1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298
|
# -*- coding: utf-8 -*-
from libcpp.vector cimport vector
from libcpp.string cimport string
from libcpp cimport bool
# import
cimport pcl_defs as cpp
from libcpp.memory cimport shared_ptr
###############################################################################
# Types
###############################################################################
### base class ###
# sac_model.h
# namespace pcl
# template<class T> class ProgressiveSampleConsensus;
# sac_model.h
# namespace pcl
# template <typename PointT>
# class SampleConsensusModel
cdef extern from "pcl/sample_consensus/sac_model.h" namespace "pcl":
cdef cppclass SampleConsensusModel[T]:
SampleConsensusModel()
# SampleConsensusModel (bool random = false)
# SampleConsensusModel (const PointCloudConstPtr &cloud, bool random = false)
# SampleConsensusModel (const PointCloudConstPtr &cloud, const std::vector<int> &indices, bool random = false)
# public:
# typedef typename pcl::PointCloud<PointT> PointCloud;
# typedef typename pcl::PointCloud<PointT>::ConstPtr PointCloudConstPtr;
# typedef typename pcl::PointCloud<PointT>::Ptr PointCloudPtr;
# typedef typename pcl::search::Search<PointT>::Ptr SearchPtr;
# typedef boost::shared_ptr<SampleConsensusModel> Ptr;
# typedef boost::shared_ptr<const SampleConsensusModel> ConstPtr;
# public:
# /** \brief Get a set of random data samples and return them as point
# * indices. Pure virtual.
# * \param[out] iterations the internal number of iterations used by SAC methods
# * \param[out] samples the resultant model samples
# */
# void getSamples (int &iterations, std::vector<int> &samples)
void getSamples (int &iterations, vector[int] &samples)
# /** \brief Check whether the given index samples can form a valid model,
# * compute the model coefficients from these samples and store them
# * in model_coefficients. Pure virtual.
# * \param[in] samples the point indices found as possible good candidates
# * for creating a valid model
# * \param[out] model_coefficients the computed model coefficients
# */
# virtual bool computeModelCoefficients (const std::vector<int> &samples, Eigen::VectorXf &model_coefficients) = 0;
# /** \brief Recompute the model coefficients using the given inlier set
# * and return them to the user. Pure virtual.
# * @note: these are the coefficients of the model after refinement
# * (e.g., after a least-squares optimization)
# * \param[in] inliers the data inliers supporting the model
# * \param[in] model_coefficients the initial guess for the model coefficients
# * \param[out] optimized_coefficients the resultant recomputed coefficients after non-linear optimization
# */
# virtual void optimizeModelCoefficients (const std::vector<int> &inliers, const Eigen::VectorXf &model_coefficients, Eigen::VectorXf &optimized_coefficients) = 0;
# /** \brief Compute all distances from the cloud data to a given model. Pure virtual.
# * \param[in] model_coefficients the coefficients of a model that we need to compute distances to
# * \param[out] distances the resultant estimated distances
# virtual void getDistancesToModel (const Eigen::VectorXf &model_coefficients, std::vector<double> &distances) = 0;
# /** \brief Select all the points which respect the given model
# * coefficients as inliers. Pure virtual.
# * \param[in] model_coefficients the coefficients of a model that we need to compute distances to
# * \param[in] threshold a maximum admissible distance threshold for determining the inliers from
# * the outliers
# * \param[out] inliers the resultant model inliers
# virtual void selectWithinDistance (const Eigen::VectorXf &model_coefficients, const double threshold, std::vector<int> &inliers) = 0;
# /** \brief Count all the points which respect the given model
# * coefficients as inliers. Pure virtual.
# * \param[in] model_coefficients the coefficients of a model that we need to
# * compute distances to
# * \param[in] threshold a maximum admissible distance threshold for
# * determining the inliers from the outliers
# * \return the resultant number of inliers
# */
# virtual int countWithinDistance (const Eigen::VectorXf &model_coefficients, const double threshold) = 0;
# /** \brief Create a new point cloud with inliers projected onto the model. Pure virtual.
# * \param[in] inliers the data inliers that we want to project on the model
# * \param[in] model_coefficients the coefficients of a model
# * \param[out] projected_points the resultant projected points
# * \param[in] copy_data_fields set to true (default) if we want the \a
# * projected_points cloud to be an exact copy of the input dataset minus
# * the point projections on the plane model
# virtual void projectPoints (const std::vector<int> &inliers,
# const Eigen::VectorXf &model_coefficients,
# PointCloud &projected_points,
# bool copy_data_fields = true) = 0;
# /** \brief Verify whether a subset of indices verifies a given set of
# * model coefficients. Pure virtual.
# * \param[in] indices the data indices that need to be tested against the model
# * \param[in] model_coefficients the set of model coefficients
# * \param[in] threshold a maximum admissible distance threshold for
# * determining the inliers from the outliers
# virtual bool doSamplesVerifyModel (const std::set<int> &indices,
# const Eigen::VectorXf &model_coefficients,
# const double threshold) = 0;
# /** \brief Provide a pointer to the input dataset
# * \param[in] cloud the const boost shared pointer to a PointCloud message
# inline virtual void setInputCloud (const PointCloudConstPtr &cloud)
# /** \brief Get a pointer to the input point cloud dataset. */
# inline PointCloudConstPtr getInputCloud () const
# /** \brief Provide a pointer to the vector of indices that represents the input data.
# * \param[in] indices a pointer to the vector of indices that represents the input data.
# inline void setIndices (const boost::shared_ptr <std::vector<int> > &indices)
# /** \brief Provide the vector of indices that represents the input data.
# * \param[out] indices the vector of indices that represents the input data.
# inline void setIndices (const std::vector<int> &indices)
# /** \brief Get a pointer to the vector of indices used. */
# inline boost::shared_ptr <std::vector<int> > getIndices () const
# /** \brief Return an unique id for each type of model employed. */
# virtual SacModel getModelType () const = 0;
# /** \brief Return the size of a sample from which a model is computed */
# inline unsigned int getSampleSize () const
# /** \brief Set the minimum and maximum allowable radius limits for the
# * model (applicable to models that estimate a radius)
# * \param[in] min_radius the minimum radius model
# * \param[in] max_radius the maximum radius model
# * \todo change this to set limits on the entire model
# inline void setRadiusLimits (const double &min_radius, const double &max_radius)
# /** \brief Get the minimum and maximum allowable radius limits for the
# * model as set by the user.
# * \param[out] min_radius the resultant minimum radius model
# * \param[out] max_radius the resultant maximum radius model
# inline void getRadiusLimits (double &min_radius, double &max_radius)
# /** \brief Set the maximum distance allowed when drawing random samples
# * \param[in] radius the maximum distance (L2 norm)
# inline void setSamplesMaxDist (const double &radius, SearchPtr search)
# /** \brief Get maximum distance allowed when drawing random samples
# * \param[out] radius the maximum distance (L2 norm)
# inline void getSamplesMaxDist (double &radius)
ctypedef SampleConsensusModel[cpp.PointXYZ] SampleConsensusModel_t
ctypedef SampleConsensusModel[cpp.PointXYZI] SampleConsensusModel_PointXYZI_t
ctypedef SampleConsensusModel[cpp.PointXYZRGB] SampleConsensusModel_PointXYZRGB_t
ctypedef SampleConsensusModel[cpp.PointXYZRGBA] SampleConsensusModel_PointXYZRGBA_t
ctypedef shared_ptr[SampleConsensusModel[cpp.PointXYZ]] SampleConsensusModelPtr_t
ctypedef shared_ptr[SampleConsensusModel[cpp.PointXYZI]] SampleConsensusModel_PointXYZI_Ptr_t
ctypedef shared_ptr[SampleConsensusModel[cpp.PointXYZRGB]] SampleConsensusModel_PointXYZRGB_Ptr_t
ctypedef shared_ptr[SampleConsensusModel[cpp.PointXYZRGBA]] SampleConsensusModel_PointXYZRGBA_Ptr_t
ctypedef shared_ptr[const SampleConsensusModel[cpp.PointXYZ]] SampleConsensusModelConstPtr_t
ctypedef shared_ptr[const SampleConsensusModel[cpp.PointXYZI]] SampleConsensusModel_PointXYZI_ConstPtr_t
ctypedef shared_ptr[const SampleConsensusModel[cpp.PointXYZRGB]] SampleConsensusModel_PointXYZRGB_ConstPtr_t
ctypedef shared_ptr[const SampleConsensusModel[cpp.PointXYZRGBA]] SampleConsensusModel_PointXYZRGBA_ConstPtr_t
###
# sac_model.h
# template <typename PointT, typename PointNT>
# class SampleConsensusModelFromNormals
cdef extern from "pcl/sample_consensus/sac_model.h" namespace "pcl":
cdef cppclass SampleConsensusModelFromNormals[T, NT]:
SampleConsensusModelFromNormals ()
# public:
# typedef typename pcl::PointCloud<PointNT>::ConstPtr PointCloudNConstPtr;
# typedef typename pcl::PointCloud<PointNT>::Ptr PointCloudNPtr;
# typedef boost::shared_ptr<SampleConsensusModelFromNormals> Ptr;
# typedef boost::shared_ptr<const SampleConsensusModelFromNormals> ConstPtr;
# /** \brief Set the normal angular distance weight.
# * \param[in] w the relative weight (between 0 and 1) to give to the angular
# * distance (0 to pi/2) between point normals and the plane normal.
# * (The Euclidean distance will have weight 1-w.)
# */
# inline void setNormalDistanceWeight (const double w)
void setNormalDistanceWeight (const double w)
# /** \brief Get the normal angular distance weight. */
# inline double getNormalDistanceWeight ()
double getNormalDistanceWeight ()
# /** \brief Provide a pointer to the input dataset that contains the point
# * normals of the XYZ dataset.
# * \param[in] normals the const boost shared pointer to a PointCloud message
# inline void setInputNormals (const PointCloudNConstPtr &normals)
void setInputNormals (shared_ptr[cpp.PointCloud[NT]] normals)
# /** \brief Get a pointer to the normals of the input XYZ point cloud dataset. */
# inline PointCloudNConstPtr getInputNormals ()
shared_ptr[cpp.PointCloud[NT]] getInputNormals ()
# ctypedef SampleConsensusModelFromNormals[cpp.PointXYZ, cpp.Normal] SampleConsensusModelFromNormals_t
# ctypedef SampleConsensusModelFromNormals[cpp.PointXYZI, cpp.Normal] SampleConsensusModelFromNormals_PointXYZI_t
# ctypedef SampleConsensusModelFromNormals[cpp.PointXYZRGB, cpp.Normal] SampleConsensusModelFromNormals_PointXYZRGB_t
# ctypedef SampleConsensusModelFromNormals[cpp.PointXYZRGBA, cpp.Normal] SampleConsensusModelFromNormals_PointXYZRGBA_t
ctypedef shared_ptr[SampleConsensusModelFromNormals[cpp.PointXYZ, cpp.Normal]] SampleConsensusModelFromNormalsPtr_t
ctypedef shared_ptr[SampleConsensusModelFromNormals[cpp.PointXYZI, cpp.Normal]] SampleConsensusModelFromNormals_PointXYZI_Ptr_t
ctypedef shared_ptr[SampleConsensusModelFromNormals[cpp.PointXYZRGB, cpp.Normal]] SampleConsensusModelFromNormals_PointXYZRGB_Ptr_t
ctypedef shared_ptr[SampleConsensusModelFromNormals[cpp.PointXYZRGBA, cpp.Normal]] SampleConsensusModelFromNormals_PointXYZRGBA_Ptr_t
ctypedef shared_ptr[const SampleConsensusModelFromNormals[cpp.PointXYZ, cpp.Normal]] SampleConsensusModelFromNormalsConstPtr_t
ctypedef shared_ptr[const SampleConsensusModelFromNormals[cpp.PointXYZI, cpp.Normal]] SampleConsensusModelFromNormals_PointXYZI_ConstPtr_t
ctypedef shared_ptr[const SampleConsensusModelFromNormals[cpp.PointXYZRGB, cpp.Normal]] SampleConsensusModelFromNormals_PointXYZRGB_ConstPtr_t
ctypedef shared_ptr[const SampleConsensusModelFromNormals[cpp.PointXYZRGBA, cpp.Normal]] SampleConsensusModelFromNormals_PointXYZRGBA_ConstPtr_t
###
# sac.h
# namespace pcl
# template <typename T>
# class SampleConsensus
cdef extern from "pcl/sample_consensus/sac.h" namespace "pcl":
cdef cppclass SampleConsensus[T]:
# SampleConsensus (const SampleConsensusModelPtr &model, bool random = false)
# SampleConsensus (const SampleConsensusModelPtr &model, double threshold, bool random = false) :
# \brief Constructor for base SAC.
# \param[in] model a Sample Consensus model
# \param[in] random if true set the random seed to the current time, else set to 12345 (default: false)
SampleConsensus (const SampleConsensusModelPtr_t &model)
SampleConsensus (const SampleConsensusModel_PointXYZI_Ptr_t &model)
SampleConsensus (const SampleConsensusModel_PointXYZRGB_Ptr_t &model)
SampleConsensus (const SampleConsensusModel_PointXYZRGBA_Ptr_t &model)
# public:
# typedef boost::shared_ptr<SampleConsensus> Ptr;
# typedef boost::shared_ptr<const SampleConsensus> ConstPtr;
# \brief Set the distance to model threshold.
# \param[in] threshold distance to model threshold
# inline void setDistanceThreshold (double threshold)
void setDistanceThreshold (double threshold)
# /** \brief Get the distance to model threshold, as set by the user. */
# inline double getDistanceThreshold ()
double getDistanceThreshold ()
# /** \brief Set the maximum number of iterations.
# * \param[in] max_iterations maximum number of iterations
# inline void setMaxIterations (int max_iterations)
void setMaxIterations (int max_iterations)
# /** \brief Get the maximum number of iterations, as set by the user. */
# inline int getMaxIterations ()
int getMaxIterations ()
# /** \brief Set the desired probability of choosing at least one sample free from outliers.
# * \param[in] probability the desired probability of choosing at least one sample free from outliers
# * \note internally, the probability is set to 99% (0.99) by default.
# inline void setProbability (double probability)
void setProbability (double probability)
# /** \brief Obtain the probability of choosing at least one sample free from outliers, as set by the user. */
# inline double getProbability ()
double getProbability ()
# /** \brief Compute the actual model. Pure virtual. */
# virtual bool computeModel (int debug_verbosity_level = 0) = 0;
# /** \brief Get a set of randomly selected indices.
# * \param[in] indices the input indices vector
# * \param[in] nr_samples the desired number of point indices to randomly select
# * \param[out] indices_subset the resultant output set of randomly selected indices
# inline void getRandomSamples (const boost::shared_ptr <std::vector<int> > &indices, size_t nr_samples, std::set<int> &indices_subset)
# void getRandomSamples (shared_ptr [vector[int]] &indices, size_t nr_samples, set[int] &indices_subset)
# /** \brief Return the best model found so far.
# * \param[out] model the resultant model
# inline void getModel (std::vector<int> &model)
void getModel (vector[int] &model)
# /** \brief Return the best set of inliers found so far for this model.
# * \param[out] inliers the resultant set of inliers
# inline void getInliers (std::vector<int> &inliers)
void getInliers (vector[int] &inliers)
# /** \brief Return the model coefficients of the best model found so far.
# * \param[out] model_coefficients the resultant model coefficients
# inline void getModelCoefficients (Eigen::VectorXf &model_coefficients)
ctypedef SampleConsensus[cpp.PointXYZ] SampleConsensus_t
ctypedef SampleConsensus[cpp.PointXYZI] SampleConsensus_PointXYZI_t
ctypedef SampleConsensus[cpp.PointXYZRGB] SampleConsensus_PointXYZRGB_t
ctypedef SampleConsensus[cpp.PointXYZRGBA] SampleConsensus_PointXYZRGBA_t
ctypedef shared_ptr[SampleConsensus[cpp.PointXYZ]] SampleConsensusPtr_t
ctypedef shared_ptr[SampleConsensus[cpp.PointXYZI]] SampleConsensus_PointXYZI_Ptr_t
ctypedef shared_ptr[SampleConsensus[cpp.PointXYZRGB]] SampleConsensus_PointXYZRGB_Ptr_t
ctypedef shared_ptr[SampleConsensus[cpp.PointXYZRGBA]] SampleConsensus_PointXYZRGBA_Ptr_t
ctypedef shared_ptr[const SampleConsensus[cpp.PointXYZ]] SampleConsensusConstPtr_t
ctypedef shared_ptr[const SampleConsensus[cpp.PointXYZI]] SampleConsensus_PointXYZI_ConstPtr_t
ctypedef shared_ptr[const SampleConsensus[cpp.PointXYZRGB]] SampleConsensus_PointXYZRGB_ConstPtr_t
ctypedef shared_ptr[const SampleConsensus[cpp.PointXYZRGBA]] SampleConsensus_PointXYZRGBA_ConstPtr_t
###
# template<typename _Scalar, int NX=Eigen::Dynamic, int NY=Eigen::Dynamic>
# struct Functor
cdef extern from "pcl/sample_consensus/rransac.h" namespace "pcl":
cdef cppclass Functor[_Scalar]:
Functor ()
# Functor (int m_data_points)
# typedef _Scalar Scalar;
# enum
# {
# InputsAtCompileTime = NX,
# ValuesAtCompileTime = NY
# };
# typedef Eigen::Matrix<Scalar,ValuesAtCompileTime,1> ValueType;
# typedef Eigen::Matrix<Scalar,InputsAtCompileTime,1> InputType;
# typedef Eigen::Matrix<Scalar,ValuesAtCompileTime,InputsAtCompileTime> JacobianType;
# /** \brief Get the number of values. */
# int values () const
###
# sac_model_plane.h
# namespace pcl
# /** \brief Project a point on a planar model given by a set of normalized coefficients
# * \param[in] p the input point to project
# * \param[in] model_coefficients the coefficients of the plane (a, b, c, d) that satisfy ax+by+cz+d=0
# * \param[out] q the resultant projected point
# */
# template <typename Point> inline void
# projectPoint (const Point &p, const Eigen::Vector4f &model_coefficients, Point &q)
# {
# // Calculate the distance from the point to the plane
# Eigen::Vector4f pp (p.x, p.y, p.z, 1);
# // use normalized coefficients to calculate the scalar projection
# float distance_to_plane = pp.dot(model_coefficients);
#
# //TODO: Why doesn't getVector4Map work here?
# //Eigen::Vector4f q_e = q.getVector4fMap ();
# //q_e = pp - model_coefficients * distance_to_plane;
#
# Eigen::Vector4f q_e = pp - distance_to_plane * model_coefficients;
# q.x = q_e[0];
# q.y = q_e[1];
# q.z = q_e[2];
# }
#
# sac_model_plane.h
# namespace pcl
# /** \brief Get the distance from a point to a plane (signed) defined by ax+by+cz+d=0
# * \param p a point
# * \param a the normalized <i>a</i> coefficient of a plane
# * \param b the normalized <i>b</i> coefficient of a plane
# * \param c the normalized <i>c</i> coefficient of a plane
# * \param d the normalized <i>d</i> coefficient of a plane
# * \ingroup sample_consensus
# */
# template <typename Point> inline double
# pointToPlaneDistanceSigned (const Point &p, double a, double b, double c, double d)
#
# sac_model_plane.h
# namespace pcl
# /** \brief Get the distance from a point to a plane (signed) defined by ax+by+cz+d=0
# * \param p a point
# * \param plane_coefficients the normalized coefficients (a, b, c, d) of a plane
# * \ingroup sample_consensus
# */
# template <typename Point> inline double
# pointToPlaneDistanceSigned (const Point &p, const Eigen::Vector4f &plane_coefficients)
#
# sac_model_plane.h
# namespace pcl
# /** \brief Get the distance from a point to a plane (unsigned) defined by ax+by+cz+d=0
# * \param p a point
# * \param a the normalized <i>a</i> coefficient of a plane
# * \param b the normalized <i>b</i> coefficient of a plane
# * \param c the normalized <i>c</i> coefficient of a plane
# * \param d the normalized <i>d</i> coefficient of a plane
# * \ingroup sample_consensus
# */
# template <typename Point> inline double
# pointToPlaneDistance (const Point &p, double a, double b, double c, double d)
#
# sac_model_plane.h
# namespace pcl
# /** \brief Get the distance from a point to a plane (unsigned) defined by ax+by+cz+d=0
# * \param p a point
# * \param plane_coefficients the normalized coefficients (a, b, c, d) of a plane
# * \ingroup sample_consensus
# */
# template <typename Point> inline double
# pointToPlaneDistance (const Point &p, const Eigen::Vector4f &plane_coefficients)
###
# sac_model_plane.h
# namespace pcl
# /** \brief SampleConsensusModelPlane defines a model for 3D plane segmentation.
# * The model coefficients are defined as:
# * - \b a : the X coordinate of the plane's normal (normalized)
# * - \b b : the Y coordinate of the plane's normal (normalized)
# * - \b c : the Z coordinate of the plane's normal (normalized)
# * - \b d : the fourth <a href="http://mathworld.wolfram.com/HessianNormalForm.html">Hessian component</a> of the plane's equation
# * \author Radu B. Rusu
# * \ingroup sample_consensus
# */
# template <typename PointT>
# class SampleConsensusModelPlane : public SampleConsensusModel<PointT>
cdef extern from "pcl/sample_consensus/sac_model_plane.h" namespace "pcl":
cdef cppclass SampleConsensusModelPlane[PointT](SampleConsensusModel[PointT]):
SampleConsensusModelPlane()
SampleConsensusModelPlane(shared_ptr[cpp.PointCloud[PointT]] cloud)
# public:
# using SampleConsensusModel<PointT>::input_;
# using SampleConsensusModel<PointT>::indices_;
# typedef typename SampleConsensusModel<PointT>::PointCloud PointCloud;
# typedef typename SampleConsensusModel<PointT>::PointCloudPtr PointCloudPtr;
# typedef typename SampleConsensusModel<PointT>::PointCloudConstPtr PointCloudConstPtr;
# typedef boost::shared_ptr<SampleConsensusModelPlane> Ptr;
#
# /** \brief Constructor for base SampleConsensusModelPlane.
# * \param[in] cloud the input point cloud dataset
# */
# SampleConsensusModelPlane (const PointCloudConstPtr &cloud) : SampleConsensusModel<PointT> (cloud) {};
#
# /** \brief Constructor for base SampleConsensusModelPlane.
# * \param[in] cloud the input point cloud dataset
# * \param[in] indices a vector of point indices to be used from \a cloud
# */
# SampleConsensusModelPlane (const PointCloudConstPtr &cloud, const std::vector<int> &indices) : SampleConsensusModel<PointT> (cloud, indices) {};
# /** \brief Check whether the given index samples can form a valid plane model, compute the model coefficients from
# * these samples and store them internally in model_coefficients_. The plane coefficients are:
# * a, b, c, d (ax+by+cz+d=0)
# * \param[in] samples the point indices found as possible good candidates for creating a valid model
# * \param[out] model_coefficients the resultant model coefficients
# */
# bool computeModelCoefficients (const std::vector<int> &samples, Eigen::VectorXf &model_coefficients);
#
# /** \brief Compute all distances from the cloud data to a given plane model.
# * \param[in] model_coefficients the coefficients of a plane model that we need to compute distances to
# * \param[out] distances the resultant estimated distances
# */
# void getDistancesToModel (const Eigen::VectorXf &model_coefficients, std::vector<double> &distances);
#
# /** \brief Select all the points which respect the given model coefficients as inliers.
# * \param[in] model_coefficients the coefficients of a plane model that we need to compute distances to
# * \param[in] threshold a maximum admissible distance threshold for determining the inliers from the outliers
# * \param[out] inliers the resultant model inliers
# */
# void selectWithinDistance (const Eigen::VectorXf &model_coefficients, const double threshold, std::vector<int> &inliers);
#
# /** \brief Count all the points which respect the given model coefficients as inliers.
# *
# * \param[in] model_coefficients the coefficients of a model that we need to compute distances to
# * \param[in] threshold maximum admissible distance threshold for determining the inliers from the outliers
# * \return the resultant number of inliers
# */
# virtual int countWithinDistance (const Eigen::VectorXf &model_coefficients, const double threshold);
#
# /** \brief Recompute the plane coefficients using the given inlier set and return them to the user.
# * @note: these are the coefficients of the plane model after refinement (eg. after SVD)
# * \param[in] inliers the data inliers found as supporting the model
# * \param[in] model_coefficients the initial guess for the model coefficients
# * \param[out] optimized_coefficients the resultant recomputed coefficients after non-linear optimization
# */
# void optimizeModelCoefficients (const std::vector<int> &inliers,
# const Eigen::VectorXf &model_coefficients,
# Eigen::VectorXf &optimized_coefficients);
#
# /** \brief Create a new point cloud with inliers projected onto the plane model.
# * \param[in] inliers the data inliers that we want to project on the plane model
# * \param[in] model_coefficients the *normalized* coefficients of a plane model
# * \param[out] projected_points the resultant projected points
# * \param[in] copy_data_fields set to true if we need to copy the other data fields
# */
# void projectPoints (const std::vector<int> &inliers, const Eigen::VectorXf &model_coefficients, PointCloud &projected_points, bool copy_data_fields = true);
#
# /** \brief Verify whether a subset of indices verifies the given plane model coefficients.
# * \param[in] indices the data indices that need to be tested against the plane model
# * \param[in] model_coefficients the plane model coefficients
# * \param[in] threshold a maximum admissible distance threshold for determining the inliers from the outliers
# */
# bool doSamplesVerifyModel (const std::set<int> &indices,
# const Eigen::VectorXf &model_coefficients,
# const double threshold);
#
# /** \brief Return an unique id for this model (SACMODEL_PLANE). */
# inline pcl::SacModel getModelType () const { return (SACMODEL_PLANE); }
ctypedef SampleConsensusModelPlane[cpp.PointXYZ] SampleConsensusModelPlane_t
ctypedef SampleConsensusModelPlane[cpp.PointXYZI] SampleConsensusModelPlane_PointXYZI_t
ctypedef SampleConsensusModelPlane[cpp.PointXYZRGB] SampleConsensusModelPlane_PointXYZRGB_t
ctypedef SampleConsensusModelPlane[cpp.PointXYZRGBA] SampleConsensusModelPlane_PointXYZRGBA_t
ctypedef shared_ptr[SampleConsensusModelPlane[cpp.PointXYZ]] SampleConsensusModelPlanePtr_t
ctypedef shared_ptr[SampleConsensusModelPlane[cpp.PointXYZI]] SampleConsensusModelPlane_PointXYZI_Ptr_t
ctypedef shared_ptr[SampleConsensusModelPlane[cpp.PointXYZRGB]] SampleConsensusModelPlane_PointXYZRGB_Ptr_t
ctypedef shared_ptr[SampleConsensusModelPlane[cpp.PointXYZRGBA]] SampleConsensusModelPlane_PointXYZRGBA_Ptr_t
ctypedef shared_ptr[const SampleConsensusModelPlane[cpp.PointXYZ]] SampleConsensusModelPlaneConstPtr_t
ctypedef shared_ptr[const SampleConsensusModelPlane[cpp.PointXYZI]] SampleConsensusModelPlane_PointXYZI_ConstPtr_t
ctypedef shared_ptr[const SampleConsensusModelPlane[cpp.PointXYZRGB]] SampleConsensusModelPlane_PointXYZRGB_ConstPtr_t
ctypedef shared_ptr[const SampleConsensusModelPlane[cpp.PointXYZRGBA]] SampleConsensusModelPlane_PointXYZRGBA_ConstPtr_t
###
# sac_model_sphere.h
# namespace pcl
# /** \brief SampleConsensusModelSphere defines a model for 3D sphere segmentation.
# * The model coefficients are defined as:
# * - \b center.x : the X coordinate of the sphere's center
# * - \b center.y : the Y coordinate of the sphere's center
# * - \b center.z : the Z coordinate of the sphere's center
# * - \b radius : the sphere's radius
# * \author Radu B. Rusu
# * \ingroup sample_consensus
# */
# template <typename PointT>
# class SampleConsensusModelSphere : public SampleConsensusModel<PointT>
cdef extern from "pcl/sample_consensus/sac_model_sphere.h" namespace "pcl":
cdef cppclass SampleConsensusModelSphere[PointT](SampleConsensusModel[PointT]):
# SampleConsensusModelSphere()
SampleConsensusModelSphere(shared_ptr[cpp.PointCloud[PointT]] cloud)
# public:
# using SampleConsensusModel<PointT>::input_;
# using SampleConsensusModel<PointT>::indices_;
# using SampleConsensusModel<PointT>::radius_min_;
# using SampleConsensusModel<PointT>::radius_max_;
# typedef typename SampleConsensusModel<PointT>::PointCloud PointCloud;
# typedef typename SampleConsensusModel<PointT>::PointCloudPtr PointCloudPtr;
# typedef typename SampleConsensusModel<PointT>::PointCloudConstPtr PointCloudConstPtr;
# typedef boost::shared_ptr<SampleConsensusModelSphere> Ptr;
#
# /** \brief Constructor for base SampleConsensusModelSphere.
# * \param[in] cloud the input point cloud dataset
# */
# SampleConsensusModelSphere (const PointCloudConstPtr &cloud) :
# SampleConsensusModel<PointT> (cloud), tmp_inliers_ ()
#
# /** \brief Constructor for base SampleConsensusModelSphere.
# * \param[in] cloud the input point cloud dataset
# * \param[in] indices a vector of point indices to be used from \a cloud
# */
# SampleConsensusModelSphere (const PointCloudConstPtr &cloud, const std::vector<int> &indices) :
# SampleConsensusModel<PointT> (cloud, indices), tmp_inliers_ ()
#
# /** \brief Copy constructor.
# * \param[in] source the model to copy into this
# */
# SampleConsensusModelSphere (const SampleConsensusModelSphere &source) :
# SampleConsensusModel<PointT> (), tmp_inliers_ ()
#
# /** \brief Copy constructor.
# * \param[in] source the model to copy into this
# */
# inline SampleConsensusModelSphere& operator = (const SampleConsensusModelSphere &source)
#
# /** \brief Check whether the given index samples can form a valid sphere model, compute the model
# * coefficients from these samples and store them internally in model_coefficients.
# * The sphere coefficients are: x, y, z, R.
# * \param[in] samples the point indices found as possible good candidates for creating a valid model
# * \param[out] model_coefficients the resultant model coefficients
# */
# bool computeModelCoefficients (const std::vector<int> &samples, Eigen::VectorXf &model_coefficients);
#
# /** \brief Compute all distances from the cloud data to a given sphere model.
# * \param[in] model_coefficients the coefficients of a sphere model that we need to compute distances to
# * \param[out] distances the resultant estimated distances
# */
# void getDistancesToModel (const Eigen::VectorXf &model_coefficients, std::vector<double> &distances);
#
# /** \brief Select all the points which respect the given model coefficients as inliers.
# * \param[in] model_coefficients the coefficients of a sphere model that we need to compute distances to
# * \param[in] threshold a maximum admissible distance threshold for determining the inliers from the outliers
# * \param[out] inliers the resultant model inliers
# */
# void selectWithinDistance (const Eigen::VectorXf &model_coefficients, const double threshold, std::vector<int> &inliers);
#
# /** \brief Count all the points which respect the given model coefficients as inliers.
# * \param[in] model_coefficients the coefficients of a model that we need to compute distances to
# * \param[in] threshold maximum admissible distance threshold for determining the inliers from the outliers
# * \return the resultant number of inliers
# */
# virtual int countWithinDistance (const Eigen::VectorXf &model_coefficients, const double threshold);
#
# /** \brief Recompute the sphere coefficients using the given inlier set and return them to the user.
# * @note: these are the coefficients of the sphere model after refinement (eg. after SVD)
# * \param[in] inliers the data inliers found as supporting the model
# * \param[in] model_coefficients the initial guess for the optimization
# * \param[out] optimized_coefficients the resultant recomputed coefficients after non-linear optimization
# */
# void optimizeModelCoefficients (const std::vector<int> &inliers,
# const Eigen::VectorXf &model_coefficients,
# Eigen::VectorXf &optimized_coefficients);
#
# /** \brief Create a new point cloud with inliers projected onto the sphere model.
# * \param[in] inliers the data inliers that we want to project on the sphere model
# * \param[in] model_coefficients the coefficients of a sphere model
# * \param[out] projected_points the resultant projected points
# * \param[in] copy_data_fields set to true if we need to copy the other data fields
# * \todo implement this.
# */
# void projectPoints (const std::vector<int> &inliers,
# const Eigen::VectorXf &model_coefficients,
# PointCloud &projected_points,
# bool copy_data_fields = true);
#
# /** \brief Verify whether a subset of indices verifies the given sphere model coefficients.
# * \param[in] indices the data indices that need to be tested against the sphere model
# * \param[in] model_coefficients the sphere model coefficients
# * \param[in] threshold a maximum admissible distance threshold for determining the inliers from the outliers
# */
# bool doSamplesVerifyModel (const std::set<int> &indices,
# const Eigen::VectorXf &model_coefficients,
# const double threshold);
#
# /** \brief Return an unique id for this model (SACMODEL_SPHERE). */
# inline pcl::SacModel getModelType () const { return (SACMODEL_SPHERE); }
ctypedef SampleConsensusModelSphere[cpp.PointXYZ] SampleConsensusModelSphere_t
ctypedef SampleConsensusModelSphere[cpp.PointXYZI] SampleConsensusModelSphere_PointXYZI_t
ctypedef SampleConsensusModelSphere[cpp.PointXYZRGB] SampleConsensusModelSphere_PointXYZRGB_t
ctypedef SampleConsensusModelSphere[cpp.PointXYZRGBA] SampleConsensusModelSphere_PointXYZRGBA_t
ctypedef shared_ptr[SampleConsensusModelSphere[cpp.PointXYZ]] SampleConsensusModelSpherePtr_t
ctypedef shared_ptr[SampleConsensusModelSphere[cpp.PointXYZI]] SampleConsensusModelSphere_PointXYZI_Ptr_t
ctypedef shared_ptr[SampleConsensusModelSphere[cpp.PointXYZRGB]] SampleConsensusModelSphere_PointXYZRGB_Ptr_t
ctypedef shared_ptr[SampleConsensusModelSphere[cpp.PointXYZRGBA]] SampleConsensusModelSphere_PointXYZRGBA_Ptr_t
ctypedef shared_ptr[const SampleConsensusModelSphere[cpp.PointXYZ]] SampleConsensusModelSphereConstPtr_t
ctypedef shared_ptr[const SampleConsensusModelSphere[cpp.PointXYZI]] SampleConsensusModelSphere_PointXYZI_ConstPtr_t
ctypedef shared_ptr[const SampleConsensusModelSphere[cpp.PointXYZRGB]] SampleConsensusModelSphere_PointXYZRGB_ConstPtr_t
ctypedef shared_ptr[const SampleConsensusModelSphere[cpp.PointXYZRGBA]] SampleConsensusModelSphere_PointXYZRGBA_ConstPtr_t
###
### Inheritance class ###
# lmeds.h
# namespace pcl
# template <typename PointT>
# class LeastMedianSquares : public SampleConsensus<PointT>
cdef extern from "pcl/sample_consensus/lmeds.h" namespace "pcl":
cdef cppclass LeastMedianSquares[T](SampleConsensus[T]):
# LeastMedianSquares ()
LeastMedianSquares (shared_ptr[SampleConsensusModel[T]] model)
# LeastMedianSquares (const SampleConsensusModelPtr &model)
# LeastMedianSquares (const SampleConsensusModelPtr &model, double threshold)
# using SampleConsensus<PointT>::max_iterations_;
# using SampleConsensus<PointT>::threshold_;
# using SampleConsensus<PointT>::iterations_;
# using SampleConsensus<PointT>::sac_model_;
# using SampleConsensus<PointT>::model_;
# using SampleConsensus<PointT>::model_coefficients_;
# using SampleConsensus<PointT>::inliers_;
# typedef typename SampleConsensusModel<PointT>::Ptr SampleConsensusModelPtr;
# public:
# /** \brief Compute the actual model and find the inliers
# * \param debug_verbosity_level enable/disable on-screen debug information and set the verbosity level
# */
# bool computeModel (int debug_verbosity_level = 0)
bool computeModel (int debug_verbosity_level = 0)
###
# mlesac.h
# namespace pcl
# template <typename PointT>
# class MaximumLikelihoodSampleConsensus : public SampleConsensus<PointT>
cdef extern from "pcl/sample_consensus/mlesac.h" namespace "pcl":
cdef cppclass MaximumLikelihoodSampleConsensus[T](SampleConsensus[T]):
MaximumLikelihoodSampleConsensus ()
MaximumLikelihoodSampleConsensus (shared_ptr[SampleConsensusModel[T]] model)
# \brief MLESAC (Maximum Likelihood Estimator SAmple Consensus) main constructor
# \param[in] model a Sample Consensus model
# MaximumLikelihoodSampleConsensus (const SampleConsensusModelPtr &model)
# MaximumLikelihoodSampleConsensus (const SampleConsensusModelPtr &model, double threshold)
# using SampleConsensus<PointT>::max_iterations_;
# using SampleConsensus<PointT>::threshold_;
# using SampleConsensus<PointT>::iterations_;
# using SampleConsensus<PointT>::sac_model_;
# using SampleConsensus<PointT>::model_;
# using SampleConsensus<PointT>::model_coefficients_;
# using SampleConsensus<PointT>::inliers_;
# using SampleConsensus<PointT>::probability_;
# typedef typename SampleConsensusModel<PointT>::Ptr SampleConsensusModelPtr;
# typedef typename SampleConsensusModel<PointT>::PointCloudConstPtr PointCloudConstPtr;
# public:
# \brief Compute the actual model and find the inliers
# \param[in] debug_verbosity_level enable/disable on-screen debug information and set the verbosity level
# bool computeModel (int debug_verbosity_level = 0);
# /** \brief Set the number of EM iterations.
# * \param[in] iterations the number of EM iterations
# inline void setEMIterations (int iterations)
# /** \brief Get the number of EM iterations. */
# inline int getEMIterations () const { return (iterations_EM_); }
###
# msac.h
# namespace pcl
# template <typename PointT>
# class MEstimatorSampleConsensus : public SampleConsensus<PointT>
cdef extern from "pcl/sample_consensus/msac.h" namespace "pcl":
cdef cppclass MEstimatorSampleConsensus[T](SampleConsensus[T]):
MEstimatorSampleConsensus ()
MEstimatorSampleConsensus (shared_ptr[SampleConsensusModel[T]] model)
# MEstimatorSampleConsensus (const SampleConsensusModelPtr &model)
# MEstimatorSampleConsensus (const SampleConsensusModelPtr &model, double threshold)
# using SampleConsensus<PointT>::max_iterations_;
# using SampleConsensus<PointT>::threshold_;
# using SampleConsensus<PointT>::iterations_;
# using SampleConsensus<PointT>::sac_model_;
# using SampleConsensus<PointT>::model_;
# using SampleConsensus<PointT>::model_coefficients_;
# using SampleConsensus<PointT>::inliers_;
# using SampleConsensus<PointT>::probability_;
# typedef typename SampleConsensusModel<PointT>::Ptr SampleConsensusModelPtr;
# public:
# \brief Compute the actual model and find the inliers
# \param debug_verbosity_level enable/disable on-screen debug information and set the verbosity level
# bool computeModel (int debug_verbosity_level = 0);
bool computeModel (int debug_verbosity_level)
###
# prosac.h
# namespace pcl
# template<typename PointT>
# class ProgressiveSampleConsensus : public SampleConsensus<PointT>
cdef extern from "pcl/sample_consensus/prosac.h" namespace "pcl":
cdef cppclass ProgressiveSampleConsensus[T](SampleConsensus[T]):
ProgressiveSampleConsensus ()
# ProgressiveSampleConsensus (const SampleConsensusModelPtr &model)
# ProgressiveSampleConsensus (const SampleConsensusModelPtr &model, double threshold)
# using SampleConsensus<PointT>::max_iterations_;
# using SampleConsensus<PointT>::threshold_;
# using SampleConsensus<PointT>::iterations_;
# using SampleConsensus<PointT>::sac_model_;
# using SampleConsensus<PointT>::model_;
# using SampleConsensus<PointT>::model_coefficients_;
# using SampleConsensus<PointT>::inliers_;
# using SampleConsensus<PointT>::probability_;
# typedef typename SampleConsensusModel<PointT>::Ptr SampleConsensusModelPtr;
# public:
# /** \brief Compute the actual model and find the inliers
# * \param debug_verbosity_level enable/disable on-screen debug information and set the verbosity level
# bool computeModel (int debug_verbosity_level = 0)
bool computeModel (int debug_verbosity_level)
###
# ransac.h
# namespace pcl
# template <typename PointT>
# class RandomSampleConsensus : public SampleConsensus<PointT>
cdef extern from "pcl/sample_consensus/ransac.h" namespace "pcl":
cdef cppclass RandomSampleConsensus[T](SampleConsensus[T]):
# RandomSampleConsensus ()
RandomSampleConsensus (shared_ptr[SampleConsensusModel[T]] model)
# RandomSampleConsensus (shared_ptr[SampleConsensus[T]] model)
# RandomSampleConsensus (const SampleConsensusModelPtr &model)
# RandomSampleConsensus (const SampleConsensusModelPtr &model, double threshold)
# using SampleConsensus<PointT>::max_iterations_;
# using SampleConsensus<PointT>::threshold_;
# using SampleConsensus<PointT>::iterations_;
# using SampleConsensus<PointT>::sac_model_;
# using SampleConsensus<PointT>::model_;
# using SampleConsensus<PointT>::model_coefficients_;
# using SampleConsensus<PointT>::inliers_;
# using SampleConsensus<PointT>::probability_;
# typedef typename SampleConsensusModel<PointT>::Ptr SampleConsensusModelPtr;
# public:
# /** \brief Compute the actual model and find the inliers
# * \param debug_verbosity_level enable/disable on-screen debug information and set the verbosity level
# bool computeModel (int debug_verbosity_level = 0);
bool computeModel (int debug_verbosity_level)
ctypedef RandomSampleConsensus[cpp.PointXYZ] RandomSampleConsensus_t
ctypedef RandomSampleConsensus[cpp.PointXYZI] RandomSampleConsensus_PointXYZI_t
ctypedef RandomSampleConsensus[cpp.PointXYZRGB] RandomSampleConsensus_PointXYZRGB_t
ctypedef RandomSampleConsensus[cpp.PointXYZRGBA] RandomSampleConsensus_PointXYZRGBA_t
ctypedef shared_ptr[RandomSampleConsensus[cpp.PointXYZ]] RandomSampleConsensusPtr_t
ctypedef shared_ptr[RandomSampleConsensus[cpp.PointXYZI]] RandomSampleConsensus_PointXYZI_Ptr_t
ctypedef shared_ptr[RandomSampleConsensus[cpp.PointXYZRGB]] RandomSampleConsensus_PointXYZRGB_Ptr_t
ctypedef shared_ptr[RandomSampleConsensus[cpp.PointXYZRGBA]] RandomSampleConsensus_PointXYZRGBA_Ptr_t
ctypedef shared_ptr[const RandomSampleConsensus[cpp.PointXYZ]] RandomSampleConsensusConstPtr_t
ctypedef shared_ptr[const RandomSampleConsensus[cpp.PointXYZI]] RandomSampleConsensus_PointXYZI_ConstPtr_t
ctypedef shared_ptr[const RandomSampleConsensus[cpp.PointXYZRGB]] RandomSampleConsensus_PointXYZRGB_ConstPtr_t
ctypedef shared_ptr[const RandomSampleConsensus[cpp.PointXYZRGBA]] RandomSampleConsensus_PointXYZRGBA_ConstPtr_t
###
# rmsac.h
# namespace pcl
# template <typename PointT>
# class RandomizedMEstimatorSampleConsensus : public SampleConsensus<PointT>
cdef extern from "pcl/sample_consensus/rmsac.h" namespace "pcl":
cdef cppclass RandomizedMEstimatorSampleConsensus[T](SampleConsensus[T]):
RandomizedMEstimatorSampleConsensus ()
# RandomizedMEstimatorSampleConsensus (const SampleConsensusModelPtr &model)
# RandomizedMEstimatorSampleConsensus (const SampleConsensusModelPtr &model, double threshold)
RandomizedMEstimatorSampleConsensus (shared_ptr[SampleConsensusModel[T]] model)
# using SampleConsensus<PointT>::max_iterations_;
# using SampleConsensus<PointT>::threshold_;
# using SampleConsensus<PointT>::iterations_;
# using SampleConsensus<PointT>::sac_model_;
# using SampleConsensus<PointT>::model_;
# using SampleConsensus<PointT>::model_coefficients_;
# using SampleConsensus<PointT>::inliers_;
# using SampleConsensus<PointT>::probability_;
# typedef typename SampleConsensusModel<PointT>::Ptr SampleConsensusModelPtr;
# public:
# /** \brief Compute the actual model and find the inliers
# * \param debug_verbosity_level enable/disable on-screen debug information and set the verbosity level
# */
# bool computeModel (int debug_verbosity_level = 0);
bool computeModel (int debug_verbosity_level)
# /** \brief Set the percentage of points to pre-test.
# * \param nr_pretest percentage of points to pre-test
# */
# inline void setFractionNrPretest (double nr_pretest)
void setFractionNrPretest (double nr_pretest)
# /** \brief Get the percentage of points to pre-test. */
# inline double getFractionNrPretest ()
double getFractionNrPretest ()
ctypedef RandomizedMEstimatorSampleConsensus[cpp.PointXYZ] RandomizedMEstimatorSampleConsensus_t
ctypedef RandomizedMEstimatorSampleConsensus[cpp.PointXYZI] RandomizedMEstimatorSampleConsensus_PointXYZI_t
ctypedef RandomizedMEstimatorSampleConsensus[cpp.PointXYZRGB] RandomizedMEstimatorSampleConsensus_PointXYZRGB_t
ctypedef RandomizedMEstimatorSampleConsensus[cpp.PointXYZRGBA] RandomizedMEstimatorSampleConsensus_PointXYZRGBA_t
ctypedef shared_ptr[RandomizedMEstimatorSampleConsensus[cpp.PointXYZ]] RandomizedMEstimatorSampleConsensusPtr_t
ctypedef shared_ptr[RandomizedMEstimatorSampleConsensus[cpp.PointXYZI]] RandomizedMEstimatorSampleConsensus_PointXYZI_Ptr_t
ctypedef shared_ptr[RandomizedMEstimatorSampleConsensus[cpp.PointXYZRGB]] RandomizedMEstimatorSampleConsensus_PointXYZRGB_Ptr_t
ctypedef shared_ptr[RandomizedMEstimatorSampleConsensus[cpp.PointXYZRGBA]] RandomizedMEstimatorSampleConsensus_PointXYZRGBA_Ptr_t
ctypedef shared_ptr[const RandomizedMEstimatorSampleConsensus[cpp.PointXYZ]] RandomizedMEstimatorSampleConsensusConstPtr_t
ctypedef shared_ptr[const RandomizedMEstimatorSampleConsensus[cpp.PointXYZI]] RandomizedMEstimatorSampleConsensus_PointXYZI_ConstPtr_t
ctypedef shared_ptr[const RandomizedMEstimatorSampleConsensus[cpp.PointXYZRGB]] RandomizedMEstimatorSampleConsensus_PointXYZRGB_ConstPtr_t
ctypedef shared_ptr[const RandomizedMEstimatorSampleConsensus[cpp.PointXYZRGBA]] RandomizedMEstimatorSampleConsensus_PointXYZRGBA_ConstPtr_t
###
# rransac.h
# namespace pcl
# template <typename PointT>
# class RandomizedRandomSampleConsensus : public SampleConsensus<PointT>
cdef extern from "pcl/sample_consensus/rransac.h" namespace "pcl":
cdef cppclass RandomizedRandomSampleConsensus[T](SampleConsensus[T]):
RandomizedRandomSampleConsensus ()
RandomizedRandomSampleConsensus (shared_ptr[SampleConsensusModel[T]] model)
# RandomizedRandomSampleConsensus (const SampleConsensusModelPtr &model)
# RandomizedRandomSampleConsensus (const SampleConsensusModelPtr &model, double threshold)
# using SampleConsensus<PointT>::max_iterations_;
# using SampleConsensus<PointT>::threshold_;
# using SampleConsensus<PointT>::iterations_;
# using SampleConsensus<PointT>::sac_model_;
# using SampleConsensus<PointT>::model_;
# using SampleConsensus<PointT>::model_coefficients_;
# using SampleConsensus<PointT>::inliers_;
# using SampleConsensus<PointT>::probability_;
# typedef typename SampleConsensusModel<PointT>::Ptr SampleConsensusModelPtr;
# public:
# /** \brief RRANSAC (RAndom SAmple Consensus) main constructor
# * \param model a Sample Consensus model
# * \param threshold distance to model threshold
# /** \brief Compute the actual model and find the inliers
# * \param debug_verbosity_level enable/disable on-screen debug information and set the verbosity level
# */
# bool computeModel (int debug_verbosity_level = 0)
bool computeModel (int debug_verbosity_level)
# \brief Set the percentage of points to pre-test.
# \param nr_pretest percentage of points to pre-test
# inline void setFractionNrPretest (double nr_pretest)
void setFractionNrPretest (double nr_pretest)
# /** \brief Get the percentage of points to pre-test. */
# inline double getFractionNrPretest ()
double getFractionNrPretest ()
ctypedef RandomizedRandomSampleConsensus[cpp.PointXYZ] RandomizedRandomSampleConsensus_t
ctypedef RandomizedRandomSampleConsensus[cpp.PointXYZI] RandomizedRandomSampleConsensus_PointXYZI_t
ctypedef RandomizedRandomSampleConsensus[cpp.PointXYZRGB] RandomizedRandomSampleConsensus_PointXYZRGB_t
ctypedef RandomizedRandomSampleConsensus[cpp.PointXYZRGBA] RandomizedRandomSampleConsensus_PointXYZRGBA_t
ctypedef shared_ptr[RandomizedRandomSampleConsensus[cpp.PointXYZ]] RandomizedRandomSampleConsensusPtr_t
ctypedef shared_ptr[RandomizedRandomSampleConsensus[cpp.PointXYZI]] RandomizedRandomSampleConsensus_PointXYZI_Ptr_t
ctypedef shared_ptr[RandomizedRandomSampleConsensus[cpp.PointXYZRGB]] RandomizedRandomSampleConsensus_PointXYZRGB_Ptr_t
ctypedef shared_ptr[RandomizedRandomSampleConsensus[cpp.PointXYZRGBA]] RandomizedRandomSampleConsensus_PointXYZRGBA_Ptr_t
ctypedef shared_ptr[const RandomizedRandomSampleConsensus[cpp.PointXYZ]] RandomizedRandomSampleConsensusConstPtr_t
ctypedef shared_ptr[const RandomizedRandomSampleConsensus[cpp.PointXYZI]] RandomizedRandomSampleConsensus_PointXYZI_ConstPtr_t
ctypedef shared_ptr[const RandomizedRandomSampleConsensus[cpp.PointXYZRGB]] RandomizedRandomSampleConsensus_PointXYZRGB_ConstPtr_t
ctypedef shared_ptr[const RandomizedRandomSampleConsensus[cpp.PointXYZRGBA]] RandomizedRandomSampleConsensus_PointXYZRGBA_ConstPtr_t
###
# sac_model_circle.h
# namespace pcl
# template <typename PointT>
# class SampleConsensusModelCircle2D : public SampleConsensusModel<PointT>
cdef extern from "pcl/sample_consensus/sac_model_circle.h" namespace "pcl":
cdef cppclass SampleConsensusModelCircle2D[T](SampleConsensusModel[T]):
SampleConsensusModelCircle2D ()
# SampleConsensusModelCircle2D (const PointCloudConstPtr &cloud)
# SampleConsensusModelCircle2D (const PointCloudConstPtr &cloud, const std::vector<int> &indices)
# SampleConsensusModelCircle2D (const SampleConsensusModelCircle2D &source) :
# inline SampleConsensusModelCircle2D& operator = (const SampleConsensusModelCircle2D &source)
# using SampleConsensusModel<PointT>::input_;
# using SampleConsensusModel<PointT>::indices_;
# using SampleConsensusModel<PointT>::radius_min_;
# using SampleConsensusModel<PointT>::radius_max_;
# public:
# typedef typename SampleConsensusModel<PointT>::PointCloud PointCloud;
# typedef typename SampleConsensusModel<PointT>::PointCloudPtr PointCloudPtr;
# typedef typename SampleConsensusModel<PointT>::PointCloudConstPtr PointCloudConstPtr;
# typedef boost::shared_ptr<SampleConsensusModelCircle2D> Ptr;
# /** \brief Check whether the given index samples can form a valid 2D circle model, compute the model coefficients
# * from these samples and store them in model_coefficients. The circle coefficients are: x, y, R.
# * \param[in] samples the point indices found as possible good candidates for creating a valid model
# * \param[out] model_coefficients the resultant model coefficients
# bool computeModelCoefficients (const std::vector<int> &samples, Eigen::VectorXf &model_coefficients);
# /** \brief Compute all distances from the cloud data to a given 2D circle model.
# * \param[in] model_coefficients the coefficients of a 2D circle model that we need to compute distances to
# * \param[out] distances the resultant estimated distances
# void getDistancesToModel (const Eigen::VectorXf &model_coefficients, std::vector<double> &distances);
# /** \brief Compute all distances from the cloud data to a given 2D circle model.
# * \param[in] model_coefficients the coefficients of a 2D circle model that we need to compute distances to
# * \param[in] threshold a maximum admissible distance threshold for determining the inliers from the outliers
# * \param[out] inliers the resultant model inliers
# void selectWithinDistance (const Eigen::VectorXf &model_coefficients,
# const double threshold,
# std::vector<int> &inliers);
# /** \brief Count all the points which respect the given model coefficients as inliers.
# * \param[in] model_coefficients the coefficients of a model that we need to compute distances to
# * \param[in] threshold maximum admissible distance threshold for determining the inliers from the outliers
# * \return the resultant number of inliers
# virtual int countWithinDistance (const Eigen::VectorXf &model_coefficients,
# const double threshold);
# /** \brief Recompute the 2d circle coefficients using the given inlier set and return them to the user.
# * @note: these are the coefficients of the 2d circle model after refinement (eg. after SVD)
# * \param[in] inliers the data inliers found as supporting the model
# * \param[in] model_coefficients the initial guess for the optimization
# * \param[out] optimized_coefficients the resultant recomputed coefficients after non-linear optimization
# void optimizeModelCoefficients (const std::vector<int> &inliers,
# const Eigen::VectorXf &model_coefficients,
# Eigen::VectorXf &optimized_coefficients);
# /** \brief Create a new point cloud with inliers projected onto the 2d circle model.
# * \param[in] inliers the data inliers that we want to project on the 2d circle model
# * \param[in] model_coefficients the coefficients of a 2d circle model
# * \param[out] projected_points the resultant projected points
# * \param[in] copy_data_fields set to true if we need to copy the other data fields
# void projectPoints (const std::vector<int> &inliers,
# const Eigen::VectorXf &model_coefficients,
# PointCloud &projected_points,
# bool copy_data_fields = true);
# /** \brief Verify whether a subset of indices verifies the given 2d circle model coefficients.
# * \param[in] indices the data indices that need to be tested against the 2d circle model
# * \param[in] model_coefficients the 2d circle model coefficients
# * \param[in] threshold a maximum admissible distance threshold for determining the inliers from the outliers
# bool doSamplesVerifyModel (const std::set<int> &indices,
# const Eigen::VectorXf &model_coefficients,
# const double threshold);
# /** \brief Return an unique id for this model (SACMODEL_CIRCLE2D). */
# inline pcl::SacModel getModelType () const
ctypedef SampleConsensusModelCircle2D[cpp.PointXYZ] SampleConsensusModelCircle2D_t
ctypedef SampleConsensusModelCircle2D[cpp.PointXYZI] SampleConsensusModelCircle2D_PointXYZI_t
ctypedef SampleConsensusModelCircle2D[cpp.PointXYZRGB] SampleConsensusModelCircle2D_PointXYZRGB_t
ctypedef SampleConsensusModelCircle2D[cpp.PointXYZRGBA] SampleConsensusModelCircle2D_PointXYZRGBA_t
ctypedef shared_ptr[SampleConsensusModelCircle2D[cpp.PointXYZ]] SampleConsensusModelCircle2DPtr_t
ctypedef shared_ptr[SampleConsensusModelCircle2D[cpp.PointXYZI]] SampleConsensusModelCircle2D_PointXYZI_Ptr_t
ctypedef shared_ptr[SampleConsensusModelCircle2D[cpp.PointXYZRGB]] SampleConsensusModelCircle2D_PointXYZRGB_Ptr_t
ctypedef shared_ptr[SampleConsensusModelCircle2D[cpp.PointXYZRGBA]] SampleConsensusModelCircle2D_PointXYZRGBA_Ptr_t
ctypedef shared_ptr[const SampleConsensusModelCircle2D[cpp.PointXYZ]] SampleConsensusModelCircle2DConstPtr_t
ctypedef shared_ptr[const SampleConsensusModelCircle2D[cpp.PointXYZI]] SampleConsensusModelCircle2D_PointXYZI_ConstPtr_t
ctypedef shared_ptr[const SampleConsensusModelCircle2D[cpp.PointXYZRGB]] SampleConsensusModelCircle2D_PointXYZRGB_ConstPtr_t
ctypedef shared_ptr[const SampleConsensusModelCircle2D[cpp.PointXYZRGBA]] SampleConsensusModelCircle2D_PointXYZRGBA_ConstPtr_t
###
# namespace pcl
# struct OptimizationFunctor : pcl::Functor<float>
# OptimizationFunctor (int m_data_points, pcl::SampleConsensusModelCircle2D<PointT> *model) :
#
# /** Cost function to be minimized
# * \param[in] x the variables array
# * \param[out] fvec the resultant functions evaluations
# * \return 0
# */
# int operator() (const Eigen::VectorXf &x, Eigen::VectorXf &fvec) const
# pcl::SampleConsensusModelCircle2D<PointT> *model_;
###
# sac_model_cone.h
# namespace pcl
# template <typename PointT, typename PointNT>
# class SampleConsensusModelCone : public SampleConsensusModel<PointT>, public SampleConsensusModelFromNormals<PointT, PointNT>
cdef extern from "pcl/sample_consensus/sac_model_cone.h" namespace "pcl":
# cdef cppclass SampleConsensusModelCone[T, NT](SampleConsensusModel[T])(SampleConsensusModelFromNormals[T, NT]):
cdef cppclass SampleConsensusModelCone[T, NT]:
SampleConsensusModelCone ()
# Nothing
# SampleConsensusModelCone ()
# Use
# SampleConsensusModelCone (const PointCloudConstPtr &cloud)
# SampleConsensusModelCone (const PointCloudConstPtr &cloud, const std::vector<int> &indices)
# SampleConsensusModelCone (const SampleConsensusModelCone &source)
# inline SampleConsensusModelCone& operator = (const SampleConsensusModelCone &source)
# using SampleConsensusModel<PointT>::input_;
# using SampleConsensusModel<PointT>::indices_;
# using SampleConsensusModel<PointT>::radius_min_;
# using SampleConsensusModel<PointT>::radius_max_;
# using SampleConsensusModelFromNormals<PointT, PointNT>::normals_;
# using SampleConsensusModelFromNormals<PointT, PointNT>::normal_distance_weight_;
# public:
# typedef typename SampleConsensusModel<PointT>::PointCloud PointCloud;
# typedef typename SampleConsensusModel<PointT>::PointCloudPtr PointCloudPtr;
# typedef typename SampleConsensusModel<PointT>::PointCloudConstPtr PointCloudConstPtr;
# typedef boost::shared_ptr<SampleConsensusModelCone> Ptr;
# /** \brief Set the angle epsilon (delta) threshold.
# * \param[in] ea the maximum allowed difference between the cone's axis and the given axis.
# inline void setEpsAngle (double ea)
# /** \brief Get the angle epsilon (delta) threshold. */
# inline double getEpsAngle () const
# /** \brief Set the axis along which we need to search for a cone direction.
# * \param[in] ax the axis along which we need to search for a cone direction
# inline void setAxis (const Eigen::Vector3f &ax)
# /** \brief Get the axis along which we need to search for a cone direction. */
# inline Eigen::Vector3f getAxis () const
# /** \brief Set the minimum and maximum allowable opening angle for a cone model
# * given from a user.
# * \param[in] min_angle the minimum allwoable opening angle of a cone model
# * \param[in] max_angle the maximum allwoable opening angle of a cone model
# inline void setMinMaxOpeningAngle (const double &min_angle, const double &max_angle)
# /** \brief Get the opening angle which we need minumum to validate a cone model.
# * \param[out] min_angle the minimum allwoable opening angle of a cone model
# * \param[out] max_angle the maximum allwoable opening angle of a cone model
# inline void getMinMaxOpeningAngle (double &min_angle, double &max_angle) const
# /** \brief Check whether the given index samples can form a valid cone model, compute the model coefficients
# * from these samples and store them in model_coefficients. The cone coefficients are: apex,
# * axis_direction, opening_angle.
# * \param[in] samples the point indices found as possible good candidates for creating a valid model
# * \param[out] model_coefficients the resultant model coefficients
# bool computeModelCoefficients (const std::vector<int> &samples, Eigen::VectorXf &model_coefficients);
# /** \brief Compute all distances from the cloud data to a given cone model.
# * \param[in] model_coefficients the coefficients of a cone model that we need to compute distances to
# * \param[out] distances the resultant estimated distances
# void getDistancesToModel (const Eigen::VectorXf &model_coefficients, std::vector<double> &distances);
# /** \brief Select all the points which respect the given model coefficients as inliers.
# * \param[in] model_coefficients the coefficients of a cone model that we need to compute distances to
# * \param[in] threshold a maximum admissible distance threshold for determining the inliers from the outliers
# * \param[out] inliers the resultant model inliers
# void selectWithinDistance (const Eigen::VectorXf &model_coefficients,
# const double threshold, std::vector<int> &inliers);
# /** \brief Count all the points which respect the given model coefficients as inliers.
# * \param[in] model_coefficients the coefficients of a model that we need to compute distances to
# * \param[in] threshold maximum admissible distance threshold for determining the inliers from the outliers
# * \return the resultant number of inliers
# virtual int countWithinDistance (const Eigen::VectorXf &model_coefficients, const double threshold);
# /** \brief Recompute the cone coefficients using the given inlier set and return them to the user.
# * @note: these are the coefficients of the cone model after refinement (eg. after SVD)
# * \param[in] inliers the data inliers found as supporting the model
# * \param[in] model_coefficients the initial guess for the optimization
# * \param[out] optimized_coefficients the resultant recomputed coefficients after non-linear optimization
# void optimizeModelCoefficients (const std::vector<int> &inliers,
# const Eigen::VectorXf &model_coefficients, Eigen::VectorXf &optimized_coefficients);
# /** \brief Create a new point cloud with inliers projected onto the cone model.
# * \param[in] inliers the data inliers that we want to project on the cone model
# * \param[in] model_coefficients the coefficients of a cone model
# * \param[out] projected_points the resultant projected points
# * \param[in] copy_data_fields set to true if we need to copy the other data fields
# void projectPoints (const std::vector<int> &inliers, const Eigen::VectorXf &model_coefficients,
# PointCloud &projected_points, bool copy_data_fields = true);
# /** \brief Verify whether a subset of indices verifies the given cone model coefficients.
# * \param[in] indices the data indices that need to be tested against the cone model
# * \param[in] model_coefficients the cone model coefficients
# * \param[in] threshold a maximum admissible distance threshold for determining the inliers from the outliers
# bool doSamplesVerifyModel (const std::set<int> &indices,
# const Eigen::VectorXf &model_coefficients, const double threshold);
# /** \brief Return an unique id for this model (SACMODEL_CONE). */
# inline pcl::SacModel getModelType () const
# protected:
# /** \brief Get the distance from a point to a line (represented by a point and a direction)
# * \param[in] pt a point
# * \param[in] model_coefficients the line coefficients (a point on the line, line direction)
# double pointToAxisDistance (const Eigen::Vector4f &pt, const Eigen::VectorXf &model_coefficients);
# /** \brief Get a string representation of the name of this class. */
# std::string getName () const { return ("SampleConsensusModelCone"); }
# protected:
# /** \brief Check whether a model is valid given the user constraints.
# * \param[in] model_coefficients the set of model coefficients
# bool isModelValid (const Eigen::VectorXf &model_coefficients);
# /** \brief Check if a sample of indices results in a good sample of points
# * indices. Pure virtual.
# * \param[in] samples the resultant index samples
# bool isSampleGood (const std::vector<int> &samples) const;
ctypedef SampleConsensusModelCone[cpp.PointXYZ, cpp.Normal] SampleConsensusModelCone_t
ctypedef SampleConsensusModelCone[cpp.PointXYZI, cpp.Normal] SampleConsensusModelCone_PointXYZI_t
ctypedef SampleConsensusModelCone[cpp.PointXYZRGB, cpp.Normal] SampleConsensusModelCone_PointXYZRGB_t
ctypedef SampleConsensusModelCone[cpp.PointXYZRGBA, cpp.Normal] SampleConsensusModelCone_PointXYZRGBA_t
ctypedef shared_ptr[SampleConsensusModelCone[cpp.PointXYZ, cpp.Normal]] SampleConsensusModelConePtr_t
ctypedef shared_ptr[SampleConsensusModelCone[cpp.PointXYZI, cpp.Normal]] SampleConsensusModelCone_PointXYZI_Ptr_t
ctypedef shared_ptr[SampleConsensusModelCone[cpp.PointXYZRGB, cpp.Normal]] SampleConsensusModelCone_PointXYZRGB_Ptr_t
ctypedef shared_ptr[SampleConsensusModelCone[cpp.PointXYZRGBA, cpp.Normal]] SampleConsensusModelCone_PointXYZRGBA_Ptr_t
###
# namespace pcl
# /** \brief Functor for the optimization function */
# struct OptimizationFunctor : pcl::Functor<float>
# cdef extern from "pcl/sample_consensus/sac_model_cone.h" namespace "pcl":
# cdef cppclass OptimizationFunctor(Functor[float]):
# OptimizationFunctor (int m_data_points, pcl::SampleConsensusModelCone<PointT, PointNT> *model) :
# int operator() (const Eigen::VectorXf &x, Eigen::VectorXf &fvec) const
# pcl::SampleConsensusModelCone<PointT, PointNT> *model_;
###
# sac_model_cylinder.h
# namespace pcl
# \brief @b SampleConsensusModelCylinder defines a model for 3D cylinder segmentation.
# The model coefficients are defined as:
# \b point_on_axis.x : the X coordinate of a point located on the cylinder axis
# \b point_on_axis.y : the Y coordinate of a point located on the cylinder axis
# \b point_on_axis.z : the Z coordinate of a point located on the cylinder axis
# \b axis_direction.x : the X coordinate of the cylinder's axis direction
# \b axis_direction.y : the Y coordinate of the cylinder's axis direction
# \b axis_direction.z : the Z coordinate of the cylinder's axis direction
# \b radius : the cylinder's radius
# \author Radu Bogdan Rusu
# \ingroup sample_consensus
# template <typename PointT, typename PointNT>
# class SampleConsensusModelCylinder : public SampleConsensusModel<PointT>, public SampleConsensusModelFromNormals<PointT, PointNT>
# Multi Inheritance NG
# cdef cppclass SampleConsensusModelCylinder[PointT](SampleConsensusModel[PointT])(SampleConsensusModelFromNormals[PointT, PointNT]):
cdef extern from "pcl/sample_consensus/sac_model_cylinder.h" namespace "pcl":
cdef cppclass SampleConsensusModelCylinder[PointT, PointNT]:
SampleConsensusModelCylinder()
SampleConsensusModelCylinder(shared_ptr[cpp.PointCloud[PointT]] cloud)
# using SampleConsensusModel<PointT>::input_;
# using SampleConsensusModel<PointT>::indices_;
# using SampleConsensusModel<PointT>::radius_min_;
# using SampleConsensusModel<PointT>::radius_max_;
# using SampleConsensusModelFromNormals<PointT, PointNT>::normals_;
# using SampleConsensusModelFromNormals<PointT, PointNT>::normal_distance_weight_;
# public:
# typedef typename SampleConsensusModel<PointT>::PointCloud PointCloud;
# typedef typename SampleConsensusModel<PointT>::PointCloudPtr PointCloudPtr;
# typedef typename SampleConsensusModel<PointT>::PointCloudConstPtr PointCloudConstPtr;
# typedef boost::shared_ptr<SampleConsensusModelCylinder> Ptr;
#
# \brief Constructor for base SampleConsensusModelCylinder.
# \param[in] cloud the input point cloud dataset
# SampleConsensusModelCylinder (const PointCloudConstPtr &cloud) :
# SampleConsensusModel<PointT> (cloud),
# axis_ (Eigen::Vector3f::Zero ()),
# eps_angle_ (0),
# tmp_inliers_ ()
#
# \brief Constructor for base SampleConsensusModelCylinder.
# \param[in] cloud the input point cloud dataset
# \param[in] indices a vector of point indices to be used from \a cloud
# SampleConsensusModelCylinder (const PointCloudConstPtr &cloud, const std::vector<int> &indices) :
# SampleConsensusModel<PointT> (cloud, indices),
# axis_ (Eigen::Vector3f::Zero ()),
# eps_angle_ (0),
# tmp_inliers_ ()
#
# \brief Copy constructor.
# \param[in] source the model to copy into this
# SampleConsensusModelCylinder (const SampleConsensusModelCylinder &source) :
# SampleConsensusModel<PointT> (),
# axis_ (Eigen::Vector3f::Zero ()),
# eps_angle_ (0),
# tmp_inliers_ ()
#
# \brief Copy constructor.
# \param[in] source the model to copy into this
# inline SampleConsensusModelCylinder& operator = (const SampleConsensusModelCylinder &source)
#
# \brief Set the angle epsilon (delta) threshold.
# \param[in] ea the maximum allowed difference between the cyilinder axis and the given axis.
# inline void setEpsAngle (const double ea) { eps_angle_ = ea; }
#
# \brief Get the angle epsilon (delta) threshold.
# inline double getEpsAngle () { return (eps_angle_); }
#
# \brief Set the axis along which we need to search for a cylinder direction.
# \param[in] ax the axis along which we need to search for a cylinder direction
# inline void setAxis (const Eigen::Vector3f &ax) { axis_ = ax; }
#
# \brief Get the axis along which we need to search for a cylinder direction.
# inline Eigen::Vector3f getAxis () { return (axis_); }
#
# \brief Check whether the given index samples can form a valid cylinder model, compute the model coefficients
# from these samples and store them in model_coefficients. The cylinder coefficients are: point_on_axis,
# axis_direction, cylinder_radius_R
# \param[in] samples the point indices found as possible good candidates for creating a valid model
# \param[out] model_coefficients the resultant model coefficients
# bool computeModelCoefficients (const std::vector<int> &samples, Eigen::VectorXf &model_coefficients);
#
# \brief Compute all distances from the cloud data to a given cylinder model.
# \param[in] model_coefficients the coefficients of a cylinder model that we need to compute distances to
# \param[out] distances the resultant estimated distances
# void getDistancesToModel (const Eigen::VectorXf &model_coefficients, std::vector<double> &distances);
#
# \brief Select all the points which respect the given model coefficients as inliers.
# \param[in] model_coefficients the coefficients of a cylinder model that we need to compute distances to
# \param[in] threshold a maximum admissible distance threshold for determining the inliers from the outliers
# \param[out] inliers the resultant model inliers
# void selectWithinDistance (const Eigen::VectorXf &model_coefficients, const double threshold, std::vector<int> &inliers);
#
# \brief Count all the points which respect the given model coefficients as inliers.
# \param[in] model_coefficients the coefficients of a model that we need to compute distances to
# \param[in] threshold maximum admissible distance threshold for determining the inliers from the outliers
# \return the resultant number of inliers
# virtual int countWithinDistance (const Eigen::VectorXf &model_coefficients, const double threshold);
#
# \brief Recompute the cylinder coefficients using the given inlier set and return them to the user.
# @note: these are the coefficients of the cylinder model after refinement (eg. after SVD)
# \param[in] inliers the data inliers found as supporting the model
# \param[in] model_coefficients the initial guess for the optimization
# \param[out] optimized_coefficients the resultant recomputed coefficients after non-linear optimization
# void optimizeModelCoefficients (const std::vector<int> &inliers, const Eigen::VectorXf &model_coefficients, Eigen::VectorXf &optimized_coefficients);
#
# \brief Create a new point cloud with inliers projected onto the cylinder model.
# \param[in] inliers the data inliers that we want to project on the cylinder model
# \param[in] model_coefficients the coefficients of a cylinder model
# \param[out] projected_points the resultant projected points
# \param[in] copy_data_fields set to true if we need to copy the other data fields
# void projectPoints (const std::vector<int> &inliers, const Eigen::VectorXf &model_coefficients, PointCloud &projected_points, bool copy_data_fields = true);
#
# \brief Verify whether a subset of indices verifies the given cylinder model coefficients.
# \param[in] indices the data indices that need to be tested against the cylinder model
# \param[in] model_coefficients the cylinder model coefficients
# \param[in] threshold a maximum admissible distance threshold for determining the inliers from the outliers
# bool doSamplesVerifyModel (const std::set<int> &indices, const Eigen::VectorXf &model_coefficients, const double threshold);
#
# /** \brief Return an unique id for this model (SACMODEL_CYLINDER). */
# inline pcl::SacModel getModelType () const { return (SACMODEL_CYLINDER); }
ctypedef SampleConsensusModelCylinder[cpp.PointXYZ, cpp.Normal] SampleConsensusModelCylinder_t
ctypedef SampleConsensusModelCylinder[cpp.PointXYZI, cpp.Normal] SampleConsensusModelCylinder_PointXYZI_t
ctypedef SampleConsensusModelCylinder[cpp.PointXYZRGB, cpp.Normal] SampleConsensusModelCylinder_PointXYZRGB_t
ctypedef SampleConsensusModelCylinder[cpp.PointXYZRGBA, cpp.Normal] SampleConsensusModelCylinder_PointXYZRGBA_t
ctypedef shared_ptr[SampleConsensusModelCylinder[cpp.PointXYZ, cpp.Normal]] SampleConsensusModelCylinderPtr_t
ctypedef shared_ptr[SampleConsensusModelCylinder[cpp.PointXYZI, cpp.Normal]] SampleConsensusModelCylinder_PointXYZI_Ptr_t
ctypedef shared_ptr[SampleConsensusModelCylinder[cpp.PointXYZRGB, cpp.Normal]] SampleConsensusModelCylinder_PointXYZRGB_Ptr_t
ctypedef shared_ptr[SampleConsensusModelCylinder[cpp.PointXYZRGBA, cpp.Normal]] SampleConsensusModelCylinder_PointXYZRGBA_Ptr_t
ctypedef shared_ptr[const SampleConsensusModelCylinder[cpp.PointXYZ, cpp.Normal]] SampleConsensusModelCylinderConstPtr_t
ctypedef shared_ptr[const SampleConsensusModelCylinder[cpp.PointXYZI, cpp.Normal]] SampleConsensusModelCylinder_PointXYZI_ConstPtr_t
ctypedef shared_ptr[const SampleConsensusModelCylinder[cpp.PointXYZRGB, cpp.Normal]] SampleConsensusModelCylinder_PointXYZRGB_ConstPtr_t
ctypedef shared_ptr[const SampleConsensusModelCylinder[cpp.PointXYZRGBA, cpp.Normal]] SampleConsensusModelCylinder_PointXYZRGBA_ConstPtr_t
###
# sac_model_line.h
# namespace pcl
# /** \brief SampleConsensusModelLine defines a model for 3D line segmentation.
# * The model coefficients are defined as:
# * - \b point_on_line.x : the X coordinate of a point on the line
# * - \b point_on_line.y : the Y coordinate of a point on the line
# * - \b point_on_line.z : the Z coordinate of a point on the line
# * - \b line_direction.x : the X coordinate of a line's direction
# * - \b line_direction.y : the Y coordinate of a line's direction
# * - \b line_direction.z : the Z coordinate of a line's direction
# *
# * \author Radu B. Rusu
# * \ingroup sample_consensus
# */
# template <typename PointT>
# class SampleConsensusModelLine : public SampleConsensusModel<PointT>
cdef extern from "pcl/sample_consensus/sac_model_line.h" namespace "pcl":
cdef cppclass SampleConsensusModelLine[PointT](SampleConsensusModel[PointT]):
SampleConsensusModelLine()
SampleConsensusModelLine(shared_ptr[cpp.PointCloud[PointT]] cloud)
# using SampleConsensusModel<PointT>::input_;
# using SampleConsensusModel<PointT>::indices_;
# public:
# typedef typename SampleConsensusModel<PointT>::PointCloud PointCloud;
# typedef typename SampleConsensusModel<PointT>::PointCloudPtr PointCloudPtr;
# typedef typename SampleConsensusModel<PointT>::PointCloudConstPtr PointCloudConstPtr;
# typedef boost::shared_ptr<SampleConsensusModelLine> Ptr;
#
# /** \brief Constructor for base SampleConsensusModelLine.
# * \param[in] cloud the input point cloud dataset
# */
# SampleConsensusModelLine (const PointCloudConstPtr &cloud) : SampleConsensusModel<PointT> (cloud) {};
#
# /** \brief Constructor for base SampleConsensusModelLine.
# * \param[in] cloud the input point cloud dataset
# * \param[in] indices a vector of point indices to be used from \a cloud
# */
# SampleConsensusModelLine (const PointCloudConstPtr &cloud, const std::vector<int> &indices) : SampleConsensusModel<PointT> (cloud, indices) {};
#
# /** \brief Check whether the given index samples can form a valid line model, compute the model coefficients from
# * these samples and store them internally in model_coefficients_. The line coefficients are represented by a
# * point and a line direction
# * \param[in] samples the point indices found as possible good candidates for creating a valid model
# * \param[out] model_coefficients the resultant model coefficients
# */
# bool computeModelCoefficients (const std::vector<int> &samples, Eigen::VectorXf &model_coefficients);
#
# /** \brief Compute all squared distances from the cloud data to a given line model.
# * \param[in] model_coefficients the coefficients of a line model that we need to compute distances to
# * \param[out] distances the resultant estimated squared distances
# */
# void getDistancesToModel (const Eigen::VectorXf &model_coefficients, std::vector<double> &distances);
#
# /** \brief Select all the points which respect the given model coefficients as inliers.
# * \param[in] model_coefficients the coefficients of a line model that we need to compute distances to
# * \param[in] threshold a maximum admissible distance threshold for determining the inliers from the outliers
# * \param[out] inliers the resultant model inliers
# */
# void selectWithinDistance (const Eigen::VectorXf &model_coefficients, const double threshold, std::vector<int> &inliers);
#
# /** \brief Count all the points which respect the given model coefficients as inliers.
# *
# * \param[in] model_coefficients the coefficients of a model that we need to compute distances to
# * \param[in] threshold maximum admissible distance threshold for determining the inliers from the outliers
# * \return the resultant number of inliers
# */
# virtual int countWithinDistance (const Eigen::VectorXf &model_coefficients, const double threshold);
#
# /** \brief Recompute the line coefficients using the given inlier set and return them to the user.
# * @note: these are the coefficients of the line model after refinement (eg. after SVD)
# * \param[in] inliers the data inliers found as supporting the model
# * \param[in] model_coefficients the initial guess for the model coefficients
# * \param[out] optimized_coefficients the resultant recomputed coefficients after optimization
# */
# void optimizeModelCoefficients (const std::vector<int> &inliers,
# const Eigen::VectorXf &model_coefficients,
# Eigen::VectorXf &optimized_coefficients);
#
# /** \brief Create a new point cloud with inliers projected onto the line model.
# * \param[in] inliers the data inliers that we want to project on the line model
# * \param[in] model_coefficients the *normalized* coefficients of a line model
# * \param[out] projected_points the resultant projected points
# * \param[in] copy_data_fields set to true if we need to copy the other data fields
# */
# void projectPoints (const std::vector<int> &inliers,
# const Eigen::VectorXf &model_coefficients,
# PointCloud &projected_points,
# bool copy_data_fields = true);
#
# /** \brief Verify whether a subset of indices verifies the given line model coefficients.
# * \param[in] indices the data indices that need to be tested against the line model
# * \param[in] model_coefficients the line model coefficients
# * \param[in] threshold a maximum admissible distance threshold for determining the inliers from the outliers
# */
# bool doSamplesVerifyModel (const std::set<int> &indices,
# const Eigen::VectorXf &model_coefficients,
# const double threshold);
#
# /** \brief Return an unique id for this model (SACMODEL_LINE). */
# inline pcl::SacModel getModelType () const { return (SACMODEL_LINE); }
ctypedef SampleConsensusModelLine[cpp.PointXYZ] SampleConsensusModelLine_t
ctypedef SampleConsensusModelLine[cpp.PointXYZI] SampleConsensusModelLine_PointXYZI_t
ctypedef SampleConsensusModelLine[cpp.PointXYZRGB] SampleConsensusModelLine_PointXYZRGB_t
ctypedef SampleConsensusModelLine[cpp.PointXYZRGBA] SampleConsensusModelLine_PointXYZRGBA_t
ctypedef shared_ptr[SampleConsensusModelLine[cpp.PointXYZ]] SampleConsensusModelLinePtr_t
ctypedef shared_ptr[SampleConsensusModelLine[cpp.PointXYZI]] SampleConsensusModelLine_PointXYZI_Ptr_t
ctypedef shared_ptr[SampleConsensusModelLine[cpp.PointXYZRGB]] SampleConsensusModelLine_PointXYZRGB_Ptr_t
ctypedef shared_ptr[SampleConsensusModelLine[cpp.PointXYZRGBA]] SampleConsensusModelLine_PointXYZRGBA_Ptr_t
ctypedef shared_ptr[const SampleConsensusModelLine[cpp.PointXYZ]] SampleConsensusModelLineConstPtr_t
ctypedef shared_ptr[const SampleConsensusModelLine[cpp.PointXYZI]] SampleConsensusModelLine_PointXYZI_ConstPtr_t
ctypedef shared_ptr[const SampleConsensusModelLine[cpp.PointXYZRGB]] SampleConsensusModelLine_PointXYZRGB_ConstPtr_t
ctypedef shared_ptr[const SampleConsensusModelLine[cpp.PointXYZRGBA]] SampleConsensusModelLine_PointXYZRGBA_ConstPtr_t
###
# sac_model_normal_parallel_plane.h
# namespace pcl
# /** \brief SampleConsensusModelNormalParallelPlane defines a model for 3D
# * plane segmentation using additional surface normal constraints. Basically
# * this means that checking for inliers will not only involve a "distance to
# * model" criterion, but also an additional "maximum angular deviation"
# * between the plane's normal and the inlier points normals. In addition,
# * the plane normal must lie parallel to an user-specified axis.
# * The model coefficients are defined as:
# * - \b a : the X coordinate of the plane's normal (normalized)
# * - \b b : the Y coordinate of the plane's normal (normalized)
# * - \b c : the Z coordinate of the plane's normal (normalized)
# * - \b d : the fourth <a href="http://mathworld.wolfram.com/HessianNormalForm.html">Hessian component</a> of the plane's equation
# * To set the influence of the surface normals in the inlier estimation
# * process, set the normal weight (0.0-1.0), e.g.:
# * \code
# * SampleConsensusModelNormalPlane<pcl::PointXYZ, pcl::Normal> sac_model;
# * ...
# * sac_model.setNormalDistanceWeight (0.1);
# * ...
# * \endcode
# * In addition, the user can specify more constraints, such as:
# *
# * - an axis along which we need to search for a plane perpendicular to (\ref setAxis);
# * - an angle \a tolerance threshold between the plane's normal and the above given axis (\ref setEpsAngle);
# * - a distance we expect the plane to be from the origin (\ref setDistanceFromOrigin);
# * - a distance \a tolerance as the maximum allowed deviation from the above given distance from the origin (\ref setEpsDist).
# *
# * \note Please remember that you need to specify an angle > 0 in order to activate the axis-angle constraint!
# * \author Radu B. Rusu and Jared Glover and Nico Blodow
# * \ingroup sample_consensus
# */
# template <typename PointT, typename PointNT>
# class SampleConsensusModelNormalParallelPlane : public SampleConsensusModelPlane<PointT>, public SampleConsensusModelFromNormals<PointT, PointNT>
cdef extern from "pcl/sample_consensus/sac_model_normal_parallel_plane.h" namespace "pcl":
# cdef cppclass SampleConsensusModelNormalParallelPlane[PointT](SampleConsensusModelPlane[PointT])(SampleConsensusModelFromNormals[PointT, PointNT]):
cdef cppclass SampleConsensusModelNormalParallelPlane[PointT, PointNT]:
SampleConsensusModelNormalParallelPlane()
# using SampleConsensusModel<PointT>::input_;
# using SampleConsensusModel<PointT>::indices_;
# using SampleConsensusModelFromNormals<PointT, PointNT>::normals_;
# using SampleConsensusModelFromNormals<PointT, PointNT>::normal_distance_weight_;
# public:
# typedef typename SampleConsensusModel<PointT>::PointCloud PointCloud;
# typedef typename SampleConsensusModel<PointT>::PointCloudPtr PointCloudPtr;
# typedef typename SampleConsensusModel<PointT>::PointCloudConstPtr PointCloudConstPtr;
# typedef typename SampleConsensusModelFromNormals<PointT, PointNT>::PointCloudNPtr PointCloudNPtr;
# typedef typename SampleConsensusModelFromNormals<PointT, PointNT>::PointCloudNConstPtr PointCloudNConstPtr;
# typedef boost::shared_ptr<SampleConsensusModelNormalParallelPlane> Ptr;
#
# /** \brief Constructor for base SampleConsensusModelNormalParallelPlane.
# * \param[in] cloud the input point cloud dataset
# */
# SampleConsensusModelNormalParallelPlane (const PointCloudConstPtr &cloud) :
# SampleConsensusModelPlane<PointT> (cloud),
# axis_ (Eigen::Vector4f::Zero ()),
# distance_from_origin_ (0),
# eps_angle_ (-1.0), cos_angle_ (-1.0), eps_dist_ (0.0)
#
# /** \brief Constructor for base SampleConsensusModelNormalParallelPlane.
# * \param[in] cloud the input point cloud dataset
# * \param[in] indices a vector of point indices to be used from \a cloud
# */
# SampleConsensusModelNormalParallelPlane (const PointCloudConstPtr &cloud, const std::vector<int> &indices) :
# SampleConsensusModelPlane<PointT> (cloud, indices),
# axis_ (Eigen::Vector4f::Zero ()),
# distance_from_origin_ (0),
# eps_angle_ (-1.0), cos_angle_ (-1.0), eps_dist_ (0.0)
#
# /** \brief Set the axis along which we need to search for a plane perpendicular to.
# * \param[in] ax the axis along which we need to search for a plane perpendicular to
# */
# inline void setAxis (const Eigen::Vector3f &ax) { axis_.head<3> () = ax; axis_.normalize ();}
#
# /** \brief Get the axis along which we need to search for a plane perpendicular to. */
# inline Eigen::Vector3f getAxis () { return (axis_.head<3> ()); }
#
# /** \brief Set the angle epsilon (delta) threshold.
# * \param[in] ea the maximum allowed deviation from 90 degrees between the plane normal and the given axis.
# * \note You need to specify an angle > 0 in order to activate the axis-angle constraint!
# */
# inline void setEpsAngle (const double ea) { eps_angle_ = ea; cos_angle_ = fabs (cos (ea));}
#
# /** \brief Get the angle epsilon (delta) threshold. */
# inline double getEpsAngle () { return (eps_angle_); }
#
# /** \brief Set the distance we expect the plane to be from the origin
# * \param[in] d distance from the template plane to the origin
# */
# inline void setDistanceFromOrigin (const double d) { distance_from_origin_ = d; }
#
# /** \brief Get the distance of the plane from the origin. */
# inline double getDistanceFromOrigin () { return (distance_from_origin_); }
#
# /** \brief Set the distance epsilon (delta) threshold.
# * \param[in] delta the maximum allowed deviation from the template distance from the origin
# */
# inline void setEpsDist (const double delta) { eps_dist_ = delta; }
#
# /** \brief Get the distance epsilon (delta) threshold. */
# inline double getEpsDist () { return (eps_dist_); }
#
# /** \brief Select all the points which respect the given model coefficients as inliers.
# * \param[in] model_coefficients the coefficients of a plane model that we need to compute distances to
# * \param[in] threshold a maximum admissible distance threshold for determining the inliers from the outliers
# * \param[out] inliers the resultant model inliers
# */
# void selectWithinDistance (const Eigen::VectorXf &model_coefficients, const double threshold, std::vector<int> &inliers);
#
# /** \brief Count all the points which respect the given model coefficients as inliers.
# *
# * \param[in] model_coefficients the coefficients of a model that we need to compute distances to
# * \param[in] threshold maximum admissible distance threshold for determining the inliers from the outliers
# * \return the resultant number of inliers
# */
# virtual int countWithinDistance (const Eigen::VectorXf &model_coefficients, const double threshold);
#
# /** \brief Compute all distances from the cloud data to a given plane model.
# * \param[in] model_coefficients the coefficients of a plane model that we need to compute distances to
# * \param[out] distances the resultant estimated distances
# */
# void getDistancesToModel (const Eigen::VectorXf &model_coefficients, std::vector<double> &distances);
#
# /** \brief Return an unique id for this model (SACMODEL_NORMAL_PARALLEL_PLANE). */
# inline pcl::SacModel getModelType () const { return (SACMODEL_NORMAL_PARALLEL_PLANE); }
ctypedef SampleConsensusModelNormalParallelPlane[cpp.PointXYZ, cpp.Normal] SampleConsensusModelNormalParallelPlane_t
ctypedef SampleConsensusModelNormalParallelPlane[cpp.PointXYZI, cpp.Normal] SampleConsensusModelNormalParallelPlane_PointXYZI_t
ctypedef SampleConsensusModelNormalParallelPlane[cpp.PointXYZRGB, cpp.Normal] SampleConsensusModelNormalParallelPlane_PointXYZRGB_t
ctypedef SampleConsensusModelNormalParallelPlane[cpp.PointXYZRGBA, cpp.Normal] SampleConsensusModelNormalParallelPlane_PointXYZRGBA_t
ctypedef shared_ptr[SampleConsensusModelNormalParallelPlane[cpp.PointXYZ, cpp.Normal]] SampleConsensusModelNormalParallelPlanePtr_t
ctypedef shared_ptr[SampleConsensusModelNormalParallelPlane[cpp.PointXYZI, cpp.Normal]] SampleConsensusModelNormalParallelPlane_PointXYZI_Ptr_t
ctypedef shared_ptr[SampleConsensusModelNormalParallelPlane[cpp.PointXYZRGB, cpp.Normal]] SampleConsensusModelNormalParallelPlane_PointXYZRGB_Ptr_t
ctypedef shared_ptr[SampleConsensusModelNormalParallelPlane[cpp.PointXYZRGBA, cpp.Normal]] SampleConsensusModelNormalParallelPlane_PointXYZRGBA_Ptr_t
ctypedef shared_ptr[const SampleConsensusModelNormalParallelPlane[cpp.PointXYZ, cpp.Normal]] SampleConsensusModelNormalParallelPlaneConstPtr_t
ctypedef shared_ptr[const SampleConsensusModelNormalParallelPlane[cpp.PointXYZI, cpp.Normal]] SampleConsensusModelNormalParallelPlane_PointXYZI_ConstPtr_t
ctypedef shared_ptr[const SampleConsensusModelNormalParallelPlane[cpp.PointXYZRGB, cpp.Normal]] SampleConsensusModelNormalParallelPlane_PointXYZRGB_ConstPtr_t
ctypedef shared_ptr[const SampleConsensusModelNormalParallelPlane[cpp.PointXYZRGBA, cpp.Normal]] SampleConsensusModelNormalParallelPlane_PointXYZRGBA_ConstPtr_t
###
# sac_model_normal_plane.h
# namespace pcl
# /** \brief SampleConsensusModelNormalPlane defines a model for 3D plane
# * segmentation using additional surface normal constraints. Basically this
# * means that checking for inliers will not only involve a "distance to
# * model" criterion, but also an additional "maximum angular deviation"
# * between the plane's normal and the inlier points normals.
# *
# * The model coefficients are defined as:
# * - \b a : the X coordinate of the plane's normal (normalized)
# * - \b b : the Y coordinate of the plane's normal (normalized)
# * - \b c : the Z coordinate of the plane's normal (normalized)
# * - \b d : the fourth <a href="http://mathworld.wolfram.com/HessianNormalForm.html">Hessian component</a> of the plane's equation
# * To set the influence of the surface normals in the inlier estimation
# * process, set the normal weight (0.0-1.0), e.g.:
# * \code
# * SampleConsensusModelNormalPlane<pcl::PointXYZ, pcl::Normal> sac_model;
# * ...
# * sac_model.setNormalDistanceWeight (0.1);
# * ...
# * \endcode
# * \author Radu B. Rusu and Jared Glover
# * \ingroup sample_consensus
# */
# template <typename PointT, typename PointNT>
# class SampleConsensusModelNormalPlane : public SampleConsensusModelPlane<PointT>, public SampleConsensusModelFromNormals<PointT, PointNT>
cdef extern from "pcl/sample_consensus/sac_model_normal_plane.h" namespace "pcl":
# cdef cppclass SampleConsensusModelNormalPlane[PointT, PointNT](SampleConsensusModelPlane[PointT])(SampleConsensusModelFromNormals[PointT, PointNT]):
cdef cppclass SampleConsensusModelNormalPlane[PointT, PointNT]:
SampleConsensusModelNormalPlane()
# using SampleConsensusModel<PointT>::input_;
# using SampleConsensusModel<PointT>::indices_;
# using SampleConsensusModelFromNormals<PointT, PointNT>::normals_;
# using SampleConsensusModelFromNormals<PointT, PointNT>::normal_distance_weight_;
# public:
# typedef typename SampleConsensusModel<PointT>::PointCloud PointCloud;
# typedef typename SampleConsensusModel<PointT>::PointCloudPtr PointCloudPtr;
# typedef typename SampleConsensusModel<PointT>::PointCloudConstPtr PointCloudConstPtr;
# typedef typename SampleConsensusModelFromNormals<PointT, PointNT>::PointCloudNPtr PointCloudNPtr;
# typedef typename SampleConsensusModelFromNormals<PointT, PointNT>::PointCloudNConstPtr PointCloudNConstPtr;
# typedef boost::shared_ptr<SampleConsensusModelNormalPlane> Ptr;
#
# /** \brief Constructor for base SampleConsensusModelNormalPlane.
# * \param[in] cloud the input point cloud dataset
# */
# SampleConsensusModelNormalPlane (const PointCloudConstPtr &cloud) : SampleConsensusModelPlane<PointT> (cloud)
#
# /** \brief Constructor for base SampleConsensusModelNormalPlane.
# * \param[in] cloud the input point cloud dataset
# * \param[in] indices a vector of point indices to be used from \a cloud
# */
# SampleConsensusModelNormalPlane (const PointCloudConstPtr &cloud, const std::vector<int> &indices) : SampleConsensusModelPlane<PointT> (cloud, indices)
#
# /** \brief Select all the points which respect the given model coefficients as inliers.
# * \param[in] model_coefficients the coefficients of a plane model that we need to compute distances to
# * \param[in] threshold a maximum admissible distance threshold for determining the inliers from the outliers
# * \param[out] inliers the resultant model inliers
# */
# void selectWithinDistance (const Eigen::VectorXf &model_coefficients, const double threshold, std::vector<int> &inliers);
#
# /** \brief Count all the points which respect the given model coefficients as inliers.
# *
# * \param[in] model_coefficients the coefficients of a model that we need to compute distances to
# * \param[in] threshold maximum admissible distance threshold for determining the inliers from the outliers
# * \return the resultant number of inliers
# */
# virtual int countWithinDistance (const Eigen::VectorXf &model_coefficients, const double threshold);
#
# /** \brief Compute all distances from the cloud data to a given plane model.
# * \param[in] model_coefficients the coefficients of a plane model that we need to compute distances to
# * \param[out] distances the resultant estimated distances
# */
# void getDistancesToModel (const Eigen::VectorXf &model_coefficients, std::vector<double> &distances);
#
# /** \brief Return an unique id for this model (SACMODEL_NORMAL_PLANE). */
# inline pcl::SacModel getModelType () const { return (SACMODEL_NORMAL_PLANE); }
ctypedef SampleConsensusModelNormalPlane[cpp.PointXYZ, cpp.Normal] SampleConsensusModelNormalPlane_t
ctypedef SampleConsensusModelNormalPlane[cpp.PointXYZI, cpp.Normal] SampleConsensusModelNormalPlane_PointXYZI_t
ctypedef SampleConsensusModelNormalPlane[cpp.PointXYZRGB, cpp.Normal] SampleConsensusModelNormalPlane_PointXYZRGB_t
ctypedef SampleConsensusModelNormalPlane[cpp.PointXYZRGBA, cpp.Normal] SampleConsensusModelNormalPlane_PointXYZRGBA_t
ctypedef shared_ptr[SampleConsensusModelNormalPlane[cpp.PointXYZ, cpp.Normal]] SampleConsensusModelNormalPlanePtr_t
ctypedef shared_ptr[SampleConsensusModelNormalPlane[cpp.PointXYZI, cpp.Normal]] SampleConsensusModelNormalPlane_PointXYZI_Ptr_t
ctypedef shared_ptr[SampleConsensusModelNormalPlane[cpp.PointXYZRGB, cpp.Normal]] SampleConsensusModelNormalPlane_PointXYZRGB_Ptr_t
ctypedef shared_ptr[SampleConsensusModelNormalPlane[cpp.PointXYZRGBA, cpp.Normal]] SampleConsensusModelNormalPlane_PointXYZRGBA_Ptr_t
ctypedef shared_ptr[const SampleConsensusModelNormalPlane[cpp.PointXYZ, cpp.Normal]] SampleConsensusModelNormalPlaneConstPtr_t
ctypedef shared_ptr[const SampleConsensusModelNormalPlane[cpp.PointXYZI, cpp.Normal]] SampleConsensusModelNormalPlane_PointXYZI_ConstPtr_t
ctypedef shared_ptr[const SampleConsensusModelNormalPlane[cpp.PointXYZRGB, cpp.Normal]] SampleConsensusModelNormalPlane_PointXYZRGB_ConstPtr_t
ctypedef shared_ptr[const SampleConsensusModelNormalPlane[cpp.PointXYZRGBA, cpp.Normal]] SampleConsensusModelNormalPlane_PointXYZRGBA_ConstPtr_t
###
# sac_model_normal_sphere.h
# namespace pcl
# /** \brief @b SampleConsensusModelNormalSphere defines a model for 3D sphere
# * segmentation using additional surface normal constraints. Basically this
# * means that checking for inliers will not only involve a "distance to
# * model" criterion, but also an additional "maximum angular deviation"
# * between the sphere's normal and the inlier points normals.
# * The model coefficients are defined as:
# * <ul>
# * <li><b>a</b> : the X coordinate of the plane's normal (normalized)
# * <li><b>b</b> : the Y coordinate of the plane's normal (normalized)
# * <li><b>c</b> : the Z coordinate of the plane's normal (normalized)
# * <li><b>d</b> : radius of the sphere
# * </ul>
# * \author Stefan Schrandt
# * \ingroup sample_consensus
# */
# template <typename PointT, typename PointNT>
# class SampleConsensusModelNormalSphere : public SampleConsensusModelSphere<PointT>, public SampleConsensusModelFromNormals<PointT, PointNT>
cdef extern from "pcl/sample_consensus/sac_model_normal_sphere.h" namespace "pcl":
# cdef cppclass SampleConsensusModelNormalSphere[PointT, PointNT](SampleConsensusModelSphere[PointT])(SampleConsensusModelFromNormals[PointT, PointNT]):
cdef cppclass SampleConsensusModelNormalSphere[PointT, PointNT]:
SampleConsensusModelNormalSphere()
# using SampleConsensusModel<PointT>::input_;
# using SampleConsensusModel<PointT>::indices_;
# using SampleConsensusModel<PointT>::radius_min_;
# using SampleConsensusModel<PointT>::radius_max_;
# using SampleConsensusModelFromNormals<PointT, PointNT>::normals_;
# using SampleConsensusModelFromNormals<PointT, PointNT>::normal_distance_weight_;
# public:
# typedef typename SampleConsensusModel<PointT>::PointCloud PointCloud;
# typedef typename SampleConsensusModel<PointT>::PointCloudPtr PointCloudPtr;
# typedef typename SampleConsensusModel<PointT>::PointCloudConstPtr PointCloudConstPtr;
# typedef typename SampleConsensusModelFromNormals<PointT, PointNT>::PointCloudNPtr PointCloudNPtr;
# typedef typename SampleConsensusModelFromNormals<PointT, PointNT>::PointCloudNConstPtr PointCloudNConstPtr;
# typedef boost::shared_ptr<SampleConsensusModelNormalSphere> Ptr;
#
# /** \brief Constructor for base SampleConsensusModelNormalSphere.
# * \param[in] cloud the input point cloud dataset
# */
# SampleConsensusModelNormalSphere (const PointCloudConstPtr &cloud) : SampleConsensusModelSphere<PointT> (cloud)
#
# /** \brief Constructor for base SampleConsensusModelNormalSphere.
# * \param[in] cloud the input point cloud dataset
# * \param[in] indices a vector of point indices to be used from \a cloud
# */
# SampleConsensusModelNormalSphere (const PointCloudConstPtr &cloud, const std::vector<int> &indices) : SampleConsensusModelSphere<PointT> (cloud, indices)
#
# /** \brief Select all the points which respect the given model coefficients as inliers.
# * \param[in] model_coefficients the coefficients of a sphere model that we need to compute distances to
# * \param[in] threshold a maximum admissible distance threshold for determining the inliers from the outliers
# * \param[out] inliers the resultant model inliers
# */
# void selectWithinDistance (const Eigen::VectorXf &model_coefficients, const double threshold, std::vector<int> &inliers);
#
# /** \brief Count all the points which respect the given model coefficients as inliers.
# * \param[in] model_coefficients the coefficients of a model that we need to compute distances to
# * \param[in] threshold maximum admissible distance threshold for determining the inliers from the outliers
# * \return the resultant number of inliers
# */
# virtual int countWithinDistance (const Eigen::VectorXf &model_coefficients, const double threshold);
#
# /** \brief Compute all distances from the cloud data to a given sphere model.
# * \param[in] model_coefficients the coefficients of a sphere model that we need to compute distances to
# * \param[out] distances the resultant estimated distances
# */
# void getDistancesToModel (const Eigen::VectorXf &model_coefficients, std::vector<double> &distances);
#
# /** \brief Return an unique id for this model (SACMODEL_NORMAL_SPHERE). */
# inline pcl::SacModel getModelType () const { return (SACMODEL_NORMAL_SPHERE); }
ctypedef SampleConsensusModelNormalSphere[cpp.PointXYZ, cpp.Normal] SampleConsensusModelNormalSphere_t
ctypedef SampleConsensusModelNormalSphere[cpp.PointXYZI, cpp.Normal] SampleConsensusModelNormalSphere_PointXYZI_t
ctypedef SampleConsensusModelNormalSphere[cpp.PointXYZRGB, cpp.Normal] SampleConsensusModelNormalSphere_PointXYZRGB_t
ctypedef SampleConsensusModelNormalSphere[cpp.PointXYZRGBA, cpp.Normal] SampleConsensusModelNormalSphere_PointXYZRGBA_t
ctypedef shared_ptr[SampleConsensusModelNormalSphere[cpp.PointXYZ, cpp.Normal]] SampleConsensusModelNormalSpherePtr_t
ctypedef shared_ptr[SampleConsensusModelNormalSphere[cpp.PointXYZI, cpp.Normal]] SampleConsensusModelNormalSphere_PointXYZI_Ptr_t
ctypedef shared_ptr[SampleConsensusModelNormalSphere[cpp.PointXYZRGB, cpp.Normal]] SampleConsensusModelNormalSphere_PointXYZRGB_Ptr_t
ctypedef shared_ptr[SampleConsensusModelNormalSphere[cpp.PointXYZRGBA, cpp.Normal]] SampleConsensusModelNormalSphere_PointXYZRGBA_Ptr_t
ctypedef shared_ptr[const SampleConsensusModelNormalSphere[cpp.PointXYZ, cpp.Normal]] SampleConsensusModelNormalSphereConstPtr_t
ctypedef shared_ptr[const SampleConsensusModelNormalSphere[cpp.PointXYZI, cpp.Normal]] SampleConsensusModelNormalSphere_PointXYZI_ConstPtr_t
ctypedef shared_ptr[const SampleConsensusModelNormalSphere[cpp.PointXYZRGB, cpp.Normal]] SampleConsensusModelNormalSphere_PointXYZRGB_ConstPtr_t
ctypedef shared_ptr[const SampleConsensusModelNormalSphere[cpp.PointXYZRGBA, cpp.Normal]] SampleConsensusModelNormalSphere_PointXYZRGBA_ConstPtr_t
###
# sac_model_parallel_line.h
# namespace pcl
# /** \brief SampleConsensusModelParallelLine defines a model for 3D line segmentation using additional angular
# * constraints.
# * The model coefficients are defined as:
# * - \b point_on_line.x : the X coordinate of a point on the line
# * - \b point_on_line.y : the Y coordinate of a point on the line
# * - \b point_on_line.z : the Z coordinate of a point on the line
# * - \b line_direction.x : the X coordinate of a line's direction
# * - \b line_direction.y : the Y coordinate of a line's direction
# * - \b line_direction.z : the Z coordinate of a line's direction
# * \author Radu B. Rusu
# * \ingroup sample_consensus
# */
# template <typename PointT>
# class SampleConsensusModelParallelLine : public SampleConsensusModelLine<PointT>
cdef extern from "pcl/sample_consensus/sac_model_parallel_line.h" namespace "pcl":
# cdef cppclass SampleConsensusModelParallelLine[PointT](SampleConsensusModelLine[PointT]):
cdef cppclass SampleConsensusModelParallelLine[PointT]:
SampleConsensusModelParallelLine()
# public:
# typedef typename SampleConsensusModelLine<PointT>::PointCloud PointCloud;
# typedef typename SampleConsensusModelLine<PointT>::PointCloudPtr PointCloudPtr;
# typedef typename SampleConsensusModelLine<PointT>::PointCloudConstPtr PointCloudConstPtr;
# typedef boost::shared_ptr<SampleConsensusModelParallelLine> Ptr;
# /** \brief Constructor for base SampleConsensusModelParallelLine.
# * \param[in] cloud the input point cloud dataset
# */
# SampleConsensusModelParallelLine (const PointCloudConstPtr &cloud) :
# SampleConsensusModelLine<PointT> (cloud),
# axis_ (Eigen::Vector3f::Zero ()),
# eps_angle_ (0.0)
#
# /** \brief Constructor for base SampleConsensusModelParallelLine.
# * \param[in] cloud the input point cloud dataset
# * \param[in] indices a vector of point indices to be used from \a cloud
# */
# SampleConsensusModelParallelLine (const PointCloudConstPtr &cloud, const std::vector<int> &indices) :
# SampleConsensusModelLine<PointT> (cloud, indices),
# axis_ (Eigen::Vector3f::Zero ()),
# eps_angle_ (0.0)
#
# /** \brief Set the axis along which we need to search for a plane perpendicular to.
# * \param[in] ax the axis along which we need to search for a plane perpendicular to
# */
# inline void setAxis (const Eigen::Vector3f &ax) { axis_ = ax; axis_.normalize (); }
#
# /** \brief Get the axis along which we need to search for a plane perpendicular to. */
# inline Eigen::Vector3f getAxis () { return (axis_); }
#
# /** \brief Set the angle epsilon (delta) threshold.
# * \param[in] ea the maximum allowed difference between the plane normal and the given axis.
# */
# inline void setEpsAngle (const double ea) { eps_angle_ = ea; }
#
# /** \brief Get the angle epsilon (delta) threshold. */
# inline double getEpsAngle () { return (eps_angle_); }
#
# /** \brief Select all the points which respect the given model coefficients as inliers.
# * \param[in] model_coefficients the coefficients of a line model that we need to compute distances to
# * \param[in] threshold a maximum admissible distance threshold for determining the inliers from the outliers
# * \param[out] inliers the resultant model inliers
# */
# void selectWithinDistance (const Eigen::VectorXf &model_coefficients, const double threshold, std::vector<int> &inliers);
#
# /** \brief Count all the points which respect the given model coefficients as inliers.
# *
# * \param[in] model_coefficients the coefficients of a model that we need to compute distances to
# * \param[in] threshold maximum admissible distance threshold for determining the inliers from the outliers
# * \return the resultant number of inliers
# */
# virtual int countWithinDistance (const Eigen::VectorXf &model_coefficients, const double threshold);
#
# /** \brief Compute all squared distances from the cloud data to a given line model.
# * \param[in] model_coefficients the coefficients of a line model that we need to compute distances to
# * \param[out] distances the resultant estimated squared distances
# */
# void getDistancesToModel (const Eigen::VectorXf &model_coefficients, std::vector<double> &distances);
#
# /** \brief Return an unique id for this model (SACMODEL_PARALLEL_LINE). */
# inline pcl::SacModel getModelType () const { return (SACMODEL_PARALLEL_LINE); }
ctypedef SampleConsensusModelParallelLine[cpp.PointXYZ] SampleConsensusModelParallelLine_t
ctypedef SampleConsensusModelParallelLine[cpp.PointXYZI] SampleConsensusModelParallelLine_PointXYZI_t
ctypedef SampleConsensusModelParallelLine[cpp.PointXYZRGB] SampleConsensusModelParallelLine_PointXYZRGB_t
ctypedef SampleConsensusModelParallelLine[cpp.PointXYZRGBA] SampleConsensusModelParallelLine_PointXYZRGBA_t
ctypedef shared_ptr[SampleConsensusModelParallelLine[cpp.PointXYZ]] SampleConsensusModelParallelLinePtr_t
ctypedef shared_ptr[SampleConsensusModelParallelLine[cpp.PointXYZI]] SampleConsensusModelParallelLine_PointXYZI_Ptr_t
ctypedef shared_ptr[SampleConsensusModelParallelLine[cpp.PointXYZRGB]] SampleConsensusModelParallelLine_PointXYZRGB_Ptr_t
ctypedef shared_ptr[SampleConsensusModelParallelLine[cpp.PointXYZRGBA]] SampleConsensusModelParallelLine_PointXYZRGBA_Ptr_t
ctypedef shared_ptr[const SampleConsensusModelParallelLine[cpp.PointXYZ]] SampleConsensusModelParallelLineConstPtr_t
ctypedef shared_ptr[const SampleConsensusModelParallelLine[cpp.PointXYZI]] SampleConsensusModelParallelLine_PointXYZI_ConstPtr_t
ctypedef shared_ptr[const SampleConsensusModelParallelLine[cpp.PointXYZRGB]] SampleConsensusModelParallelLine_PointXYZRGB_ConstPtr_t
ctypedef shared_ptr[const SampleConsensusModelParallelLine[cpp.PointXYZRGBA]] SampleConsensusModelParallelLine_PointXYZRGBA_ConstPtr_t
###
# sac_model_parallel_plane.h
# namespace pcl
# /** \brief @b SampleConsensusModelParallelPlane defines a model for 3D plane segmentation using additional
# * angular constraints. The plane must be parallel to a user-specified axis
# * (\ref setAxis) within an user-specified angle threshold (\ref setEpsAngle).
# * Code example for a plane model, parallel (within a 15 degrees tolerance) with the Z axis:
# * \code
# * SampleConsensusModelParallelPlane<pcl::PointXYZ> model (cloud);
# * model.setAxis (Eigen::Vector3f (0.0, 0.0, 1.0));
# * model.setEpsAngle (pcl::deg2rad (15));
# * \endcode
# * \note Please remember that you need to specify an angle > 0 in order to activate the axis-angle constraint!
# * \author Radu Bogdan Rusu, Nico Blodow
# * \ingroup sample_consensus
# */
# template <typename PointT>
# class SampleConsensusModelParallelPlane : public SampleConsensusModelPlane<PointT>
cdef extern from "pcl/sample_consensus/sac_model_parallel_plane.h" namespace "pcl":
cdef cppclass SampleConsensusModelParallelPlane[PointT](SampleConsensusModelPlane[PointT]):
SampleConsensusModelParallelLine()
# public:
# typedef typename SampleConsensusModelPlane<PointT>::PointCloud PointCloud;
# typedef typename SampleConsensusModelPlane<PointT>::PointCloudPtr PointCloudPtr;
# typedef typename SampleConsensusModelPlane<PointT>::PointCloudConstPtr PointCloudConstPtr;
# typedef boost::shared_ptr<SampleConsensusModelParallelPlane> Ptr;
#
# /** \brief Constructor for base SampleConsensusModelParallelPlane.
# * \param[in] cloud the input point cloud dataset
# */
# SampleConsensusModelParallelPlane (const PointCloudConstPtr &cloud) :
# SampleConsensusModelPlane<PointT> (cloud),
# axis_ (Eigen::Vector3f::Zero ()),
# eps_angle_ (0.0), sin_angle_ (-1.0)
#
# /** \brief Constructor for base SampleConsensusModelParallelPlane.
# * \param[in] cloud the input point cloud dataset
# * \param[in] indices a vector of point indices to be used from \a cloud
# */
# SampleConsensusModelParallelPlane (const PointCloudConstPtr &cloud, const std::vector<int> &indices) :
# SampleConsensusModelPlane<PointT> (cloud, indices),
# axis_ (Eigen::Vector3f::Zero ()),
# eps_angle_ (0.0), sin_angle_ (-1.0)
#
# /** \brief Set the axis along which we need to search for a plane perpendicular to.
# * \param[in] ax the axis along which we need to search for a plane perpendicular to
# */
# inline void setAxis (const Eigen::Vector3f &ax) { axis_ = ax; }
#
# /** \brief Get the axis along which we need to search for a plane perpendicular to. */
# inline Eigen::Vector3f getAxis () { return (axis_); }
#
# /** \brief Set the angle epsilon (delta) threshold.
# * \param[in] ea the maximum allowed difference between the plane normal and the given axis.
# * \note You need to specify an angle > 0 in order to activate the axis-angle constraint!
# */
# inline void setEpsAngle (const double ea) { eps_angle_ = ea; sin_angle_ = fabs (sin (ea));}
#
# /** \brief Get the angle epsilon (delta) threshold. */
# inline double getEpsAngle () { return (eps_angle_); }
#
# /** \brief Select all the points which respect the given model coefficients as inliers.
# * \param[in] model_coefficients the coefficients of a plane model that we need to compute distances to
# * \param[in] threshold a maximum admissible distance threshold for determining the inliers from the outliers
# * \param[out] inliers the resultant model inliers
# */
# void selectWithinDistance (const Eigen::VectorXf &model_coefficients, const double threshold, std::vector<int> &inliers);
#
# /** \brief Count all the points which respect the given model coefficients as inliers.
# * \param[in] model_coefficients the coefficients of a model that we need to compute distances to
# * \param[in] threshold maximum admissible distance threshold for determining the inliers from the outliers
# * \return the resultant number of inliers
# */
# virtual int countWithinDistance (const Eigen::VectorXf &model_coefficients, const double threshold);
#
# /** \brief Compute all distances from the cloud data to a given plane model.
# * \param[in] model_coefficients the coefficients of a plane model that we need to compute distances to
# * \param[out] distances the resultant estimated distances
# */
# void getDistancesToModel (const Eigen::VectorXf &model_coefficients, std::vector<double> &distances);
#
# /** \brief Return an unique id for this model (SACMODEL_PARALLEL_PLANE). */
# inline pcl::SacModel getModelType () const { return (SACMODEL_PARALLEL_PLANE); }
ctypedef SampleConsensusModelParallelPlane[cpp.PointXYZ] SampleConsensusModelParallelPlane_t
ctypedef SampleConsensusModelParallelPlane[cpp.PointXYZI] SampleConsensusModelParallelPlane_PointXYZI_t
ctypedef SampleConsensusModelParallelPlane[cpp.PointXYZRGB] SampleConsensusModelParallelPlane_PointXYZRGB_t
ctypedef SampleConsensusModelParallelPlane[cpp.PointXYZRGBA] SampleConsensusModelParallelPlane_PointXYZRGBA_t
ctypedef shared_ptr[SampleConsensusModelParallelPlane[cpp.PointXYZ]] SampleConsensusModelParallelPlanePtr_t
ctypedef shared_ptr[SampleConsensusModelParallelPlane[cpp.PointXYZI]] SampleConsensusModelParallelPlane_PointXYZI_Ptr_t
ctypedef shared_ptr[SampleConsensusModelParallelPlane[cpp.PointXYZRGB]] SampleConsensusModelParallelPlane_PointXYZRGB_Ptr_t
ctypedef shared_ptr[SampleConsensusModelParallelPlane[cpp.PointXYZRGBA]] SampleConsensusModelParallelPlane_PointXYZRGBA_Ptr_t
ctypedef shared_ptr[const SampleConsensusModelParallelPlane[cpp.PointXYZ]] SampleConsensusModelParallelPlaneConstPtr_t
ctypedef shared_ptr[const SampleConsensusModelParallelPlane[cpp.PointXYZI]] SampleConsensusModelParallelPlane_PointXYZI_ConstPtr_t
ctypedef shared_ptr[const SampleConsensusModelParallelPlane[cpp.PointXYZRGB]] SampleConsensusModelParallelPlane_PointXYZRGB_ConstPtr_t
ctypedef shared_ptr[const SampleConsensusModelParallelPlane[cpp.PointXYZRGBA]] SampleConsensusModelParallelPlane_PointXYZRGBA_ConstPtr_t
###
# sac_model_perpendicular_plane.h
# namespace pcl
# /** \brief SampleConsensusModelPerpendicularPlane defines a model for 3D plane segmentation using additional
# * angular constraints. The plane must be perpendicular to an user-specified axis (\ref setAxis), up to an user-specified angle threshold (\ref setEpsAngle).
# * The model coefficients are defined as:
# * - \b a : the X coordinate of the plane's normal (normalized)
# * - \b b : the Y coordinate of the plane's normal (normalized)
# * - \b c : the Z coordinate of the plane's normal (normalized)
# * - \b d : the fourth <a href="http://mathworld.wolfram.com/HessianNormalForm.html">Hessian component</a> of the plane's equation
# * Code example for a plane model, perpendicular (within a 15 degrees tolerance) with the Z axis:
# * \code
# * SampleConsensusModelPerpendicularPlane<pcl::PointXYZ> model (cloud);
# * model.setAxis (Eigen::Vector3f (0.0, 0.0, 1.0));
# * model.setEpsAngle (pcl::deg2rad (15));
# * \endcode
# * \note Please remember that you need to specify an angle > 0 in order to activate the axis-angle constraint!
# * \author Radu B. Rusu
# * \ingroup sample_consensus
# */
# template <typename PointT>
# class SampleConsensusModelPerpendicularPlane : public SampleConsensusModelPlane<PointT>
cdef extern from "pcl/sample_consensus/sac_model_perpendicular_plane.h" namespace "pcl":
cdef cppclass SampleConsensusModelPerpendicularPlane[PointT](SampleConsensusModelPlane[PointT]):
SampleConsensusModelPerpendicularPlane()
# public:
# typedef typename SampleConsensusModelPlane<PointT>::PointCloud PointCloud;
# typedef typename SampleConsensusModelPlane<PointT>::PointCloudPtr PointCloudPtr;
# typedef typename SampleConsensusModelPlane<PointT>::PointCloudConstPtr PointCloudConstPtr;
# typedef boost::shared_ptr<SampleConsensusModelPerpendicularPlane> Ptr;
#
# /** \brief Constructor for base SampleConsensusModelPerpendicularPlane.
# * \param[in] cloud the input point cloud dataset
# */
# SampleConsensusModelPerpendicularPlane (const PointCloudConstPtr &cloud) :
# SampleConsensusModelPlane<PointT> (cloud),
# axis_ (Eigen::Vector3f::Zero ()),
# eps_angle_ (0.0)
#
# /** \brief Constructor for base SampleConsensusModelPerpendicularPlane.
# * \param[in] cloud the input point cloud dataset
# * \param[in] indices a vector of point indices to be used from \a cloud
# */
# SampleConsensusModelPerpendicularPlane (const PointCloudConstPtr &cloud, const std::vector<int> &indices) :
# SampleConsensusModelPlane<PointT> (cloud, indices),
# axis_ (Eigen::Vector3f::Zero ()),
# eps_angle_ (0.0)
#
# /** \brief Set the axis along which we need to search for a plane perpendicular to.
# * \param[in] ax the axis along which we need to search for a plane perpendicular to
# */
# inline void setAxis (const Eigen::Vector3f &ax) { axis_ = ax; }
#
# /** \brief Get the axis along which we need to search for a plane perpendicular to. */
# inline Eigen::Vector3f getAxis () { return (axis_); }
#
# /** \brief Set the angle epsilon (delta) threshold.
# * \param[in] ea the maximum allowed difference between the plane normal and the given axis.
# * \note You need to specify an angle > 0 in order to activate the axis-angle constraint!
# */
# inline void setEpsAngle (const double ea) { eps_angle_ = ea; }
#
# /** \brief Get the angle epsilon (delta) threshold. */
# inline double getEpsAngle () { return (eps_angle_); }
#
# /** \brief Select all the points which respect the given model coefficients as inliers.
# * \param[in] model_coefficients the coefficients of a plane model that we need to compute distances to
# * \param[in] threshold a maximum admissible distance threshold for determining the inliers from the outliers
# * \param[out] inliers the resultant model inliers
# */
# void selectWithinDistance (const Eigen::VectorXf &model_coefficients, const double threshold, std::vector<int> &inliers);
#
# /** \brief Count all the points which respect the given model coefficients as inliers.
# * \param[in] model_coefficients the coefficients of a model that we need to compute distances to
# * \param[in] threshold maximum admissible distance threshold for determining the inliers from the outliers
# * \return the resultant number of inliers
# */
# virtual int countWithinDistance (const Eigen::VectorXf &model_coefficients, const double threshold);
#
# /** \brief Compute all distances from the cloud data to a given plane model.
# * \param[in] model_coefficients the coefficients of a plane model that we need to compute distances to
# * \param[out] distances the resultant estimated distances
# */
# void getDistancesToModel (const Eigen::VectorXf &model_coefficients, std::vector<double> &distances);
#
# /** \brief Return an unique id for this model (SACMODEL_PERPENDICULAR_PLANE). */
# inline pcl::SacModel getModelType () const { return (SACMODEL_PERPENDICULAR_PLANE); }
ctypedef SampleConsensusModelPerpendicularPlane[cpp.PointXYZ] SampleConsensusModelPerpendicularPlane_t
ctypedef SampleConsensusModelPerpendicularPlane[cpp.PointXYZI] SampleConsensusModelPerpendicularPlane_PointXYZI_t
ctypedef SampleConsensusModelPerpendicularPlane[cpp.PointXYZRGB] SampleConsensusModelPerpendicularPlane_PointXYZRGB_t
ctypedef SampleConsensusModelPerpendicularPlane[cpp.PointXYZRGBA] SampleConsensusModelPerpendicularPlane_PointXYZRGBA_t
ctypedef shared_ptr[SampleConsensusModelPerpendicularPlane[cpp.PointXYZ]] SampleConsensusModelPerpendicularPlanePtr_t
ctypedef shared_ptr[SampleConsensusModelPerpendicularPlane[cpp.PointXYZI]] SampleConsensusModelPerpendicularPlane_PointXYZI_Ptr_t
ctypedef shared_ptr[SampleConsensusModelPerpendicularPlane[cpp.PointXYZRGB]] SampleConsensusModelPerpendicularPlane_PointXYZRGB_Ptr_t
ctypedef shared_ptr[SampleConsensusModelPerpendicularPlane[cpp.PointXYZRGBA]] SampleConsensusModelPerpendicularPlane_PointXYZRGBA_Ptr_t
ctypedef shared_ptr[const SampleConsensusModelPerpendicularPlane[cpp.PointXYZ]] SampleConsensusModelPerpendicularPlaneConstPtr_t
ctypedef shared_ptr[const SampleConsensusModelPerpendicularPlane[cpp.PointXYZI]] SampleConsensusModelPerpendicularPlane_PointXYZI_ConstPtr_t
ctypedef shared_ptr[const SampleConsensusModelPerpendicularPlane[cpp.PointXYZRGB]] SampleConsensusModelPerpendicularPlane_PointXYZRGB_ConstPtr_t
ctypedef shared_ptr[const SampleConsensusModelPerpendicularPlane[cpp.PointXYZRGBA]] SampleConsensusModelPerpendicularPlane_PointXYZRGBA_ConstPtr_t
###
# sac_model_registration.h
# namespace pcl
# /** \brief SampleConsensusModelRegistration defines a model for Point-To-Point registration outlier rejection.
# * \author Radu Bogdan Rusu
# * \ingroup sample_consensus
# */
# template <typename PointT>
# class SampleConsensusModelRegistration : public SampleConsensusModel<PointT>
cdef extern from "pcl/sample_consensus/sac_model_registration.h" namespace "pcl":
cdef cppclass SampleConsensusModelRegistration[PointT](SampleConsensusModel[PointT]):
SampleConsensusModelRegistration()
SampleConsensusModelRegistration(shared_ptr[cpp.PointCloud[PointT]] cloud)
# using SampleConsensusModel<PointT>::input_;
# using SampleConsensusModel<PointT>::indices_;
# public:
# typedef typename SampleConsensusModel<PointT>::PointCloud PointCloud;
# typedef typename SampleConsensusModel<PointT>::PointCloudPtr PointCloudPtr;
# typedef typename SampleConsensusModel<PointT>::PointCloudConstPtr PointCloudConstPtr;
# typedef boost::shared_ptr<SampleConsensusModelRegistration> Ptr;
#
# /** \brief Constructor for base SampleConsensusModelRegistration.
# * \param[in] cloud the input point cloud dataset
# */
# SampleConsensusModelRegistration (const PointCloudConstPtr &cloud) :
# SampleConsensusModel<PointT> (cloud),
# target_ (),
# indices_tgt_ (),
# correspondences_ (),
# sample_dist_thresh_ (0)
#
# /** \brief Constructor for base SampleConsensusModelRegistration.
# * \param[in] cloud the input point cloud dataset
# * \param[in] indices a vector of point indices to be used from \a cloud
# */
# SampleConsensusModelRegistration (const PointCloudConstPtr &cloud, const std::vector<int> &indices) :
# SampleConsensusModel<PointT> (cloud, indices),
# target_ (),
# indices_tgt_ (),
# correspondences_ (),
# sample_dist_thresh_ (0)
#
# /** \brief Provide a pointer to the input dataset
# * \param[in] cloud the const boost shared pointer to a PointCloud message
# */
# inline virtual void setInputCloud (const PointCloudConstPtr &cloud)
#
# /** \brief Set the input point cloud target.
# * \param target the input point cloud target
# */
# inline void setInputTarget (const PointCloudConstPtr &target)
#
# /** \brief Set the input point cloud target.
# * \param[in] target the input point cloud target
# * \param[in] indices_tgt a vector of point indices to be used from \a target
# */
# inline void setInputTarget (const PointCloudConstPtr &target, const std::vector<int> &indices_tgt)
#
# /** \brief Compute a 4x4 rigid transformation matrix from the samples given
# * \param[in] samples the indices found as good candidates for creating a valid model
# * \param[out] model_coefficients the resultant model coefficients
# */
# bool computeModelCoefficients (const std::vector<int> &samples, Eigen::VectorXf &model_coefficients);
#
# /** \brief Compute all distances from the transformed points to their correspondences
# * \param[in] model_coefficients the 4x4 transformation matrix
# * \param[out] distances the resultant estimated distances
# */
# void getDistancesToModel (const Eigen::VectorXf &model_coefficients, std::vector<double> &distances);
#
# /** \brief Select all the points which respect the given model coefficients as inliers.
# * \param[in] model_coefficients the 4x4 transformation matrix
# * \param[in] threshold a maximum admissible distance threshold for determining the inliers from the outliers
# * \param[out] inliers the resultant model inliers
# */
# void selectWithinDistance (const Eigen::VectorXf &model_coefficients, const double threshold, std::vector<int> &inliers);
#
# /** \brief Count all the points which respect the given model coefficients as inliers.
# * \param[in] model_coefficients the coefficients of a model that we need to compute distances to
# * \param[in] threshold maximum admissible distance threshold for determining the inliers from the outliers
# * \return the resultant number of inliers
# */
# virtual int countWithinDistance (const Eigen::VectorXf &model_coefficients, const double threshold);
#
# /** \brief Recompute the 4x4 transformation using the given inlier set
# * \param[in] inliers the data inliers found as supporting the model
# * \param[in] model_coefficients the initial guess for the optimization
# * \param[out] optimized_coefficients the resultant recomputed transformation
# */
# void optimizeModelCoefficients (const std::vector<int> &inliers, const Eigen::VectorXf &model_coefficients, Eigen::VectorXf &optimized_coefficients);
#
# void projectPoints (const std::vector<int> &, const Eigen::VectorXf &, PointCloud &, bool = true)
#
# bool doSamplesVerifyModel (const std::set<int> &, const Eigen::VectorXf &, const double)
#
# /** \brief Return an unique id for this model (SACMODEL_REGISTRATION). */
# inline pcl::SacModel getModelType () const { return (SACMODEL_REGISTRATION); }
ctypedef SampleConsensusModelRegistration[cpp.PointXYZ] SampleConsensusModelRegistration_t
ctypedef SampleConsensusModelRegistration[cpp.PointXYZI] SampleConsensusModelRegistration_PointXYZI_t
ctypedef SampleConsensusModelRegistration[cpp.PointXYZRGB] SampleConsensusModelRegistration_PointXYZRGB_t
ctypedef SampleConsensusModelRegistration[cpp.PointXYZRGBA] SampleConsensusModelRegistration_PointXYZRGBA_t
ctypedef shared_ptr[SampleConsensusModelRegistration[cpp.PointXYZ]] SampleConsensusModelRegistrationPtr_t
ctypedef shared_ptr[SampleConsensusModelRegistration[cpp.PointXYZI]] SampleConsensusModelRegistration_PointXYZI_Ptr_t
ctypedef shared_ptr[SampleConsensusModelRegistration[cpp.PointXYZRGB]] SampleConsensusModelRegistration_PointXYZRGB_Ptr_t
ctypedef shared_ptr[SampleConsensusModelRegistration[cpp.PointXYZRGBA]] SampleConsensusModelRegistration_PointXYZRGBA_Ptr_t
ctypedef shared_ptr[const SampleConsensusModelRegistration[cpp.PointXYZ]] SampleConsensusModelRegistrationConstPtr_t
ctypedef shared_ptr[const SampleConsensusModelRegistration[cpp.PointXYZI]] SampleConsensusModelRegistration_PointXYZI_ConstPtr_t
ctypedef shared_ptr[const SampleConsensusModelRegistration[cpp.PointXYZRGB]] SampleConsensusModelRegistration_PointXYZRGB_ConstPtr_t
ctypedef shared_ptr[const SampleConsensusModelRegistration[cpp.PointXYZRGBA]] SampleConsensusModelRegistration_PointXYZRGBA_ConstPtr_t
###
# sac_model_stick.h
# namespace pcl
# /** \brief SampleConsensusModelStick defines a model for 3D stick segmentation.
# * A stick is a line with an user given minimum/maximum width.
# * The model coefficients are defined as:
# * - \b point_on_line.x : the X coordinate of a point on the line
# * - \b point_on_line.y : the Y coordinate of a point on the line
# * - \b point_on_line.z : the Z coordinate of a point on the line
# * - \b line_direction.x : the X coordinate of a line's direction
# * - \b line_direction.y : the Y coordinate of a line's direction
# * - \b line_direction.z : the Z coordinate of a line's direction
# * - \b line_width : the width of the line
# * \author Radu B. Rusu
# * \ingroup sample_consensus
# */
# template <typename PointT>
# class SampleConsensusModelStick : public SampleConsensusModel<PointT>
cdef extern from "pcl/sample_consensus/sac_model_stick.h" namespace "pcl":
cdef cppclass SampleConsensusModelStick[PointT](SampleConsensusModel[PointT]):
SampleConsensusModelStick()
SampleConsensusModelStick(shared_ptr[cpp.PointCloud[PointT]] cloud)
# using SampleConsensusModel<PointT>::input_;
# using SampleConsensusModel<PointT>::indices_;
# using SampleConsensusModel<PointT>::radius_min_;
# using SampleConsensusModel<PointT>::radius_max_;
# public:
# typedef typename SampleConsensusModel<PointT>::PointCloud PointCloud;
# typedef typename SampleConsensusModel<PointT>::PointCloudPtr PointCloudPtr;
# typedef typename SampleConsensusModel<PointT>::PointCloudConstPtr PointCloudConstPtr;
# typedef boost::shared_ptr<SampleConsensusModelStick> Ptr;
#
# /** \brief Constructor for base SampleConsensusModelStick.
# * \param[in] cloud the input point cloud dataset
# */
# SampleConsensusModelStick (const PointCloudConstPtr &cloud) : SampleConsensusModel<PointT> (cloud) {};
#
# /** \brief Constructor for base SampleConsensusModelStick.
# * \param[in] cloud the input point cloud dataset
# * \param[in] indices a vector of point indices to be used from \a cloud
# */
# SampleConsensusModelStick (const PointCloudConstPtr &cloud, const std::vector<int> &indices) : SampleConsensusModel<PointT> (cloud, indices) {};
#
# /** \brief Check whether the given index samples can form a valid stick model, compute the model coefficients from
# * these samples and store them internally in model_coefficients_. The stick coefficients are represented by a
# * point and a line direction
# * \param[in] samples the point indices found as possible good candidates for creating a valid model
# * \param[out] model_coefficients the resultant model coefficients
# */
# bool computeModelCoefficients (const std::vector<int> &samples, Eigen::VectorXf &model_coefficients);
#
# /** \brief Compute all squared distances from the cloud data to a given stick model.
# * \param[in] model_coefficients the coefficients of a stick model that we need to compute distances to
# * \param[out] distances the resultant estimated squared distances
# */
# void getDistancesToModel (const Eigen::VectorXf &model_coefficients, std::vector<double> &distances);
#
# /** \brief Select all the points which respect the given model coefficients as inliers.
# * \param[in] model_coefficients the coefficients of a stick model that we need to compute distances to
# * \param[in] threshold a maximum admissible distance threshold for determining the inliers from the outliers
# * \param[out] inliers the resultant model inliers
# */
# void selectWithinDistance (const Eigen::VectorXf &model_coefficients, const double threshold, std::vector<int> &inliers);
#
# /** \brief Count all the points which respect the given model coefficients as inliers.
# *
# * \param[in] model_coefficients the coefficients of a model that we need to compute distances to
# * \param[in] threshold maximum admissible distance threshold for determining the inliers from the outliers
# * \return the resultant number of inliers
# */
# virtual int countWithinDistance (const Eigen::VectorXf &model_coefficients, const double threshold);
#
# /** \brief Recompute the stick coefficients using the given inlier set and return them to the user.
# * @note: these are the coefficients of the stick model after refinement (eg. after SVD)
# * \param[in] inliers the data inliers found as supporting the model
# * \param[in] model_coefficients the initial guess for the model coefficients
# * \param[out] optimized_coefficients the resultant recomputed coefficients after optimization
# */
# void optimizeModelCoefficients (const std::vector<int> &inliers, const Eigen::VectorXf &model_coefficients, Eigen::VectorXf &optimized_coefficients);
#
# /** \brief Create a new point cloud with inliers projected onto the stick model.
# * \param[in] inliers the data inliers that we want to project on the stick model
# * \param[in] model_coefficients the *normalized* coefficients of a stick model
# * \param[out] projected_points the resultant projected points
# * \param[in] copy_data_fields set to true if we need to copy the other data fields
# */
# void projectPoints (const std::vector<int> &inliers, const Eigen::VectorXf &model_coefficients, PointCloud &projected_points, bool copy_data_fields = true);
#
# /** \brief Verify whether a subset of indices verifies the given stick model coefficients.
# * \param[in] indices the data indices that need to be tested against the plane model
# * \param[in] model_coefficients the plane model coefficients
# * \param[in] threshold a maximum admissible distance threshold for determining the inliers from the outliers
# */
# bool doSamplesVerifyModel (const std::set<int> &indices, const Eigen::VectorXf &model_coefficients, const double threshold);
#
# /** \brief Return an unique id for this model (SACMODEL_STACK). */
# inline pcl::SacModel getModelType () const { return (SACMODEL_STICK); }
ctypedef SampleConsensusModelStick[cpp.PointXYZ] SampleConsensusModelStick_t
ctypedef SampleConsensusModelStick[cpp.PointXYZI] SampleConsensusModelStick_PointXYZI_t
ctypedef SampleConsensusModelStick[cpp.PointXYZRGB] SampleConsensusModelStick_PointXYZRGB_t
ctypedef SampleConsensusModelStick[cpp.PointXYZRGBA] SampleConsensusModelStick_PointXYZRGBA_t
ctypedef shared_ptr[SampleConsensusModelStick[cpp.PointXYZ]] SampleConsensusModelStickPtr_t
ctypedef shared_ptr[SampleConsensusModelStick[cpp.PointXYZI]] SampleConsensusModelStick_PointXYZI_Ptr_t
ctypedef shared_ptr[SampleConsensusModelStick[cpp.PointXYZRGB]] SampleConsensusModelStick_PointXYZRGB_Ptr_t
ctypedef shared_ptr[SampleConsensusModelStick[cpp.PointXYZRGBA]] SampleConsensusModelStick_PointXYZRGBA_Ptr_t
ctypedef shared_ptr[const SampleConsensusModelStick[cpp.PointXYZ]] SampleConsensusModelStickConstPtr_t
ctypedef shared_ptr[const SampleConsensusModelStick[cpp.PointXYZI]] SampleConsensusModelStick_PointXYZI_ConstPtr_t
ctypedef shared_ptr[const SampleConsensusModelStick[cpp.PointXYZRGB]] SampleConsensusModelStick_PointXYZRGB_ConstPtr_t
ctypedef shared_ptr[const SampleConsensusModelStick[cpp.PointXYZRGBA]] SampleConsensusModelStick_PointXYZRGBA_ConstPtr_t
###
###############################################################################
# Enum
###############################################################################
# method_types.h
cdef extern from "pcl/sample_consensus/method_types.h" namespace "pcl":
cdef enum:
SAC_RANSAC = 0
SAC_LMEDS = 1
SAC_MSAC = 2
SAC_RRANSAC = 3
SAC_RMSAC = 4
SAC_MLESAC = 5
SAC_PROSAC = 6
###
# model_types.h
cdef extern from "pcl/sample_consensus/model_types.h" namespace "pcl":
cdef enum SacModel:
SACMODEL_PLANE
SACMODEL_LINE
SACMODEL_CIRCLE2D
SACMODEL_CIRCLE3D
SACMODEL_SPHERE
SACMODEL_CYLINDER
SACMODEL_CONE
SACMODEL_TORUS
SACMODEL_PARALLEL_LINE
SACMODEL_PERPENDICULAR_PLANE
SACMODEL_PARALLEL_LINES
SACMODEL_NORMAL_PLANE
SACMODEL_NORMAL_SPHERE # Version 1.6
SACMODEL_REGISTRATION
SACMODEL_PARALLEL_PLANE
SACMODEL_NORMAL_PARALLEL_PLANE
SACMODEL_STICK
###
# cdef extern from "pcl/sample_consensus/rransac.h" namespace "pcl":
# cdef cppclass Functor[_Scalar]:
# # enum
# # {
# # InputsAtCompileTime = NX,
# # ValuesAtCompileTime = NY
# # };
# // Define the number of samples in SacModel needs
# typedef std::map<pcl::SacModel, unsigned int>::value_type SampleSizeModel;
# const static SampleSizeModel sample_size_pairs[] = {SampleSizeModel (pcl::SACMODEL_PLANE, 3),
# SampleSizeModel (pcl::SACMODEL_LINE, 2),
# SampleSizeModel (pcl::SACMODEL_CIRCLE2D, 3),
# //SampleSizeModel (pcl::SACMODEL_CIRCLE3D, 3),
# SampleSizeModel (pcl::SACMODEL_SPHERE, 4),
# SampleSizeModel (pcl::SACMODEL_CYLINDER, 2),
# SampleSizeModel (pcl::SACMODEL_CONE, 3),
# //SampleSizeModel (pcl::SACMODEL_TORUS, 2),
# SampleSizeModel (pcl::SACMODEL_PARALLEL_LINE, 2),
# SampleSizeModel (pcl::SACMODEL_PERPENDICULAR_PLANE, 3),
# //SampleSizeModel (pcl::PARALLEL_LINES, 2),
# SampleSizeModel (pcl::SACMODEL_NORMAL_PLANE, 3),
# SampleSizeModel (pcl::SACMODEL_NORMAL_SPHERE, 4),
# SampleSizeModel (pcl::SACMODEL_REGISTRATION, 3),
# SampleSizeModel (pcl::SACMODEL_PARALLEL_PLANE, 3),
# SampleSizeModel (pcl::SACMODEL_NORMAL_PARALLEL_PLANE, 3),
# SampleSizeModel (pcl::SACMODEL_STICK, 2)};
#
# namespace pcl
# {
# const static std::map<pcl::SacModel, unsigned int> SAC_SAMPLE_SIZE (sample_size_pairs, sample_size_pairs + sizeof (sample_size_pairs) / sizeof (SampleSizeModel));
# }
###
###############################################################################
# Activation
###############################################################################
|