide a target point cloud dataset (must contain XYZ data!), used to compute the correspondence distance.  
#         #  * \param[in] target a cloud containing XYZ data
#         #  */
#         # inline void setInputTarget (const PointCloudConstPtr &target)
#         void setInputTarget (const cpp.PointCloud[PointT] &target)
#         
#         # /** \brief Set the normals computed on the input point cloud
#         #   * \param[in] normals the normals computed for the input cloud
#         #   */
#         # inline void setInputNormals (const NormalsPtr &normals)
#         void setInputNormals (const NormalsPtr &normals)
#         
#         # /** \brief Set the normals computed on the target point cloud
#         #   * \param[in] normals the normals computed for the input cloud
#         #   */
#         # inline void setTargetNormals (const NormalsPtr &normals)
#         void setTargetNormals (const cpp.PointCloudNormals[PointT] &normals)
#         
#         # /** \brief Get the normals computed on the input point cloud */
#         # inline NormalsPtr getInputNormals ()
#         cpp.NormalsPtr getInputNormals ()
#         
#         # /** \brief Get the normals computed on the target point cloud */
#         # inline NormalsPtr getTargetNormals ()
#         cpp.NormalsPtr getTargetNormals ()
#         
#         # /** \brief Get the correspondence score for a point in the input cloud
#         #  *  \param[index] index of the point in the input cloud
#         #  */
#         # inline double getCorrespondenceScore (int index)
#         # 
#         # /** \brief Get the correspondence score for a given pair of correspondent points
#         #  *  \param[corr] Correspondent points
#         #  */
#         # inline double getCorrespondenceScore (const pcl::Correspondence &corr)
#         # 
#         # /** \brief Get the correspondence score for a given pair of correspondent points based on the angle betweeen the normals. 
#         #   * The normmals for the in put and target clouds must be set before using this function
#         #   * \param[in] corr Correspondent points
#         #   */
#         # double getCorrespondenceScoreFromNormals (const pcl::Correspondence &corr)
# 
# 
###

# correspondence_estimation.h
# template <typename PointSource, typename PointTarget>
# class CorrespondenceEstimation : public PCLBase<PointSource>
cdef extern from "pcl/registration/correspondence_estimation.h" namespace "pcl::registration" nogil:
    cdef cppclass CorrespondenceEstimation[Source, Target](cpp.PCLBase[Source]):
        CorrespondenceEstimation()
        # public:
        # using PCLBase<PointSource>::initCompute;
        # using PCLBase<PointSource>::deinitCompute;
        # using PCLBase<PointSource>::input_;
        # using PCLBase<PointSource>::indices_;
        # typedef typename pcl::KdTree<PointTarget> KdTree;
        # typedef typename pcl::KdTree<PointTarget>::Ptr KdTreePtr;
        # typedef pcl::PointCloud<PointSource> PointCloudSource;
        # typedef typename PointCloudSource::Ptr PointCloudSourcePtr;
        # typedef typename PointCloudSource::ConstPtr PointCloudSourceConstPtr;
        # typedef pcl::PointCloud<PointTarget> PointCloudTarget;
        # typedef typename PointCloudTarget::Ptr PointCloudTargetPtr;
        # typedef typename PointCloudTarget::ConstPtr PointCloudTargetConstPtr;
        # typedef typename KdTree::PointRepresentationConstPtr PointRepresentationConstPtr;
        # 
        # /** \brief Provide a pointer to the input target (e.g., the point cloud that we want to align the 
        #   * input source to)
        #   * \param[in] cloud the input point cloud target
        #   */
        # virtual inline void setInputTarget (const PointCloudTargetConstPtr &cloud);
        # 
        # /** \brief Get a pointer to the input point cloud dataset target. */
        # inline PointCloudTargetConstPtr const getInputTarget () { return (target_ ); }
        # 
        # /** \brief Provide a boost shared pointer to the PointRepresentation to be used when comparing points
        #   * \param[in] point_representation the PointRepresentation to be used by the k-D tree
        #   */
        # inline void setPointRepresentation (const PointRepresentationConstPtr &point_representation)
        # 
        # /** \brief Determine the correspondences between input and target cloud.
        #   * \param[out] correspondences the found correspondences (index of query point, index of target point, distance)
        #   * \param[in] max_distance maximum distance between correspondences
        #   */
        # virtual void determineCorrespondences (pcl::Correspondences &correspondences, float max_distance = std::numeric_limits<float>::max ());
        # 
        # /** \brief Determine the correspondences between input and target cloud.
        #   * \param[out] correspondences the found correspondences (index of query and target point, distance)
        #   */
        # virtual void determineReciprocalCorrespondences (pcl::Correspondences &correspondences);


###

### Inheritance ###

# icp.h
# template <typename PointSource, typename PointTarget>
# class IterativeClosestPoint : public Registration<PointSource, PointTarget>
cdef extern from "pcl/registration/icp.h" namespace "pcl" nogil:
    cdef cppclass IterativeClosestPoint[Source, Target](Registration[Source, Target]):
        IterativeClosestPoint() except +
        # ctypedef typename Registration<PointSource, PointTarget>::PointCloudSource PointCloudSource;
        # ctypedef typename PointCloudSource::Ptr PointCloudSourcePtr;
        # ctypedef typename PointCloudSource::ConstPtr PointCloudSourceConstPtr;
        # ctypedef typename Registration<PointSource, PointTarget>::PointCloudTarget PointCloudTarget;
        # ctypedef PointIndices::Ptr PointIndicesPtr;
        # ctypedef PointIndices::ConstPtr PointIndicesConstPtr;


ctypedef IterativeClosestPoint[cpp.PointXYZ, cpp.PointXYZ] IterativeClosestPoint_t
ctypedef IterativeClosestPoint[cpp.PointXYZI, cpp.PointXYZI] IterativeClosestPoint_PointXYZI_t
ctypedef IterativeClosestPoint[cpp.PointXYZRGB, cpp.PointXYZRGB] IterativeClosestPoint_PointXYZRGB_t
ctypedef IterativeClosestPoint[cpp.PointXYZRGBA, cpp.PointXYZRGBA] IterativeClosestPoint_PointXYZRGBA_t
ctypedef shared_ptr[IterativeClosestPoint[cpp.PointXYZ, cpp.PointXYZ]] IterativeClosestPointPtr_t
ctypedef shared_ptr[IterativeClosestPoint[cpp.PointXYZI, cpp.PointXYZI]] IterativeClosestPoint_PointXYZI_Ptr_t
ctypedef shared_ptr[IterativeClosestPoint[cpp.PointXYZRGB, cpp.PointXYZRGB]] IterativeClosestPoint_PointXYZRGB_Ptr_t
ctypedef shared_ptr[IterativeClosestPoint[cpp.PointXYZRGBA, cpp.PointXYZRGBA]] IterativeClosestPoint_PointXYZRGBA_Ptr_t
###

# gicp.h
cdef extern from "pcl/registration/gicp.h" namespace "pcl" nogil:
    cdef cppclass GeneralizedIterativeClosestPoint[Source, Target](Registration[Source, Target]):
        GeneralizedIterativeClosestPoint() except +
        # typedef pcl::PointCloud<PointSource> PointCloudSource;
        # typedef typename PointCloudSource::Ptr PointCloudSourcePtr;
        # typedef typename PointCloudSource::ConstPtr PointCloudSourceConstPtr;
        # typedef pcl::PointCloud<PointTarget> PointCloudTarget;
        # typedef typename PointCloudTarget::Ptr PointCloudTargetPtr;
        # typedef typename PointCloudTarget::ConstPtr PointCloudTargetConstPtr;
        # typedef PointIndices::Ptr PointIndicesPtr;
        # typedef PointIndices::ConstPtr PointIndicesConstPtr;
        # typedef typename pcl::KdTree<PointSource> InputKdTree;
        # typedef typename pcl::KdTree<PointSource>::Ptr InputKdTreePtr;
        # typedef Eigen::Matrix<double, 6, 1> Vector6d;
        # public:
        # /** \brief Provide a pointer to the input dataset
        #  * \param cloud the const boost shared pointer to a PointCloud message
        #  */
        # void setInputCloud (cpp.PointCloudPtr_t ptcloud)
        # void setInputCloud (cpp.PointCloudPtr_t ptcloud)
        
        # /** \brief Provide a pointer to the input target (e.g., the point cloud that we want to align the input source to)
        #  * \param[in] target the input point cloud target
        #  */
        # inline void setInputTarget (const PointCloudTargetConstPtr &target)
        # void setInputTarget (const PointCloudTargetConstPtr &target)
        
        # /** \brief Estimate a rigid rotation transformation between a source and a target point cloud using an iterative
        #  * non-linear Levenberg-Marquardt approach.
        #  * \param[in] cloud_src the source point cloud dataset
        #  * \param[in] indices_src the vector of indices describing the points of interest in \a cloud_src
        #  * \param[in] cloud_tgt the target point cloud dataset
        #  * \param[in] indices_tgt the vector of indices describing the correspondences of the interst points from \a indices_src
        #  * \param[out] transformation_matrix the resultant transformation matrix
        #  */
        # void estimateRigidTransformationBFGS (
        #                                const PointCloudSource &cloud_src,
        #                                const std::vector<int> &indices_src,
        #                                const PointCloudTarget &cloud_tgt,
        #                                const std::vector<int> &indices_tgt,
        #                                Eigen::Matrix4f &transformation_matrix);
        # void estimateRigidTransformationBFGS (
        #                                 const PointCloudSource &cloud_src,
        #                                 const std::vector<int> &indices_src,
        #                                 const PointCloudTarget &cloud_tgt,
        #                                 const vector[int] &indices_tgt, 
        #                                 Matrix4f &transformation_matrix);
        
        # /** \brief \return Mahalanobis distance matrix for the given point index */
        # inline const Eigen::Matrix3d& mahalanobis(size_t index) const
        # const Matrix3d& mahalanobis(size_t index)
        
        # /** \brief Computes rotation matrix derivative.
        #  * rotation matrix is obtainded from rotation angles x[3], x[4] and x[5]
        #  * \return d/d_rx, d/d_ry and d/d_rz respectively in g[3], g[4] and g[5]
        #  * param x array representing 3D transformation
        #  * param R rotation matrix
        #  * param g gradient vector
        #  */
        # void computeRDerivative(const Vector6d &x, const Eigen::Matrix3d &R, Vector6d &g) const;
        # void computeRDerivative(const Vector6d &x, const Matrix3d &R, Vector6d &g)
        
        # /** \brief Set the rotation epsilon (maximum allowable difference between two 
        #  * consecutive rotations) in order for an optimization to be considered as having 
        #  * converged to the final solution.
        #  * \param epsilon the rotation epsilon
        #  */
        # inline void setRotationEpsilon (double epsilon)
        void setRotationEpsilon (double epsilon)
        
        # /** \brief Get the rotation epsilon (maximum allowable difference between two 
        #  * consecutive rotations) as set by the user.
        #  */
        # inline double getRotationEpsilon ()
        double getRotationEpsilon ()
        
        # /** \brief Set the number of neighbors used when selecting a point neighbourhood
        #   * to compute covariances. 
        #   * A higher value will bring more accurate covariance matrix but will make 
        #   * covariances computation slower.
        #   * \param k the number of neighbors to use when computing covariances
        #   */
        void setCorrespondenceRandomness (int k)
        
        # /** \brief Get the number of neighbors used when computing covariances as set by the user 
        #   */
        int getCorrespondenceRandomness ()
        
        # /** set maximum number of iterations at the optimization step
        #  * \param[in] max maximum number of iterations for the optimizer
        #  */
        void setMaximumOptimizerIterations (int max)
        
        # ///\return maximum number of iterations at the optimization step
        int getMaximumOptimizerIterations ()


ctypedef GeneralizedIterativeClosestPoint[cpp.PointXYZ, cpp.PointXYZ] GeneralizedIterativeClosestPoint_t
ctypedef GeneralizedIterativeClosestPoint[cpp.PointXYZI, cpp.PointXYZI] GeneralizedIterativeClosestPoint_PointXYZI_t
ctypedef GeneralizedIterativeClosestPoint[cpp.PointXYZRGB, cpp.PointXYZRGB] GeneralizedIterativeClosestPoint_PointXYZRGB_t
ctypedef GeneralizedIterativeClosestPoint[cpp.PointXYZRGBA, cpp.PointXYZRGBA] GeneralizedIterativeClosestPoint_PointXYZRGBA_t
ctypedef shared_ptr[GeneralizedIterativeClosestPoint[cpp.PointXYZ, cpp.PointXYZ]] GeneralizedIterativeClosestPointPtr_t
ctypedef shared_ptr[GeneralizedIterativeClosestPoint[cpp.PointXYZI, cpp.PointXYZI]] GeneralizedIterativeClosestPoint_PointXYZI_Ptr_t
ctypedef shared_ptr[GeneralizedIterativeClosestPoint[cpp.PointXYZRGB, cpp.PointXYZRGB]] GeneralizedIterativeClosestPoint_PointXYZRGB_Ptr_t
ctypedef shared_ptr[GeneralizedIterativeClosestPoint[cpp.PointXYZRGBA, cpp.PointXYZRGBA]] GeneralizedIterativeClosestPoint_PointXYZRGBA_Ptr_t
###

# icp_nl.h
# template <typename PointSource, typename PointTarget>
# class IterativeClosestPointNonLinear : public IterativeClosestPoint<PointSource, PointTarget>
#   cdef cppclass IterativeClosestPointNonLinear[Source, Target](Registration[Source, Target]):
cdef extern from "pcl/registration/icp_nl.h" namespace "pcl" nogil:
    cdef cppclass IterativeClosestPointNonLinear[Source, Target](IterativeClosestPoint[Source, Target]):
        IterativeClosestPointNonLinear() except +


ctypedef IterativeClosestPointNonLinear[cpp.PointXYZ, cpp.PointXYZ] IterativeClosestPointNonLinear_t
ctypedef IterativeClosestPointNonLinear[cpp.PointXYZI, cpp.PointXYZI] IterativeClosestPointNonLinear_PointXYZI_t
ctypedef IterativeClosestPointNonLinear[cpp.PointXYZRGB, cpp.PointXYZRGB] IterativeClosestPointNonLinear_PointXYZRGB_t
ctypedef IterativeClosestPointNonLinear[cpp.PointXYZRGBA, cpp.PointXYZRGBA] IterativeClosestPointNonLinear_PointXYZRGBA_t
ctypedef shared_ptr[IterativeClosestPointNonLinear[cpp.PointXYZ, cpp.PointXYZ]] IterativeClosestPointNonLinearPtr_t
ctypedef shared_ptr[IterativeClosestPointNonLinear[cpp.PointXYZI, cpp.PointXYZI]] IterativeClosestPointNonLinear_PointXYZI_Ptr_t
ctypedef shared_ptr[IterativeClosestPointNonLinear[cpp.PointXYZRGB, cpp.PointXYZRGB]] IterativeClosestPointNonLinear_PointXYZRGB_Ptr_t
ctypedef shared_ptr[IterativeClosestPointNonLinear[cpp.PointXYZRGBA, cpp.PointXYZRGBA]] IterativeClosestPointNonLinear_PointXYZRGBA_Ptr_t
###

# bfgs.h
# template< typename _Scalar >
# PolynomialSolver is Eigen llibrary
# Eigen\include\unsupported\Eigen\src\Polynomials\PolynomialSolver.h(29,12)  [SJIS]:  *  \class PolynomialSolverBase.
# class PolynomialSolver<_Scalar,2> : public PolynomialSolverBase<_Scalar,2>
# cdef extern from "pcl/registration/bfgs.h" namespace "Eigen" nogil:
#     cdef cppclass PolynomialSolver[_Scalar, 2](PolynomialSolverBase[_Scalar, 2]):
#         PolynomialSolver (int nr_dim)
        # public:
        # typedef PolynomialSolverBase<_Scalar,2>    PS_Base;
        # EIGEN_POLYNOMIAL_SOLVER_BASE_INHERITED_TYPES( PS_Base )
        
        # public:
        # template< typename OtherPolynomial > inline PolynomialSolver( const OtherPolynomial& poly, bool& hasRealRoot )
        # /** Computes the complex roots of a new polynomial. */
        # template< typename OtherPolynomial > void compute( const OtherPolynomial& poly, bool& hasRealRoot)
        # template< typename OtherPolynomial > void compute( const OtherPolynomial& poly)


###

# bfgs.h
# template<typename _Scalar, int NX=Eigen::Dynamic>
# struct BFGSDummyFunctor
# cdef extern from "pcl/registration/bfgs.h" nogil:
    # cdef struct BFGSDummyFunctor[_Scalar, NX]:
        # BFGSDummyFunctor ()
        # BFGSDummyFunctor(int inputs)
        # typedef _Scalar Scalar;
        # enum { InputsAtCompileTime = NX };
        
        # typedef Eigen::Matrix<Scalar,InputsAtCompileTime,1> VectorType;
        # const int m_inputs;
        
        # int inputs() const { return m_inputs; }
        # virtual double operator() (const VectorType &x) = 0;
        # virtual void  df(const VectorType &x, VectorType &df) = 0;
        # virtual void fdf(const VectorType &x, Scalar &f, VectorType &df) = 0;


###

# bfgs.h
# namespace BFGSSpace {
#   enum Status {
#     NegativeGradientEpsilon = -3,
#     NotStarted = -2,
#     Running = -1,
#     Success = 0,
#     NoProgress = 1
#   };
# }
# 
###

# bfgs.h
# /**
#  * BFGS stands for Broydenletcheroldfarbhanno (BFGS) method for solving 
#  * unconstrained nonlinear optimization problems. 
#  * For further details please visit: http://en.wikipedia.org/wiki/BFGS_method
#  * The method provided here is almost similar to the one provided by GSL.
#  * It reproduces Fletcher's original algorithm in Practical Methods of Optimization
#  * algorithms : 2.6.2 and 2.6.4 and uses the same politics in GSL with cubic 
#  * interpolation whenever it is possible else falls to quadratic interpolation for 
#  * alpha parameter.
#  */
# template<typename FunctorType>
# class BFGS
# cdef extern from "pcl/registration/bfgs.h" nogil:
#     cdef cppclass BFGS[FunctorType]:
#         # BFGS (FunctorType &_functor) 
# public:
#   typedef typename FunctorType::Scalar Scalar;
#   typedef typename FunctorType::VectorType FVectorType;
# 
#   typedef Eigen::DenseIndex Index;
# 
#   struct Parameters {
#     Parameters()
#     : max_iters(400)
#       , bracket_iters(100)
#       , section_iters(100)
#       , rho(0.01)
#       , sigma(0.01)
#       , tau1(9)
#       , tau2(0.05)
#       , tau3(0.5)
#       , step_size(1)
#       , order(3) {}
#     Index max_iters;   // maximum number of function evaluation
#     Index bracket_iters;
#     Index section_iters;
#     Scalar rho;
#     Scalar sigma;
#     Scalar tau1;
#     Scalar tau2;
#     Scalar tau3;
#     Scalar step_size;
#     Index order;
# 
#   BFGSSpace::Status minimize(FVectorType &x);
#   BFGSSpace::Status minimizeInit(FVectorType &x);
#   BFGSSpace::Status minimizeOneStep(FVectorType &x);
#   BFGSSpace::Status testGradient(Scalar epsilon);
#   void resetParameters(void) { parameters = Parameters(); }
#   
#   Parameters parameters;
#   Scalar f;
#   FVectorType gradient;
# 
#
# template<typename FunctorType> void
# BFGS<FunctorType>::checkExtremum(const Eigen::Matrix<Scalar, 4, 1>& coefficients, Scalar x, Scalar& xmin, Scalar& fmin)
# 
# template<typename FunctorType> void
# BFGS<FunctorType>::moveTo(Scalar alpha)
# 
# template<typename FunctorType> typename BFGS<FunctorType>::Scalar
# BFGS<FunctorType>::slope()
# 
# template<typename FunctorType> typename BFGS<FunctorType>::Scalar
# BFGS<FunctorType>::applyF(Scalar alpha)
# 
# template<typename FunctorType> typename BFGS<FunctorType>::Scalar
# BFGS<FunctorType>::applyDF(Scalar alpha)
# 
# template<typename FunctorType> void
# BFGS<FunctorType>::applyFDF(Scalar alpha, Scalar& f, Scalar& df)
# 
# template<typename FunctorType> void
# BFGS<FunctorType>::updatePosition (Scalar alpha, FVectorType &x, Scalar &f, FVectorType &g)
#
# template<typename FunctorType> void
# BFGS<FunctorType>::changeDirection ()
# 
# template<typename FunctorType> BFGSSpace::Status
# BFGS<FunctorType>::minimize(FVectorType  &x)
# 
# template<typename FunctorType> BFGSSpace::Status
# BFGS<FunctorType>::minimizeInit(FVectorType  &x)
# 
# template<typename FunctorType> BFGSSpace::Status
# BFGS<FunctorType>::minimizeOneStep(FVectorType  &x)
# 
# template<typename FunctorType> typename BFGSSpace::Status 
# BFGS<FunctorType>::testGradient(Scalar epsilon)
# 
# template<typename FunctorType> typename BFGS<FunctorType>::Scalar 
# BFGS<FunctorType>::interpolate (Scalar a, Scalar fa, Scalar fpa,
#                                 Scalar b, Scalar fb, Scalar fpb, 
#                                 Scalar xmin, Scalar xmax,
#                                 int order)
# 
# template<typename FunctorType> BFGSSpace::Status 
# BFGS<FunctorType>::lineSearch(Scalar rho, Scalar sigma, 
#                               Scalar tau1, Scalar tau2, Scalar tau3,
#                               int order, Scalar alpha1, Scalar &alpha_new)
###

# correspondence_estimation_normal_shooting.h
# template <typename PointSource, typename PointTarget, typename NormalT>
# class CorrespondenceEstimationNormalShooting : public CorrespondenceEstimation <PointSource, PointTarget>
cdef extern from "pcl/registration/correspondence_estimation_normal_shooting.h" namespace "pcl::registration" nogil:
    cdef cppclass CorrespondenceEstimationNormalShooting[Source, Target, NormalT](CorrespondenceEstimation[Source, Target]):
        CorrespondenceEstimationNormalShooting()
        # 
        # /** \brief Set the normals computed on the input point cloud
        #   * \param[in] normals the normals computed for the input cloud
        #   */
        # inline void setSourceNormals (const NormalsPtr &normals)
        # 
        # /** \brief Get the normals of the input point cloud
        #   */
        # inline NormalsPtr getSourceNormals () const
        # 
        # /** \brief Determine the correspondences between input and target cloud.
        #   * \param[out] correspondences the found correspondences (index of query point, index of target point, distance)
        #   * \param[in] max_distance maximum distance between the normal on the source point cloud and the corresponding point in the target
        #   * point cloud
        #   */
        # void determineCorrespondences (pcl::Correspondences &correspondences, float max_distance = std::numeric_limits<float>::max ());
        # 
        # /** \brief Set the number of nearest neighbours to be considered in the target point cloud
        #   * \param[in] k the number of nearest neighbours to be considered
        #   */
        # inline void setKSearch (unsigned int k)
        # 
        # /** \brief Get the number of nearest neighbours considered in the target point cloud for computing correspondence
        #   */
        # inline void getKSearch ()


###

# correspondence_rejection_distance.h
# class CorrespondenceRejectorDistance: public CorrespondenceRejector
cdef extern from "pcl/registration/correspondence_rejection_distance.h" namespace "pcl::registration" nogil:
    cdef cppclass CorrespondenceRejectorDistance(CorrespondenceRejector):
        CorrespondenceRejectorDistance()
        # using CorrespondenceRejector::input_correspondences_;
        # using CorrespondenceRejector::rejection_name_;
        # using CorrespondenceRejector::getClassName;
        # public:
        # /** \brief Get a list of valid correspondences after rejection from the original set of correspondences.
        #   * \param[in] original_correspondences the set of initial correspondences given
        #   * \param[out] remaining_correspondences the resultant filtered set of remaining correspondences
        #   */
        # inline void getRemainingCorrespondences (const pcl::Correspondences& original_correspondences, pcl::Correspondences& remaining_correspondences);
        # 
        # /** \brief Set the maximum distance used for thresholding in correspondence rejection.
        #   * \param[in] distance Distance to be used as maximum distance between correspondences. 
        #   * Correspondences with larger distances are rejected.
        #   * \note Internally, the distance will be stored squared.
        #   */
        # virtual inline void setMaximumDistance (float distance)
        # 
        # /** \brief Get the maximum distance used for thresholding in correspondence rejection. */
        # inline float getMaximumDistance ()
        # 
        # /** \brief Provide a source point cloud dataset (must contain XYZ
        #   * data!), used to compute the correspondence distance.  
        #   * \param[in] cloud a cloud containing XYZ data
        #   */
        # template <typename PointT> inline void setInputCloud (const typename pcl::PointCloud<PointT>::ConstPtr &cloud)
        # 
        # /** \brief Provide a target point cloud dataset (must contain XYZ
        #   * data!), used to compute the correspondence distance.  
        #   * \param[in] target a cloud containing XYZ data
        #   */
        # template <typename PointT> inline void setInputTarget (const typename pcl::PointCloud<PointT>::ConstPtr &target)


###

# correspondence_rejection_features.h
# class CorrespondenceRejectorFeatures: public CorrespondenceRejector
cdef extern from "pcl/registration/correspondence_rejection_distance.h" namespace "pcl::registration" nogil:
    cdef cppclass CorrespondenceRejectorFeatures(CorrespondenceRejector):
        CorrespondenceRejectorFeatures()
        # using CorrespondenceRejector::input_correspondences_;
        # using CorrespondenceRejector::rejection_name_;
        # using CorrespondenceRejector::getClassName;
        # /** \brief Get a list of valid correspondences after rejection from the original set of correspondences
        #   * \param[in] original_correspondences the set of initial correspondences given
        #   * \param[out] remaining_correspondences the resultant filtered set of remaining correspondences
        #   */
        # void getRemainingCorrespondences (const pcl::Correspondences& original_correspondences, pcl::Correspondences& remaining_correspondences);
        # 
        # /** \brief Provide a pointer to a cloud of feature descriptors associated with the source point cloud
        #   * \param[in] source_feature a cloud of feature descriptors associated with the source point cloud
        #   * \param[in] key a string that uniquely identifies the feature
        #   */
        # template <typename FeatureT> inline void setSourceFeature (const typename pcl::PointCloud<FeatureT>::ConstPtr &source_feature, const std::string &key);
        # 
        # /** \brief Get a pointer to the source cloud's feature descriptors, specified by the given \a key
        #   * \param[in] key a string that uniquely identifies the feature (must match the key provided by setSourceFeature)
        #   */
        # template <typename FeatureT> inline typename pcl::PointCloud<FeatureT>::ConstPtr getSourceFeature (const std::string &key);
        # 
        # /** \brief Provide a pointer to a cloud of feature descriptors associated with the target point cloud
        #   * \param[in] target_feature a cloud of feature descriptors associated with the target point cloud
        #   * \param[in] key a string that uniquely identifies the feature
        #   */
        # template <typename FeatureT> inline void setTargetFeature (const typename pcl::PointCloud<FeatureT>::ConstPtr &target_feature, const std::string &key);
        # 
        # /** \brief Get a pointer to the source cloud's feature descriptors, specified by the given \a key
        #   * \param[in] key a string that uniquely identifies the feature (must match the key provided by setTargetFeature)
        #   */
        # template <typename FeatureT> inline typename pcl::PointCloud<FeatureT>::ConstPtr getTargetFeature (const std::string &key);
        # 
        # /** \brief Set a hard distance threshold in the feature \a FeatureT space, between source and target
        #   * features. Any feature correspondence that is above this threshold will be considered bad and will be
        #   * filtered out.
        #   * \param[in] thresh the distance threshold
        #   * \param[in] key a string that uniquely identifies the feature
        #   */
        # template <typename FeatureT> inline void setDistanceThreshold (double thresh, const std::string &key);
        # 
        # /** \brief Test that all features are valid (i.e., does each key have a valid source cloud, target cloud, 
        #   * and search method)
        #   */
        # inline bool hasValidFeatures ();
        # 
        # /** \brief Provide a boost shared pointer to a PointRepresentation to be used when comparing features
        #   * \param[in] key a string that uniquely identifies the feature
        #   * \param[in] fr the point feature representation to be used 
        #   */
        # template <typename FeatureT> inline void setFeatureRepresentation (const typename pcl::PointRepresentation<FeatureT>::ConstPtr &fr, const std::string &key);


###

# correspondence_rejection_median_distance.h
# class CorrespondenceRejectorMedianDistance: public CorrespondenceRejector
cdef extern from "pcl/registration/correspondence_rejection_median_distance.h" namespace "pcl::registration" nogil:
    cdef cppclass CorrespondenceRejectorMedianDistance(CorrespondenceRejector):
        CorrespondenceRejectorMedianDistance()
#       using CorrespondenceRejector::input_correspondences_;
#       using CorrespondenceRejector::rejection_name_;
#       using CorrespondenceRejector::getClassName;
#       public:
#         /** \brief Get a list of valid correspondences after rejection from the original set of correspondences.
#           * \param[in] original_correspondences the set of initial correspondences given
#           * \param[out] remaining_correspondences the resultant filtered set of remaining correspondences
#           */
#         inline void 
#         getRemainingCorrespondences (const pcl::Correspondences& original_correspondences, 
#                                      pcl::Correspondences& remaining_correspondences);
# 
#         /** \brief Get the median distance used for thresholding in correspondence rejection. */
#         inline double getMedianDistance () const
# 
#         /** \brief Provide a source point cloud dataset (must contain XYZ
#           * data!), used to compute the correspondence distance.  
#           * \param[in] cloud a cloud containing XYZ data
#           */
#         template <typename PointT> inline void 
#         setInputCloud (const typename pcl::PointCloud<PointT>::ConstPtr &cloud)
# 
#         /** \brief Provide a target point cloud dataset (must contain XYZ
#           * data!), used to compute the correspondence distance.  
#           * \param[in] target a cloud containing XYZ data
#           */
#         template <typename PointT> inline void 
#         setInputTarget (const typename pcl::PointCloud<PointT>::ConstPtr &target)
# 
#         /** \brief Set the factor for correspondence rejection. Points with distance greater than median times factor
#          *  will be rejected
#          *  \param[in] factor value
#          */
#         inline void setMedianFactor (double factor)
# 
#         /** \brief Get the factor used for thresholding in correspondence rejection. */
#         inline double getMedianFactor () const { return factor_; };
# 
###

# correspondence_rejection_one_to_one.h
# class CorrespondenceRejectorOneToOne: public CorrespondenceRejector
cdef extern from "pcl/registration/correspondence_rejection_one_to_one.h" namespace "pcl::registration" nogil:
    cdef cppclass CorrespondenceRejectorOneToOne(CorrespondenceRejector):
        CorrespondenceRejectorOneToOne()
#       using CorrespondenceRejector::input_correspondences_;
#       using CorrespondenceRejector::rejection_name_;
#       using CorrespondenceRejector::getClassName;
#       public:
#         /** \brief Get a list of valid correspondences after rejection from the original set of correspondences.
#           * \param[in] original_correspondences the set of initial correspondences given
#           * \param[out] remaining_correspondences the resultant filtered set of remaining correspondences
#           */
#         inline void 
#         getRemainingCorrespondences (const pcl::Correspondences& original_correspondences, 
#                                      pcl::Correspondences& remaining_correspondences);
# 
#       protected:
#         /** \brief Apply the rejection algorithm.
#           * \param[out] correspondences the set of resultant correspondences.
#           */
#         inline void 
#         applyRejection (pcl::Correspondences &correspondences)
#         {
#           getRemainingCorrespondences (*input_correspondences_, correspondences);
#         }
#     };

# 
###
 
# correspondence_rejection_sample_consensus.h
# template <typename PointT>
# class CorrespondenceRejectorSampleConsensus: public CorrespondenceRejector
cdef extern from "pcl/registration/correspondence_rejection_sample_consensus.h" namespace "pcl::registration" nogil:
    cdef cppclass CorrespondenceRejectorSampleConsensus[T](CorrespondenceRejector):
        CorrespondenceRejectorSampleConsensus()
#       using CorrespondenceRejector::input_correspondences_;
#       using CorrespondenceRejector::rejection_name_;
#       using CorrespondenceRejector::getClassName;
#       typedef pcl::PointCloud<PointT> PointCloud;
#       typedef typename PointCloud::Ptr PointCloudPtr;
#       typedef typename PointCloud::ConstPtr PointCloudConstPtr;
#       public:
#         /** \brief Get a list of valid correspondences after rejection from the original set of correspondences.
#           * \param[in] original_correspondences the set of initial correspondences given
#           * \param[out] remaining_correspondences the resultant filtered set of remaining correspondences
#           */
#         inline void 
#         getRemainingCorrespondences (const pcl::Correspondences& original_correspondences, 
#                                      pcl::Correspondences& remaining_correspondences);
# 
#         /** \brief Provide a source point cloud dataset (must contain XYZ data!)
#           * \param[in] cloud a cloud containing XYZ data
#           */
#         virtual inline void 
#         setInputCloud (const PointCloudConstPtr &cloud) { input_ = cloud; }
# 
#         /** \brief Provide a target point cloud dataset (must contain XYZ data!)
#           * \param[in] cloud a cloud containing XYZ data
#           */
#         virtual inline void 
#         setTargetCloud (const PointCloudConstPtr &cloud) { target_ = cloud; }
# 
#         /** \brief Set the maximum distance between corresponding points.
#           * Correspondences with distances below the threshold are considered as inliers.
#           * \param[in] threshold Distance threshold in the same dimension as source and target data sets.
#           */
#         inline void 
#         setInlierThreshold (double threshold) { inlier_threshold_ = threshold; };
# 
#         /** \brief Get the maximum distance between corresponding points.
#           * \return Distance threshold in the same dimension as source and target data sets.
#           */
#         inline double 
#         getInlierThreshold() { return inlier_threshold_; };
# 
#         /** \brief Set the maximum number of iterations.
#           * \param[in] max_iterations Maximum number if iterations to run
#           */
#         inline void 
#         setMaxIterations (int max_iterations) {max_iterations_ = std::max(max_iterations, 0); };
# 
#         /** \brief Get the maximum number of iterations.
#           * \return max_iterations Maximum number if iterations to run
#           */
#         inline int 
#         getMaxIterations () { return max_iterations_; };
# 
#         /** \brief Get the best transformation after RANSAC rejection.
#           * \return The homogeneous 4x4 transformation yielding the largest number of inliers.
#           */
#         inline Eigen::Matrix4f 
#         getBestTransformation () { return best_transformation_; };
# 
###

# correspondence_rejection_surface_normal.h
# class CorrespondenceRejectorSurfaceNormal : public CorrespondenceRejector
cdef extern from "pcl/registration/correspondence_rejection_surface_normal.h" namespace "pcl::registration" nogil:
    cdef cppclass CorrespondenceRejectorSurfaceNormal(CorrespondenceRejector):
        CorrespondenceRejectorSurfaceNormal()
#       using CorrespondenceRejector::input_correspondences_;
#       using CorrespondenceRejector::rejection_name_;
#       using CorrespondenceRejector::getClassName;
#       public:
#         /** \brief Get a list of valid correspondences after rejection from the original set of correspondences.
#           * \param[in] original_correspondences the set of initial correspondences given
#           * \param[out] remaining_correspondences the resultant filtered set of remaining correspondences
#           */
#         inline void 
#         getRemainingCorrespondences (const pcl::Correspondences& original_correspondences, 
#                                      pcl::Correspondences& remaining_correspondences);
# 
#         /** \brief Set the thresholding angle between the normals for correspondence rejection. 
#           * \param[in] threshold cosine of the thresholding angle between the normals for rejection
#           */
#         inline void
#         setThreshold (double threshold) { threshold_ = threshold; };
# 
#         /** \brief Get the thresholding angle between the normals for correspondence rejection. */
#         inline double
#         getThreshold () const { return threshold_; };
# 
#         /** \brief Initialize the data container object for the point type and the normal type
#           */
#         template <typename PointT, typename NormalT> inline void 
#         initializeDataContainer ()
#
#         /** \brief Provide a source point cloud dataset (must contain XYZ
#           * data!), used to compute the correspondence distance.  
#           * \param[in] cloud a cloud containing XYZ data
#           */
#         template <typename PointT> inline void 
#         setInputCloud (const typename pcl::PointCloud<PointT>::ConstPtr &input)
# 
#         /** \brief Provide a target point cloud dataset (must contain XYZ
#           * data!), used to compute the correspondence distance.  
#           * \param[in] target a cloud containing XYZ data
#           */
#         template <typename PointT> inline void 
#         setInputTarget (const typename pcl::PointCloud<PointT>::ConstPtr &target)
# 
#         /** \brief Set the normals computed on the input point cloud
#           * \param[in] normals the normals computed for the input cloud
#           */
#         template <typename PointT, typename NormalT> inline void 
#         setInputNormals (const typename pcl::PointCloud<NormalT>::ConstPtr &normals)
# 
#         /** \brief Set the normals computed on the target point cloud
#           * \param[in] normals the normals computed for the input cloud
#           */
#         template <typename PointT, typename NormalT> inline void 
#         setTargetNormals (const typename pcl::PointCloud<NormalT>::ConstPtr &normals)
# 
#         /** \brief Get the normals computed on the input point cloud */
#         template <typename NormalT> inline typename pcl::PointCloud<NormalT>::Ptr
#         getInputNormals () const { return boost::static_pointer_cast<DataContainer<pcl::PointXYZ, NormalT> > (data_container_)->getInputNormals (); }
# 
#         /** \brief Get the normals computed on the target point cloud */
#         template <typename NormalT> inline typename pcl::PointCloud<NormalT>::Ptr
#         getTargetNormals () const { return boost::static_pointer_cast<DataContainer<pcl::PointXYZ, NormalT> > (data_container_)->getTargetNormals (); }
###

# correspondence_rejection_trimmed.h
#     class CorrespondenceRejectorTrimmed: public CorrespondenceRejector
cdef extern from "pcl/registration/correspondence_rejection_trimmed.h" namespace "pcl::registration" nogil:
    cdef cppclass CorrespondenceRejectorTrimmed(CorrespondenceRejector):
        CorrespondenceRejectorTrimmed()
#       using CorrespondenceRejector::input_correspondences_;
#       using CorrespondenceRejector::rejection_name_;
#       using CorrespondenceRejector::getClassName;
#       public:
#         /** \brief Set the expected ratio of overlap between point clouds (in
#           * terms of correspondences).
#           * \param[in] ratio ratio of overlap between 0 (no overlap, no
#           * correspondences) and 1 (full overlap, all correspondences)
#           */
#         virtual inline void setOverlapRadio (float ratio)
# 
#         /** \brief Get the maximum distance used for thresholding in correspondence rejection. */
#         inline float getOverlapRadio ()
# 
#         /** \brief Set a minimum number of correspondences. If the specified overlap ratio causes to have
#           * less correspondences,  \a CorrespondenceRejectorTrimmed will try to return at least
#           * \a nr_min_correspondences_ correspondences (or all correspondences in case \a nr_min_correspondences_
#           * is less than the number of given correspondences). 
#           * \param[in] min_correspondences the minimum number of correspondences
#           */
#         inline void setMinCorrespondences (unsigned int min_correspondences) { nr_min_correspondences_ = min_correspondences; };
# 
#         /** \brief Get the minimum number of correspondences. */
#         inline unsigned int getMinCorrespondences ()
#
#         /** \brief Get a list of valid correspondences after rejection from the original set of correspondences.
#           * \param[in] original_correspondences the set of initial correspondences given
#           * \param[out] remaining_correspondences the resultant filtered set of remaining correspondences
#           */
#         inline void
#         getRemainingCorrespondences (const pcl::Correspondences& original_correspondences,
#                                      pcl::Correspondences& remaining_correspondences);
#       protected:
#         /** \brief Apply the rejection algorithm.
#           * \param[out] correspondences the set of resultant correspondences.
#           */
#         inline void 
#         applyRejection (pcl::Correspondences &correspondences)
#         {
#           getRemainingCorrespondences (*input_correspondences_, correspondences);
#         }
# 
#         /** Overlap Ratio in [0..1] */
#         float overlap_ratio_;
# 
#         /** Minimum number of correspondences. */
#         unsigned int nr_min_correspondences_;
###

# correspondence_rejection_var_trimmed.h
#     class CorrespondenceRejectorVarTrimmed: public CorrespondenceRejector
cdef extern from "pcl/registration/correspondence_rejection_var_trimmed.h" namespace "pcl::registration" nogil:
    cdef cppclass CorrespondenceRejectorVarTrimmed(CorrespondenceRejector):
        CorrespondenceRejectorVarTrimmed()
#       using CorrespondenceRejector::input_correspondences_;
#       using CorrespondenceRejector::rejection_name_;
#       using CorrespondenceRejector::getClassName;
#       public:
#         /** \brief Get a list of valid correspondences after rejection from the original set of correspondences.
#           * \param[in] original_correspondences the set of initial correspondences given
#           * \param[out] remaining_correspondences the resultant filtered set of remaining correspondences
#           */
#         inline void 
#         getRemainingCorrespondences (const pcl::Correspondences& original_correspondences, 
#                                      pcl::Correspondences& remaining_correspondences);
# 
#         /** \brief Get the trimmed distance used for thresholding in correspondence rejection. */
#         inline double
#         getTrimmedDistance () const { return trimmed_distance_; };
# 
#         /** \brief Provide a source point cloud dataset (must contain XYZ
#           * data!), used to compute the correspondence distance.  
#           * \param[in] cloud a cloud containing XYZ data
#           */
#         template <typename PointT> inline void 
#         setInputCloud (const typename pcl::PointCloud<PointT>::ConstPtr &cloud)
# 
#         /** \brief Provide a target point cloud dataset (must contain XYZ
#           * data!), used to compute the correspondence distance.  
#           * \param[in] target a cloud containing XYZ data
#           */
#         template <typename PointT> inline void 
#         setInputTarget (const typename pcl::PointCloud<PointT>::ConstPtr &target)
# 
#         /** \brief Get the computed inlier ratio used for thresholding in correspondence rejection. */
#         inline double
#         getTrimFactor () const { return factor_; }
# 
#         /** brief set the minimum overlap ratio
#           * \param[in] ratio the overlap ratio [0..1]
#           */
#         inline void
#         setMinRatio (double ratio) { min_ratio_ = ratio; }
# 
#         /** brief get the minimum overlap ratio
#           */
#         inline double
#         getMinRatio () const { return min_ratio_; }
# 
#         /** brief set the maximum overlap ratio
#           * \param[in] ratio the overlap ratio [0..1]
#           */
#         inline void
#         setMaxRatio (double ratio) { max_ratio_ = ratio; }
# 
#         /** brief get the maximum overlap ratio
#           */
#         inline double
#         getMaxRatio () const { return max_ratio_; }
#       protected:
#         /** \brief Apply the rejection algorithm.
#           * \param[out] correspondences the set of resultant correspondences.
#           */
#         inline void 
#         applyRejection (pcl::Correspondences &correspondences)
#         {
#           getRemainingCorrespondences (*input_correspondences_, correspondences);
#         }
# 
#         /** \brief The inlier distance threshold (based on the computed trim factor) between two correspondent points in source <-> target.
#           */
#         double trimmed_distance_;
# 
#         /** \brief The factor for correspondence rejection. Only factor times the total points sorted based on 
#          *  the correspondence distances will be considered as inliers. Remaining points are rejected. This factor is
#          *  computed internally 
#          */
#         double factor_;
# 
#         /** \brief The minimum overlap ratio between the input and target clouds
#          */
#         double min_ratio_;
# 
#         /** \brief The maximum overlap ratio between the input and target clouds
#          */
#         double max_ratio_;
# 
#                 /** \brief part of the term that balances the root mean square difference. This is an internal parameter
#          */
#         double lambda_;
# 
#         typedef boost::shared_ptr<DataContainerInterface> DataContainerPtr;
# 
#         /** \brief A pointer to the DataContainer object containing the input and target point clouds */
#         DataContainerPtr data_container_;
# 
###

# correspondence_sorting.h
#     /** @b sortCorrespondencesByQueryIndex : a functor for sorting correspondences by query index
#       * \author Dirk Holz
#       * \ingroup registration
#       */
#     struct sortCorrespondencesByQueryIndex : public std::binary_function<pcl::Correspondence, pcl::Correspondence, bool>
#     {
#       bool
#       operator()( pcl::Correspondence a, pcl::Correspondence b)
#       {
#         return (a.index_query < b.index_query);
#       }
#     };
# 
#     /** @b sortCorrespondencesByMatchIndex : a functor for sorting correspondences by match index
#       * \author Dirk Holz
#       * \ingroup registration
#       */
#     struct sortCorrespondencesByMatchIndex : public std::binary_function<pcl::Correspondence, pcl::Correspondence, bool>
#     {
#       bool 
#       operator()( pcl::Correspondence a, pcl::Correspondence b)
#       {
#         return (a.index_match < b.index_match);
#       }
#     };
# 
#     /** @b sortCorrespondencesByDistance : a functor for sorting correspondences by distance
#       * \author Dirk Holz
#       * \ingroup registration
#       */
#     struct sortCorrespondencesByDistance : public std::binary_function<pcl::Correspondence, pcl::Correspondence, bool>
#     {
#       bool 
#       operator()( pcl::Correspondence a, pcl::Correspondence b)
#       {
#         return (a.distance < b.distance);
#       }
#     };
# 
#     /** @b sortCorrespondencesByQueryIndexAndDistance : a functor for sorting correspondences by query index _and_ distance
#       * \author Dirk Holz
#       * \ingroup registration
#       */
#     struct sortCorrespondencesByQueryIndexAndDistance : public std::binary_function<pcl::Correspondence, pcl::Correspondence, bool>
#     {
#       inline bool 
#       operator()( pcl::Correspondence a, pcl::Correspondence b)
#       {
#         if (a.index_query < b.index_query)
#           return (true);
#         else if ( (a.index_query == b.index_query) && (a.distance < b.distance) )
#           return (true);
#         return (false);
#       }
#     };
# 
#     /** @b sortCorrespondencesByMatchIndexAndDistance : a functor for sorting correspondences by match index _and_ distance
#       * \author Dirk Holz
#       * \ingroup registration
#       */
#     struct sortCorrespondencesByMatchIndexAndDistance : public std::binary_function<pcl::Correspondence, pcl::Correspondence, bool>
#     {
#       inline bool 
#       operator()( pcl::Correspondence a, pcl::Correspondence b)
#       {
#         if (a.index_match < b.index_match)
#           return (true);
#         else if ( (a.index_match == b.index_match) && (a.distance < b.distance) )
#           return (true);
#         return (false);
#       }
#     };

# 
###

# correspondence_types.h
#     /** \brief calculates the mean and standard deviation of descriptor distances from correspondences
#       * \param[in] correspondences list of correspondences
#       * \param[out] mean the mean descriptor distance of correspondences
#       * \param[out] stddev the standard deviation of descriptor distances.
#       * \note The sample varaiance is used to determine the standard deviation
#       */
#     inline void 
#     getCorDistMeanStd (const pcl::Correspondences& correspondences, double &mean, double &stddev);
# 
#     /** \brief extracts the query indices
#       * \param[in] correspondences list of correspondences
#       * \param[out] indices array of extracted indices.
#       * \note order of indices corresponds to input list of descriptor correspondences
#       */
#     inline void 
#     getQueryIndices (const pcl::Correspondences& correspondences, std::vector<int>& indices);
# 
#     /** \brief extracts the match indices
#       * \param[in] correspondences list of correspondences
#       * \param[out] indices array of extracted indices.
#       * \note order of indices corresponds to input list of descriptor correspondences
#       */
#     inline void 
#     getMatchIndices (const pcl::Correspondences& correspondences, std::vector<int>& indices);

# 
###

# distances.h
#     /** \brief Compute the median value from a set of doubles
#       * \param[in] fvec the set of doubles
#       * \param[in] m the number of doubles in the set
#       */
#     inline double 
#     computeMedian (double *fvec, int m)
#     {
#       // Copy the values to vectors for faster sorting
#       std::vector<double> data (m);
#       memcpy (&data[0], fvec, sizeof (double) * m);
#       
#       std::nth_element(data.begin(), data.begin() + (data.size () >> 1), data.end());
#       return (data[data.size () >> 1]);
#     }
# 
#     /** \brief Use a Huber kernel to estimate the distance between two vectors
#       * \param[in] p_src the first eigen vector
#       * \param[in] p_tgt the second eigen vector
#       * \param[in] sigma the sigma value
#       */
#     inline double
#     huber (const Eigen::Vector4f &p_src, const Eigen::Vector4f &p_tgt, double sigma) 
#     {
#       Eigen::Array4f diff = (p_tgt.array () - p_src.array ()).abs ();
#       double norm = 0.0;
#       for (int i = 0; i < 3; ++i)
#       {
#         if (diff[i] < sigma)
#           norm += diff[i] * diff[i];
#         else
#           norm += 2.0 * sigma * diff[i] - sigma * sigma;
#       }
#       return (norm);
#     }
# 
#     /** \brief Use a Huber kernel to estimate the distance between two vectors
#       * \param[in] diff the norm difference between two vectors
#       * \param[in] sigma the sigma value
#       */
#     inline double
#     huber (double diff, double sigma) 
#     {
#       double norm = 0.0;
#       if (diff < sigma)
#         norm += diff * diff;
#       else
#         norm += 2.0 * sigma * diff - sigma * sigma;
#       return (norm);
#     }
# 
#     /** \brief Use a Gedikli kernel to estimate the distance between two vectors
#       * (for more information, see 
#       * \param[in] val the norm difference between two vectors
#       * \param[in] clipping the clipping value
#       * \param[in] slope the slope. Default: 4
#       */
#     inline double
#     gedikli (double val, double clipping, double slope = 4) 
#     {
#       return (1.0 / (1.0 + pow (fabs(val) / clipping, slope)));
#     }
# 
#     /** \brief Compute the Manhattan distance between two eigen vectors.
#       * \param[in] p_src the first eigen vector
#       * \param[in] p_tgt the second eigen vector
#       */
#     inline double
#     l1 (const Eigen::Vector4f &p_src, const Eigen::Vector4f &p_tgt) 
#     {
#       return ((p_src.array () - p_tgt.array ()).abs ().sum ());
#     }
# 
#     /** \brief Compute the Euclidean distance between two eigen vectors.
#       * \param[in] p_src the first eigen vector
#       * \param[in] p_tgt the second eigen vector
#       */
#     inline double
#     l2 (const Eigen::Vector4f &p_src, const Eigen::Vector4f &p_tgt) 
#     {
#       return ((p_src - p_tgt).norm ());
#     }
# 
#     /** \brief Compute the squared Euclidean distance between two eigen vectors.
#       * \param[in] p_src the first eigen vector
#       * \param[in] p_tgt the second eigen vector
#       */
#     inline double
#     l2Sqr (const Eigen::Vector4f &p_src, const Eigen::Vector4f &p_tgt) 
#     {
#       return ((p_src - p_tgt).squaredNorm ());
#     }

# 
# ###

# eigen.h
# # 
# #include <Eigen/Core>
# #include <Eigen/Geometry>
# #include <unsupported/Eigen/Polynomials>
# #include <Eigen/Dense>
###

# elch.h
# template <typename PointT>
# class ELCH : public PCLBase<PointT>
cdef extern from "pcl/registration/elch.h" namespace "pcl::registration" nogil:
    cdef cppclass ELCH[T](cpp.PCLBase[T]):
        ELCH()
#       public:
#         typedef boost::shared_ptr< ELCH<PointT> > Ptr;
#         typedef boost::shared_ptr< const ELCH<PointT> > ConstPtr;
#         typedef pcl::PointCloud<PointT> PointCloud;
#         typedef typename PointCloud::Ptr PointCloudPtr;
#         typedef typename PointCloud::ConstPtr PointCloudConstPtr;
#         struct Vertex
#         {
#           Vertex () : cloud () {}
#           PointCloudPtr cloud;
#         };
# 
#         /** \brief graph structure to hold the SLAM graph */
#         typedef boost::adjacency_list<
#           boost::listS, boost::vecS, boost::undirectedS,
#           Vertex,
#           boost::no_property>
#         LoopGraph;
#         typedef boost::shared_ptr< LoopGraph > LoopGraphPtr;
#         typedef typename pcl::Registration<PointT, PointT> Registration;
#         typedef typename Registration::Ptr RegistrationPtr;
#         typedef typename Registration::ConstPtr RegistrationConstPtr;
#
#         /** \brief Add a new point cloud to the internal graph.
#          * \param[in] cloud the new point cloud
#          */
#         inline void
#         addPointCloud (PointCloudPtr cloud)
# 
#         /** \brief Getter for the internal graph. */
#         inline LoopGraphPtr
#         getLoopGraph ()
# 
#         /** \brief Setter for a new internal graph.
#          * \param[in] loop_graph the new graph
#          */
#         inline void
#         setLoopGraph (LoopGraphPtr loop_graph)
# 
#         /** \brief Getter for the first scan of a loop. */
#         inline typename boost::graph_traits<LoopGraph>::vertex_descriptor
#         getLoopStart ()
#
#         /** \brief Setter for the first scan of a loop.
#          * \param[in] loop_start the scan that starts the loop
#          */
#         inline void
#         setLoopStart (const typename boost::graph_traits<LoopGraph>::vertex_descriptor &loop_start)
#
#         /** \brief Getter for the last scan of a loop. */
#         inline typename boost::graph_traits<LoopGraph>::vertex_descriptor
#         getLoopEnd ()
# 
#         /** \brief Setter for the last scan of a loop.
#          * \param[in] loop_end the scan that ends the loop
#          */
#         inline void
#         setLoopEnd (const typename boost::graph_traits<LoopGraph>::vertex_descriptor &loop_end)
# 
#         /** \brief Getter for the registration algorithm. */
#         inline RegistrationPtr
#         getReg ()
# 
#         /** \brief Setter for the registration algorithm.
#          * \param[in] reg the registration algorithm used to compute the transformation between the start and the end of the loop
#          */
#         inline void setReg (RegistrationPtr reg)
# 
#         /** \brief Getter for the transformation between the first and the last scan. */
#         inline Eigen::Matrix4f getLoopTransform ()
# 
#         /** \brief Setter for the transformation between the first and the last scan.
#          * \param[in] loop_transform the transformation between the first and the last scan
#          */
#         inline void setLoopTransform (const Eigen::Matrix4f &loop_transform)
# 
#         /** \brief Computes now poses for all point clouds by closing the loop
#          * between start and end point cloud. This will transform all given point
#          * clouds for now!
#          */
#         void compute ();
#       protected:
#         using PCLBase<PointT>::deinitCompute;
# 
#         /** \brief This method should get called before starting the actual computation. */
#         virtual bool initCompute ();
#       public:
#         EIGEN_MAKE_ALIGNED_OPERATOR_NEW
###
# 
# # exceptions.h
# # pcl/exceptions
# #  /** \class SolverDidntConvergeException
# #     * \brief An exception that is thrown when the non linear solver didn't converge
# #     */
# #   class PCL_EXPORTS SolverDidntConvergeException : public PCLException
# #   {
# #     public:
# #     
# #     SolverDidntConvergeException (const std::string& error_description,
# #                                   const std::string& file_name = "",
# #                                   const std::string& function_name = "" ,
# #                                   unsigned line_number = 0) throw ()
# #       : pcl::PCLException (error_description, file_name, function_name, line_number) { }
# #   } ;
# # 
# #  /** \class NotEnoughPointsException
# #     * \brief An exception that is thrown when the number of correspondants is not equal
# #     * to the minimum required
# #     */
# #   class PCL_EXPORTS NotEnoughPointsException : public PCLException
# #   {
# #     public:
# #     
# #     NotEnoughPointsException (const std::string& error_description,
# #                               const std::string& file_name = "",
# #                               const std::string& function_name = "" ,
# #                               unsigned line_number = 0) throw ()
# #       : pcl::PCLException (error_description, file_name, function_name, line_number) { }
# #   } ;
# # 
# ###

# ia_ransac.h
# template <typename PointSource, typename PointTarget, typename FeatureT>
# class SampleConsensusInitialAlignment : public Registration<PointSource, PointTarget>
cdef extern from "pcl/registration/ia_ransac.h" namespace "pcl" nogil:
    cdef cppclass SampleConsensusInitialAlignment[Source, Target, Feature](Registration[Source, Target]):
        SampleConsensusInitialAlignment() except +
        # public:
        # using Registration<PointSource, PointTarget>::reg_name_;
        # using Registration<PointSource, PointTarget>::input_;
        # using Registration<PointSource, PointTarget>::indices_;
        # using Registration<PointSource, PointTarget>::target_;
        # using Registration<PointSource, PointTarget>::final_transformation_;
        # using Registration<PointSource, PointTarget>::transformation_;
        # using Registration<PointSource, PointTarget>::corr_dist_threshold_;
        # using Registration<PointSource, PointTarget>::min_number_correspondences_;
        # using Registration<PointSource, PointTarget>::max_iterations_;
        # using Registration<PointSource, PointTarget>::tree_;
        # using Registration<PointSource, PointTarget>::transformation_estimation_;
        # using Registration<PointSource, PointTarget>::getClassName;
        # ctypedef typename Registration<PointSource, PointTarget>::PointCloudSource PointCloudSource;
        # ctypedef typename PointCloudSource::Ptr PointCloudSourcePtr;
        # ctypedef typename PointCloudSource::ConstPtr PointCloudSourceConstPtr;
        # ctypedef typename Registration<PointSource, PointTarget>::PointCloudTarget PointCloudTarget;
        # ctypedef PointIndices::Ptr PointIndicesPtr;
        # ctypedef PointIndices::ConstPtr PointIndicesConstPtr;
        # ctypedef pcl::PointCloud<FeatureT> FeatureCloud;
        # ctypedef typename FeatureCloud::Ptr FeatureCloudPtr;
        # ctypedef typename FeatureCloud::ConstPtr FeatureCloudConstPtr;
        # cdef cppclass ErrorFunctor
        # {
        #   public:
        #     virtual ~ErrorFunctor () {}
        #     virtual float operator () (float d) const = 0;
        # };
        # class HuberPenalty : public ErrorFunctor
        # cdef cppclass HuberPenalty(ErrorFunctor)
        #     HuberPenalty ()
        #   public:
        #     HuberPenalty (float threshold)
        #     virtual float operator () (float e) const
        #     { 
        #       if (e <= threshold_)
        #         return (0.5 * e*e); 
        #       else
        #         return (0.5 * threshold_ * (2.0 * fabs (e) - threshold_));
        #     }
        #   protected:
        #     float threshold_;
        # };
        # class TruncatedError : public ErrorFunctor
        # cdef cppclass TruncatedError(ErrorFunctor)
        #     TruncatedError ()
        #   public:
        #     virtual ~TruncatedError () {}
        #     TruncatedError (float threshold) : threshold_ (threshold) {}
        #     virtual float operator () (float e) const
        #     { 
        #       if (e <= threshold_)
        #         return (e / threshold_);
        #       else
        #         return (1.0);
        #     }
        #   protected:
        #     float threshold_;
        # };
        # typedef typename KdTreeFLANN<FeatureT>::Ptr FeatureKdTreePtr; 
        # /** \brief Provide a boost shared pointer to the source point cloud's feature descriptors
        #   * \param features the source point cloud's features
        #   */
        # void 
        # setSourceFeatures (const FeatureCloudConstPtr &features);
        # /** \brief Get a pointer to the source point cloud's features */
        # inline FeatureCloudConstPtr const 
        # getSourceFeatures () { return (input_features_); }
        # /** \brief Provide a boost shared pointer to the target point cloud's feature descriptors
        #   * \param features the target point cloud's features
        #   */
        # void 
        # setTargetFeatures (const FeatureCloudConstPtr &features);
        # /** \brief Get a pointer to the target point cloud's features */
        # inline FeatureCloudConstPtr const 
        # getTargetFeatures () { return (target_features_); }
        # /** \brief Set the minimum distances between samples
        #   * \param min_sample_distance the minimum distances between samples
        #   */
        # void 
        # setMinSampleDistance (float min_sample_distance) { min_sample_distance_ = min_sample_distance; }
        # /** \brief Get the minimum distances between samples, as set by the user */
        # float 
        # getMinSampleDistance () { return (min_sample_distance_); }
        # /** \brief Set the number of samples to use during each iteration
        #   * \param nr_samples the number of samples to use during each iteration
        #   */
        # void 
        # setNumberOfSamples (int nr_samples) { nr_samples_ = nr_samples; }
        # /** \brief Get the number of samples to use during each iteration, as set by the user */
        # int 
        # getNumberOfSamples () { return (nr_samples_); }
        # /** \brief Set the number of neighbors to use when selecting a random feature correspondence.  A higher value will
        #   * add more randomness to the feature matching.
        #   * \param k the number of neighbors to use when selecting a random feature correspondence.
        #   */
        # void
        # setCorrespondenceRandomness (int k) { k_correspondences_ = k; }
        # /** \brief Get the number of neighbors used when selecting a random feature correspondence, as set by the user */
        # int
        # getCorrespondenceRandomness () { return (k_correspondences_); }
        # /** \brief Specify the error function to minimize
        #  * \note This call is optional.  TruncatedError will be used by default
        #  * \param[in] error_functor a shared pointer to a subclass of SampleConsensusInitialAlignment::ErrorFunctor
        #  */
        # void
        # setErrorFunction (const boost::shared_ptr<ErrorFunctor> & error_functor) { error_functor_ = error_functor; }
        # /** \brief Get a shared pointer to the ErrorFunctor that is to be minimized  
        #  * \return A shared pointer to a subclass of SampleConsensusInitialAlignment::ErrorFunctor
        #  */
        # boost::shared_ptr<ErrorFunctor>
        # getErrorFunction () { return (error_functor_); }
        # protected:
        # /** \brief Choose a random index between 0 and n-1
        #   * \param n the number of possible indices to choose from
        #   */
        # inline int 
        # getRandomIndex (int n) { return (static_cast<int> (n * (rand () / (RAND_MAX + 1.0)))); };
        # /** \brief Select \a nr_samples sample points from cloud while making sure that their pairwise distances are 
        #   * greater than a user-defined minimum distance, \a min_sample_distance.
        #   * \param cloud the input point cloud
        #   * \param nr_samples the number of samples to select
        #   * \param min_sample_distance the minimum distance between any two samples
        #   * \param sample_indices the resulting sample indices
        #   */
        # void 
        # selectSamples (const PointCloudSource &cloud, int nr_samples, float min_sample_distance, 
        #                std::vector<int> &sample_indices);
        # /** \brief For each of the sample points, find a list of points in the target cloud whose features are similar to 
        #   * the sample points' features. From these, select one randomly which will be considered that sample point's 
        #   * correspondence. 
        #   * \param input_features a cloud of feature descriptors
        #   * \param sample_indices the indices of each sample point
        #   * \param corresponding_indices the resulting indices of each sample's corresponding point in the target cloud
        #   */
        # void 
        # findSimilarFeatures (const FeatureCloud &input_features, const std::vector<int> &sample_indices, 
        #                      std::vector<int> &corresponding_indices);
        # /** \brief An error metric for that computes the quality of the alignment between the given cloud and the target.
        #   * \param cloud the input cloud
        #   * \param threshold distances greater than this value are capped
        #   */
        # float 
        # computeErrorMetric (const PointCloudSource &cloud, float threshold);
        # /** \brief Rigid transformation computation method.
        #   * \param output the transformed input point cloud dataset using the rigid transformation found
        #   */
        # virtual void 
        # computeTransformation (PointCloudSource &output, const Eigen::Matrix4f& guess);
        # /** \brief The source point cloud's feature descriptors. */
        # FeatureCloudConstPtr input_features_;
        # /** \brief The target point cloud's feature descriptors. */
        # FeatureCloudConstPtr target_features_;  
        # /** \brief The number of samples to use during each iteration. */
        # int nr_samples_;
        # /** \brief The minimum distances between samples. */
        # float min_sample_distance_;
        # /** \brief The number of neighbors to use when selecting a random feature correspondence. */
        # int k_correspondences_;
        # /** \brief The KdTree used to compare feature descriptors. */
        # FeatureKdTreePtr feature_tree_;               
        # /** */
        # boost::shared_ptr<ErrorFunctor> error_functor_;
        # public:
        # EIGEN_MAKE_ALIGNED_OPERATOR_NEW
###

# ppf_registration.h
# template <typename PointSource, typename PointTarget>
# class PPFRegistration : public Registration<PointSource, PointTarget>
cdef extern from "pcl/registration/ppf_registration.h" namespace "pcl" nogil:
    cdef cppclass PPFRegistration[Source, Target](Registration[Source, Target]):
        PPFRegistration() except +
        # public:
        # cdef struct PoseWithVotes
        #   PoseWithVotes(Eigen::Affine3f &a_pose, unsigned int &a_votes)
        #   Eigen::Affine3f pose;
        #   unsigned int votes;
        # ctypedef std::vector<PoseWithVotes, Eigen::aligned_allocator<PoseWithVotes> > PoseWithVotesList;
        # /// input_ is the model cloud
        # using Registration<PointSource, PointTarget>::input_;
        # /// target_ is the scene cloud
        # using Registration<PointSource, PointTarget>::target_;
        # using Registration<PointSource, PointTarget>::converged_;
        # using Registration<PointSource, PointTarget>::final_transformation_;
        # using Registration<PointSource, PointTarget>::transformation_;
        # ctypedef pcl::PointCloud<PointSource> PointCloudSource;
        # ctypedef typename PointCloudSource::Ptr PointCloudSourcePtr;
        # ctypedef typename PointCloudSource::ConstPtr PointCloudSourceConstPtr;
        # ctypedef pcl::PointCloud<PointTarget> PointCloudTarget;
        # ctypedef typename PointCloudTarget::Ptr PointCloudTargetPtr;
        # ctypedef typename PointCloudTarget::ConstPtr PointCloudTargetConstPtr;
        
        # /** \brief Method for setting the position difference clustering parameter
        #  * \param clustering_position_diff_threshold distance threshold below which two poses are
        #  * considered close enough to be in the same cluster (for the clustering phase of the algorithm)
        #  */
        # inline void setPositionClusteringThreshold (float clustering_position_diff_threshold)
        
        # /** \brief Returns the parameter defining the position difference clustering parameter -
        #  * distance threshold below which two poses are considered close enough to be in the same cluster
        #  * (for the clustering phase of the algorithm)
        #  */
        # inline float getPositionClusteringThreshold ()
        
        # /** \brief Method for setting the rotation clustering parameter
        #  * \param clustering_rotation_diff_threshold rotation difference threshold below which two
        #  * poses are considered to be in the same cluster (for the clustering phase of the algorithm)
        #  */
        # inline void setRotationClusteringThreshold (float clustering_rotation_diff_threshold)
        
        # /** \brief Returns the parameter defining the rotation clustering threshold
        #  */
        # inline float getRotationClusteringThreshold ()
        
        # /** \brief Method for setting the scene reference point sampling rate
        #  * \param scene_reference_point_sampling_rate sampling rate for the scene reference point
        #  */
        # inline void setSceneReferencePointSamplingRate (unsigned int scene_reference_point_sampling_rate) { scene_reference_point_sampling_rate_ = scene_reference_point_sampling_rate; }
        # /** \brief Returns the parameter for the scene reference point sampling rate of the algorithm */
        # inline unsigned int getSceneReferencePointSamplingRate ()
        
        # /** \brief Function that sets the search method for the algorithm
        #  * \note Right now, the only available method is the one initially proposed by
        #  * the authors - by using a hash map with discretized feature vectors
        #  * \param search_method smart pointer to the search method to be set
        #  */
        # inline void setSearchMethod (PPFHashMapSearch::Ptr search_method)
        
        # /** \brief Getter function for the search method of the class */
        # inline PPFHashMapSearch::Ptr getSearchMethod ()
        
        # /** \brief Provide a pointer to the input target (e.g., the point cloud that we want to align the input source to)
        #  * \param cloud the input point cloud target
        #  */
        # void setInputTarget (const PointCloudTargetConstPtr &cloud);

###

# pyramid_feature_matching.h
# template <typename PointFeature>
# class PyramidFeatureHistogram : public PCLBase<PointFeature>
# cdef cppclass PyramidFeatureHistogram[PointFeature](PCLBase[PointFeature]):
cdef extern from "pcl/registration/pyramid_feature_matching.h" namespace "pcl" nogil:
    cdef cppclass PyramidFeatureHistogram[PointFeature]:
        PyramidFeatureHistogram() except +
        # public:
        # using PCLBase<PointFeature>::input_;
        # ctypedef boost::shared_ptr<PyramidFeatureHistogram<PointFeature> > Ptr;
        # ctypedef Ptr PyramidFeatureHistogramPtr;
        # ctypedef boost::shared_ptr<const pcl::PointRepresentation<PointFeature> > FeatureRepresentationConstPtr;
        # /** \brief Method for setting the input dimension range parameter.
        #  * \note Please check the PyramidHistogram class description for more details about this parameter.
        #  */
        # inline void setInputDimensionRange (std::vector<std::pair<float, float> > &dimension_range_input)
        # void setInputDimensionRange (vector[pair[float, float] ] &dimension_range_input)
        
        # /** \brief Method for retrieving the input dimension range vector */
        # inline std::vector<std::pair<float, float> > getInputDimensionRange () { return dimension_range_input_; }
        # vector[pair[float, float] ] getInputDimensionRange ()
        
        # /** \brief Method to set the target dimension range parameter.
        #  * \note Please check the PyramidHistogram class description for more details about this parameter.
        #  */
        # inline void setTargetDimensionRange (std::vector<std::pair<float, float> > &dimension_range_target)
        void setTargetDimensionRange (vector[pair[float, float] ] &dimension_range_target)
        
        # /** \brief Method for retrieving the target dimension range vector */
        # inline std::vector<std::pair<float, float> > getTargetDimensionRange () { return dimension_range_target_; }
        vector[pair[float, float] ] getTargetDimensionRange ()
        
        # /** \brief Provide a pointer to the feature representation to use to convert features to k-D vectors.
        #  * \param feature_representation the const boost shared pointer to a PointRepresentation
        #  */
        # inline void setPointRepresentation (const FeatureRepresentationConstPtr& feature_representation) { feature_representation_ = feature_representation; }
        # /** \brief Get a pointer to the feature representation used when converting features into k-D vectors. */
        # inline FeatureRepresentationConstPtr const getPointRepresentation () { return feature_representation_; }
        
        # /** \brief The central method for inserting the feature set inside the pyramid and obtaining the complete pyramid */
        # void compute ();
        
        # /** \brief Checks whether the pyramid histogram has been computed */
        # inline bool isComputed () { return is_computed_; }
        
        # /** \brief Static method for comparing two pyramid histograms that returns a floating point value between 0 and 1,
        #  * representing the similiarity between the feature sets on which the two pyramid histograms are based.
        #  * \param pyramid_a Pointer to the first pyramid to be compared (needs to be computed already).
        #  * \param pyramid_b Pointer to the second pyramid to be compared (needs to be computed already).
        #  */
        # static float comparePyramidFeatureHistograms (const PyramidFeatureHistogramPtr &pyramid_a, const PyramidFeatureHistogramPtr &pyramid_b);


###

# transformation_estimation.h
# template <typename PointSource, typename PointTarget>
# class TransformationEstimation
cdef extern from "pcl/registration/transformation_estimation.h" namespace "pcl" nogil:
    cdef cppclass TransformationEstimation[Source, Target](Registration[Source, Target]):
        TransformationEstimation() except +
        # public:
        # /** \brief Estimate a rigid rotation transformation between a source and a target point cloud.
        #   * \param[in] cloud_src the source point cloud dataset
        #   * \param[in] cloud_tgt the target point cloud dataset
        #   * \param[out] transformation_matrix the resultant transformation matrix
        #   */
        # virtual void
        # estimateRigidTransformation (
        #     const pcl::PointCloud<PointSource> &cloud_src,
        #     const pcl::PointCloud<PointTarget> &cloud_tgt,
        #     Eigen::Matrix4f &transformation_matrix) = 0;
        # /** \brief Estimate a rigid rotation transformation between a source and a target point cloud.
        #   * \param[in] cloud_src the source point cloud dataset
        #   * \param[in] indices_src the vector of indices describing the points of interest in \a cloud_src
        #   * \param[in] cloud_tgt the target point cloud dataset
        #   * \param[out] transformation_matrix the resultant transformation matrix
        #   */
        # virtual void
        # estimateRigidTransformation (
        #     const pcl::PointCloud<PointSource> &cloud_src,
        #     const std::vector<int> &indices_src,
        #     const pcl::PointCloud<PointTarget> &cloud_tgt,
        #     Eigen::Matrix4f &transformation_matrix) = 0;
        # /** \brief Estimate a rigid rotation transformation between a source and a target point cloud.
        #   * \param[in] cloud_src the source point cloud dataset
        #   * \param[in] indices_src the vector of indices describing the points of interest in \a cloud_src
        #   * \param[in] cloud_tgt the target point cloud dataset
        #   * \param[in] indices_tgt the vector of indices describing the correspondences of the interst points from \a indices_src
        #   * \param[out] transformation_matrix the resultant transformation matrix
        #   */
        # virtual void
        # estimateRigidTransformation (
        #     const pcl::PointCloud<PointSource> &cloud_src,
        #     const std::vector<int> &indices_src,
        #     const pcl::PointCloud<PointTarget> &cloud_tgt,
        #     const std::vector<int> &indices_tgt,
        #     Eigen::Matrix4f &transformation_matrix) = 0;
        # /** \brief Estimate a rigid rotation transformation between a source and a target point cloud.
        #   * \param[in] cloud_src the source point cloud dataset
        #   * \param[in] cloud_tgt the target point cloud dataset
        #   * \param[in] correspondences the vector of correspondences between source and target point cloud
        #   * \param[out] transformation_matrix the resultant transformation matrix
        #   */
        # virtual void
        # estimateRigidTransformation (
        #     const pcl::PointCloud<PointSource> &cloud_src,
        #     const pcl::PointCloud<PointTarget> &cloud_tgt,
        #     const pcl::Correspondences &correspondences,
        #     Eigen::Matrix4f &transformation_matrix) = 0;

# ctypedef shared_ptr[TransformationEstimation<PointSource, PointTarget> > Ptr;
# ctypedef shared_ptr[const TransformationEstimation<PointSource, PointTarget> > ConstPtr;

###

# transformation_estimation_lm.h

# template <typename PointSource, typename PointTarget>
# class TransformationEstimationLM : public TransformationEstimation<PointSource, PointTarget>
cdef extern from "pcl/registration/transformation_estimation_lm.h" namespace "pcl" nogil:
    cdef cppclass TransformationEstimationLM[Source, Target](TransformationEstimation[Source, Target]):
        TransformationEstimationLM() except +
        # ctypedef pcl::PointCloud<PointSource> PointCloudSource;
        # ctypedef typename PointCloudSource::Ptr PointCloudSourcePtr;
        # ctypedef typename PointCloudSource::ConstPtr PointCloudSourceConstPtr;
        # ctypedef pcl::PointCloud<PointTarget> PointCloudTarget;
        # ctypedef PointIndices::Ptr PointIndicesPtr;
        # ctypedef PointIndices::ConstPtr PointIndicesConstPtr;
        # public:
        # TransformationEstimationLM (const TransformationEstimationLM &src)
        # TransformationEstimationLM& operator = (const TransformationEstimationLM &src)
        # /** \brief Estimate a rigid rotation transformation between a source and a target point cloud using LM.
        #   * \param[in] cloud_src the source point cloud dataset
        #   * \param[in] cloud_tgt the target point cloud dataset
        #   * \param[out] transformation_matrix the resultant transformation matrix
        #   */
        # inline void estimateRigidTransformation (
        #     const pcl::PointCloud<PointSource> &cloud_src,
        #     const pcl::PointCloud<PointTarget> &cloud_tgt,
        #     Eigen::Matrix4f &transformation_matrix);
        
        # /** \brief Estimate a rigid rotation transformation between a source and a target point cloud using LM.
        #   * \param[in] cloud_src the source point cloud dataset
        #   * \param[in] indices_src the vector of indices describing the points of interest in \a cloud_src
        #   * \param[in] cloud_tgt the target point cloud dataset
        #   * \param[out] transformation_matrix the resultant transformation matrix
        #   */
        # inline void estimateRigidTransformation (
        #     const pcl::PointCloud<PointSource> &cloud_src,
        #     const std::vector<int> &indices_src,
        #     const pcl::PointCloud<PointTarget> &cloud_tgt,
        #     Eigen::Matrix4f &transformation_matrix);
        
        # /** \brief Estimate a rigid rotation transformation between a source and a target point cloud using LM.
        #   * \param[in] cloud_src the source point cloud dataset
        #   * \param[in] indices_src the vector of indices describing the points of interest in \a cloud_src
        #   * \param[in] cloud_tgt the target point cloud dataset
        #   * \param[in] indices_tgt the vector of indices describing the correspondences of the interst points from 
        #   * \a indices_src
        #   * \param[out] transformation_matrix the resultant transformation matrix
        #   */
        # inline void estimateRigidTransformation (
        #     const pcl::PointCloud<PointSource> &cloud_src,
        #     const std::vector<int> &indices_src,
        #     const pcl::PointCloud<PointTarget> &cloud_tgt,
        #     const std::vector<int> &indices_tgt,
        #     Eigen::Matrix4f &transformation_matrix);
        
        # /** \brief Estimate a rigid rotation transformation between a source and a target point cloud using LM.
        #   * \param[in] cloud_src the source point cloud dataset
        #   * \param[in] cloud_tgt the target point cloud dataset
        #   * \param[in] correspondences the vector of correspondences between source and target point cloud
        #   * \param[out] transformation_matrix the resultant transformation matrix
        #   */
        # inline void estimateRigidTransformation (
        #     const pcl::PointCloud<PointSource> &cloud_src,
        #     const pcl::PointCloud<PointTarget> &cloud_tgt,
        #     const pcl::Correspondences &correspondences,
        #     Eigen::Matrix4f &transformation_matrix);
        
        # /** \brief Set the function we use to warp points. Defaults to rigid 6D warp.
        #   * \param[in] warp_fcn a shared pointer to an object that warps points
        #   */
        # void setWarpFunction (const boost::shared_ptr<WarpPointRigid<PointSource, PointTarget> > &warp_fcn)
        
        # /** Base functor all the models that need non linear optimization must
        #   * define their own one and implement operator() (const Eigen::VectorXd& x, Eigen::VectorXd& fvec)
        #   * or operator() (const Eigen::VectorXf& x, Eigen::VectorXf& fvec) dependening on the choosen _Scalar
        #   */
        # template<typename _Scalar, int NX=Eigen::Dynamic, int NY=Eigen::Dynamic>
        # struct Functor
        # {
        #   typedef _Scalar Scalar;
        #   enum 
        #   {
        #     InputsAtCompileTime = NX,
        #     ValuesAtCompileTime = NY
        #   };
        #   typedef Eigen::Matrix<Scalar,InputsAtCompileTime,1> InputType;
        #   typedef Eigen::Matrix<Scalar,ValuesAtCompileTime,1> ValueType;
        #   typedef Eigen::Matrix<Scalar,ValuesAtCompileTime,InputsAtCompileTime> JacobianType;
        # 
        #   /** \brief Empty Construtor. */
        #   Functor () : m_data_points_ (ValuesAtCompileTime) {}
        #   /** \brief Constructor
        #     * \param[in] m_data_points number of data points to evaluate.
        #     */
        #   Functor (int m_data_points) : m_data_points_ (m_data_points) {}
        # 
        #   /** \brief Destructor. */
        #   virtual ~Functor () {}
        # 
        #   /** \brief Get the number of values. */ 
        #   int
        #   values () const { return (m_data_points_); }
        # 
        #   protected:
        #     int m_data_points_;
        # };
        # 
        # struct OptimizationFunctor : public Functor<double>
        # {
        #   using Functor<double>::values;
        # /** Functor constructor
        #     * \param[in] m_data_points the number of data points to evaluate
        #     * \param[in,out] estimator pointer to the estimator object
        #     */
        #   OptimizationFunctor (int m_data_points, TransformationEstimationLM<PointSource, PointTarget> *estimator) : 
        #     Functor<double> (m_data_points), estimator_ (estimator) {}
        #   /** Copy constructor
        #     * \param[in] the optimization functor to copy into this
        #     */
        #   inline OptimizationFunctor (const OptimizationFunctor &src) : 
        #     Functor<double> (src.m_data_points_), estimator_ ()
        #   {
        #     *this = src;
        #   }
        #   /** Copy operator
        #     * \param[in] the optimization functor to copy into this
        #     */
        #   inline OptimizationFunctor& 
        #   operator = (const OptimizationFunctor &src) 
        #   { 
        #     Functor<double>::operator=(src);
        #     estimator_ = src.estimator_; 
        #     return (*this); 
        #   }
        #   /** \brief Destructor. */
        #   virtual ~OptimizationFunctor () {}
        #   /** Fill fvec from x. For the current state vector x fill the f values
        #     * \param[in] x state vector
        #     * \param[out] fvec f values vector
        #     */
        #   int 
        #   operator () (const Eigen::VectorXd &x, Eigen::VectorXd &fvec) const;
        # 
        #   TransformationEstimationLM<PointSource, PointTarget> *estimator_;
        # };
        # struct OptimizationFunctorWithIndices : public Functor<double>
        # {
        #   using Functor<double>::values;
        #   /** Functor constructor
        #     * \param[in] m_data_points the number of data points to evaluate
        #     * \param[in,out] estimator pointer to the estimator object
        #     */
        #   OptimizationFunctorWithIndices (int m_data_points, TransformationEstimationLM *estimator) :
        #     Functor<double> (m_data_points), estimator_ (estimator) {}
        #   /** Copy constructor
        #     * \param[in] the optimization functor to copy into this
        #     */
        #   inline OptimizationFunctorWithIndices (const OptimizationFunctorWithIndices &src) : 
        #     Functor<double> (src.m_data_points_), estimator_ ()
        #   {
        #     *this = src;
        #   }
        #   /** Copy operator
        #     * \param[in] the optimization functor to copy into this
        #     */
        #   inline OptimizationFunctorWithIndices& 
        #   operator = (const OptimizationFunctorWithIndices &src) 
        #   { 
        #     Functor<double>::operator=(src);
        #     estimator_ = src.estimator_; 
        #     return (*this); 
        #   }
        # 
        #   /** \brief Destructor. */
        #   virtual ~OptimizationFunctorWithIndices () {}
        # 
        #   /** Fill fvec from x. For the current state vector x fill the f values
        #     * \param[in] x state vector
        #     * \param[out] fvec f values vector
        #     */
        #   int 
        #   operator () (const Eigen::VectorXd &x, Eigen::VectorXd &fvec) const;
        #   TransformationEstimationLM<PointSource, PointTarget> *estimator_;
        # };
        # public:
        # EIGEN_MAKE_ALIGNED_OPERATOR_NEW


###

# transformation_estimation_point_to_plane.h
# template <typename PointSource, typename PointTarget>
# class TransformationEstimationPointToPlane : public TransformationEstimationLM<PointSource, PointTarget>
cdef extern from "pcl/registration/transformation_estimation_point_to_plane.h" namespace "pcl" nogil:
    cdef cppclass TransformationEstimationPointToPlane[Source, Target](TransformationEstimationLM[Source, Target]):
        TransformationEstimationPointToPlane ()
        # public:
        # ctypedef boost::shared_ptr<TransformationEstimationPointToPlane<PointSource, PointTarget> > Ptr;
        # ctypedef pcl::PointCloud<PointSource> PointCloudSource;
        # ctypedef typename PointCloudSource::Ptr PointCloudSourcePtr;
        # ctypedef typename PointCloudSource::ConstPtr PointCloudSourceConstPtr;
        # ctypedef pcl::PointCloud<PointTarget> PointCloudTarget;
        # ctypedef PointIndices::Ptr PointIndicesPtr;
        # ctypedef PointIndices::ConstPtr PointIndicesConstPtr;
###

# transformation_estimation_point_to_plane_lls.h
# template <typename PointSource, typename PointTarget>
# class TransformationEstimationPointToPlaneLLS : public TransformationEstimation<PointSource, PointTarget>

cdef extern from "pcl/registration/transformation_estimation_point_to_plane_lls.h" namespace "pcl" nogil:
    cdef cppclass TransformationEstimationPointToPlaneLLS[Source, Target](TransformationEstimation[Source, Target]):
        TransformationEstimationPointToPlaneLLS ()
        # inline void estimateRigidTransformation (
        #     const pcl::PointCloud<PointSource> &cloud_src,
        #     const pcl::PointCloud<PointTarget> &cloud_tgt,
        #     Eigen::Matrix4f &transformation_matrix);
        
        # /** \brief Estimate a rigid rotation transformation between a source and a target point cloud using SVD.
        #   * \param[in] cloud_src the source point cloud dataset
        #   * \param[in] indices_src the vector of indices describing the points of interest in \a cloud_src
        #   * \param[in] cloud_tgt the target point cloud dataset
        #   * \param[out] transformation_matrix the resultant transformation matrix
        #   */
        # inline void estimateRigidTransformation (
        #     const pcl::PointCloud<PointSource> &cloud_src,
        #     const std::vector<int> &indices_src,
        #     const pcl::PointCloud<PointTarget> &cloud_tgt,
        #     Eigen::Matrix4f &transformation_matrix);
        
        # /** \brief Estimate a rigid rotation transformation between a source and a target point cloud using SVD.
        #   * \param[in] cloud_src the source point cloud dataset
        #   * \param[in] indices_src the vector of indices describing the points of interest in \a cloud_src
        #   * \param[in] cloud_tgt the target point cloud dataset
        #   * \param[in] indices_tgt the vector of indices describing the correspondences of the interst points from \a indices_src
        #   * \param[out] transformation_matrix the resultant transformation matrix
        #   */
        # inline void estimateRigidTransformation (
        #     const pcl::PointCloud<PointSource> &cloud_src,
        #     const std::vector<int> &indices_src,
        #     const pcl::PointCloud<PointTarget> &cloud_tgt,
        #     const std::vector<int> &indices_tgt,
        #     Eigen::Matrix4f &transformation_matrix);
        
        # /** \brief Estimate a rigid rotation transformation between a source and a target point cloud using SVD.
        #   * \param[in] cloud_src the source point cloud dataset
        #   * \param[in] cloud_tgt the target point cloud dataset
        #   * \param[in] correspondences the vector of correspondences between source and target point cloud
        #   * \param[out] transformation_matrix the resultant transformation matrix
        #   */
        # inline void estimateRigidTransformation (
        #     const pcl::PointCloud<PointSource> &cloud_src,
        #     const pcl::PointCloud<PointTarget> &cloud_tgt,
        #     const pcl::Correspondences &correspondences,
        #     Eigen::Matrix4f &transformation_matrix);

###

# transformation_estimation_svd.h
# template <typename PointSource, typename PointTarget>
# class TransformationEstimationSVD : public TransformationEstimation<PointSource, PointTarget>
cdef extern from "pcl/registration/transformation_estimation_svd.h" namespace "pcl" nogil:
    cdef cppclass TransformationEstimationSVD[Source, Target](TransformationEstimation[Source, Target]):
        TransformationEstimationSVD ()
        # /** \brief Estimate a rigid rotation transformation between a source and a target point cloud using SVD.
        #   * \param[in] cloud_src the source point cloud dataset
        #   * \param[in] cloud_tgt the target point cloud dataset
        #   * \param[out] transformation_matrix the resultant transformation matrix
        #   */
        # inline void estimateRigidTransformation (
        #     const pcl::PointCloud<PointSource> &cloud_src,
        #     const pcl::PointCloud<PointTarget> &cloud_tgt,
        #     Eigen::Matrix4f &transformation_matrix);
        
        # /** \brief Estimate a rigid rotation transformation between a source and a target point cloud using SVD.
        #   * \param[in] cloud_src the source point cloud dataset
        #   * \param[in] indices_src the vector of indices describing the points of interest in \a cloud_src
        #   * \param[in] cloud_tgt the target point cloud dataset
        #   * \param[out] transformation_matrix the resultant transformation matrix
        #   */
        # inline void estimateRigidTransformation (
        #     const pcl::PointCloud<PointSource> &cloud_src,
        #     const std::vector<int> &indices_src,
        #     const pcl::PointCloud<PointTarget> &cloud_tgt,
        #     Eigen::Matrix4f &transformation_matrix);
        
        # /** \brief Estimate a rigid rotation transformation between a source and a target point cloud using SVD.
        #   * \param[in] cloud_src the source point cloud dataset
        #   * \param[in] indices_src the vector of indices describing the points of interest in \a cloud_src
        #   * \param[in] cloud_tgt the target point cloud dataset
        #   * \param[in] indices_tgt the vector of indices describing the correspondences of the interst points from \a indices_src
        #   * \param[out] transformation_matrix the resultant transformation matrix
        #   */
        # inline void estimateRigidTransformation (
        #     const pcl::PointCloud<PointSource> &cloud_src,
        #     const std::vector<int> &indices_src,
        #     const pcl::PointCloud<PointTarget> &cloud_tgt,
        #     const std::vector<int> &indices_tgt,
        #     Eigen::Matrix4f &transformation_matrix);
        
        # /** \brief Estimate a rigid rotation transformation between a source and a target point cloud using SVD.
        #   * \param[in] cloud_src the source point cloud dataset
        #   * \param[in] cloud_tgt the target point cloud dataset
        #   * \param[in] correspondences the vector of correspondences between source and target point cloud
        #   * \param[out] transformation_matrix the resultant transformation matrix
        #   */
        # void estimateRigidTransformation (
        #     const pcl::PointCloud<PointSource> &cloud_src,
        #     const pcl::PointCloud<PointTarget> &cloud_tgt,
        #     const pcl::Correspondences &correspondences,
        #     Eigen::Matrix4f &transformation_matrix);


###

# transformation_validation.h
# template <typename PointSource, typename PointTarget>
# class TransformationValidation
cdef extern from "pcl/registration/transformation_validation.h" namespace "pcl" nogil:
    cdef cppclass TransformationValidation[Source, Target]:
        TransformationValidation ()
        # public:
        # ctypedef pcl::PointCloud<PointSource> PointCloudSource;
        # ctypedef typename PointCloudSource::Ptr PointCloudSourcePtr;
        # ctypedef typename PointCloudSource::ConstPtr PointCloudSourceConstPtr;
        # ctypedef pcl::PointCloud<PointTarget> PointCloudTarget;
        # ctypedef typename PointCloudTarget::Ptr PointCloudTargetPtr;
        # ctypedef typename PointCloudTarget::ConstPtr PointCloudTargetConstPtr;
        # /** \brief Validate the given transformation with respect to the input cloud data, and return a score.
        #   * \param[in] cloud_src the source point cloud dataset
        #   * \param[in] cloud_tgt the target point cloud dataset
        #   * \param[out] transformation_matrix the resultant transformation matrix
        #   * \return the score or confidence measure for the given
        #   * transformation_matrix with respect to the input data
        #   */
        # virtual double validateTransformation (
        #    const cpp.PointCloudPtr_t &cloud_src,
        #    const cpp.PointCloudPtr_t &cloud_tgt,
        #    const Matrix4f &transformation_matrix) = 0;
        # 
        # ctypedef shared_ptr[TransformationValidation[PointSource, PointTarget] ] Ptr;
        # ctypedef shared_ptr[const TransformationValidation[PointSource, PointTarget] ] ConstPtr;


###

# transformation_validation_euclidean.h
# template <typename PointSource, typename PointTarget>
# class TransformationValidationEuclidean
cdef extern from "pcl/registration/transformation_validation_euclidean.h" namespace "pcl" nogil:
    cdef cppclass TransformationValidationEuclidean[Source, Target]:
        TransformationValidationEuclidean ()
        # public:
        # ctypedef boost::shared_ptr<TransformationValidation<PointSource, PointTarget> > Ptr;
        # ctypedef boost::shared_ptr<const TransformationValidation<PointSource, PointTarget> > ConstPtr;
        # ctypedef typename pcl::KdTree<PointTarget> KdTree;
        # ctypedef typename pcl::KdTree<PointTarget>::Ptr KdTreePtr;
        # ctypedef typename KdTree::PointRepresentationConstPtr PointRepresentationConstPtr;
        # ctypedef typename TransformationValidation<PointSource, PointTarget>::PointCloudSourceConstPtr PointCloudSourceConstPtr;
        # ctypedef typename TransformationValidation<PointSource, PointTarget>::PointCloudTargetConstPtr PointCloudTargetConstPtr;
        inline void setMaxRange (double max_range)
        double validateTransformation (
            const cpp.PointCloudPtr_t &cloud_src,
            const cpp.PointCloudPtr_t &cloud_tgt,
            const Matrix4f &transformation_matrix)


###

# transforms.h
# common/transforms.h
###

# warp_point_rigid_3d.h
# template <class PointSourceT, class PointTargetT>
# class WarpPointRigid3D : public WarpPointRigid<PointSourceT, PointTargetT>
cdef extern from "pcl/registration/warp_point_rigid_3d.h" namespace "pcl" nogil:
    cdef cppclass WarpPointRigid3D[Source, Target](WarpPointRigid[Source, Target]):
        WarpPointRigid3D ()
        # public:
        # virtual void setParam (const Eigen::VectorXf & p)


###

# warp_point_rigid_6d.h
# template <class PointSourceT, class PointTargetT>
# class WarpPointRigid6D : public WarpPointRigid<PointSourceT, PointTargetT>
cdef extern from "pcl/registration/warp_point_rigid_6d.h" namespace "pcl" nogil:
    cdef cppclass WarpPointRigid6D[Source, Target](WarpPointRigid[Source, Target]):
        WarpPointRigid6D ()
        # public:
        # virtual void setParam (const Eigen::VectorXf & p)


###

###############################################################################
# Enum
###############################################################################

# bfgs.h
# template<typename _Scalar, int NX=Eigen::Dynamic>
# struct BFGSDummyFunctor
# cdef extern from "pcl/registration/bfgs.h" nogil:
#     # cdef struct BFGSDummyFunctor[_Scalar, NX]:
#         # enum { InputsAtCompileTime = NX };
# 
# cdef extern from "pcl/registration/bfgs.h" namespace "pcl":
#     ctypedef enum "pcl::BFGSDummyFunctor":
#             INPUTSATCOMPILETIME "pcl::BFGSDummyFunctor::InputsAtCompileTime"
# 
###

# bfgs.h
# namespace BFGSSpace {
#   enum Status {
#     NegativeGradientEpsilon = -3,
#     NotStarted = -2,
#     Running = -1,
#     Success = 0,
#     NoProgress = 1
#   };
# }
cdef extern from "pcl/registration/bfgs.h" namespace "pcl":
    cdef enum Status:
        NegativeGradientEpsilon = -3
        NotStarted = -2
        Running = -1
        Success = 0
        NoProgress = 1

# /** Base functor all the models that need non linear optimization must
#   * define their own one and implement operator() (const Eigen::VectorXd& x, Eigen::VectorXd& fvec)
#   * or operator() (const Eigen::VectorXf& x, Eigen::VectorXf& fvec) dependening on the choosen _Scalar
#   */
# template<typename _Scalar, int NX=Eigen::Dynamic, int NY=Eigen::Dynamic>
# struct Functor
# {
#   typedef _Scalar Scalar;
#   enum 
#   {
#     InputsAtCompileTime = NX,
#     ValuesAtCompileTime = NY
#   };
#   typedef Eigen::Matrix<Scalar,InputsAtCompileTime,1> InputType;
#   typedef Eigen::Matrix<Scalar,ValuesAtCompileTime,1> ValueType;
#   typedef Eigen::Matrix<Scalar,ValuesAtCompileTime,InputsAtCompileTime> JacobianType;
# 
#   /** \brief Empty Construtor. */
#   Functor () : m_data_points_ (ValuesAtCompileTime) {}
#   /** \brief Constructor
#     * \param[in] m_data_points number of data points to evaluate.
#     */
#   Functor (int m_data_points) : m_data_points_ (m_data_points) {}
# 
#   /** \brief Destructor. */
#   virtual ~Functor () {}
# 
#   /** \brief Get the number of values. */ 
#   int
#   values () const { return (m_data_points_); }
# 
#   protected:
#     int m_data_points_;
# };

#####

###############################################################################
# Activation
###############################################################################