File: pcl_surface.pxd

package info (click to toggle)
python-pcl 0.3.0~rc1%2Bdfsg-9
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 31,388 kB
  • sloc: python: 3,102; cpp: 283; makefile: 181; sh: 24; ansic: 12
file content (4695 lines) | stat: -rw-r--r-- 200,099 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
# -*- coding: utf-8 -*-

from libcpp cimport bool
from libcpp.vector cimport vector

# main
cimport pcl_defs as cpp
cimport pcl_kdtree as pclkdt
from boost_shared_ptr cimport shared_ptr

###############################################################################
# Types
###############################################################################

### base class ###

# reconstruction.h
# namespace pcl
# brief Pure abstract class. All types of meshing/reconstruction
# algorithms in \b libpcl_surface must inherit from this, in order to make
# sure we have a consistent API. The methods that we care about here are:
#  - \b setSearchMethod(&SearchPtr): passes a search locator
#  - \b reconstruct(&PolygonMesh): creates a PolygonMesh object from the input data
# author Radu B. Rusu, Michael Dixon, Alexandru E. Ichim
# 
# template <typename PointInT>
# class PCLSurfaceBase: public PCLBase<PointInT>
cdef extern from "pcl/surface/reconstruction.h" namespace "pcl":
    cdef cppclass PCLSurfaceBase[In](cpp.PCLBase[In]):
        PCLSurfaceBase()
        
        # brief Provide an optional pointer to a search object.
        # param[in] tree a pointer to the spatial search object.
        # inline void setSearchMethod (const KdTreePtr &tree)
        void setSearchMethod (const pclkdt.KdTreePtr_t &tree)
        
        # brief Get a pointer to the search method used.
        # inline KdTreePtr getSearchMethod ()
        pclkdt.KdTreePtr_t getSearchMethod ()
        
        # /** \brief Base method for surface reconstruction for all points given in
        #   * <setInputCloud (), setIndices ()> 
        #   * \param[out] output the resultant reconstructed surface model
        # virtual void reconstruct (pcl::PolygonMesh &output) = 0;


###

# /** \brief SurfaceReconstruction represents a base surface reconstruction
#   * class. All \b surface reconstruction methods take in a point cloud and
#   * generate a new surface from it, by either re-sampling the data or
#   * generating new data altogether. These methods are thus \b not preserving
#   * the topology of the original data.
#   * \note Reconstruction methods that always preserve the original input
#   * point cloud data as the surface vertices and simply construct the mesh on
#   * top should inherit from \ref MeshConstruction.
#   * \author Radu B. Rusu, Michael Dixon, Alexandru E. Ichim
#   * \ingroup surface
#   */
# template <typename PointInT>
# class SurfaceReconstruction: public PCLSurfaceBase<PointInT>
cdef extern from "pcl/surface/reconstruction.h" namespace "pcl":
    cdef cppclass SurfaceReconstruction[In](PCLSurfaceBase[In]):
        SurfaceReconstruction()
        # public:
        # using PCLSurfaceBase<PointInT>::input_;
        # using PCLSurfaceBase<PointInT>::indices_;
        # using PCLSurfaceBase<PointInT>::initCompute;
        # using PCLSurfaceBase<PointInT>::deinitCompute;
        # using PCLSurfaceBase<PointInT>::tree_;
        # using PCLSurfaceBase<PointInT>::getClassName;
        # 
        # /** \brief Base method for surface reconstruction for all points given in
        #  * <setInputCloud (), setIndices ()> 
        #  * \param[out] output the resultant reconstructed surface model
        #  */
        # virtual void reconstruct (pcl::PolygonMesh &output);
        # 
        # /** \brief Base method for surface reconstruction for all points given in
        #   * <setInputCloud (), setIndices ()> 
        #   * \param[out] points the resultant points lying on the new surface
        #   * \param[out] polygons the resultant polygons, as a set of
        #   * vertices. The Vertices structure contains an array of point indices.
        #   */
        # virtual void reconstruct (pcl::PointCloud<PointInT> &points, std::vector<pcl::Vertices> &polygons);


###

# brief MeshConstruction represents a base surface reconstruction
# class. All \b mesh constructing methods that take in a point cloud and
# generate a surface that uses the original data as vertices should inherit
# from this class.
# 
# note Reconstruction methods that generate a new surface or create new
# vertices in locations different than the input data should inherit from
# \ref SurfaceReconstruction.
# 
# author Radu B. Rusu, Michael Dixon, Alexandru E. Ichim
# \ingroup surface
# 
# template <typename PointInT>
# class MeshConstruction: public PCLSurfaceBase<PointInT>
cdef extern from "pcl/surface/reconstruction.h" namespace "pcl":
    cdef cppclass MeshConstruction[In](PCLSurfaceBase[In]):
        MeshConstruction()
        # public:
        # using PCLSurfaceBase<PointInT>::input_;
        # using PCLSurfaceBase<PointInT>::indices_;
        # using PCLSurfaceBase<PointInT>::initCompute;
        # using PCLSurfaceBase<PointInT>::deinitCompute;
        # using PCLSurfaceBase<PointInT>::tree_;
        # using PCLSurfaceBase<PointInT>::getClassName;
        
        # brief Base method for surface reconstruction for all points given in <setInputCloud (), setIndices ()> 
        # param[out] output the resultant reconstructed surface model
        # 
        # note This method copies the input point cloud data from
        # PointCloud<T> to PointCloud2, and is implemented here for backwards
        # compatibility only!
        # 
        # virtual void reconstruct (pcl::PolygonMesh &output);
        # brief Base method for mesh construction for all points given in <setInputCloud (), setIndices ()> 
        # param[out] polygons the resultant polygons, as a set of vertices.
        # The Vertices structure contains an array of point indices.
        # 
        # virtual void reconstruct (std::vector<pcl::Vertices> &polygons);
        # 
        # protected:
        # /** \brief A flag specifying whether or not the derived reconstruction
        #   * algorithm needs the search object \a tree.*/
        # bool check_tree_;
        # /** \brief Abstract surface reconstruction method. 
        #   * \param[out] output the output polygonal mesh 
        #   */
        # virtual void performReconstruction (pcl::PolygonMesh &output) = 0;
        # /** \brief Abstract surface reconstruction method. 
        #   * \param[out] polygons the resultant polygons, as a set of vertices. The Vertices structure contains an array of point indices.
        #   */
        # virtual void performReconstruction (std::vector<pcl::Vertices> &polygons) = 0;
###

# processing.h
# namespace pcl
# brief @b CloudSurfaceProcessing represents the base class for algorithms that take a point cloud as an input and
# produce a new output cloud that has been modified towards a better surface representation. These types of
# algorithms include surface smoothing, hole filling, cloud upsampling etc.
# author Alexandru E. Ichim
# ingroup surface
# 
# template <typename PointInT, typename PointOutT>
# class CloudSurfaceProcessing : public PCLBase<PointInT>
cdef extern from "pcl/surface/processing.h" namespace "pcl":
    cdef cppclass CloudSurfaceProcessing[In, Out](cpp.PCLBase[In]):
        CloudSurfaceProcessing()
        # public:
        # using PCLBase<PointInT>::input_;
        # using PCLBase<PointInT>::indices_;
        # using PCLBase<PointInT>::initCompute;
        # using PCLBase<PointInT>::deinitCompute;
        # public:
        # /** \brief Process the input cloud and store the results
        #   * \param[out] output the cloud where the results will be stored
        # virtual void process (pcl::PointCloud<PointOutT> &output);


### 

# /** \brief @b MeshProcessing represents the base class for mesh processing algorithms.
#   * \author Alexandru E. Ichim
#   * \ingroup surface
#   */
# class PCL_EXPORTS MeshProcessing
#       public:
#       typedef PolygonMesh::ConstPtr PolygonMeshConstPtr;
#       /** \brief Constructor. */
#       MeshProcessing () : input_mesh_ () {};
#       /** \brief Destructor. */
#       virtual ~MeshProcessing () {}
#       /** \brief Set the input mesh that we want to process
#         * \param[in] input the input polygonal mesh
#       void setInputMesh (const pcl::PolygonMeshConstPtr &input) 
#       /** \brief Process the input surface mesh and store the results
#         * \param[out] output the resultant processed surface model
#       void process (pcl::PolygonMesh &output);
#       protected:
#       /** \brief Initialize computation. Must be called before processing starts. */
#       virtual bool initCompute ();
#       /** \brief UnInitialize computation. Must be called after processing ends. */
#       virtual void deinitCompute ();
#       /** \brief Abstract surface processing method. */
#       virtual void performProcessing (pcl::PolygonMesh &output) = 0;
#       /** \brief Abstract class get name method. */
#       virtual std::string getClassName () const { return (""); }
#       /** \brief Input polygonal mesh. */
#       pcl::PolygonMeshConstPtr input_mesh_;
###


# (1.6.0)allocator.h
# (1.7.2) -> pcl\surface\3rdparty\poisson4 ?
# namespace pcl 
# namespace poisson 
# class AllocatorState
# cdef extern from "pcl/surface/allocator.h" namespace "pcl::poisson":
#     cdef cppclass AllocatorState:
#         AllocatorState()
#         # public:
#         # int index,remains;


# (1.6.0) -> allocator.h
# (1.7.2) -> pcl\surface\3rdparty\poisson4 ?
# template<class T>
# class Allocator
# cdef extern from "pcl/surface/allocator.h" namespace "pcl::poisson":
#     cdef cppclass Allocator[T]:
#         Allocator()
        # int blockSize;
        # int index, remains;
        # std::vector<T*> memory;
        # public:
        # /** This method is the allocators destructor. It frees up any of the memory that
        #   * it has allocated. 
        # void reset ()
        # /** This method returns the memory state of the allocator. */
        # AllocatorState getState () const
        # /** This method rolls back the allocator so that it makes all of the memory previously
        #   * allocated available for re-allocation. Note that it does it not call the constructor
        #   * again, so after this method has been called, assumptions about the state of the values
        #   * in memory are no longer valid. 
        # void rollBack ()
        # /** This method rolls back the allocator to the previous memory state and makes all of the memory previously
        #   * allocated available for re-allocation. Note that it does it not call the constructor
        #   * again, so after this method has been called, assumptions about the state of the values
        #   * in memory are no longer valid. 
        # void rollBack (const AllocatorState& state)
        # /** This method initiallizes the constructor and the blockSize variable specifies the
        #   * the number of objects that should be pre-allocated at a time. 
        # void set (const int& blockSize)
        # /** This method returns a pointer to an array of elements objects. If there is left over pre-allocated
        #   * memory, this method simply returns a pointer to the next free piece of memory, otherwise it pre-allocates
        #   * more memory. Note that if the number of objects requested is larger than the value blockSize with which
        #   * the allocator was initialized, the request for memory will fail.
        # T* newElements (const int& elements = 1)
###

# bilateral_upsampling.h
# namespace pcl
# /** \brief Bilateral filtering implementation, based on the following paper:
#   *   * Kopf, Johannes and Cohen, Michael F. and Lischinski, Dani and Uyttendaele, Matt - Joint Bilateral Upsampling,
#   *   * ACM Transations in Graphics, July 2007
#   * Takes in a colored organized point cloud (i.e. PointXYZRGB or PointXYZRGBA), that might contain nan values for the
#   * depth information, and it will returned an upsampled version of this cloud, based on the formula:
#   * \f[
#   *    \tilde{S}_p = \frac{1}{k_p} \sum_{q_d \in \Omega} {S_{q_d} f(||p_d - q_d|| g(||\tilde{I}_p-\tilde{I}_q||})
#   * \f]
#   * where S is the depth image, I is the RGB image and f and g are Gaussian functions centered at 0 and with
#   * standard deviations \f$\sigma_{color}\f$ and \f$\sigma_{depth}\f$
#   */
# template <typename PointInT, typename PointOutT>
# class BilateralUpsampling: public CloudSurfaceProcessing<PointInT, PointOutT>
cdef extern from "pcl/surface/bilateral_upsampling.h" namespace "pcl":
    cdef cppclass BilateralUpsampling[In, Out](CloudSurfaceProcessing[In, Out]):
        BilateralUpsampling()
        # public:
        # using PCLBase<PointInT>::input_;
        # using PCLBase<PointInT>::indices_;
        # using PCLBase<PointInT>::initCompute;
        # using PCLBase<PointInT>::deinitCompute;
        # using CloudSurfaceProcessing<PointInT, PointOutT>::process;
        # typedef pcl::PointCloud<PointOutT> PointCloudOut;
        # Eigen::Matrix3f KinectVGAProjectionMatrix, KinectSXGAProjectionMatrix;
        # 
        # /** \brief Method that sets the window size for the filter
        #   * \param[in] window_size the given window size
        # inline void setWindowSize (int window_size)
        void setWindowSize (int window_size)
        
        # /** \brief Returns the filter window size */
        # inline int getWindowSize () const
        int getWindowSize ()
        
        # /** \brief Method that sets the sigma color parameter
        #   * \param[in] sigma_color the new value to be set
        # inline void setSigmaColor (const float &sigma_color)
        void setSigmaColor (const float &sigma_color)
        
        # /** \brief Returns the current sigma color value */
        # inline float getSigmaColor () const
        
        # /** \brief Method that sets the sigma depth parameter
        #   * \param[in] sigma_depth the new value to be set
        # inline void setSigmaDepth (const float &sigma_depth)
        
        # /** \brief Returns the current sigma depth value */
        # inline float getSigmaDepth () const
        
        # /** \brief Method that sets the projection matrix to be used when unprojecting the points in the depth image
        #   * back to (x,y,z) positions.
        #   * \note There are 2 matrices already set in the class, used for the 2 modes available for the Kinect. They
        #   * are tuned to be the same as the ones in the OpenNiGrabber
        #   * \param[in] projection_matrix the new projection matrix to be set */
        # inline void setProjectionMatrix (const Eigen::Matrix3f &projection_matrix)
        
        # /** \brief Returns the current projection matrix */
        # inline Eigen::Matrix3f getProjectionMatrix () const
        
        # /** \brief Method that does the actual processing on the input cloud.
        #   * \param[out] output the container of the resulting upsampled cloud */
        # void process (pcl::PointCloud<PointOutT> &output)


###

# binary_node.h (1.6.0)
# pcl/surface/3rdparty\poisson4\binary_node.h (1.7.2)
# namespace pcl
# namespace poisson
# template<class Real>
# class BinaryNode
# cdef extern from "pcl/surface/binary_node.h" namespace "pcl::poisson":
#    cdef cppclass BinaryNode[Real]:
#        BinaryNode()
        # public:
        # static inline int CenterCount (int depth){return 1<<depth;}
        # static inline int CumulativeCenterCount (int maxDepth){return  (1<< (maxDepth+1))-1;}
        # static inline int Index (int depth,  int offSet){return  (1<<depth)+offSet-1;}
        # static inline int CornerIndex (int maxDepth, int depth, int offSet, int forwardCorner)
        # static inline Real CornerIndexPosition (int index, int maxDepth)
        # static inline Real Width (int depth)
        # 
        # // Fix for Bug #717 with Visual Studio that generates wrong code for this function
        # // when global optimization is enabled (release mode).
        # #ifdef _MSC_VER
        #   static __declspec(noinline) void CenterAndWidth (int depth, int offset, Real& center, Real& width)
        # #else
        # static inline void CenterAndWidth (int depth, int offset, Real& center, Real& width)
        # # #endif
        # 
        # #ifdef _MSC_VER
        # static __declspec(noinline) void CenterAndWidth (int idx, Real& center, Real& width)
        # #else
        # static inline void CenterAndWidth (int idx, Real& center, Real& width)
        # #endif
        # static inline void DepthAndOffset (int idx,  int& depth, int& offset)
###

# concave_hull.h
# namespace pcl
# template<typename PointInT>
# class ConcaveHull : public MeshConstruction<PointInT>
cdef extern from "pcl/surface/concave_hull.h" namespace "pcl":
    cdef cppclass ConcaveHull[PointInT](MeshConstruction[PointInT]):
        ConcaveHull()
        # public:
        # \brief Compute a concave hull for all points given 
        # \param points the resultant points lying on the concave hull 
        # \param polygons the resultant concave hull polygons, as a set of
        # vertices. The Vertices structure contains an array of point indices.
        # void reconstruct (PointCloud &points, std::vector<pcl::Vertices> &polygons);
        
        # /** \brief Compute a concave hull for all points given 
        #  * \param output the resultant concave hull vertices
        # void reconstruct (PointCloud &output);
        void reconstruct (cpp.PointCloud_t output)
        void reconstruct (cpp.PointCloud_PointXYZI_t output)
        void reconstruct (cpp.PointCloud_PointXYZRGB_t output)
        void reconstruct (cpp.PointCloud_PointXYZRGBA_t output)
        void reconstruct (PointInT output)
        
        # /** \brief Set the alpha value, which limits the size of the resultant
        #   * hull segments (the smaller the more detailed the hull).  
        #   * \param alpha positive, non-zero value, defining the maximum length
        #   * from a vertex to the facet center (center of the voronoi cell).
        # inline void setAlpha (double alpha)
        void setAlpha (double alpha)
        
        # Returns the alpha parameter, see setAlpha().
        # inline double getAlpha ()
        double getAlpha ()
        
        # If set, the voronoi cells center will be saved in _voronoi_centers_
        # voronoi_centers
        # inline void setVoronoiCenters (PointCloudPtr voronoi_centers)
        
        # \brief If keep_information_is set to true the convex hull
        # points keep other information like rgb, normals, ...
        # \param value where to keep the information or not, default is false
        # void setKeepInformation (bool value)
        void setKeepInformation (bool value)
        
        # brief Returns the dimensionality (2 or 3) of the calculated hull.
        # inline int getDim () const
        int getDim ()
        
        # brief Returns the dimensionality (2 or 3) of the calculated hull.
        # inline int getDimension () const
        int getDimension ()
        
        # brief Sets the dimension on the input data, 2D or 3D.
        # param[in] dimension The dimension of the input data.  If not set, this will be determined automatically.
        void setDimension (int dimension)


ctypedef ConcaveHull[cpp.PointXYZ] ConcaveHull_t
ctypedef ConcaveHull[cpp.PointXYZI] ConcaveHull_PointXYZI_t
ctypedef ConcaveHull[cpp.PointXYZRGB] ConcaveHull_PointXYZRGB_t
ctypedef ConcaveHull[cpp.PointXYZRGBA] ConcaveHull_PointXYZRGBA_t
###

# convex_hull.h
# namespace pcl
# /** \brief Sort 2D points in a vector structure
#   * \param p1 the first point
#   * \param p2 the second point
#   * \ingroup surface
#   */
# inline bool comparePoints2D (const std::pair<int, Eigen::Vector4f> & p1, const std::pair<int, Eigen::Vector4f> & p2)
# 
# convex_hull.h
# namespace pcl
# template<typename PointInT>
# class ConvexHull : public MeshConstruction<PointInT>
cdef extern from "pcl/surface/convex_hull.h" namespace "pcl":
    cdef cppclass ConvexHull[PointInT](MeshConstruction[PointInT]):
        ConvexHull()
        # protected:
        # using PCLBase<PointInT>::input_;
        # using PCLBase<PointInT>::indices_;
        # using PCLBase<PointInT>::initCompute;
        # using PCLBase<PointInT>::deinitCompute;
        # public:
        # using MeshConstruction<PointInT>::reconstruct;
        # typedef pcl::PointCloud<PointInT> PointCloud;
        # typedef typename PointCloud::Ptr PointCloudPtr;
        # typedef typename PointCloud::ConstPtr PointCloudConstPtr;
        # 
        # /** \brief Compute a convex hull for all points given 
        #   * \param[out] points the resultant points lying on the convex hull 
        #   * \param[out] polygons the resultant convex hull polygons, as a set of
        #   * vertices. The Vertices structure contains an array of point indices.
        # void reconstruct (PointCloud &points, std::vector<pcl::Vertices> &polygons);
        void reconstruct (PointInT &points, vector[cpp.Vertices] &polygons)
        
        # /** \brief Compute a convex hull for all points given 
        #   * \param[out] output the resultant convex hull vertices
        # void reconstruct (PointCloud &output);
        void reconstruct (PointInT &output)
        
        # /** \brief If set to true, the qhull library is called to compute the total area and volume of the convex hull.
        #   * NOTE: When this option is activated, the qhull library produces output to the console.
        #   * \param[in] value wheter to compute the area and the volume, default is false
        void setComputeAreaVolume (bool value)
        
        # /** \brief Returns the total area of the convex hull. */
        double getTotalArea ()
        
        # /** \brief Returns the total volume of the convex hull. Only valid for 3-dimensional sets.
        #   *  For 2D-sets volume is zero. 
        double getTotalVolume ()
        
        # /** \brief Sets the dimension on the input data, 2D or 3D.
        #   * \param[in] dimension The dimension of the input data.  If not set, this will be determined automatically.
        void setDimension (int dimension)
        
        # /** \brief Returns the dimensionality (2 or 3) of the calculated hull. */
        # inline int getDimension () const
        int getDimension ()


###

# ear_clipping.h
# namespace pcl
# /** \brief The ear clipping triangulation algorithm.
#   * The code is inspired by Flavien Brebion implementation, which is
#   * in n^3 and does not handle holes.
#   * \author Nicolas Burrus
#   * \ingroup surface
# class PCL_EXPORTS EarClipping : public MeshProcessing
#       public:
#       using MeshProcessing::input_mesh_;
#       using MeshProcessing::initCompute;
#       /** \brief Empty constructor */
#       EarClipping () : MeshProcessing (), points_ ()
#       { 
#       };
# 
#       protected:
#       /** \brief a Pointer to the point cloud data. */
#       pcl::PointCloud<pcl::PointXYZ>::Ptr points_;
# 
#       /** \brief This method should get called before starting the actual computation. */
#       bool initCompute ();
#       /** \brief The actual surface reconstruction method. 
#         * \param[out] output the output polygonal mesh 
#         */
#       void performProcessing (pcl::PolygonMesh &output);
# 
#       /** \brief Triangulate one polygon. 
#         * \param[in] vertices the set of vertices
#         * \param[out] output the resultant polygonal mesh
#         */
#       void triangulate (const Vertices& vertices, PolygonMesh& output);
# 
#       /** \brief Compute the signed area of a polygon. 
#         * \param[in] vertices the vertices representing the polygon 
#         */
#       float area (const std::vector<uint32_t>& vertices);
# 
#       /** \brief Check if the triangle (u,v,w) is an ear. 
#         * \param[in] u the first triangle vertex 
#         * \param[in] v the second triangle vertex 
#         * \param[in] w the third triangle vertex 
#         * \param[in] vertices a set of input vertices
#         */
#       bool isEar (int u, int v, int w, const std::vector<uint32_t>& vertices);
# 
#       /** \brief Check if p is inside the triangle (u,v,w). 
#         * \param[in] u the first triangle vertex 
#         * \param[in] v the second triangle vertex 
#         * \param[in] w the third triangle vertex 
#         * \param[in] p the point to check
#         */
#       bool isInsideTriangle (const Eigen::Vector2f& u,
#                         const Eigen::Vector2f& v,
#                         const Eigen::Vector2f& w,
#                         const Eigen::Vector2f& p);
# 
# 
#       /** \brief Compute the cross product between 2D vectors.
#        * \param[in] p1 the first 2D vector
#        * \param[in] p2 the first 2D vector
#        */
#       float crossProduct (const Eigen::Vector2f& p1, const Eigen::Vector2f& p2) const
###

# factor.h(1.6.0)
# pcl/surface/3rdparty/poisson4/factor.h (1.7.2)
# namespace pcl
# namespace poisson
# 
#     double ArcTan2 (const double& y, const double& x);
#     double Angle (const double in[2]);
#     void Sqrt (const double in[2], double out[2]);
#     void Add (const double in1[2], const double in2[2], double out[2]);
#     void Subtract (const double in1[2], const double in2[2], double out[2]);
#     void Multiply (const double in1[2], const double in2[2], double out[2]);
#     void Divide (const double in1[2], const double in2[2], double out[2]);
# 
#     int Factor (double a1, double a0, double roots[1][2], const double& EPS);
#     int Factor (double a2, double a1, double a0, double roots[2][2], const double& EPS);
#     int Factor (double a3, double a2, double a1, double a0, double roots[3][2], const double& EPS);
#     int Factor (double a4, double a3, double a2, double a1, double a0, double roots[4][2], const double& EPS);
# 
#     int Solve (const double* eqns, const double* values, double* solutions, const int& dim);
###

# function_data.h (1.6.0)
# pcl/surface/3rdparty/poisson4/function_data.h (1.7.2)
# namespace pcl 
# namespace poisson 
# template<int Degree,class Real>
# class FunctionData
# cdef extern from "pcl/surface/function_data.h" namespace "pcl::poisson":
#     cdef cppclass FunctionData:
#         FunctionData()
#         int useDotRatios;
#         int normalize;
#         public:
#         const static int DOT_FLAG;
#         const static int D_DOT_FLAG;
#         const static int D2_DOT_FLAG;
#         const static int VALUE_FLAG;
#         const static int D_VALUE_FLAG;
#         int depth, res, res2;
#         Real *dotTable, *dDotTable, *d2DotTable;
#         Real *valueTables, *dValueTables;
#         PPolynomial<Degree> baseFunction;
#         PPolynomial<Degree-1> dBaseFunction;
#         PPolynomial<Degree+1>* baseFunctions;
#         virtual void setDotTables (const int& flags);
#         virtual void clearDotTables (const int& flags);
#         virtual void setValueTables (const int& flags, const double& smooth = 0);
#         virtual void setValueTables (const int& flags, const double& valueSmooth, const double& normalSmooth);
#         virtual void clearValueTables (void);
#         void set (const int& maxDepth, const PPolynomial<Degree>& F, const int& normalize, const int& useDotRatios = 1);
#         Real dotProduct (const double& center1, const double& width1,
#                          const double& center2, const double& width2) const;
#         Real dDotProduct (const double& center1, const double& width1,
#                           const double& center2, const double& width2) const;
#         Real d2DotProduct (const double& center1, const double& width1,
#                            const double& center2, const double& width2) const;
#         static inline int SymmetricIndex (const int& i1, const int& i2);
#         static inline int SymmetricIndex (const int& i1, const int& i2, int& index);
###

# geometry.h (1.6.0)
# pcl/surface/3rdparty/poisson4/geometry.h (1.7.2)
# namespace pcl
# namespace poisson 
#   {
#     template<class Real>
#     Real Random (void);
# 
#     template<class Real>
#     struct Point3D{Real coords[3];};
# 
#     template<class Real>
#     Point3D<Real> RandomBallPoint (void);
# 
#     template<class Real>
#     Point3D<Real> RandomSpherePoint (void);
# 
#     template<class Real>
#     double Length (const Point3D<Real>& p);
# 
#     template<class Real>
#     double SquareLength (const Point3D<Real>& p);
# 
#     template<class Real>
#     double Distance (const Point3D<Real>& p1, const Point3D<Real>& p2);
# 
#     template<class Real>
#     double SquareDistance (const Point3D<Real>& p1, const Point3D<Real>& p2);
# 
#     template <class Real>
#     void CrossProduct (const Point3D<Real>& p1, const Point3D<Real>& p2, Point3D<Real>& p);
# 
#     class Edge
#     {
#       public:
#         double p[2][2];
#         double Length (void) const
#         {
#           double d[2];
#           d[0]=p[0][0]-p[1][0];
#           d[1]=p[0][1]-p[1][1];
# 
#           return sqrt (d[0]*d[0]+d[1]*d[1]);
#         }
#     };
#     
#     class Triangle
#     {
#       public:
#         double p[3][3];
#         
#         double 
#         Area (void) const
#         {
#           double v1[3], v2[3], v[3];
#           for (int d=0;d<3;d++)
#           {
#             v1[d] = p[1][d]-p[0][d];
#             v2[d] = p[2][d]-p[0][d];
#           }
#           v[0] =  v1[1]*v2[2]-v1[2]*v2[1];
#           v[1] = -v1[0]*v2[2]+v1[2]*v2[0];
#           v[2] =  v1[0]*v2[1]-v1[1]*v2[0];
# 
#           return (sqrt (v[0] * v[0] + v[1] * v[1] + v[2] * v[2]) / 2);
#         }
# 
#         double 
#         AspectRatio (void) const
#         {
#           double d=0;
#           int i, j;
#           for (i = 0; i < 3; i++)
#           {
#             for (i = 0; i < 3; i++)
#               for (j = 0; j < 3; j++)
#               {
#                 d += (p[(i+1)%3][j]-p[i][j])* (p[(i+1)%3][j]-p[i][j]);
#               }
#           }
#           return (Area () / d);
#         }
#     };
# 
#     class CoredPointIndex
#     {
#       public:
#         int index;
#         char inCore;
# 
#         int operator == (const CoredPointIndex& cpi) const {return (index==cpi.index) && (inCore==cpi.inCore);};
#         int operator != (const CoredPointIndex& cpi) const {return (index!=cpi.index) || (inCore!=cpi.inCore);};
#     };
# 
#     class EdgeIndex
#     {
#       public:
#         int idx[2];
#     };
# 
#     class CoredEdgeIndex
#     {
#       public:
#         CoredPointIndex idx[2];
#     };
# 
#     class TriangleIndex
#     {
#       public:
#         int idx[3];
#     };
# 
#     class TriangulationEdge
#     {
#       public:
#         TriangulationEdge (void);
#         int pIndex[2];
#         int tIndex[2];
#     };
# 
#     class TriangulationTriangle
#     {
#       public:
#         TriangulationTriangle (void);
#         int eIndex[3];
#     };
# 
#     template<class Real>
#     class Triangulation
#     {
#       public:
#         Triangulation () : points (),  edges (),  triangles (),  edgeMap () {}
# 
#         std::vector<Point3D<Real> >        points;
#         std::vector<TriangulationEdge>     edges;
#         std::vector<TriangulationTriangle> triangles;
# 
#         int 
#         factor (const int& tIndex, int& p1, int& p2, int& p3);
#         
#         double 
#         area (void);
# 
#         double 
#         area (const int& tIndex);
# 
#         double 
#         area (const int& p1, const int& p2, const int& p3);
# 
#         int 
#         flipMinimize (const int& eIndex);
# 
#         int 
#         addTriangle (const int& p1, const int& p2, const int& p3);
# 
#       protected:
#         hash_map<long long, int> edgeMap;
#         static long long EdgeIndex (const int& p1, const int& p2);
#         double area (const Triangle& t);
#     };
# 
# 
#     template<class Real> void 
#     EdgeCollapse (const Real& edgeRatio,
#                   std::vector<TriangleIndex>& triangles,
#                   std::vector< Point3D<Real> >& positions,
#                   std::vector<Point3D<Real> >* normals);
#     
#     template<class Real> void 
#     TriangleCollapse (const Real& edgeRatio,
#                       std::vector<TriangleIndex>& triangles,
#                       std::vector<Point3D<Real> >& positions,
#                       std::vector<Point3D<Real> >* normals);
# 
#     struct CoredVertexIndex
#     {
#       int idx;
#       bool inCore;
#     };
# 
#     class CoredMeshData
#     {
#       public:
#         CoredMeshData () : inCorePoints () {}
# 
#         virtual ~CoredMeshData () {}
# 
#         std::vector<Point3D<float> > inCorePoints;
#         
#         virtual void 
#         resetIterator () = 0;
# 
#         virtual int 
#         addOutOfCorePoint (const Point3D<float>& p) = 0;
# 
#         virtual int 
#         addPolygon (const std::vector< CoredVertexIndex >& vertices) = 0;
# 
#         virtual int 
#         nextOutOfCorePoint (Point3D<float>& p) = 0;
#         
#         virtual int 
#         nextPolygon (std::vector<CoredVertexIndex >& vertices) = 0;
# 
#         virtual int 
#         outOfCorePointCount () = 0;
#         
#         virtual int 
#         polygonCount () = 0;
#     };
# 
#     class CoredVectorMeshData : public CoredMeshData
#     {
#       std::vector<Point3D<float> > oocPoints;
#       std::vector< std::vector< int > > polygons;
#       int polygonIndex;
#       int oocPointIndex;
# 
#       public:
#         CoredVectorMeshData ();
#         
#         virtual ~CoredVectorMeshData () {}
# 
#         void resetIterator (void);
# 
#         int addOutOfCorePoint (const Point3D<float>& p);
#         int addPolygon (const std::vector< CoredVertexIndex >& vertices);
# 
#         int nextOutOfCorePoint (Point3D<float>& p);
#         int nextPolygon (std::vector< CoredVertexIndex >& vertices);
# 
#         int outOfCorePointCount (void);
#         int polygonCount (void);
#     };
# 
#     class CoredFileMeshData : public CoredMeshData
#     {
#       FILE *oocPointFile ,  *polygonFile;
#       int oocPoints ,  polygons;
#       public:
#         CoredFileMeshData ();
#         virtual ~CoredFileMeshData ();
# 
#         void resetIterator (void);
# 
#         int addOutOfCorePoint (const Point3D<float>& p);
#         int addPolygon (const std::vector< CoredVertexIndex >& vertices);
# 
#         int nextOutOfCorePoint (Point3D<float>& p);
#         int nextPolygon (std::vector< CoredVertexIndex >& vertices);
# 
#         int outOfCorePointCount (void);
#         int polygonCount (void);
#     };
#   }
# 
###

# gp3.h
# namespace pcl
#   /** \brief Returns if a point X is visible from point R (or the origin)
#     * when taking into account the segment between the points S1 and S2
#     * \param X 2D coordinate of the point
#     * \param S1 2D coordinate of the segment's first point
#     * \param S2 2D coordinate of the segment's secont point
#     * \param R 2D coorddinate of the reference point (defaults to 0,0)
#     * \ingroup surface
#     */
#   inline bool 
#   isVisible (const Eigen::Vector2f &X, const Eigen::Vector2f &S1, const Eigen::Vector2f &S2, 
#              const Eigen::Vector2f &R = Eigen::Vector2f::Zero ())
# 
# /** \brief GreedyProjectionTriangulation is an implementation of a greedy triangulation algorithm for 3D points
#   * based on local 2D projections. It assumes locally smooth surfaces and relatively smooth transitions between
#   * areas with different point densities.
#   * \author Zoltan Csaba Marton
#   * \ingroup surface
#   */
# template <typename PointInT>
# class GreedyProjectionTriangulation : public MeshConstruction<PointInT>
cdef extern from "pcl/surface/gp3.h" namespace "pcl::poisson":
    cdef cppclass GreedyProjectionTriangulation[In](MeshConstruction[In]):
        GreedyProjectionTriangulation()
        # public:
        # using MeshConstruction<PointInT>::tree_;
        # using MeshConstruction<PointInT>::input_;
        # using MeshConstruction<PointInT>::indices_;
        # typedef typename pcl::KdTree<PointInT> KdTree;
        # typedef typename pcl::KdTree<PointInT>::Ptr KdTreePtr;
        # typedef pcl::PointCloud<PointInT> PointCloudIn;
        # typedef typename PointCloudIn::Ptr PointCloudInPtr;
        # typedef typename PointCloudIn::ConstPtr PointCloudInConstPtr;
        # // FIXME this enum should have a type.  Not be anonymous. 
        # // Otherplaces where consts are used probably should be fixed.
        # enum 
        # { 
        #   NONE = -1,    // not-defined
        #   FREE = 0,    
        #   FRINGE = 1,  
        #   BOUNDARY = 2,
        #   COMPLETED = 3
        # };
        # 
        # /** \brief Set the multiplier of the nearest neighbor distance to obtain the final search radius for each point
        #  *  (this will make the algorithm adapt to different point densities in the cloud).
        #  * \param[in] mu the multiplier
        # inline void setMu (double mu)
        # /** \brief Get the nearest neighbor distance multiplier. */
        # inline double getMu ()
        # /** \brief Set the maximum number of nearest neighbors to be searched for.
        #   * \param[in] nnn the maximum number of nearest neighbors
        # inline void setMaximumNearestNeighbors (int nnn)
        # /** \brief Get the maximum number of nearest neighbors to be searched for. */
        # inline int getMaximumNearestNeighbors ()
        # /** \brief Set the sphere radius that is to be used for determining the k-nearest neighbors used for triangulating.
        #   * \param[in] radius the sphere radius that is to contain all k-nearest neighbors
        #   * \note This distance limits the maximum edge length!
        # inline void setSearchRadius (double radius)
        # /** \brief Get the sphere radius used for determining the k-nearest neighbors. */
        # inline double getSearchRadius ()
        # /** \brief Set the minimum angle each triangle should have.
        #   * \param[in] minimum_angle the minimum angle each triangle should have
        #   * \note As this is a greedy approach, this will have to be violated from time to time
        # inline void setMinimumAngle (double minimum_angle)
        # /** \brief Get the parameter for distance based weighting of neighbors. */
        # inline double getMinimumAngle ()
        # /** \brief Set the maximum angle each triangle can have.
        #   * \param[in] maximum_angle the maximum angle each triangle can have
        #   * \note For best results, its value should be around 120 degrees
        # inline void setMaximumAngle (double maximum_angle)
        # /** \brief Get the parameter for distance based weighting of neighbors. */
        # inline double getMaximumAngle ()
        # /** \brief Don't consider points for triangulation if their normal deviates more than this value from the query point's normal.
        #   * \param[in] eps_angle maximum surface angle
        #   * \note As normal estimation methods usually give smooth transitions at sharp edges, this ensures correct triangulation
        #   *       by avoiding connecting points from one side to points from the other through forcing the use of the edge points.
        # inline void setMaximumSurfaceAngle (double eps_angle)
        # /** \brief Get the maximum surface angle. */
        # inline double getMaximumSurfaceAngle ()
        # /** \brief Set the flag if the input normals are oriented consistently.
        #   * \param[in] consistent set it to true if the normals are consistently oriented
        # inline void setNormalConsistency (bool consistent)
        # /** \brief Get the flag for consistently oriented normals. */
        # inline bool getNormalConsistency ()
        # /** \brief Set the flag to order the resulting triangle vertices consistently (positive direction around normal).
        #   * @note Assumes consistently oriented normals (towards the viewpoint) -- see setNormalConsistency ()
        #   * \param[in] consistent_ordering set it to true if triangle vertices should be ordered consistently
        # inline void setConsistentVertexOrdering (bool consistent_ordering)
        # /** \brief Get the flag signaling consistently ordered triangle vertices. */
        # inline bool getConsistentVertexOrdering ()
        # /** \brief Get the state of each point after reconstruction.
        #   * \note Options are defined as constants: FREE, FRINGE, COMPLETED, BOUNDARY and NONE
        # inline std::vector<int> getPointStates ()
        # /** \brief Get the ID of each point after reconstruction.
        #   * \note parts are numbered from 0, a -1 denotes unconnected points
        # inline std::vector<int> getPartIDs ()
        # /** \brief Get the sfn list. */
        # inline std::vector<int> getSFN ()
        # /** \brief Get the ffn list. */
        # inline std::vector<int> getFFN ()


###

# grid_projection.h
# namespace pcl
# {
#   /** \brief The 12 edges of a cell. */
#   const int I_SHIFT_EP[12][2] = {
#     {0, 4}, {1, 5}, {2, 6}, {3, 7}, 
#     {0, 1}, {1, 2}, {2, 3}, {3, 0},
#     {4, 5}, {5, 6}, {6, 7}, {7, 4}
#   };
# 
#   const int I_SHIFT_PT[4] = {
#     0, 4, 5, 7
#   };
# 
#   const int I_SHIFT_EDGE[3][2] = {
#     {0,1}, {1,3}, {1,2}
#   };
###

# grid_projection.h
# namespace pcl

# grid_projection.h
# namespace pcl
# /** \brief Grid projection surface reconstruction method.
#   * \author Rosie Li
#   *
#   * \note If you use this code in any academic work, please cite:
#   *   - Ruosi Li, Lu Liu, Ly Phan, Sasakthi Abeysinghe, Cindy Grimm, Tao Ju.
#   *     Polygonizing extremal surfaces with manifold guarantees.
#   *     In Proceedings of the 14th ACM Symposium on Solid and Physical Modeling, 2010.
#    * \ingroup surface
#   */
# template <typename PointNT>
# class GridProjection : public SurfaceReconstruction<PointNT>
cdef extern from "pcl/surface/grid_projection.h" namespace "pcl":
    cdef cppclass GridProjection[PointNT](SurfaceReconstruction[PointNT]):
        GridProjection()
        GridProjection (double in_resolution)
        # public:
        # using SurfaceReconstruction<PointNT>::input_;
        # using SurfaceReconstruction<PointNT>::tree_;
        # typedef typename pcl::PointCloud<PointNT>::Ptr PointCloudPtr;
        # typedef typename pcl::KdTree<PointNT> KdTree;
        # typedef typename pcl::KdTree<PointNT>::Ptr KdTreePtr;
        # 
        # /** \brief Data leaf. */
        # struct Leaf
        # {
        #   Leaf () : data_indices (), pt_on_surface (), vect_at_grid_pt () {}
        # 
        #   std::vector<int> data_indices;
        #   Eigen::Vector4f pt_on_surface; 
        #   Eigen::Vector3f vect_at_grid_pt;
        # };
        # 
        # typedef boost::unordered_map<int, Leaf, boost::hash<int>, std::equal_to<int>, Eigen::aligned_allocator<int> > HashMap;
        # 
        # /** \brief Constructor. */ 
        # GridProjection ();
        # 
        # /** \brief Constructor. 
        #   * \param in_resolution set the resolution of the grid
        #   */ 
        # GridProjection (double in_resolution);
        # 
        # /** \brief Destructor. */
        # ~GridProjection ();
        # 
        
        # /** \brief Set the size of the grid cell
        #   * \param resolution  the size of the grid cell
        #   */
        # inline void setResolution (double resolution)
        void setResolution (double resolution)
        
        # inline double getResolution () const
        double getResolution ()
        
        # /** \brief When averaging the vectors, we find the union of all the input data 
        #   *  points within the padding area,and do a weighted average. Say if the padding
        #   *  size is 1, when we process cell (x,y,z), we will find union of input data points
        #   *  from (x-1) to (x+1), (y-1) to (y+1), (z-1) to (z+1)(in total, 27 cells). In this
        #   *  way, even the cells itself doesnt contain any data points, we will stil process it
        #   *  because there are data points in the padding area. This can help us fix holes which 
        #   *  is smaller than the padding size.
        #   * \param padding_size The num of padding cells we want to create 
        #   */
        # inline void setPaddingSize (int padding_size)
        void setPaddingSize (int padding_size)
        
        # inline int getPaddingSize () const
        int getPaddingSize ()
        
        # /** \brief Set this only when using the k nearest neighbors search 
        #   * instead of finding the point union
        #   * \param k The number of nearest neighbors we are looking for
        #   */
        # inline void setNearestNeighborNum (int k)
        void setNearestNeighborNum (int k)
        
        # inline int getNearestNeighborNum () const
        int getNearestNeighborNum ()
        
        # /** \brief Binary search is used in projection. given a point x, we find another point
        #   *  which is 3*cell_size_ far away from x. Then we do a binary search between these 
        #   *  two points to find where the projected point should be.
        #   */
        # inline void setMaxBinarySearchLevel (int max_binary_search_level)
        void setMaxBinarySearchLevel (int max_binary_search_level)
        
        # inline int getMaxBinarySearchLevel () const
        int getMaxBinarySearchLevel () const
        
        # inline const HashMap& getCellHashMap () const
        # 
        # inline const std::vector<Eigen::Vector3f, Eigen::aligned_allocator<Eigen::Vector3f> >& getVectorAtDataPoint () const
        # 
        # inline const std::vector<Eigen::Vector4f, Eigen::aligned_allocator<Eigen::Vector4f> >& getSurface () const


###

# hash.h (1.6.0)
# pcl/surface/3rdparty/poisson4/hash.h (1.7.2)
###

# marching_cubes.h (1.6.0)
# pcl/surface/3rdparty/poisson4/marching_cubes_poisson.h (1.7.2)
# 
# namespace pcl
# {
#   /*
#    * Tables, and functions, derived from Paul Bourke's Marching Cubes implementation:
#    * http://paulbourke.net/geometry/polygonise/
#    * Cube vertex indices:
#    *   y_dir 4 ________ 5
#    *         /|       /|
#    *       /  |     /  |
#    *   7 /_______ /    |
#    *    |     |  |6    |
#    *    |    0|__|_____|1 x_dir
#    *    |    /   |    /
#    *    |  /     |  /
#    z_dir|/_______|/
#    *   3          2
#    */
#   const unsigned int edgeTable[256] = {
#     0x0  , 0x109, 0x203, 0x30a, 0x406, 0x50f, 0x605, 0x70c,
#     0x80c, 0x905, 0xa0f, 0xb06, 0xc0a, 0xd03, 0xe09, 0xf00,
#     0x190, 0x99 , 0x393, 0x29a, 0x596, 0x49f, 0x795, 0x69c,
#     0x99c, 0x895, 0xb9f, 0xa96, 0xd9a, 0xc93, 0xf99, 0xe90,
#     0x230, 0x339, 0x33 , 0x13a, 0x636, 0x73f, 0x435, 0x53c,
#     0xa3c, 0xb35, 0x83f, 0x936, 0xe3a, 0xf33, 0xc39, 0xd30,
#     0x3a0, 0x2a9, 0x1a3, 0xaa , 0x7a6, 0x6af, 0x5a5, 0x4ac,
#     0xbac, 0xaa5, 0x9af, 0x8a6, 0xfaa, 0xea3, 0xda9, 0xca0,
#     0x460, 0x569, 0x663, 0x76a, 0x66 , 0x16f, 0x265, 0x36c,
#     0xc6c, 0xd65, 0xe6f, 0xf66, 0x86a, 0x963, 0xa69, 0xb60,
#     0x5f0, 0x4f9, 0x7f3, 0x6fa, 0x1f6, 0xff , 0x3f5, 0x2fc,
#     0xdfc, 0xcf5, 0xfff, 0xef6, 0x9fa, 0x8f3, 0xbf9, 0xaf0,
#     0x650, 0x759, 0x453, 0x55a, 0x256, 0x35f, 0x55 , 0x15c,
#     0xe5c, 0xf55, 0xc5f, 0xd56, 0xa5a, 0xb53, 0x859, 0x950,
#     0x7c0, 0x6c9, 0x5c3, 0x4ca, 0x3c6, 0x2cf, 0x1c5, 0xcc ,
#     0xfcc, 0xec5, 0xdcf, 0xcc6, 0xbca, 0xac3, 0x9c9, 0x8c0,
#     0x8c0, 0x9c9, 0xac3, 0xbca, 0xcc6, 0xdcf, 0xec5, 0xfcc,
#     0xcc , 0x1c5, 0x2cf, 0x3c6, 0x4ca, 0x5c3, 0x6c9, 0x7c0,
#     0x950, 0x859, 0xb53, 0xa5a, 0xd56, 0xc5f, 0xf55, 0xe5c,
#     0x15c, 0x55 , 0x35f, 0x256, 0x55a, 0x453, 0x759, 0x650,
#     0xaf0, 0xbf9, 0x8f3, 0x9fa, 0xef6, 0xfff, 0xcf5, 0xdfc,
#     0x2fc, 0x3f5, 0xff , 0x1f6, 0x6fa, 0x7f3, 0x4f9, 0x5f0,
#     0xb60, 0xa69, 0x963, 0x86a, 0xf66, 0xe6f, 0xd65, 0xc6c,
#     0x36c, 0x265, 0x16f, 0x66 , 0x76a, 0x663, 0x569, 0x460,
#     0xca0, 0xda9, 0xea3, 0xfaa, 0x8a6, 0x9af, 0xaa5, 0xbac,
#     0x4ac, 0x5a5, 0x6af, 0x7a6, 0xaa , 0x1a3, 0x2a9, 0x3a0,
#     0xd30, 0xc39, 0xf33, 0xe3a, 0x936, 0x83f, 0xb35, 0xa3c,
#     0x53c, 0x435, 0x73f, 0x636, 0x13a, 0x33 , 0x339, 0x230,
#     0xe90, 0xf99, 0xc93, 0xd9a, 0xa96, 0xb9f, 0x895, 0x99c,
#     0x69c, 0x795, 0x49f, 0x596, 0x29a, 0x393, 0x99 , 0x190,
#     0xf00, 0xe09, 0xd03, 0xc0a, 0xb06, 0xa0f, 0x905, 0x80c,
#     0x70c, 0x605, 0x50f, 0x406, 0x30a, 0x203, 0x109, 0x0
#   };
#   const int triTable[256][16] = {
#     {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
#     {0, 8, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
#     {0, 1, 9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
#     {1, 8, 3, 9, 8, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
#     {1, 2, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
#     {0, 8, 3, 1, 2, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
#     {9, 2, 10, 0, 2, 9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
#     {2, 8, 3, 2, 10, 8, 10, 9, 8, -1, -1, -1, -1, -1, -1, -1},
#     {3, 11, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
#     {0, 11, 2, 8, 11, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
#     {1, 9, 0, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
#     {1, 11, 2, 1, 9, 11, 9, 8, 11, -1, -1, -1, -1, -1, -1, -1},
#     {3, 10, 1, 11, 10, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
#     {0, 10, 1, 0, 8, 10, 8, 11, 10, -1, -1, -1, -1, -1, -1, -1},
#     {3, 9, 0, 3, 11, 9, 11, 10, 9, -1, -1, -1, -1, -1, -1, -1},
#     {9, 8, 10, 10, 8, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
#     {4, 7, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
#     {4, 3, 0, 7, 3, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
#     {0, 1, 9, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
#     {4, 1, 9, 4, 7, 1, 7, 3, 1, -1, -1, -1, -1, -1, -1, -1},
#     {1, 2, 10, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
#     {3, 4, 7, 3, 0, 4, 1, 2, 10, -1, -1, -1, -1, -1, -1, -1},
#     {9, 2, 10, 9, 0, 2, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1},
#     {2, 10, 9, 2, 9, 7, 2, 7, 3, 7, 9, 4, -1, -1, -1, -1},
#     {8, 4, 7, 3, 11, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
#     {11, 4, 7, 11, 2, 4, 2, 0, 4, -1, -1, -1, -1, -1, -1, -1},
#     {9, 0, 1, 8, 4, 7, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1},
#     {4, 7, 11, 9, 4, 11, 9, 11, 2, 9, 2, 1, -1, -1, -1, -1},
#     {3, 10, 1, 3, 11, 10, 7, 8, 4, -1, -1, -1, -1, -1, -1, -1},
#     {1, 11, 10, 1, 4, 11, 1, 0, 4, 7, 11, 4, -1, -1, -1, -1},
#     {4, 7, 8, 9, 0, 11, 9, 11, 10, 11, 0, 3, -1, -1, -1, -1},
#     {4, 7, 11, 4, 11, 9, 9, 11, 10, -1, -1, -1, -1, -1, -1, -1},
#     {9, 5, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
#     {9, 5, 4, 0, 8, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
#     {0, 5, 4, 1, 5, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
#     {8, 5, 4, 8, 3, 5, 3, 1, 5, -1, -1, -1, -1, -1, -1, -1},
#     {1, 2, 10, 9, 5, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
#     {3, 0, 8, 1, 2, 10, 4, 9, 5, -1, -1, -1, -1, -1, -1, -1},
#     {5, 2, 10, 5, 4, 2, 4, 0, 2, -1, -1, -1, -1, -1, -1, -1},
#     {2, 10, 5, 3, 2, 5, 3, 5, 4, 3, 4, 8, -1, -1, -1, -1},
#     {9, 5, 4, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
#     {0, 11, 2, 0, 8, 11, 4, 9, 5, -1, -1, -1, -1, -1, -1, -1},
#     {0, 5, 4, 0, 1, 5, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1},
#     {2, 1, 5, 2, 5, 8, 2, 8, 11, 4, 8, 5, -1, -1, -1, -1},
#     {10, 3, 11, 10, 1, 3, 9, 5, 4, -1, -1, -1, -1, -1, -1, -1},
#     {4, 9, 5, 0, 8, 1, 8, 10, 1, 8, 11, 10, -1, -1, -1, -1},
#     {5, 4, 0, 5, 0, 11, 5, 11, 10, 11, 0, 3, -1, -1, -1, -1},
#     {5, 4, 8, 5, 8, 10, 10, 8, 11, -1, -1, -1, -1, -1, -1, -1},
#     {9, 7, 8, 5, 7, 9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
#     {9, 3, 0, 9, 5, 3, 5, 7, 3, -1, -1, -1, -1, -1, -1, -1},
#     {0, 7, 8, 0, 1, 7, 1, 5, 7, -1, -1, -1, -1, -1, -1, -1},
#     {1, 5, 3, 3, 5, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
#     {9, 7, 8, 9, 5, 7, 10, 1, 2, -1, -1, -1, -1, -1, -1, -1},
#     {10, 1, 2, 9, 5, 0, 5, 3, 0, 5, 7, 3, -1, -1, -1, -1},
#     {8, 0, 2, 8, 2, 5, 8, 5, 7, 10, 5, 2, -1, -1, -1, -1},
#     {2, 10, 5, 2, 5, 3, 3, 5, 7, -1, -1, -1, -1, -1, -1, -1},
#     {7, 9, 5, 7, 8, 9, 3, 11, 2, -1, -1, -1, -1, -1, -1, -1},
#     {9, 5, 7, 9, 7, 2, 9, 2, 0, 2, 7, 11, -1, -1, -1, -1},
#     {2, 3, 11, 0, 1, 8, 1, 7, 8, 1, 5, 7, -1, -1, -1, -1},
#     {11, 2, 1, 11, 1, 7, 7, 1, 5, -1, -1, -1, -1, -1, -1, -1},
#     {9, 5, 8, 8, 5, 7, 10, 1, 3, 10, 3, 11, -1, -1, -1, -1},
#     {5, 7, 0, 5, 0, 9, 7, 11, 0, 1, 0, 10, 11, 10, 0, -1},
#     {11, 10, 0, 11, 0, 3, 10, 5, 0, 8, 0, 7, 5, 7, 0, -1},
#     {11, 10, 5, 7, 11, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
#     {10, 6, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
#     {0, 8, 3, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
#     {9, 0, 1, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
#     {1, 8, 3, 1, 9, 8, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1},
#     {1, 6, 5, 2, 6, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
#     {1, 6, 5, 1, 2, 6, 3, 0, 8, -1, -1, -1, -1, -1, -1, -1},
#     {9, 6, 5, 9, 0, 6, 0, 2, 6, -1, -1, -1, -1, -1, -1, -1},
#     {5, 9, 8, 5, 8, 2, 5, 2, 6, 3, 2, 8, -1, -1, -1, -1},
#     {2, 3, 11, 10, 6, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
#     {11, 0, 8, 11, 2, 0, 10, 6, 5, -1, -1, -1, -1, -1, -1, -1},
#     {0, 1, 9, 2, 3, 11, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1},
#     {5, 10, 6, 1, 9, 2, 9, 11, 2, 9, 8, 11, -1, -1, -1, -1},
#     {6, 3, 11, 6, 5, 3, 5, 1, 3, -1, -1, -1, -1, -1, -1, -1},
#     {0, 8, 11, 0, 11, 5, 0, 5, 1, 5, 11, 6, -1, -1, -1, -1},
#     {3, 11, 6, 0, 3, 6, 0, 6, 5, 0, 5, 9, -1, -1, -1, -1},
#     {6, 5, 9, 6, 9, 11, 11, 9, 8, -1, -1, -1, -1, -1, -1, -1},
#     {5, 10, 6, 4, 7, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
#     {4, 3, 0, 4, 7, 3, 6, 5, 10, -1, -1, -1, -1, -1, -1, -1},
#     {1, 9, 0, 5, 10, 6, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1},
#     {10, 6, 5, 1, 9, 7, 1, 7, 3, 7, 9, 4, -1, -1, -1, -1},
#     {6, 1, 2, 6, 5, 1, 4, 7, 8, -1, -1, -1, -1, -1, -1, -1},
#     {1, 2, 5, 5, 2, 6, 3, 0, 4, 3, 4, 7, -1, -1, -1, -1},
#     {8, 4, 7, 9, 0, 5, 0, 6, 5, 0, 2, 6, -1, -1, -1, -1},
#     {7, 3, 9, 7, 9, 4, 3, 2, 9, 5, 9, 6, 2, 6, 9, -1},
#     {3, 11, 2, 7, 8, 4, 10, 6, 5, -1, -1, -1, -1, -1, -1, -1},
#     {5, 10, 6, 4, 7, 2, 4, 2, 0, 2, 7, 11, -1, -1, -1, -1},
#     {0, 1, 9, 4, 7, 8, 2, 3, 11, 5, 10, 6, -1, -1, -1, -1},
#     {9, 2, 1, 9, 11, 2, 9, 4, 11, 7, 11, 4, 5, 10, 6, -1},
#     {8, 4, 7, 3, 11, 5, 3, 5, 1, 5, 11, 6, -1, -1, -1, -1},
#     {5, 1, 11, 5, 11, 6, 1, 0, 11, 7, 11, 4, 0, 4, 11, -1},
#     {0, 5, 9, 0, 6, 5, 0, 3, 6, 11, 6, 3, 8, 4, 7, -1},
#     {6, 5, 9, 6, 9, 11, 4, 7, 9, 7, 11, 9, -1, -1, -1, -1},
#     {10, 4, 9, 6, 4, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
#     {4, 10, 6, 4, 9, 10, 0, 8, 3, -1, -1, -1, -1, -1, -1, -1},
#     {10, 0, 1, 10, 6, 0, 6, 4, 0, -1, -1, -1, -1, -1, -1, -1},
#     {8, 3, 1, 8, 1, 6, 8, 6, 4, 6, 1, 10, -1, -1, -1, -1},
#     {1, 4, 9, 1, 2, 4, 2, 6, 4, -1, -1, -1, -1, -1, -1, -1},
#     {3, 0, 8, 1, 2, 9, 2, 4, 9, 2, 6, 4, -1, -1, -1, -1},
#     {0, 2, 4, 4, 2, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
#     {8, 3, 2, 8, 2, 4, 4, 2, 6, -1, -1, -1, -1, -1, -1, -1},
#     {10, 4, 9, 10, 6, 4, 11, 2, 3, -1, -1, -1, -1, -1, -1, -1},
#     {0, 8, 2, 2, 8, 11, 4, 9, 10, 4, 10, 6, -1, -1, -1, -1},
#     {3, 11, 2, 0, 1, 6, 0, 6, 4, 6, 1, 10, -1, -1, -1, -1},
#     {6, 4, 1, 6, 1, 10, 4, 8, 1, 2, 1, 11, 8, 11, 1, -1},
#     {9, 6, 4, 9, 3, 6, 9, 1, 3, 11, 6, 3, -1, -1, -1, -1},
#     {8, 11, 1, 8, 1, 0, 11, 6, 1, 9, 1, 4, 6, 4, 1, -1},
#     {3, 11, 6, 3, 6, 0, 0, 6, 4, -1, -1, -1, -1, -1, -1, -1},
#     {6, 4, 8, 11, 6, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
#     {7, 10, 6, 7, 8, 10, 8, 9, 10, -1, -1, -1, -1, -1, -1, -1},
#     {0, 7, 3, 0, 10, 7, 0, 9, 10, 6, 7, 10, -1, -1, -1, -1},
#     {10, 6, 7, 1, 10, 7, 1, 7, 8, 1, 8, 0, -1, -1, -1, -1},
#     {10, 6, 7, 10, 7, 1, 1, 7, 3, -1, -1, -1, -1, -1, -1, -1},
#     {1, 2, 6, 1, 6, 8, 1, 8, 9, 8, 6, 7, -1, -1, -1, -1},
#     {2, 6, 9, 2, 9, 1, 6, 7, 9, 0, 9, 3, 7, 3, 9, -1},
#     {7, 8, 0, 7, 0, 6, 6, 0, 2, -1, -1, -1, -1, -1, -1, -1},
#     {7, 3, 2, 6, 7, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
#     {2, 3, 11, 10, 6, 8, 10, 8, 9, 8, 6, 7, -1, -1, -1, -1},
#     {2, 0, 7, 2, 7, 11, 0, 9, 7, 6, 7, 10, 9, 10, 7, -1},
#     {1, 8, 0, 1, 7, 8, 1, 10, 7, 6, 7, 10, 2, 3, 11, -1},
#     {11, 2, 1, 11, 1, 7, 10, 6, 1, 6, 7, 1, -1, -1, -1, -1},
#     {8, 9, 6, 8, 6, 7, 9, 1, 6, 11, 6, 3, 1, 3, 6, -1},
#     {0, 9, 1, 11, 6, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
#     {7, 8, 0, 7, 0, 6, 3, 11, 0, 11, 6, 0, -1, -1, -1, -1},
#     {7, 11, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
#     {7, 6, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
#     {3, 0, 8, 11, 7, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
#     {0, 1, 9, 11, 7, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
#     {8, 1, 9, 8, 3, 1, 11, 7, 6, -1, -1, -1, -1, -1, -1, -1},
#     {10, 1, 2, 6, 11, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
#     {1, 2, 10, 3, 0, 8, 6, 11, 7, -1, -1, -1, -1, -1, -1, -1},
#     {2, 9, 0, 2, 10, 9, 6, 11, 7, -1, -1, -1, -1, -1, -1, -1},
#     {6, 11, 7, 2, 10, 3, 10, 8, 3, 10, 9, 8, -1, -1, -1, -1},
#     {7, 2, 3, 6, 2, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
#     {7, 0, 8, 7, 6, 0, 6, 2, 0, -1, -1, -1, -1, -1, -1, -1},
#     {2, 7, 6, 2, 3, 7, 0, 1, 9, -1, -1, -1, -1, -1, -1, -1},
#     {1, 6, 2, 1, 8, 6, 1, 9, 8, 8, 7, 6, -1, -1, -1, -1},
#     {10, 7, 6, 10, 1, 7, 1, 3, 7, -1, -1, -1, -1, -1, -1, -1},
#     {10, 7, 6, 1, 7, 10, 1, 8, 7, 1, 0, 8, -1, -1, -1, -1},
#     {0, 3, 7, 0, 7, 10, 0, 10, 9, 6, 10, 7, -1, -1, -1, -1},
#     {7, 6, 10, 7, 10, 8, 8, 10, 9, -1, -1, -1, -1, -1, -1, -1},
#     {6, 8, 4, 11, 8, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
#     {3, 6, 11, 3, 0, 6, 0, 4, 6, -1, -1, -1, -1, -1, -1, -1},
#     {8, 6, 11, 8, 4, 6, 9, 0, 1, -1, -1, -1, -1, -1, -1, -1},
#     {9, 4, 6, 9, 6, 3, 9, 3, 1, 11, 3, 6, -1, -1, -1, -1},
#     {6, 8, 4, 6, 11, 8, 2, 10, 1, -1, -1, -1, -1, -1, -1, -1},
#     {1, 2, 10, 3, 0, 11, 0, 6, 11, 0, 4, 6, -1, -1, -1, -1},
#     {4, 11, 8, 4, 6, 11, 0, 2, 9, 2, 10, 9, -1, -1, -1, -1},
#     {10, 9, 3, 10, 3, 2, 9, 4, 3, 11, 3, 6, 4, 6, 3, -1},
#     {8, 2, 3, 8, 4, 2, 4, 6, 2, -1, -1, -1, -1, -1, -1, -1},
#     {0, 4, 2, 4, 6, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
#     {1, 9, 0, 2, 3, 4, 2, 4, 6, 4, 3, 8, -1, -1, -1, -1},
#     {1, 9, 4, 1, 4, 2, 2, 4, 6, -1, -1, -1, -1, -1, -1, -1},
#     {8, 1, 3, 8, 6, 1, 8, 4, 6, 6, 10, 1, -1, -1, -1, -1},
#     {10, 1, 0, 10, 0, 6, 6, 0, 4, -1, -1, -1, -1, -1, -1, -1},
#     {4, 6, 3, 4, 3, 8, 6, 10, 3, 0, 3, 9, 10, 9, 3, -1},
#     {10, 9, 4, 6, 10, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
#     {4, 9, 5, 7, 6, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
#     {0, 8, 3, 4, 9, 5, 11, 7, 6, -1, -1, -1, -1, -1, -1, -1},
#     {5, 0, 1, 5, 4, 0, 7, 6, 11, -1, -1, -1, -1, -1, -1, -1},
#     {11, 7, 6, 8, 3, 4, 3, 5, 4, 3, 1, 5, -1, -1, -1, -1},
#     {9, 5, 4, 10, 1, 2, 7, 6, 11, -1, -1, -1, -1, -1, -1, -1},
#     {6, 11, 7, 1, 2, 10, 0, 8, 3, 4, 9, 5, -1, -1, -1, -1},
#     {7, 6, 11, 5, 4, 10, 4, 2, 10, 4, 0, 2, -1, -1, -1, -1},
#     {3, 4, 8, 3, 5, 4, 3, 2, 5, 10, 5, 2, 11, 7, 6, -1},
#     {7, 2, 3, 7, 6, 2, 5, 4, 9, -1, -1, -1, -1, -1, -1, -1},
#     {9, 5, 4, 0, 8, 6, 0, 6, 2, 6, 8, 7, -1, -1, -1, -1},
#     {3, 6, 2, 3, 7, 6, 1, 5, 0, 5, 4, 0, -1, -1, -1, -1},
#     {6, 2, 8, 6, 8, 7, 2, 1, 8, 4, 8, 5, 1, 5, 8, -1},
#     {9, 5, 4, 10, 1, 6, 1, 7, 6, 1, 3, 7, -1, -1, -1, -1},
#     {1, 6, 10, 1, 7, 6, 1, 0, 7, 8, 7, 0, 9, 5, 4, -1},
#     {4, 0, 10, 4, 10, 5, 0, 3, 10, 6, 10, 7, 3, 7, 10, -1},
#     {7, 6, 10, 7, 10, 8, 5, 4, 10, 4, 8, 10, -1, -1, -1, -1},
#     {6, 9, 5, 6, 11, 9, 11, 8, 9, -1, -1, -1, -1, -1, -1, -1},
#     {3, 6, 11, 0, 6, 3, 0, 5, 6, 0, 9, 5, -1, -1, -1, -1},
#     {0, 11, 8, 0, 5, 11, 0, 1, 5, 5, 6, 11, -1, -1, -1, -1},
#     {6, 11, 3, 6, 3, 5, 5, 3, 1, -1, -1, -1, -1, -1, -1, -1},
#     {1, 2, 10, 9, 5, 11, 9, 11, 8, 11, 5, 6, -1, -1, -1, -1},
#     {0, 11, 3, 0, 6, 11, 0, 9, 6, 5, 6, 9, 1, 2, 10, -1},
#     {11, 8, 5, 11, 5, 6, 8, 0, 5, 10, 5, 2, 0, 2, 5, -1},
#     {6, 11, 3, 6, 3, 5, 2, 10, 3, 10, 5, 3, -1, -1, -1, -1},
#     {5, 8, 9, 5, 2, 8, 5, 6, 2, 3, 8, 2, -1, -1, -1, -1},
#     {9, 5, 6, 9, 6, 0, 0, 6, 2, -1, -1, -1, -1, -1, -1, -1},
#     {1, 5, 8, 1, 8, 0, 5, 6, 8, 3, 8, 2, 6, 2, 8, -1},
#     {1, 5, 6, 2, 1, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
#     {1, 3, 6, 1, 6, 10, 3, 8, 6, 5, 6, 9, 8, 9, 6, -1},
#     {10, 1, 0, 10, 0, 6, 9, 5, 0, 5, 6, 0, -1, -1, -1, -1},
#     {0, 3, 8, 5, 6, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
#     {10, 5, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
#     {11, 5, 10, 7, 5, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
#     {11, 5, 10, 11, 7, 5, 8, 3, 0, -1, -1, -1, -1, -1, -1, -1},
#     {5, 11, 7, 5, 10, 11, 1, 9, 0, -1, -1, -1, -1, -1, -1, -1},
#     {10, 7, 5, 10, 11, 7, 9, 8, 1, 8, 3, 1, -1, -1, -1, -1},
#     {11, 1, 2, 11, 7, 1, 7, 5, 1, -1, -1, -1, -1, -1, -1, -1},
#     {0, 8, 3, 1, 2, 7, 1, 7, 5, 7, 2, 11, -1, -1, -1, -1},
#     {9, 7, 5, 9, 2, 7, 9, 0, 2, 2, 11, 7, -1, -1, -1, -1},
#     {7, 5, 2, 7, 2, 11, 5, 9, 2, 3, 2, 8, 9, 8, 2, -1},
#     {2, 5, 10, 2, 3, 5, 3, 7, 5, -1, -1, -1, -1, -1, -1, -1},
#     {8, 2, 0, 8, 5, 2, 8, 7, 5, 10, 2, 5, -1, -1, -1, -1},
#     {9, 0, 1, 5, 10, 3, 5, 3, 7, 3, 10, 2, -1, -1, -1, -1},
#     {9, 8, 2, 9, 2, 1, 8, 7, 2, 10, 2, 5, 7, 5, 2, -1},
#     {1, 3, 5, 3, 7, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
#     {0, 8, 7, 0, 7, 1, 1, 7, 5, -1, -1, -1, -1, -1, -1, -1},
#     {9, 0, 3, 9, 3, 5, 5, 3, 7, -1, -1, -1, -1, -1, -1, -1},
#     {9, 8, 7, 5, 9, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
#     {5, 8, 4, 5, 10, 8, 10, 11, 8, -1, -1, -1, -1, -1, -1, -1},
#     {5, 0, 4, 5, 11, 0, 5, 10, 11, 11, 3, 0, -1, -1, -1, -1},
#     {0, 1, 9, 8, 4, 10, 8, 10, 11, 10, 4, 5, -1, -1, -1, -1},
#     {10, 11, 4, 10, 4, 5, 11, 3, 4, 9, 4, 1, 3, 1, 4, -1},
#     {2, 5, 1, 2, 8, 5, 2, 11, 8, 4, 5, 8, -1, -1, -1, -1},
#     {0, 4, 11, 0, 11, 3, 4, 5, 11, 2, 11, 1, 5, 1, 11, -1},
#     {0, 2, 5, 0, 5, 9, 2, 11, 5, 4, 5, 8, 11, 8, 5, -1},
#     {9, 4, 5, 2, 11, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
#     {2, 5, 10, 3, 5, 2, 3, 4, 5, 3, 8, 4, -1, -1, -1, -1},
#     {5, 10, 2, 5, 2, 4, 4, 2, 0, -1, -1, -1, -1, -1, -1, -1},
#     {3, 10, 2, 3, 5, 10, 3, 8, 5, 4, 5, 8, 0, 1, 9, -1},
#     {5, 10, 2, 5, 2, 4, 1, 9, 2, 9, 4, 2, -1, -1, -1, -1},
#     {8, 4, 5, 8, 5, 3, 3, 5, 1, -1, -1, -1, -1, -1, -1, -1},
#     {0, 4, 5, 1, 0, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
#     {8, 4, 5, 8, 5, 3, 9, 0, 5, 0, 3, 5, -1, -1, -1, -1},
#     {9, 4, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
#     {4, 11, 7, 4, 9, 11, 9, 10, 11, -1, -1, -1, -1, -1, -1, -1},
#     {0, 8, 3, 4, 9, 7, 9, 11, 7, 9, 10, 11, -1, -1, -1, -1},
#     {1, 10, 11, 1, 11, 4, 1, 4, 0, 7, 4, 11, -1, -1, -1, -1},
#     {3, 1, 4, 3, 4, 8, 1, 10, 4, 7, 4, 11, 10, 11, 4, -1},
#     {4, 11, 7, 9, 11, 4, 9, 2, 11, 9, 1, 2, -1, -1, -1, -1},
#     {9, 7, 4, 9, 11, 7, 9, 1, 11, 2, 11, 1, 0, 8, 3, -1},
#     {11, 7, 4, 11, 4, 2, 2, 4, 0, -1, -1, -1, -1, -1, -1, -1},
#     {11, 7, 4, 11, 4, 2, 8, 3, 4, 3, 2, 4, -1, -1, -1, -1},
#     {2, 9, 10, 2, 7, 9, 2, 3, 7, 7, 4, 9, -1, -1, -1, -1},
#     {9, 10, 7, 9, 7, 4, 10, 2, 7, 8, 7, 0, 2, 0, 7, -1},
#     {3, 7, 10, 3, 10, 2, 7, 4, 10, 1, 10, 0, 4, 0, 10, -1},
#     {1, 10, 2, 8, 7, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
#     {4, 9, 1, 4, 1, 7, 7, 1, 3, -1, -1, -1, -1, -1, -1, -1},
#     {4, 9, 1, 4, 1, 7, 0, 8, 1, 8, 7, 1, -1, -1, -1, -1},
#     {4, 0, 3, 7, 4, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
#     {4, 8, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
#     {9, 10, 8, 10, 11, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
#     {3, 0, 9, 3, 9, 11, 11, 9, 10, -1, -1, -1, -1, -1, -1, -1},
#     {0, 1, 10, 0, 10, 8, 8, 10, 11, -1, -1, -1, -1, -1, -1, -1},
#     {3, 1, 10, 11, 3, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
#     {1, 2, 11, 1, 11, 9, 9, 11, 8, -1, -1, -1, -1, -1, -1, -1},
#     {3, 0, 9, 3, 9, 11, 1, 2, 9, 2, 11, 9, -1, -1, -1, -1},
#     {0, 2, 11, 8, 0, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
#     {3, 2, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
#     {2, 3, 8, 2, 8, 10, 10, 8, 9, -1, -1, -1, -1, -1, -1, -1},
#     {9, 10, 2, 0, 9, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
#     {2, 3, 8, 2, 8, 10, 0, 1, 8, 1, 10, 8, -1, -1, -1, -1},
#     {1, 10, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
#     {1, 3, 8, 9, 1, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
#     {0, 9, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
#     {0, 3, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
#     {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}
#   };
# 
# 
#   /** \brief The marching cubes surface reconstruction algorithm. This is an abstract class that takes a grid and
#     * extracts the isosurface as a mesh, based on the original marching cubes paper:
#     *
#     * Lorensen W.E., Cline H.E., "Marching cubes: A high resolution 3d surface construction algorithm",
#     * SIGGRAPH '87
#     *
#     * \author Alexandru E. Ichim
#     * \ingroup surface
#     */
#   template <typename PointNT>
#   class MarchingCubes : public SurfaceReconstruction<PointNT>
#   {
#     public:
#       using SurfaceReconstruction<PointNT>::input_;
#       using SurfaceReconstruction<PointNT>::tree_;
# 
#       typedef typename pcl::PointCloud<PointNT>::Ptr PointCloudPtr;
# 
#       typedef typename pcl::KdTree<PointNT> KdTree;
#       typedef typename pcl::KdTree<PointNT>::Ptr KdTreePtr;
# 
# 
#       /** \brief Constructor. */
#       MarchingCubes ();
# 
#       /** \brief Destructor. */
#       ~MarchingCubes ();
# 
# 
#       /** \brief Method that sets the iso level of the surface to be extracted.
#         * \param[in] iso_level the iso level.
#         */
#       inline void
#       setIsoLevel (float iso_level)
#       { iso_level_ = iso_level; }
# 
#       /** \brief Method that returns the iso level of the surface to be extracted. */
#       inline float
#       getIsoLevel ()
#       { return iso_level_; }
# 
#       /** \brief Method that sets the marching cubes grid resolution.
#         * \param[in] res_x the resolution of the grid along the x-axis
#         * \param[in] res_y the resolution of the grid along the y-axis
#         * \param[in] res_z the resolution of the grid along the z-axis
#         */
#       inline void
#       setGridResolution (int res_x, int res_y, int res_z)
#       { res_x_ = res_x; res_y_ = res_y; res_z_ = res_z; }
# 
# 
#       /** \brief Method to get the marching cubes grid resolution.
#         * \param[in] res_x the resolution of the grid along the x-axis
#         * \param[in] res_y the resolution of the grid along the y-axis
#         * \param[in] res_z the resolution of the grid along the z-axis
#         */
#       inline void
#       getGridResolution (int &res_x, int &res_y, int &res_z)
#       { res_x = res_x_; res_y = res_y_; res_z = res_z_; }
# 
#       /** \brief Method that sets the parameter that defines how much free space should be left inside the grid between
#         * the bounding box of the point cloud and the grid limits. Does not affect the resolution of the grid, it just
#         * changes the voxel size accordingly.
#         * \param[in] percentage the percentage of the bounding box that should be left empty between the bounding box and
#         * the grid limits.
#         */
#       inline void
#       setPercentageExtendGrid (float percentage)
#       { percentage_extend_grid_ = percentage; }
# 
#       /** \brief Method that gets the parameter that defines how much free space should be left inside the grid between
#         * the bounding box of the point cloud and the grid limits, as a percentage of the bounding box.
#         */
#       inline float
#       getPercentageExtendGrid ()
#       { return percentage_extend_grid_; }
# 
# protected:
#       /** \brief The data structure storing the 3D grid */
#       std::vector<float> grid_;
# 
#       /** \brief The grid resolution */
#       int res_x_, res_y_, res_z_;
# 
#       /** \brief Parameter that defines how much free space should be left inside the grid between
#         * the bounding box of the point cloud and the grid limits, as a percentage of the bounding box.*/
#       float percentage_extend_grid_;
# 
#       /** \brief Min and max data points. */
#       Eigen::Vector4f min_p_, max_p_;
# 
#       /** \brief The iso level to be extracted. */
#       float iso_level_;
# 
#       /** \brief Convert the point cloud into voxel data. */
#       virtual void
#       voxelizeData () = 0;
# 
#       /** \brief Interpolate along the voxel edge.
#         * \param[in] p1 The first point on the edge
#         * \param[in] p2 The second point on the edge
#         * \param[in] val_p1 The scalar value at p1
#         * \param[in] val_p2 The scalar value at p2
#         * \param[out] output The interpolated point along the edge
#         */
#       void
#       interpolateEdge (Eigen::Vector3f &p1, Eigen::Vector3f &p2, float val_p1, float val_p2, Eigen::Vector3f &output);
# 
# 
#       /** \brief Calculate out the corresponding polygons in the leaf node
#         * \param leaf_node the leaf node to be checked
#         * \param index_3d the 3d index of the leaf node to be checked
#         * \param cloud point cloud to store the vertices of the polygon
#        */
#       void
#       createSurface (std::vector<float> &leaf_node,
#                      Eigen::Vector3i &index_3d,
#                      pcl::PointCloud<PointNT> &cloud);
# 
#       /** \brief Get the bounding box for the input data points. */
#       void
#       getBoundingBox ();
# 
# 
#       /** \brief Method that returns the scalar value at the given grid position.
#         * \param[in] pos The 3D position in the grid
#         */
#       float
#       getGridValue (Eigen::Vector3i pos);
# 
#       /** \brief Method that returns the scalar values of the neighbors of a given 3D position in the grid.
#         * \param[in] index3d the point in the grid
#         * \param[out] leaf the set of values
#         */
#       void
#       getNeighborList1D (std::vector<float> &leaf,
#                          Eigen::Vector3i &index3d);
# 
#       /** \brief Class get name method. */
#       std::string getClassName () const { return ("MarchingCubes"); }
# 
#       /** \brief Extract the surface.
#         * \param[out] output the resultant polygonal mesh
#         */
#        void
#        performReconstruction (pcl::PolygonMesh &output);
# 
#        /** \brief Extract the surface.
#          * \param[out] points the points of the extracted mesh
#          * \param[out] polygons the connectivity between the point of the extracted mesh.
#          */
#        void
#        performReconstruction (pcl::PointCloud<PointNT> &points,
#                               std::vector<pcl::Vertices> &polygons);
# 
#     public:
#       EIGEN_MAKE_ALIGNED_OPERATOR_NEW
#   };
###

# marching_cubes_hoppe.h (1.6.0)
# pcl/surface/3rdparty/poisson4/marching_cubes_poisson.h (1.7.2) ?
# namespace pcl
# {
#    /** \brief The marching cubes surface reconstruction algorithm, using a signed distance function based on the distance
#      * from tangent planes, proposed by Hoppe et. al. in:
#      * Hoppe H., DeRose T., Duchamp T., MC-Donald J., Stuetzle W., "Surface reconstruction from unorganized points",
#      * SIGGRAPH '92
#      * \author Alexandru E. Ichim
#      * \ingroup surface
#      */
#   template <typename PointNT>
#   class MarchingCubesHoppe : public MarchingCubes<PointNT>
#   {
#     public:
#       using SurfaceReconstruction<PointNT>::input_;
#       using SurfaceReconstruction<PointNT>::tree_;
#       using MarchingCubes<PointNT>::grid_;
#       using MarchingCubes<PointNT>::res_x_;
#       using MarchingCubes<PointNT>::res_y_;
#       using MarchingCubes<PointNT>::res_z_;
#       using MarchingCubes<PointNT>::min_p_;
#       using MarchingCubes<PointNT>::max_p_;
# 
#       typedef typename pcl::PointCloud<PointNT>::Ptr PointCloudPtr;
# 
#       typedef typename pcl::KdTree<PointNT> KdTree;
#       typedef typename pcl::KdTree<PointNT>::Ptr KdTreePtr;
# 
# 
#       /** \brief Constructor. */
#       MarchingCubesHoppe ();
# 
#       /** \brief Destructor. */
#       ~MarchingCubesHoppe ();
# 
#       /** \brief Convert the point cloud into voxel data. */
#       void
#       voxelizeData ();
# 
# 
#     public:
#       EIGEN_MAKE_ALIGNED_OPERATOR_NEW
#   };
###

# marching_cubes_poisson.h (1.6.0)
# pcl/surface/3rdparty/poisson4/marching_cubes_poisson.h (1.7.2)
# namespace pcl {
#   namespace poisson {
# 
# 
#     class Square
#     {
#     public:
#       const static int CORNERS = 4, EDGES = 4, NEIGHBORS = 4;
#       static int  CornerIndex (const int& x, const int& y);
#       static void FactorCornerIndex (const int& idx, int& x, int& y);
#       static int  EdgeIndex (const int& orientation, const int& i);
#       static void FactorEdgeIndex (const int& idx, int& orientation, int& i);
# 
#       static int  ReflectCornerIndex (const int& idx, const int& edgeIndex);
#       static int  ReflectEdgeIndex (const int& idx, const int& edgeIndex);
# 
#       static void EdgeCorners (const int& idx, int& c1, int &c2);
#     };
# 
#     class Cube{
#     public:
#       const static int CORNERS = 8, EDGES = 12, NEIGHBORS = 6;
# 
#       static int CornerIndex (const int& x, const int& y, const int& z);
#       static void FactorCornerIndex (const int& idx, int& x, int& y, int& z);
#       static int EdgeIndex (const int& orientation, const int& i, const int& j);
#       static void FactorEdgeIndex (const int& idx, int& orientation, int& i, int &j);
#       static int FaceIndex (const int& dir, const int& offSet);
#       static int FaceIndex (const int& x, const int& y, const int& z);
#       static void FactorFaceIndex (const int& idx, int& x, int &y, int& z);
#       static void FactorFaceIndex (const int& idx, int& dir, int& offSet);
# 
#       static int AntipodalCornerIndex (const int& idx);
#       static int FaceReflectCornerIndex (const int& idx, const int& faceIndex);
#       static int FaceReflectEdgeIndex (const int& idx, const int& faceIndex);
#       static int FaceReflectFaceIndex (const int& idx, const int& faceIndex);
#       static int EdgeReflectCornerIndex   (const int& idx, const int& edgeIndex);
#       static int EdgeReflectEdgeIndex (const int& edgeIndex);
# 
#       static int FaceAdjacentToEdges (const int& eIndex1, const int& eIndex2);
#       static void FacesAdjacentToEdge (const int& eIndex, int& f1Index, int& f2Index);
# 
#       static void EdgeCorners (const int& idx, int& c1, int &c2);
#       static void FaceCorners (const int& idx, int& c1, int &c2, int& c3, int& c4);
#     };
# 
#     class MarchingSquares
#     {
#       static double Interpolate (const double& v1, const double& v2);
#       static void SetVertex (const int& e, const double values[Square::CORNERS], const double& iso);
#     public:
#       const static int MAX_EDGES = 2;
#       static const int edgeMask[1<<Square::CORNERS];
#       static const int edges[1<<Square::CORNERS][2*MAX_EDGES+1];
#       static double vertexList[Square::EDGES][2];
# 
#       static int GetIndex (const double values[Square::CORNERS], const double& iso);
#       static int IsAmbiguous (const double v[Square::CORNERS] ,const double& isoValue);
#       static int AddEdges (const double v[Square::CORNERS], const double& isoValue, Edge* edges);
#       static int AddEdgeIndices (const double v[Square::CORNERS], const double& isoValue, int* edges);
#     };
# 
#     class MarchingCubes
#     {
#       static double Interpolate (const double& v1, const double& v2);
#       static void SetVertex (const int& e, const double values[Cube::CORNERS], const double& iso);
#       static int GetFaceIndex (const double values[Cube::CORNERS], const double& iso, const int& faceIndex);
# 
#       static float Interpolate (const float& v1, const float& v2);
#       static void SetVertex (const int& e, const float values[Cube::CORNERS], const float& iso);
#       static int GetFaceIndex (const float values[Cube::CORNERS], const float& iso, const int& faceIndex);
# 
#       static int GetFaceIndex (const int& mcIndex, const int& faceIndex);
#     public:
#       const static int MAX_TRIANGLES=5;
#       static const int edgeMask[1<<Cube::CORNERS];
#       static const int triangles[1<<Cube::CORNERS][3*MAX_TRIANGLES+1];
#       static const int cornerMap[Cube::CORNERS];
#       static double vertexList[Cube::EDGES][3];
# 
#       static int AddTriangleIndices (const int& mcIndex, int* triangles);
# 
#       static int GetIndex (const double values[Cube::CORNERS],const double& iso);
#       static int IsAmbiguous (const double v[Cube::CORNERS],const double& isoValue,const int& faceIndex);
#       static int HasRoots (const double v[Cube::CORNERS],const double& isoValue);
#       static int HasRoots (const double v[Cube::CORNERS],const double& isoValue,const int& faceIndex);
#       static int AddTriangles (const double v[Cube::CORNERS],const double& isoValue,Triangle* triangles);
#       static int AddTriangleIndices (const double v[Cube::CORNERS],const double& isoValue,int* triangles);
# 
#       static int GetIndex (const float values[Cube::CORNERS], const float& iso);
#       static int IsAmbiguous (const float v[Cube::CORNERS], const float& isoValue, const int& faceIndex);
#       static int HasRoots (const float v[Cube::CORNERS], const float& isoValue);
#       static int HasRoots (const float v[Cube::CORNERS], const float& isoValue, const int& faceIndex);
#       static int AddTriangles (const float v[Cube::CORNERS], const float& isoValue, Triangle* triangles);
#       static int AddTriangleIndices (const float v[Cube::CORNERS], const float& isoValue, int* triangles);
# 
#       static int IsAmbiguous (const int& mcIndex, const int& faceIndex);
#       static int HasRoots (const int& mcIndex);
#       static int HasFaceRoots (const int& mcIndex, const int& faceIndex);
#       static int HasEdgeRoots (const int& mcIndex, const int& edgeIndex);
#     };
# 
# 
###

# marching_cubes_rbf.h (1.6.0)
# pcl/surface/3rdparty/poisson4/marching_cubes_poisson.h (1.7.2) ?
# namespace pcl
# {
#   /** \brief The marching cubes surface reconstruction algorithm, using a signed distance function based on radial
#     * basis functions. Partially based on:
#     * Carr J.C., Beatson R.K., Cherrie J.B., Mitchell T.J., Fright W.R., McCallum B.C. and Evans T.R.,
#     * "Reconstruction and representation of 3D objects with radial basis functions"
#     * SIGGRAPH '01
#     *
#     * \author Alexandru E. Ichim
#     * \ingroup surface
#     */
#   template <typename PointNT>
#   class MarchingCubesRBF : public MarchingCubes<PointNT>
#   {
#     public:
#       using SurfaceReconstruction<PointNT>::input_;
#       using SurfaceReconstruction<PointNT>::tree_;
#       using MarchingCubes<PointNT>::grid_;
#       using MarchingCubes<PointNT>::res_x_;
#       using MarchingCubes<PointNT>::res_y_;
#       using MarchingCubes<PointNT>::res_z_;
#       using MarchingCubes<PointNT>::min_p_;
#       using MarchingCubes<PointNT>::max_p_;
# 
#       typedef typename pcl::PointCloud<PointNT>::Ptr PointCloudPtr;
# 
#       typedef typename pcl::KdTree<PointNT> KdTree;
#       typedef typename pcl::KdTree<PointNT>::Ptr KdTreePtr;
# 
# 
#       /** \brief Constructor. */
#       MarchingCubesRBF ();
# 
#       /** \brief Destructor. */
#       ~MarchingCubesRBF ();
# 
#       /** \brief Convert the point cloud into voxel data. */
#       void
#       voxelizeData ();
# 
# 
#       /** \brief Set the off-surface points displacement value.
#         * \param[in] epsilon the value
#         */
#       inline void
#       setOffSurfaceDisplacement (float epsilon)
#       { off_surface_epsilon_ = epsilon; }
# 
#       /** \brief Get the off-surface points displacement value. */
#       inline float
#       getOffSurfaceDisplacement ()
#       { return off_surface_epsilon_; }
# 
# 
#     protected:
#       /** \brief the Radial Basis Function kernel. */
#       double
#       kernel (Eigen::Vector3d c, Eigen::Vector3d x);
# 
#       /** \brief The off-surface displacement value. */
#       float off_surface_epsilon_;
# 
#     public:
#       EIGEN_MAKE_ALIGNED_OPERATOR_NEW
#   };
# }
###

# mls.h
cdef extern from "pcl/surface/mls.h" namespace "pcl":
    cdef cppclass MovingLeastSquares[I,O]:
        MovingLeastSquares()
        void setInputCloud (shared_ptr[cpp.PointCloud[I]])
        void setSearchRadius (double)
        void setComputeNormals (bool compute_normals)
        void setPolynomialOrder(bool)
        void setPolynomialFit(int)
        # void process(cpp.PointCloud[O] &) except +
        void process(cpp.PointCloud[O] &) except +
        
        # KdTree
        void setSearchMethod (const pclkdt.KdTreePtr_t &tree)
        pclkdt.KdTreePtr_t getSearchMethod ()

ctypedef MovingLeastSquares[cpp.PointXYZ, cpp.PointXYZ] MovingLeastSquares_t
ctypedef MovingLeastSquares[cpp.PointXYZI, cpp.PointXYZI] MovingLeastSquares_PointXYZI_t
ctypedef MovingLeastSquares[cpp.PointXYZRGB, cpp.PointXYZRGB] MovingLeastSquares_PointXYZRGB_t
ctypedef MovingLeastSquares[cpp.PointXYZRGBA, cpp.PointXYZRGBA] MovingLeastSquares_PointXYZRGBA_t
# NG
# ctypedef MovingLeastSquares[cpp.PointXYZ, cpp.PointNormal] MovingLeastSquares_t
# ctypedef MovingLeastSquares[cpp.PointXYZI, cpp.PointNormal] MovingLeastSquares_PointXYZI_t
# ctypedef MovingLeastSquares[cpp.PointXYZRGB, cpp.PointNormal] MovingLeastSquares_PointXYZRGB_t
# ctypedef MovingLeastSquares[cpp.PointXYZRGBA, cpp.PointNormal] MovingLeastSquares_PointXYZRGBA_t


# namespace pcl
# {
#   /** \brief MovingLeastSquares represent an implementation of the MLS (Moving Least Squares) algorithm 
#     * for data smoothing and improved normal estimation. It also contains methods for upsampling the 
#     * resulting cloud based on the parametric fit.
#     * Reference paper: "Computing and Rendering Point Set Surfaces" by Marc Alexa, Johannes Behr, 
#     * Daniel Cohen-Or, Shachar Fleishman, David Levin and Claudio T. Silva
#     * www.sci.utah.edu/~shachar/Publications/crpss.pdf
#     * \author Zoltan Csaba Marton, Radu B. Rusu, Alexandru E. Ichim, Suat Gedikli
#     * \ingroup surface
#     */
#   template <typename PointInT, typename PointOutT>
#   class MovingLeastSquares: public CloudSurfaceProcessing<PointInT, PointOutT>
#   {
#     public:
#       using PCLBase<PointInT>::input_;
#       using PCLBase<PointInT>::indices_;
#       using PCLBase<PointInT>::fake_indices_;
#       using PCLBase<PointInT>::initCompute;
#       using PCLBase<PointInT>::deinitCompute;
# 
#       typedef typename pcl::search::Search<PointInT> KdTree;
#       typedef typename pcl::search::Search<PointInT>::Ptr KdTreePtr;
#       typedef pcl::PointCloud<pcl::Normal> NormalCloud;
#       typedef pcl::PointCloud<pcl::Normal>::Ptr NormalCloudPtr;
# 
#       typedef pcl::PointCloud<PointOutT> PointCloudOut;
#       typedef typename PointCloudOut::Ptr PointCloudOutPtr;
#       typedef typename PointCloudOut::ConstPtr PointCloudOutConstPtr;
# 
#       typedef pcl::PointCloud<PointInT> PointCloudIn;
#       typedef typename PointCloudIn::Ptr PointCloudInPtr;
#       typedef typename PointCloudIn::ConstPtr PointCloudInConstPtr;
# 
#       typedef boost::function<int (int, double, std::vector<int> &, std::vector<float> &)> SearchMethod;
# 
#       enum UpsamplingMethod { NONE, SAMPLE_LOCAL_PLANE, RANDOM_UNIFORM_DENSITY, VOXEL_GRID_DILATION };
# 
#       /** \brief Empty constructor. */
#       MovingLeastSquares () : CloudSurfaceProcessing<PointInT, PointOutT> (),
#                               normals_ (),
#                               search_method_ (),
#                               tree_ (),
#                               order_ (2),
#                               polynomial_fit_ (true),
#                               search_radius_ (0.0),
#                               sqr_gauss_param_ (0.0),
#                               compute_normals_ (false),
#                               upsample_method_ (NONE),
#                               upsampling_radius_ (0.0),
#                               upsampling_step_ (0.0),
#                               rng_uniform_distribution_ (),
#                               desired_num_points_in_radius_ (0),
#                               mls_results_ (),
#                               voxel_size_ (1.0),
#                               dilation_iteration_num_ (0),
#                               nr_coeff_ ()
#                               {};
# 
# 
#       /** \brief Set whether the algorithm should also store the normals computed
#         * \note This is optional, but need a proper output cloud type
#         */
#       inline void
#       setComputeNormals (bool compute_normals) { compute_normals_ = compute_normals; }
# 
#       /** \brief Provide a pointer to the search object.
#         * \param[in] tree a pointer to the spatial search object.
#         */
#       inline void
#       setSearchMethod (const KdTreePtr &tree)
#       {
#         tree_ = tree;
#         // Declare the search locator definition
#         int (KdTree::*radiusSearch)(int index, double radius, std::vector<int> &k_indices, std::vector<float> &k_sqr_distances, unsigned int max_nn) const = &KdTree::radiusSearch;
#         search_method_ = boost::bind (radiusSearch, boost::ref (tree_), _1, _2, _3, _4, 0);
#       }
# 
#       /** \brief Get a pointer to the search method used. */
#       inline KdTreePtr 
#       getSearchMethod () { return (tree_); }
# 
#       /** \brief Set the order of the polynomial to be fit.
#         * \param[in] order the order of the polynomial
#         */
#       inline void 
#       setPolynomialOrder (int order) { order_ = order; }
# 
#       /** \brief Get the order of the polynomial to be fit. */
#       inline int 
#       getPolynomialOrder () { return (order_); }
# 
#       /** \brief Sets whether the surface and normal are approximated using a polynomial, or only via tangent estimation.
#         * \param[in] polynomial_fit set to true for polynomial fit
#         */
#       inline void 
#       setPolynomialFit (bool polynomial_fit) { polynomial_fit_ = polynomial_fit; }
# 
#       /** \brief Get the polynomial_fit value (true if the surface and normal are approximated using a polynomial). */
#       inline bool 
#       getPolynomialFit () { return (polynomial_fit_); }
# 
#       /** \brief Set the sphere radius that is to be used for determining the k-nearest neighbors used for fitting.
#         * \param[in] radius the sphere radius that is to contain all k-nearest neighbors
#         * \note Calling this method resets the squared Gaussian parameter to radius * radius !
#         */
#       inline void 
#       setSearchRadius (double radius) { search_radius_ = radius; sqr_gauss_param_ = search_radius_ * search_radius_; }
# 
#       /** \brief Get the sphere radius used for determining the k-nearest neighbors. */
#       inline double 
#       getSearchRadius () { return (search_radius_); }
# 
#       /** \brief Set the parameter used for distance based weighting of neighbors (the square of the search radius works
#         * best in general).
#         * \param[in] sqr_gauss_param the squared Gaussian parameter
#         */
#       inline void 
#       setSqrGaussParam (double sqr_gauss_param) { sqr_gauss_param_ = sqr_gauss_param; }
# 
#       /** \brief Get the parameter for distance based weighting of neighbors. */
#       inline double 
#       getSqrGaussParam () const { return (sqr_gauss_param_); }
# 
#       /** \brief Set the upsampling method to be used
#         * \note Options are: * NONE - no upsampling will be done, only the input points will be projected to their own
#         *                             MLS surfaces
#         *                    * SAMPLE_LOCAL_PLANE - the local plane of each input point will be sampled in a circular
#         *                                           fashion using the \ref upsampling_radius_ and the \ref upsampling_step_
#         *                                           parameters
#         *                    * RANDOM_UNIFORM_DENSITY - the local plane of each input point will be sampled using an
#         *                                               uniform random distribution such that the density of points is
#         *                                               constant throughout the cloud - given by the \ref \ref desired_num_points_in_radius_
#         *                                               parameter
#         *                    * VOXEL_GRID_DILATION - the input cloud will be inserted into a voxel grid with voxels of
#         *                                            size \ref voxel_size_; this voxel grid will be dilated \ref dilation_iteration_num_
#         *                                            times and the resulting points will be projected to the MLS surface
#         *                                            of the closest point in the input cloud; the result is a point cloud
#         *                                            with filled holes and a constant point density
#         */
#       inline void
#       setUpsamplingMethod (UpsamplingMethod method) { upsample_method_ = method; }
# 
# 
#       /** \brief Set the radius of the circle in the local point plane that will be sampled
#         * \note Used only in the case of SAMPLE_LOCAL_PLANE upsampling
#         * \param[in] radius the radius of the circle
#         */
#       inline void
#       setUpsamplingRadius (double radius) { upsampling_radius_ = radius; }
# 
#       /** \brief Get the radius of the circle in the local point plane that will be sampled
#         * \note Used only in the case of SAMPLE_LOCAL_PLANE upsampling
#         */
#       inline double
#       getUpsamplingRadius () { return upsampling_radius_; }
# 
#       /** \brief Set the step size for the local plane sampling
#         * \note Used only in the case of SAMPLE_LOCAL_PLANE upsampling
#         * \param[in] step_size the step size
#         */
#       inline void
#       setUpsamplingStepSize (double step_size) { upsampling_step_ = step_size; }
# 
# 
#       /** \brief Get the step size for the local plane sampling
#         * \note Used only in the case of SAMPLE_LOCAL_PLANE upsampling
#         */
#       inline double
#       getUpsamplingStepSize () { return upsampling_step_; }
# 
#       /** \brief Set the parameter that specifies the desired number of points within the search radius
#         * \note Used only in the case of RANDOM_UNIFORM_DENSITY upsampling
#         * \param[in] desired_num_points_in_radius the desired number of points in the output cloud in a sphere of
#         * radius \ref search_radius_ around each point
#         */
#       inline void
#       setPointDensity (int desired_num_points_in_radius) { desired_num_points_in_radius_ = desired_num_points_in_radius; }
# 
# 
#       /** \brief Get the parameter that specifies the desired number of points within the search radius
#         * \note Used only in the case of RANDOM_UNIFORM_DENSITY upsampling
#         */
#       inline int
#       getPointDensity () { return desired_num_points_in_radius_; }
# 
#       /** \brief Set the voxel size for the voxel grid
#         * \note Used only in the VOXEL_GRID_DILATION upsampling method
#         * \param[in] voxel_size the edge length of a cubic voxel in the voxel grid
#         */
#       inline void
#       setDilationVoxelSize (float voxel_size) { voxel_size_ = voxel_size; }
# 
# 
#       /** \brief Get the voxel size for the voxel grid
#         * \note Used only in the VOXEL_GRID_DILATION upsampling method
#         */
#       inline float
#       getDilationVoxelSize () { return voxel_size_; }
# 
#       /** \brief Set the number of dilation steps of the voxel grid
#         * \note Used only in the VOXEL_GRID_DILATION upsampling method
#         * \param[in] iterations the number of dilation iterations
#         */
#       inline void
#       setDilationIterations (int iterations) { dilation_iteration_num_ = iterations; }
# 
#       /** \brief Get the number of dilation steps of the voxel grid
#         * \note Used only in the VOXEL_GRID_DILATION upsampling method
#         */
#       inline int
#       getDilationIterations () { return dilation_iteration_num_; }
# 
#       /** \brief Base method for surface reconstruction for all points given in <setInputCloud (), setIndices ()>
#         * \param[out] output the resultant reconstructed surface model
#         */
#       void 
#       process (PointCloudOut &output);
# 
#     protected:
#       /** \brief The point cloud that will hold the estimated normals, if set. */
#       NormalCloudPtr normals_;
# 
#       /** \brief The search method template for indices. */
#       SearchMethod search_method_;
# 
#       /** \brief A pointer to the spatial search object. */
#       KdTreePtr tree_;
# 
#       /** \brief The order of the polynomial to be fit. */
#       int order_;
# 
#       /** True if the surface and normal be approximated using a polynomial, false if tangent estimation is sufficient. */
#       bool polynomial_fit_;
# 
#       /** \brief The nearest neighbors search radius for each point. */
#       double search_radius_;
# 
#       /** \brief Parameter for distance based weighting of neighbors (search_radius_ * search_radius_ works fine) */
#       double sqr_gauss_param_;
# 
#       /** \brief Parameter that specifies whether the normals should be computed for the input cloud or not */
#       bool compute_normals_;
# 
#       /** \brief Parameter that specifies the upsampling method to be used */
#       UpsamplingMethod upsample_method_;
# 
#       /** \brief Radius of the circle in the local point plane that will be sampled
#         * \note Used only in the case of SAMPLE_LOCAL_PLANE upsampling
#         */
#       double upsampling_radius_;
# 
#       /** \brief Step size for the local plane sampling
#         * \note Used only in the case of SAMPLE_LOCAL_PLANE upsampling
#         */
#       double upsampling_step_;
# 
#       /** \brief Random number generator using an uniform distribution of floats
#         * \note Used only in the case of RANDOM_UNIFORM_DENSITY upsampling
#         */
#       boost::variate_generator<boost::mt19937, boost::uniform_real<float> > *rng_uniform_distribution_;
# 
#       /** \brief Parameter that specifies the desired number of points within the search radius
#         * \note Used only in the case of RANDOM_UNIFORM_DENSITY upsampling
#         */
#       int desired_num_points_in_radius_;
# 
#       
#       /** \brief Data structure used to store the results of the MLS fitting
#         * \note Used only in the case of VOXEL_GRID_DILATION upsampling
#         */
#       struct MLSResult
#       {
#         MLSResult () : plane_normal (), u (), v (), c_vec (), num_neighbors (), curvature (), valid (false) {}
# 
#         MLSResult (Eigen::Vector3d &a_plane_normal,
#                    Eigen::Vector3d &a_u,
#                    Eigen::Vector3d &a_v,
#                    Eigen::VectorXd a_c_vec,
#                    int a_num_neighbors,
#                    float &a_curvature);
# 
#         Eigen::Vector3d plane_normal, u, v;
#         Eigen::VectorXd c_vec;
#         int num_neighbors;
#         float curvature;
#         bool valid;
#       };
# 
#       /** \brief Stores the MLS result for each point in the input cloud
#         * \note Used only in the case of VOXEL_GRID_DILATION upsampling
#         */
#       std::vector<MLSResult> mls_results_;
# 
#       
#       /** \brief A minimalistic implementation of a voxel grid, necessary for the point cloud upsampling
#         * \note Used only in the case of VOXEL_GRID_DILATION upsampling
#         */
#       class MLSVoxelGrid
#       {
#         public:
#           struct Leaf { Leaf () : valid (true) {} bool valid; };
# 
#           MLSVoxelGrid (PointCloudInConstPtr& cloud,
#                         IndicesPtr &indices,
#                         float voxel_size);
# 
#           void
#           dilate ();
# 
#           inline void
#           getIndexIn1D (const Eigen::Vector3i &index, uint64_t &index_1d) const
#           {
#             index_1d = index[0] * data_size_ * data_size_ +
#                        index[1] * data_size_ + index[2];
#           }
# 
#           inline void
#           getIndexIn3D (uint64_t index_1d, Eigen::Vector3i& index_3d) const
#           {
#             index_3d[0] = static_cast<Eigen::Vector3i::Scalar> (index_1d / (data_size_ * data_size_));
#             index_1d -= index_3d[0] * data_size_ * data_size_;
#             index_3d[1] = static_cast<Eigen::Vector3i::Scalar> (index_1d / data_size_);
#             index_1d -= index_3d[1] * data_size_;
#             index_3d[2] = static_cast<Eigen::Vector3i::Scalar> (index_1d);
#           }
# 
#           inline void
#           getCellIndex (const Eigen::Vector3f &p, Eigen::Vector3i& index) const
#           {
#             for (int i = 0; i < 3; ++i)
#               index[i] = static_cast<Eigen::Vector3i::Scalar> ((p[i] - bounding_min_(i)) / voxel_size_);
#           }
# 
#           inline void
#           getPosition (const uint64_t &index_1d, Eigen::Vector3f &point) const
#           {
#             Eigen::Vector3i index_3d;
#             getIndexIn3D (index_1d, index_3d);
#             for (int i = 0; i < 3; ++i)
#               point[i] = static_cast<Eigen::Vector3f::Scalar> (index_3d[i]) * voxel_size_ + bounding_min_[i];
#           }
# 
#           typedef std::map<uint64_t, Leaf> HashMap;
#           HashMap voxel_grid_;
#           Eigen::Vector4f bounding_min_, bounding_max_;
#           uint64_t data_size_;
#           float voxel_size_;
#       };
# 
# 
#       /** \brief Voxel size for the VOXEL_GRID_DILATION upsampling method */
#       float voxel_size_;
# 
#       /** \brief Number of dilation steps for the VOXEL_GRID_DILATION upsampling method */
#       int dilation_iteration_num_; 
# 
#       /** \brief Number of coefficients, to be computed from the requested order.*/
#       int nr_coeff_;
# 
#       /** \brief Search for the closest nearest neighbors of a given point using a radius search
#         * \param[in] index the index of the query point
#         * \param[out] indices the resultant vector of indices representing the k-nearest neighbors
#         * \param[out] sqr_distances the resultant squared distances from the query point to the k-nearest neighbors
#         */
#       inline int
#       searchForNeighbors (int index, std::vector<int> &indices, std::vector<float> &sqr_distances)
#       {
#         return (search_method_ (index, search_radius_, indices, sqr_distances));
#       }
# 
#       /** \brief Smooth a given point and its neighborghood using Moving Least Squares.
#         * \param[in] index the inex of the query point in the \ref input cloud
#         * \param[in] input the input point cloud that \ref nn_indices refer to
#         * \param[in] nn_indices the set of nearest neighbors indices for \ref pt
#         * \param[in] nn_sqr_dists the set of nearest neighbors squared distances for \ref pt
#         * \param[out] projected_points the set of points projected points around the query point
#         * (in the case of upsampling method NONE, only the query point projected to its own fitted surface will be returned,
#         * in the case of the other upsampling methods, multiple points will be returned)
#         * \param[out] projected_points_normals the normals corresponding to the projected points
#         */
#       void
#       computeMLSPointNormal (int index,
#                              const PointCloudIn &input,
#                              const std::vector<int> &nn_indices,
#                              std::vector<float> &nn_sqr_dists,
#                              PointCloudOut &projected_points,
#                              NormalCloud &projected_points_normals);
# 
#       /** \brief Fits a point (sample point) given in the local plane coordinates of an input point (query point) to
#         * the MLS surface of the input point
#         * \param[in] u_disp the u coordinate of the sample point in the local plane of the query point
#         * \param[in] v_disp the v coordinate of the sample point in the local plane of the query point
#         * \param[in] u the axis corresponding to the u-coordinates of the local plane of the query point
#         * \param[in] v the axis corresponding to the v-coordinates of the local plane of the query point
#         * \param[in] plane_normal the normal to the local plane of the query point
#         * \param[in] curvature the curvature of the surface at the query point
#         * \param[in] query_point the absolute 3D position of the query point
#         * \param[in] c_vec the coefficients of the polynomial fit on the MLS surface of the query point
#         * \param[in] num_neighbors the number of neighbors of the query point in the input cloud
#         * \param[out] result_point the absolute 3D position of the resulting projected point
#         * \param[out] result_normal the normal of the resulting projected point
#         */
#       void
#       projectPointToMLSSurface (float &u_disp, float &v_disp,
#                                 Eigen::Vector3d &u, Eigen::Vector3d &v,
#                                 Eigen::Vector3d &plane_normal,
#                                 float &curvature,
#                                 Eigen::Vector3f &query_point,
#                                 Eigen::VectorXd &c_vec,
#                                 int num_neighbors,
#                                 PointOutT &result_point,
#                                 pcl::Normal &result_normal);
#     public:
#         EIGEN_MAKE_ALIGNED_OPERATOR_NEW
#   };
###

# mls_omp.h
# namespace pcl
# {
#   /** \brief MovingLeastSquaresOMP represent an OpenMP implementation of the MLS (Moving Least Squares) algorithm for 
#     * data smoothing and improved normal estimation.
#     * \author Radu B. Rusu
#     * \ingroup surface
#     */
#   template <typename PointInT, typename PointOutT>
#   class MovingLeastSquaresOMP : public MovingLeastSquares<PointInT, PointOutT>
#   {
#     using MovingLeastSquares<PointInT, PointOutT>::input_;
#     using MovingLeastSquares<PointInT, PointOutT>::indices_;
#     using MovingLeastSquares<PointInT, PointOutT>::fake_indices_;
#     using MovingLeastSquares<PointInT, PointOutT>::initCompute;
#     using MovingLeastSquares<PointInT, PointOutT>::deinitCompute;
#     using MovingLeastSquares<PointInT, PointOutT>::nr_coeff_;
#     using MovingLeastSquares<PointInT, PointOutT>::order_;
#     using MovingLeastSquares<PointInT, PointOutT>::normals_;
#     using MovingLeastSquares<PointInT, PointOutT>::upsample_method_;
#     using MovingLeastSquares<PointInT, PointOutT>::voxel_size_;
#     using MovingLeastSquares<PointInT, PointOutT>::dilation_iteration_num_;
#     using MovingLeastSquares<PointInT, PointOutT>::tree_;
#     using MovingLeastSquares<PointInT, PointOutT>::mls_results_;
#     using MovingLeastSquares<PointInT, PointOutT>::search_radius_;
#     using MovingLeastSquares<PointInT, PointOutT>::compute_normals_;
#     using MovingLeastSquares<PointInT, PointOutT>::searchForNeighbors;
#       
#     typedef typename MovingLeastSquares<PointInT, PointOutT>::PointCloudIn PointCloudIn;
#     typedef typename MovingLeastSquares<PointInT, PointOutT>::PointCloudOut PointCloudOut;
#     typedef typename MovingLeastSquares<PointInT, PointOutT>::NormalCloud NormalCloud;
#     typedef typename MovingLeastSquares<PointInT, PointOutT>::MLSVoxelGrid MLSVoxelGrid;
# 
#     public:
#       /** \brief Empty constructor. */
#       MovingLeastSquaresOMP () : threads_ (1)
#       {};
# 
#       /** \brief Initialize the scheduler and set the number of threads to use.
#         * \param nr_threads the number of hardware threads to use (-1 sets the value back to automatic)
#         */
#       MovingLeastSquaresOMP (unsigned int nr_threads) : threads_ (0)
#       {
#         setNumberOfThreads (nr_threads);
#       }
# 
#       /** \brief Initialize the scheduler and set the number of threads to use.
#         * \param nr_threads the number of hardware threads to use (-1 sets the value back to automatic)
#         */
#       inline void 
#       setNumberOfThreads (unsigned int nr_threads)
#       { 
#         if (nr_threads == 0)
#           nr_threads = 1;
#         threads_ = nr_threads; 
#       }
# 
###

# multi_grid_octree_data.h
# pcl/surface/3rdparty/poisson4/multi_grid_octree_data.h (1.7.2)
# namespace pcl 
# {
#   namespace poisson 
#   {
#     typedef float Real;
#     typedef float FunctionDataReal;
#     typedef OctNode<class TreeNodeData,Real> TreeOctNode;
# 
#     class RootInfo
#     {
#       public:
#         const TreeOctNode* node;
#         int edgeIndex;
#         long long key;
#     };
# 
#     class VertexData
#     {
#       public:
#         static long long 
#         EdgeIndex (const TreeOctNode* node, const int& eIndex, const int& maxDepth, int index[DIMENSION]);
# 
#         static long long 
#         EdgeIndex (const TreeOctNode* node, const int& eIndex, const int& maxDepth);
# 
#         static long long 
#         FaceIndex (const TreeOctNode* node, const int& fIndex, const int& maxDepth, int index[DIMENSION]);
# 
#         static long long 
#         FaceIndex (const TreeOctNode* node, const int& fIndex, const int& maxDepth);
# 
#         static long long 
#         CornerIndex (const int& depth, const int offSet[DIMENSION] ,const int& cIndex, const int& maxDepth, int index[DIMENSION]);
# 
#         static long long 
#         CornerIndex (const TreeOctNode* node, const int& cIndex, const int& maxDepth, int index[DIMENSION]);
# 
#         static long long 
#         CornerIndex (const TreeOctNode* node, const int& cIndex, const int& maxDepth);
# 
#         static long long 
#         CenterIndex (const int& depth, const int offSet[DIMENSION], const int& maxDepth, int index[DIMENSION]);
# 
#         static long long 
#         CenterIndex (const TreeOctNode* node, const int& maxDepth, int index[DIMENSION]);
#         
#         static long long 
#         CenterIndex (const TreeOctNode* node, const int& maxDepth);
#     };
# 
#     class SortedTreeNodes
#     {
#       public:
#         TreeOctNode** treeNodes;
#         int *nodeCount;
#         int maxDepth;
#         SortedTreeNodes ();
#         ~SortedTreeNodes ();
#         void 
#         set (TreeOctNode& root,const int& setIndex);
#     };
# 
#     class TreeNodeData
#     {
#       public:
#         static int UseIndex;
#         union
#         {
#           int mcIndex;
#           struct
#           {
#             int nodeIndex;
#             Real centerWeightContribution;
#           };
#         };
#         Real value;
# 
#         TreeNodeData (void);
#         ~TreeNodeData (void);
#     };
# 
#     template<int Degree>
#     class Octree
#     {
#       TreeOctNode::NeighborKey neighborKey;
#       TreeOctNode::NeighborKey2 neighborKey2;
# 
#       Real radius;
#       int width;
# 
#       void 
#       setNodeIndices (TreeOctNode& tree,int& idx);
#       
#       Real 
#       GetDotProduct (const int index[DIMENSION]) const;
# 
#       Real 
#       GetLaplacian (const int index[DIMENSION]) const;
# 
#       Real 
#       GetDivergence (const int index[DIMENSION], const Point3D<Real>& normal) const;
# 
#       class DivergenceFunction
#       {
#         public:
#           Point3D<Real> normal;
#           Octree<Degree>* ot;
#           int index[DIMENSION],scratch[DIMENSION];
# 
#           void 
#           Function (TreeOctNode* node1, const TreeOctNode* node2);
#       };
# 
#       class LaplacianProjectionFunction
#       {
#         public:
#           double value;
#           Octree<Degree>* ot;
#           int index[DIMENSION],scratch[DIMENSION];
# 
#           void 
#           Function (TreeOctNode* node1, const TreeOctNode* node2);
#       };
# 
#       class LaplacianMatrixFunction
#       {
#         public:
#           int x2,y2,z2,d2;
#           Octree<Degree>* ot;
#           int index[DIMENSION],scratch[DIMENSION];
#           int elementCount,offset;
#           MatrixEntry<float>* rowElements;
# 
#           int 
#           Function (const TreeOctNode* node1, const TreeOctNode* node2);
#       };
# 
#       class RestrictedLaplacianMatrixFunction
#       {
#         public:
#           int depth,offset[3];
#           Octree<Degree>* ot;
#           Real radius;
#           int index[DIMENSION], scratch[DIMENSION];
#           int elementCount;
#           MatrixEntry<float>* rowElements;
# 
#           int 
#           Function (const TreeOctNode* node1, const TreeOctNode* node2);
#       };
# 
#       ///////////////////////////
#       // Evaluation Functions  //
#       ///////////////////////////
#       class PointIndexValueFunction
#       {
#         public:
#           int res2;
#           FunctionDataReal* valueTables;
#           int index[DIMENSION];
#           Real value;
# 
#           void 
#           Function (const TreeOctNode* node);
#       };
# 
#       class PointIndexValueAndNormalFunction
#       {
#         public:
#           int res2;
#           FunctionDataReal* valueTables;
#           FunctionDataReal* dValueTables;
#           Real value;
#           Point3D<Real> normal;
#           int index[DIMENSION];
# 
#           void 
#           Function (const TreeOctNode* node);
#       };
# 
#       class AdjacencyCountFunction
#       {
#         public:
#           int adjacencyCount;
# 
#           void 
#           Function (const TreeOctNode* node1, const TreeOctNode* node2);
#       };
# 
#       class AdjacencySetFunction
#       {
#         public:
#           int *adjacencies,adjacencyCount;
#           void 
#           Function (const TreeOctNode* node1, const TreeOctNode* node2);
#       };
# 
#       class RefineFunction
#       {
#         public:
#           int depth;
#           void 
#           Function (TreeOctNode* node1, const TreeOctNode* node2);
#       };
# 
#       class FaceEdgesFunction 
#       {
#         public:
#           int fIndex,maxDepth;
#           std::vector<std::pair<long long,long long> >* edges;
#           hash_map<long long, std::pair<RootInfo,int> >* vertexCount;
# 
#           void 
#           Function (const TreeOctNode* node1, const TreeOctNode* node2);
#       };
# 
#       int 
#       SolveFixedDepthMatrix (const int& depth, const SortedTreeNodes& sNodes);
#       
#       int 
#       SolveFixedDepthMatrix (const int& depth, const int& startingDepth, const SortedTreeNodes& sNodes);
# 
#       int 
#       GetFixedDepthLaplacian (SparseSymmetricMatrix<float>& matrix, const int& depth, const SortedTreeNodes& sNodes);
# 
#       int 
#       GetRestrictedFixedDepthLaplacian (SparseSymmetricMatrix<float>& matrix,
#                                         const int& depth,
#                                         const int* entries,
#                                         const int& entryCount,
#                                         const TreeOctNode* rNode,
#                                         const Real& radius,
#                                         const SortedTreeNodes& sNodes);
# 
#       void 
#       SetIsoSurfaceCorners (const Real& isoValue, const int& subdivisionDepth, const int& fullDepthIso);
# 
#       static int 
#       IsBoundaryFace (const TreeOctNode* node, const int& faceIndex, const int& subdivideDepth);
#       
#       static int 
#       IsBoundaryEdge (const TreeOctNode* node, const int& edgeIndex, const int& subdivideDepth);
#       
#       static int 
#       IsBoundaryEdge (const TreeOctNode* node, const int& dir, const int& x, const int& y, const int& subidivideDepth);
#       
#       void 
#       PreValidate (const Real& isoValue, const int& maxDepth, const int& subdivideDepth);
#       
#       void 
#       PreValidate (TreeOctNode* node, const Real& isoValue, const int& maxDepth, const int& subdivideDepth);
#       
#       void 
#       Validate (TreeOctNode* node,
#                 const Real& isoValue,
#                 const int& maxDepth,
#                 const int& fullDepthIso,
#                 const int& subdivideDepth);
# 
#       void 
#       Validate (TreeOctNode* node, const Real& isoValue, const int& maxDepth, const int& fullDepthIso);
# 
#       void 
#       Subdivide (TreeOctNode* node, const Real& isoValue, const int& maxDepth);
# 
#       int 
#       SetBoundaryMCRootPositions (const int& sDepth,const Real& isoValue,
#                                   hash_map<long long,int>& boundaryRoots,
#                                   hash_map<long long,
#                                   std::pair<Real,Point3D<Real> > >& boundaryNormalHash,
#                                   CoredMeshData* mesh,
#                                   const int& nonLinearFit);
# 
#       int 
#       SetMCRootPositions (TreeOctNode* node,
#                           const int& sDepth,
#                           const Real& isoValue,
#                           hash_map<long long, int>& boundaryRoots,
#                           hash_map<long long, int>* interiorRoots,
#                           hash_map<long long, std::pair<Real,Point3D<Real> > >& boundaryNormalHash,
#                           hash_map<long long, std::pair<Real,Point3D<Real> > >* interiorNormalHash,
#                           std::vector<Point3D<float> >* interiorPositions,
#                           CoredMeshData* mesh,
#                           const int& nonLinearFit);
# 
#       int 
#       GetMCIsoTriangles (TreeOctNode* node,
#                          CoredMeshData* mesh,
#                          hash_map<long long,int>& boundaryRoots,
#                          hash_map<long long,int>* interiorRoots,
#                          std::vector<Point3D<float> >* interiorPositions,
#                          const int& offSet,
#                          const int& sDepth, 
#                          bool addBarycenter, 
#                          bool polygonMesh);
# 
#       static int 
#       AddTriangles (CoredMeshData* mesh,
#                     std::vector<CoredPointIndex> edges[3],
#                     std::vector<Point3D<float> >* interiorPositions, 
#                     const int& offSet);
#       
#       static int 
#       AddTriangles (CoredMeshData* mesh, 
#                     std::vector<CoredPointIndex>& edges, std::vector<Point3D<float> >* interiorPositions, 
#                     const int& offSet, 
#                     bool addBarycenter, 
#                     bool polygonMesh);
# 
#       void 
#       GetMCIsoEdges (TreeOctNode* node,
#                      hash_map<long long,int>& boundaryRoots,
#                      hash_map<long long,int>* interiorRoots,
#                      const int& sDepth,
#                      std::vector<std::pair<long long,long long> >& edges);
# 
#       static int 
#       GetEdgeLoops (std::vector<std::pair<long long,long long> >& edges,
#                     std::vector<std::vector<std::pair<long long,long long> > >& loops);
# 
#       static int 
#       InteriorFaceRootCount (const TreeOctNode* node,const int &faceIndex,const int& maxDepth);
# 
#       static int 
#       EdgeRootCount (const TreeOctNode* node,const int& edgeIndex,const int& maxDepth);
# 
#       int 
#       GetRoot (const RootInfo& ri,
#                const Real& isoValue,
#                const int& maxDepth,Point3D<Real> & position,
#                hash_map<long long,std::pair<Real,Point3D<Real> > >& normalHash,
#                Point3D<Real>* normal,
#                const int& nonLinearFit);
# 
#       int 
#       GetRoot (const RootInfo& ri,
#                const Real& isoValue,
#                Point3D<Real> & position,
#                hash_map<long long,
#                std::pair<Real,Point3D<Real> > >& normalHash,
#                const int& nonLinearFit);
# 
#       static int 
#       GetRootIndex (const TreeOctNode* node,const int& edgeIndex,const int& maxDepth,RootInfo& ri);
# 
#       static int 
#       GetRootIndex (const TreeOctNode* node, 
#                     const int& edgeIndex,
#                     const int& maxDepth,
#                     const int& sDepth,
#                     RootInfo& ri);
#       
#       static int 
#       GetRootIndex (const long long& key,
#                     hash_map<long long,int>& boundaryRoots,
#                     hash_map<long long,int>* interiorRoots,
#                     CoredPointIndex& index);
#       
#       static int 
#       GetRootPair (const RootInfo& root,const int& maxDepth,RootInfo& pair);
# 
#       int 
#       NonLinearUpdateWeightContribution (TreeOctNode* node,
#                                          const Point3D<Real>& position,
#                                          const Real& weight = Real(1.0));
# 
#       Real 
#       NonLinearGetSampleWeight (TreeOctNode* node,
#                                 const Point3D<Real>& position);
#       
#       void 
#       NonLinearGetSampleDepthAndWeight (TreeOctNode* node,
#                                         const Point3D<Real>& position,
#                                         const Real& samplesPerNode,
#                                         Real& depth,
#                                         Real& weight);
# 
#       int 
#       NonLinearSplatOrientedPoint (TreeOctNode* node,
#                                    const Point3D<Real>& point,
#                                    const Point3D<Real>& normal);
#       
#       void 
#       NonLinearSplatOrientedPoint (const Point3D<Real>& point,
#                                    const Point3D<Real>& normal,
#                                    const int& kernelDepth,
#                                    const Real& samplesPerNode,
#                                    const int& minDepth,
#                                    const int& maxDepth);
# 
#       int 
#       HasNormals (TreeOctNode* node,const Real& epsilon);
# 
#       Real 
#       getCenterValue (const TreeOctNode* node);
# 
#       Real 
#       getCornerValue (const TreeOctNode* node,const int& corner);
# 
#       void 
#       getCornerValueAndNormal (const TreeOctNode* node,const int& corner,Real& value,Point3D<Real>& normal);
# 
#       public:
#         static double maxMemoryUsage;
#         static double 
#         MemoryUsage ();
# 
#         std::vector<Point3D<Real> >* normals;
#         Real postNormalSmooth;
#         TreeOctNode tree;
#         FunctionData<Degree,FunctionDataReal> fData;
#         Octree ();
# 
#         void 
#         setFunctionData (const PPolynomial<Degree>& ReconstructionFunction,
#                          const int& maxDepth,
#                          const int& normalize,
#                          const Real& normalSmooth = -1);
#         
#         void 
#         finalize1 (const int& refineNeighbors=-1);
#         
#         void 
#         finalize2 (const int& refineNeighbors=-1);
# 
#         //int setTree(char* fileName,const int& maxDepth,const int& binary,const int& kernelDepth,const Real& samplesPerNode,
#         //    const Real& scaleFactor,Point3D<Real>& center,Real& scale,const int& resetSampleDepths,const int& useConfidence);
# 
#         template<typename PointNT> int
#         setTree (boost::shared_ptr<const pcl::PointCloud<PointNT> > input_,
#                  const int& maxDepth,
#                  const int& kernelDepth,
#                  const Real& samplesPerNode,
#                  const Real& scaleFactor,
#                  Point3D<Real>& center,
#                  Real& scale,
#                  const int& resetSamples,
#                  const int& useConfidence);
# 
# 
#         void 
#         SetLaplacianWeights (void);
#         
#         void 
#         ClipTree (void);
# 
#         int 
#         LaplacianMatrixIteration (const int& subdivideDepth);
# 
#         Real 
#         GetIsoValue (void);
#         
#         void 
#         GetMCIsoTriangles (const Real& isoValue,
#                            CoredMeshData* mesh,
#                            const int& fullDepthIso = 0,
#                            const int& nonLinearFit = 1, 
#                            bool addBarycenter = false, 
#                            bool polygonMesh = false);
#         
#         void 
#         GetMCIsoTriangles (const Real& isoValue,
#                            const int& subdivideDepth,
#                            CoredMeshData* mesh,
#                            const int& fullDepthIso = 0,
#                            const int& nonLinearFit = 1, 
#                            bool addBarycenter = false, 
#                            bool polygonMesh = false );
#     };
#   }
# }
# 
###

# octree_poisson.h (1.6.0)
# pcl/surface/3rdparty/poisson4/octree_poisson.h (1.7.2)
# namespace pcl 
# {
#   namespace poisson 
#   {
# 
#     template<class NodeData,class Real=float>
#     class OctNode
#     {
#       private:
#         static int UseAlloc;
# 
#         class AdjacencyCountFunction
#         {
#           public:
#             int count;
#             void Function(const OctNode<NodeData,Real>* node1,const OctNode<NodeData,Real>* node2);
#         };
# 
#         template<class NodeAdjacencyFunction>
#         void __processNodeFaces (OctNode* node,
#                                  NodeAdjacencyFunction* F,
#                                  const int& cIndex1, const int& cIndex2, const int& cIndex3, const int& cIndex4);
#         template<class NodeAdjacencyFunction>
#         void __processNodeEdges (OctNode* node,
#                                  NodeAdjacencyFunction* F,
#                                  const int& cIndex1, const int& cIndex2);
#         template<class NodeAdjacencyFunction>
#         void __processNodeNodes (OctNode* node, NodeAdjacencyFunction* F);
#         template<class NodeAdjacencyFunction>
#         static void __ProcessNodeAdjacentNodes (const int& dx, const int& dy, const int& dz,
#                                                 OctNode* node1, const int& radius1,
#                                                 OctNode* node2, const int& radius2,
#                                                 const int& cWidth2,
#                                                 NodeAdjacencyFunction* F);
#         template<class TerminatingNodeAdjacencyFunction>
#         static void __ProcessTerminatingNodeAdjacentNodes(const int& dx, const int& dy, const int& dz,
#                                                           OctNode* node1, const int& radius1,
#                                                           OctNode* node2, const int& radius2,
#                                                           const int& cWidth2,
#                                                           TerminatingNodeAdjacencyFunction* F);
#         template<class PointAdjacencyFunction>
#         static void __ProcessPointAdjacentNodes (const int& dx, const int& dy, const int& dz,
#                                                  OctNode* node2, const int& radius2,
#                                                  const int& cWidth2,
#                                                  PointAdjacencyFunction* F);
#         template<class NodeAdjacencyFunction>
#         static void __ProcessFixedDepthNodeAdjacentNodes (const int& dx, const int& dy, const int& dz,
#                                                           OctNode* node1, const int& radius1,
#                                                           OctNode* node2, const int& radius2,
#                                                           const int& cWidth2,
#                                                           const int& depth,
#                                                           NodeAdjacencyFunction* F);
#         template<class NodeAdjacencyFunction>
#         static void __ProcessMaxDepthNodeAdjacentNodes (const int& dx, const int& dy, const int& dz,
#                                                         OctNode* node1, const int& radius1,
#                                                         OctNode* node2, const int& radius2,
#                                                         const int& cWidth2,
#                                                         const int& depth,
#                                                         NodeAdjacencyFunction* F);
# 
#         // This is made private because the division by two has been pulled out.
#         static inline int Overlap (const int& c1, const int& c2, const int& c3, const int& dWidth);
#         inline static int ChildOverlap (const int& dx, const int& dy, const int& dz, const int& d, const int& cRadius2);
# 
#         const OctNode* __faceNeighbor (const int& dir, const int& off) const;
#         const OctNode* __edgeNeighbor (const int& o, const int i[2], const int idx[2]) const;
#         OctNode* __faceNeighbor (const int& dir, const int& off, const int& forceChildren);
#         OctNode* __edgeNeighbor (const int& o, const int i[2], const int idx[2], const int& forceChildren);
#       public:
#         static const int DepthShift,OffsetShift,OffsetShift1,OffsetShift2,OffsetShift3;
#         static const int DepthMask,OffsetMask;
# 
#         static Allocator<OctNode> AllocatorOctNode;
#         static int UseAllocator (void);
#         static void SetAllocator (int blockSize);
# 
#         OctNode* parent;
#         OctNode* children;
#         short d,off[3];
#         NodeData nodeData;
# 
# 
#         OctNode (void);
#         ~OctNode (void);
#         int initChildren (void);
# 
#         void depthAndOffset (int& depth, int offset[3]) const;
#         int depth (void) const;
#         static inline void DepthAndOffset (const long long& index, int& depth, int offset[3]);
#         static inline void CenterAndWidth (const long long& index, Point3D<Real>& center, Real& width);
#         static inline int Depth (const long long& index);
#         static inline void Index (const int& depth, const int offset[3], short& d, short off[3]);
#         void centerAndWidth (Point3D<Real>& center, Real& width) const;
# 
#         int leaves (void) const;
#         int maxDepthLeaves (const int& maxDepth) const;
#         int nodes (void) const;
#         int maxDepth (void) const;
# 
#         const OctNode* root (void) const;
# 
#         const OctNode* nextLeaf (const OctNode* currentLeaf = NULL) const;
#         OctNode* nextLeaf (OctNode* currentLeaf = NULL);
#         const OctNode* nextNode (const OctNode* currentNode = NULL) const;
#         OctNode* nextNode (OctNode* currentNode = NULL);
#         const OctNode* nextBranch (const OctNode* current) const;
#         OctNode* nextBranch (OctNode* current);
# 
#         void setFullDepth (const int& maxDepth);
# 
#         void printLeaves (void) const;
#         void printRange (void) const;
# 
#         template<class NodeAdjacencyFunction>
#         void processNodeFaces (OctNode* node,NodeAdjacencyFunction* F, const int& fIndex, const int& processCurrent = 1);
#         template<class NodeAdjacencyFunction>
#         void processNodeEdges (OctNode* node, NodeAdjacencyFunction* F, const int& eIndex, const int& processCurrent = 1);
#         template<class NodeAdjacencyFunction>
#         void processNodeCorners (OctNode* node, NodeAdjacencyFunction* F, const int& cIndex, const int& processCurrent = 1);
#         template<class NodeAdjacencyFunction>
#         void processNodeNodes (OctNode* node, NodeAdjacencyFunction* F, const int& processCurrent=1);
# 
#         template<class NodeAdjacencyFunction>
#         static void ProcessNodeAdjacentNodes (const int& maxDepth,
#                                               OctNode* node1, const int& width1,
#                                               OctNode* node2, const int& width2,
#                                               NodeAdjacencyFunction* F,
#                                               const int& processCurrent=1);
#         template<class NodeAdjacencyFunction>
#         static void ProcessNodeAdjacentNodes (const int& dx, const int& dy, const int& dz,
#                                               OctNode* node1, const int& radius1,
#                                               OctNode* node2, const int& radius2,
#                                               const int& width2,
#                                               NodeAdjacencyFunction* F,
#                                               const int& processCurrent = 1);
#         template<class TerminatingNodeAdjacencyFunction>
#         static void ProcessTerminatingNodeAdjacentNodes (const int& maxDepth,
#                                                          OctNode* node1, const int& width1,
#                                                          OctNode* node2, const int& width2,
#                                                          TerminatingNodeAdjacencyFunction* F,
#                                                          const int& processCurrent = 1);
#         template<class TerminatingNodeAdjacencyFunction>
#         static void ProcessTerminatingNodeAdjacentNodes (const int& dx, const int& dy, const int& dz,
#                                                          OctNode* node1, const int& radius1,
#                                                          OctNode* node2, const int& radius2,
#                                                          const int& width2,
#                                                          TerminatingNodeAdjacencyFunction* F,
#                                                          const int& processCurrent = 1);
#         template<class PointAdjacencyFunction>
#         static void ProcessPointAdjacentNodes (const int& maxDepth,
#                                                const int center1[3],
#                                                OctNode* node2, const int& width2,
#                                                PointAdjacencyFunction* F,
#                                                const int& processCurrent = 1);
#         template<class PointAdjacencyFunction>
#         static void ProcessPointAdjacentNodes (const int& dx, const int& dy, const int& dz,
#                                                OctNode* node2, const int& radius2, const int& width2,
#                                                PointAdjacencyFunction* F,
#                                                const int& processCurrent = 1);
#         template<class NodeAdjacencyFunction>
#         static void ProcessFixedDepthNodeAdjacentNodes (const int& maxDepth,
#                                                         OctNode* node1, const int& width1,
#                                                         OctNode* node2, const int& width2,
#                                                         const int& depth,
#                                                         NodeAdjacencyFunction* F,
#                                                         const int& processCurrent = 1);
#         template<class NodeAdjacencyFunction>
#         static void ProcessFixedDepthNodeAdjacentNodes (const int& dx, const int& dy, const int& dz,
#                                                         OctNode* node1, const int& radius1,
#                                                         OctNode* node2, const int& radius2,
#                                                         const int& width2,
#                                                         const int& depth,
#                                                         NodeAdjacencyFunction* F,
#                                                         const int& processCurrent = 1);
#         template<class NodeAdjacencyFunction>
#         static void ProcessMaxDepthNodeAdjacentNodes (const int& maxDepth,
#                                                       OctNode* node1, const int& width1,
#                                                       OctNode* node2, const int& width2,
#                                                       const int& depth,
#                                                       NodeAdjacencyFunction* F,
#                                                       const int& processCurrent = 1);
#         template<class NodeAdjacencyFunction>
#         static void ProcessMaxDepthNodeAdjacentNodes (const int& dx, const int& dy, const int& dz,
#                                                       OctNode* node1, const int& radius1,
#                                                       OctNode* node2, const int& radius2,
#                                                       const int& width2,
#                                                       const int& depth,
#                                                       NodeAdjacencyFunction* F,
#                                                       const int& processCurrent = 1);
# 
#         static int CornerIndex (const Point3D<Real>& center, const Point3D<Real> &p);
# 
#         OctNode* faceNeighbor (const int& faceIndex, const int& forceChildren = 0);
#         const OctNode* faceNeighbor (const int& faceIndex) const;
#         OctNode* edgeNeighbor (const int& edgeIndex, const int& forceChildren = 0);
#         const OctNode* edgeNeighbor (const int& edgeIndex) const;
#         OctNode* cornerNeighbor (const int& cornerIndex, const int& forceChildren = 0);
#         const OctNode* cornerNeighbor (const int& cornerIndex) const;
# 
#         OctNode* getNearestLeaf (const Point3D<Real>& p);
#         const OctNode* getNearestLeaf (const Point3D<Real>& p) const;
# 
#         static int CommonEdge (const OctNode* node1, const int& eIndex1,
#                                const OctNode* node2, const int& eIndex2);
#         static int CompareForwardDepths (const void* v1, const void* v2);
#         static int CompareForwardPointerDepths (const void* v1, const void* v2);
#         static int CompareBackwardDepths (const void* v1, const void* v2);
#         static int CompareBackwardPointerDepths (const void* v1, const void* v2);
# 
# 
#         template<class NodeData2>
#         OctNode& operator = (const OctNode<NodeData2, Real>& node);
# 
#         static inline int Overlap2 (const int &depth1,
#                                     const int offSet1[DIMENSION],
#                                     const Real& multiplier1,
#                                     const int &depth2,
#                                     const int offSet2[DIMENSION],
#                                     const Real& multiplier2);
# 
# 
#         int write (const char* fileName) const;
#         int write (FILE* fp) const;
#         int read (const char* fileName);
#         int read (FILE* fp);
# 
#         class Neighbors{
#         public:
#           OctNode* neighbors[3][3][3];
#           Neighbors (void);
#           void clear (void);
#         };
#         class NeighborKey{
#         public:
#           Neighbors* neighbors;
# 
#           NeighborKey (void);
#           ~NeighborKey (void);
# 
#           void set (const int& depth);
#           Neighbors& setNeighbors (OctNode* node);
#           Neighbors& getNeighbors (OctNode* node);
#         };
#         class Neighbors2{
#         public:
#           const OctNode* neighbors[3][3][3];
#           Neighbors2 (void);
#           void clear (void);
#         };
#         class NeighborKey2{
#         public:
#           Neighbors2* neighbors;
# 
#           NeighborKey2 (void);
#           ~NeighborKey2 (void);
# 
#           void set (const int& depth);
#           Neighbors2& getNeighbors (const OctNode* node);
#         };
# 
#         void centerIndex (const int& maxDepth, int index[DIMENSION]) const;
#         int width (const int& maxDepth) const;
#     };
# 
#   }
# }
###

# organized_fast_mesh.h
# namespace pcl
# {
# 
#   /** \brief Simple triangulation/surface reconstruction for organized point
#     * clouds. Neighboring points (pixels in image space) are connected to
#     * construct a triangular mesh.
#     *
#     * \author Dirk Holz, Radu B. Rusu
#     * \ingroup surface
#     */
#   template <typename PointInT>
#   class OrganizedFastMesh : public MeshConstruction<PointInT>
#   {
#     public:
#       using MeshConstruction<PointInT>::input_;
#       using MeshConstruction<PointInT>::check_tree_;
# 
#       typedef typename pcl::PointCloud<PointInT>::Ptr PointCloudPtr;
# 
#       typedef std::vector<pcl::Vertices> Polygons;
# 
#       enum TriangulationType
#       {
#         TRIANGLE_RIGHT_CUT,     // _always_ "cuts" a quad from top left to bottom right
#         TRIANGLE_LEFT_CUT,      // _always_ "cuts" a quad from top right to bottom left
#         TRIANGLE_ADAPTIVE_CUT,  // "cuts" where possible and prefers larger differences in 'z' direction
#         QUAD_MESH               // create a simple quad mesh
#       };
# 
#       /** \brief Constructor. Triangulation type defaults to \a QUAD_MESH. */
#       OrganizedFastMesh ()
#       : max_edge_length_squared_ (0.025f)
#       , triangle_pixel_size_ (1)
#       , triangulation_type_ (QUAD_MESH)
#       , store_shadowed_faces_ (false)
#       , cos_angle_tolerance_ (fabsf (cosf (pcl::deg2rad (12.5f))))
#       {
#         check_tree_ = false;
#       };
# 
#       /** \brief Destructor. */
#       ~OrganizedFastMesh () {};
# 
#       /** \brief Set a maximum edge length. TODO: Implement!
#         * \param[in] max_edge_length the maximum edge length
#         */
#       inline void
#       setMaxEdgeLength (float max_edge_length)
#       {
#         max_edge_length_squared_ = max_edge_length * max_edge_length;
#       };
# 
#       /** \brief Set the edge length (in pixels) used for constructing the fixed mesh.
#         * \param[in] triangle_size edge length in pixels
#         * (Default: 1 = neighboring pixels are connected)
#         */
#       inline void
#       setTrianglePixelSize (int triangle_size)
#       {
#         triangle_pixel_size_ = std::max (1, (triangle_size - 1));
#       }
# 
#       /** \brief Set the triangulation type (see \a TriangulationType)
#         * \param[in] type quad mesh, triangle mesh with fixed left, right cut,
#         * or adaptive cut (splits a quad wrt. the depth (z) of the points)
#         */
#       inline void
#       setTriangulationType (TriangulationType type)
#       {
#         triangulation_type_ = type;
#       }
# 
#       /** \brief Store shadowed faces or not.
#         * \param[in] enable set to true to store shadowed faces
#         */
#       inline void
#       storeShadowedFaces (bool enable)
#       {
#         store_shadowed_faces_ = enable;
#       }
# 
#     protected:
#       /** \brief max (squared) length of edge */
#       float max_edge_length_squared_;
# 
#       /** \brief size of triangle endges (in pixels) */
#       int triangle_pixel_size_;
# 
#       /** \brief Type of meshin scheme (quads vs. triangles, left cut vs. right cut ... */
#       TriangulationType triangulation_type_;
# 
#       /** \brief Whether or not shadowed faces are stored, e.g., for exploration */
#       bool store_shadowed_faces_;
# 
#       float cos_angle_tolerance_;
# 
#       /** \brief Perform the actual polygonal reconstruction.
#         * \param[out] polygons the resultant polygons
#         */
#       void
#       reconstructPolygons (std::vector<pcl::Vertices>& polygons);
# 
#       /** \brief Create the surface.
#         * \param[out] polygons the resultant polygons, as a set of vertices. The Vertices structure contains an array of point indices.
#         */
#       virtual void
#       performReconstruction (std::vector<pcl::Vertices> &polygons);
# 
#       /** \brief Create the surface.
#         *
#         * Simply uses image indices to create an initial polygonal mesh for organized point clouds.
#         * \a indices_ are ignored!
#         *
#         * \param[out] output the resultant polygonal mesh
#         */
#       void
#       performReconstruction (pcl::PolygonMesh &output);
# 
#       /** \brief Add a new triangle to the current polygon mesh
#         * \param[in] a index of the first vertex
#         * \param[in] b index of the second vertex
#         * \param[in] c index of the third vertex
#         * \param[in] idx the index in the set of polygon vertices (assumes \a idx is valid in \a polygons)
#         * \param[out] polygons the polygon mesh to be updated
#         */
#       inline void
#       addTriangle (int a, int b, int c, int idx, std::vector<pcl::Vertices>& polygons)
#       {
#         assert (idx < static_cast<int> (polygons.size ()));
#         polygons[idx].vertices.resize (3);
#         polygons[idx].vertices[0] = a;
#         polygons[idx].vertices[1] = b;
#         polygons[idx].vertices[2] = c;
#       }
# 
#       /** \brief Add a new quad to the current polygon mesh
#         * \param[in] a index of the first vertex
#         * \param[in] b index of the second vertex
#         * \param[in] c index of the third vertex
#         * \param[in] d index of the fourth vertex
#         * \param[in] idx the index in the set of polygon vertices (assumes \a idx is valid in \a polygons)
#         * \param[out] polygons the polygon mesh to be updated
#         */
#       inline void
#       addQuad (int a, int b, int c, int d, int idx, std::vector<pcl::Vertices>& polygons)
#       {
#         assert (idx < static_cast<int> (polygons.size ()));
#         polygons[idx].vertices.resize (4);
#         polygons[idx].vertices[0] = a;
#         polygons[idx].vertices[1] = b;
#         polygons[idx].vertices[2] = c;
#         polygons[idx].vertices[3] = d;
#       }
# 
#       /** \brief Set (all) coordinates of a particular point to the specified value
#         * \param[in] point_index index of point
#         * \param[out] mesh to modify
#         * \param[in] value value to use when re-setting
#         * \param[in] field_x_idx the X coordinate of the point
#         * \param[in] field_y_idx the Y coordinate of the point
#         * \param[in] field_z_idx the Z coordinate of the point
#         */
#       inline void
#       resetPointData (const int &point_index, pcl::PolygonMesh &mesh, const float &value = 0.0f,
#                       int field_x_idx = 0, int field_y_idx = 1, int field_z_idx = 2)
#       {
#         float new_value = value;
#         memcpy (&mesh.cloud.data[point_index * mesh.cloud.point_step + mesh.cloud.fields[field_x_idx].offset], &new_value, sizeof (float));
#         memcpy (&mesh.cloud.data[point_index * mesh.cloud.point_step + mesh.cloud.fields[field_y_idx].offset], &new_value, sizeof (float));
#         memcpy (&mesh.cloud.data[point_index * mesh.cloud.point_step + mesh.cloud.fields[field_z_idx].offset], &new_value, sizeof (float));
#       }
# 
#       /** \brief Check if a point is shadowed by another point
#         * \param[in] point_a the first point
#         * \param[in] point_b the second point
#         */
#       inline bool
#       isShadowed (const PointInT& point_a, const PointInT& point_b)
#       {
#         Eigen::Vector3f viewpoint = Eigen::Vector3f::Zero (); // TODO: allow for passing viewpoint information
#         Eigen::Vector3f dir_a = viewpoint - point_a.getVector3fMap ();
#         Eigen::Vector3f dir_b = point_b.getVector3fMap () - point_a.getVector3fMap ();
#         float distance_to_points = dir_a.norm ();
#         float distance_between_points = dir_b.norm ();
#         float cos_angle = dir_a.dot (dir_b) / (distance_to_points*distance_between_points);
#         if (cos_angle != cos_angle)
#           cos_angle = 1.0f;
#         return (fabs (cos_angle) >= cos_angle_tolerance_);
#         // TODO: check for both: angle almost 0/180 _and_ distance between points larger than noise level
#       }
# 
#       /** \brief Check if a triangle is valid.
#         * \param[in] a index of the first vertex
#         * \param[in] b index of the second vertex
#         * \param[in] c index of the third vertex
#         */
#       inline bool
#       isValidTriangle (const int& a, const int& b, const int& c)
#       {
#         if (!pcl::isFinite (input_->points[a])) return (false);
#         if (!pcl::isFinite (input_->points[b])) return (false);
#         if (!pcl::isFinite (input_->points[c])) return (false);
#         return (true);
#       }
# 
#       /** \brief Check if a triangle is shadowed.
#         * \param[in] a index of the first vertex
#         * \param[in] b index of the second vertex
#         * \param[in] c index of the third vertex
#         */
#       inline bool
#       isShadowedTriangle (const int& a, const int& b, const int& c)
#       {
#         if (isShadowed (input_->points[a], input_->points[b])) return (true);
#         if (isShadowed (input_->points[b], input_->points[c])) return (true);
#         if (isShadowed (input_->points[c], input_->points[a])) return (true);
#         return (false);
#       }
# 
#       /** \brief Check if a quad is valid.
#         * \param[in] a index of the first vertex
#         * \param[in] b index of the second vertex
#         * \param[in] c index of the third vertex
#         * \param[in] d index of the fourth vertex
#         */
#       inline bool
#       isValidQuad (const int& a, const int& b, const int& c, const int& d)
#       {
#         if (!pcl::isFinite (input_->points[a])) return (false);
#         if (!pcl::isFinite (input_->points[b])) return (false);
#         if (!pcl::isFinite (input_->points[c])) return (false);
#         if (!pcl::isFinite (input_->points[d])) return (false);
#         return (true);
#       }
# 
#       /** \brief Check if a triangle is shadowed.
#         * \param[in] a index of the first vertex
#         * \param[in] b index of the second vertex
#         * \param[in] c index of the third vertex
#         * \param[in] d index of the fourth vertex
#         */
#       inline bool
#       isShadowedQuad (const int& a, const int& b, const int& c, const int& d)
#       {
#         if (isShadowed (input_->points[a], input_->points[b])) return (true);
#         if (isShadowed (input_->points[b], input_->points[c])) return (true);
#         if (isShadowed (input_->points[c], input_->points[d])) return (true);
#         if (isShadowed (input_->points[d], input_->points[a])) return (true);
#         return (false);
#       }
# 
#       /** \brief Create a quad mesh.
#         * \param[out] polygons the resultant mesh
#         */
#       void
#       makeQuadMesh (std::vector<pcl::Vertices>& polygons);
# 
#       /** \brief Create a right cut mesh.
#         * \param[out] polygons the resultant mesh
#         */
#       void
#       makeRightCutMesh (std::vector<pcl::Vertices>& polygons);
# 
#       /** \brief Create a left cut mesh.
#         * \param[out] polygons the resultant mesh
#         */
#       void
#       makeLeftCutMesh (std::vector<pcl::Vertices>& polygons);
# 
#       /** \brief Create an adaptive cut mesh.
#         * \param[out] polygons the resultant mesh
#         */
#       void
#       makeAdaptiveCutMesh (std::vector<pcl::Vertices>& polygons);
#   };
# 
###

# poisson.h
# namespace pcl
# {
#   /** \brief The Poisson surface reconstruction algorithm.
#     * \note Code adapted from Misha Kazhdan: http://www.cs.jhu.edu/~misha/Code/PoissonRecon/
#     * \note Based on the paper:
#     *       * Michael Kazhdan, Matthew Bolitho, Hugues Hoppe, "Poisson surface reconstruction",
#     *         SGP '06 Proceedings of the fourth Eurographics symposium on Geometry processing
#     * \author Alexandru-Eugen Ichim
#     * \ingroup surface
#     */
#   template<typename PointNT>
#   class Poisson : public SurfaceReconstruction<PointNT>
#   {
#     public:
#       using SurfaceReconstruction<PointNT>::input_;
#       using SurfaceReconstruction<PointNT>::tree_;
# 
#       typedef typename pcl::PointCloud<PointNT>::Ptr PointCloudPtr;
# 
#       typedef typename pcl::KdTree<PointNT> KdTree;
#       typedef typename pcl::KdTree<PointNT>::Ptr KdTreePtr;
# 
#       /** \brief Constructor that sets all the parameters to working default values. */
#       Poisson ();
# 
#       /** \brief Destructor. */
#       ~Poisson ();
# 
#       /** \brief Create the surface.
#         * \param[out] output the resultant polygonal mesh
#         */
#       void
#       performReconstruction (pcl::PolygonMesh &output);
# 
#       /** \brief Create the surface.
#         * \param[out] points the vertex positions of the resulting mesh
#         * \param[out] polygons the connectivity of the resulting mesh
#         */
#       void
#       performReconstruction (pcl::PointCloud<PointNT> &points,
#                              std::vector<pcl::Vertices> &polygons);
# 
#       /** \brief Set the confidence flag
#         * \note Enabling this flag tells the reconstructor to use the size of the normals as confidence information.
#         * When the flag is not enabled, all normals are normalized to have unit-length prior to reconstruction.
#         * \param[in] confidence the given flag
#         */
#       inline void
#       setConfidence (bool confidence) { confidence_ = confidence; }
# 
#       /** \brief Get the confidence flag */
#       inline bool
#       getConfidence () { return confidence_; }
# 
#       /** \brief Set the manifold flag.
#         * \note Enabling this flag tells the reconstructor to add the polygon barycenter when triangulating polygons
#         * with more than three vertices.
#         * \param[in] manifold the given flag
#         */
#       inline void
#       setManifold (bool manifold) { manifold_ = manifold; }
# 
#       /** \brief Get the manifold flag */
#       inline bool
#       getManifold () { return manifold_; }
# 
#       /** \brief Enabling this flag tells the reconstructor to output a polygon mesh (rather than triangulating the
#         * results of Marching Cubes).
#         * \param[in] output_polygons the given flag
#         */
#       inline void
#       setOutputPolygons (bool output_polygons) { output_polygons_ = output_polygons; }
# 
#       /** \brief Get whether the algorithm outputs a polygon mesh or a triangle mesh */
#       inline bool
#       getOutputPolygons () { return output_polygons_; }
# 
# 
#       /** \brief Set the maximum depth of the tree that will be used for surface reconstruction.
#         * \note Running at depth d corresponds to solving on a voxel grid whose resolution is no larger than
#         * 2^d x 2^d x 2^d. Note that since the reconstructor adapts the octree to the sampling density, the specified
#         * reconstruction depth is only an upper bound.
#         * \param[in] depth the depth parameter
#         */
#       inline void
#       setDepth (int depth) { depth_ = depth; }
# 
#       /** \brief Get the depth parameter */
#       inline int
#       getDepth () { return depth_; }
# 
#       /** \brief Set the the depth at which a block Gauss-Seidel solver is used to solve the Laplacian equation
#         * \note Using this parameter helps reduce the memory overhead at the cost of a small increase in
#         * reconstruction time. (In practice, we have found that for reconstructions of depth 9 or higher a subdivide
#         * depth of 7 or 8 can greatly reduce the memory usage.)
#         * \param[in] solver_divide the given parameter value
#         */
#       inline void
#       setSolverDivide (int solver_divide) { solver_divide_ = solver_divide; }
# 
#       /** \brief Get the the depth at which a block Gauss-Seidel solver is used to solve the Laplacian equation */
#       inline int
#       getSolverDivide () { return solver_divide_; }
# 
#       /** \brief Set the depth at which a block iso-surface extractor should be used to extract the iso-surface
#         * \note Using this parameter helps reduce the memory overhead at the cost of a small increase in extraction
#         * time. (In practice, we have found that for reconstructions of depth 9 or higher a subdivide depth of 7 or 8
#         * can greatly reduce the memory usage.)
#         * \param[in] iso_divide the given parameter value
#         */
#       inline void
#       setIsoDivide (int iso_divide) { iso_divide_ = iso_divide; }
# 
#       /** \brief Get the depth at which a block iso-surface extractor should be used to extract the iso-surface */
#       inline int
#       getIsoDivide () { return iso_divide_; }
# 
#       /** \brief Set the minimum number of sample points that should fall within an octree node as the octree
#         * construction is adapted to sampling density
#         * \note For noise-free samples, small values in the range [1.0 - 5.0] can be used. For more noisy samples,
#         * larger values in the range [15.0 - 20.0] may be needed to provide a smoother, noise-reduced, reconstruction.
#         * \param[in] samples_per_node the given parameter value
#         */
#       inline void
#       setSamplesPerNode (float samples_per_node) { samples_per_node_ = samples_per_node; }
# 
#       /** \brief Get the minimum number of sample points that should fall within an octree node as the octree
#         * construction is adapted to sampling density
#         */
#       inline float
#       getSamplesPerNode () { return samples_per_node_; }
# 
#       /** \brief Set the ratio between the diameter of the cube used for reconstruction and the diameter of the
#         * samples' bounding cube.
#         * \param[in] scale the given parameter value
#         */
#       inline void
#       setScale (float scale) { scale_ = scale; }
# 
#       /** Get the ratio between the diameter of the cube used for reconstruction and the diameter of the
#         * samples' bounding cube.
#         */
#       inline float
#       getScale () { return scale_; }
# 
#       /** \brief Set the degree parameter
#         * \param[in] degree the given degree
#         */
#       inline void
#       setDegree (int degree) { degree_ = degree; }
# 
#       /** \brief Get the degree parameter */
#       inline int
#       getDegree () { return degree_; }
# 
# 
#     protected:
#       /** \brief The point cloud input (XYZ+Normals). */
#       PointCloudPtr data_;
# 
#       /** \brief Class get name method. */
#       std::string
#       getClassName () const { return ("Poisson"); }
# 
#     private:
#       bool no_reset_samples_;
#       bool no_clip_tree_;
#       bool confidence_;
#       bool manifold_;
#       bool output_polygons_;
# 
#       int depth_;
#       int solver_divide_;
#       int iso_divide_;
#       int refine_;
#       int kernel_depth_;
#       int degree_;
# 
#       float samples_per_node_;
#       float scale_;
# 
#       template<int Degree> void
#       execute (poisson::CoredMeshData &mesh,
#                poisson::Point3D<float> &translate,
#                float &scale);
# 
#     public:
#       EIGEN_MAKE_ALIGNED_OPERATOR_NEW
#   };
# 
###

# polynomial.h (1.6.0)
# pcl/surface/3rdparty/poisson4/polynomial.h (1.7.2)
# namespace pcl
# namespace poisson
# template<int Degree>
# class Polynomial
#       public:
#       double coefficients[Degree+1];
# 
#       Polynomial(void);
#       template<int Degree2>
#       Polynomial(const Polynomial<Degree2>& P);
#       double operator() (const double& t) const;
#       double integral (const double& tMin,const double& tMax) const;
# 
#       int operator == (const Polynomial& p) const;
#       int operator != (const Polynomial& p) const;
#       int isZero(void) const;
#       void setZero(void);
# 
#       template<int Degree2>
#       Polynomial& operator  = (const Polynomial<Degree2> &p);
#       Polynomial& operator += (const Polynomial& p);
#       Polynomial& operator -= (const Polynomial& p);
#       Polynomial  operator -  (void) const;
#       Polynomial  operator +  (const Polynomial& p) const;
#       Polynomial  operator -  (const Polynomial& p) const;
#       template<int Degree2>
#       Polynomial<Degree+Degree2>  operator *  (const Polynomial<Degree2>& p) const;
# 
#       Polynomial& operator += (const double& s);
#       Polynomial& operator -= (const double& s);
#       Polynomial& operator *= (const double& s);
#       Polynomial& operator /= (const double& s);
#       Polynomial  operator +  (const double& s) const;
#       Polynomial  operator -  (const double& s) const;
#       Polynomial  operator *  (const double& s) const;
#       Polynomial  operator /  (const double& s) const;
# 
#       Polynomial scale (const double& s) const;
#       Polynomial shift (const double& t) const;
# 
#       Polynomial<Degree-1> derivative (void) const;
#       Polynomial<Degree+1> integral (void) const;
# 
#       void printnl (void) const;
# 
#       Polynomial& addScaled (const Polynomial& p, const double& scale);
# 
#       static void Negate (const Polynomial& in, Polynomial& out);
#       static void Subtract (const Polynomial& p1, const Polynomial& p2, Polynomial& q);
#       static void Scale (const Polynomial& p, const double& w, Polynomial& q);
#       static void AddScaled (const Polynomial& p1, const double& w1, const Polynomial& p2, const double& w2, Polynomial& q);
#       static void AddScaled (const Polynomial& p1, const Polynomial& p2, const double& w2, Polynomial& q);
#       static void AddScaled (const Polynomial& p1, const double& w1, const Polynomial& p2, Polynomial& q);
# 
#       void getSolutions (const double& c, std::vector<double>& roots, const double& EPS) const;
#     };
#   }
# }
###

# ppolynomial.h (1.6.0)
# pcl/surface/3rdparty/poisson4/ppolynomial.h (1.7.2)
# namespace pcl
# {
#   namespace poisson
#   {
#     template <int Degree> 
#     class StartingPolynomial
#     {
#       public:
#         Polynomial<Degree> p;
#         double start;
# 
#         StartingPolynomial () : p (), start () {}
# 
#         template <int Degree2> StartingPolynomial<Degree+Degree2> operator* (const StartingPolynomial<Degree2>&p) const;
#         StartingPolynomial scale (const double&s) const;
#         StartingPolynomial shift (const double&t) const;
#         int operator < (const StartingPolynomial &sp) const;
#         static int Compare (const void *v1,const void *v2);
#     };
# 
#     template <int Degree> 
#     class PPolynomial
#     {
#       public:
#         size_t polyCount;
#         StartingPolynomial<Degree>*polys;
# 
#         PPolynomial (void);
#         PPolynomial (const PPolynomial<Degree>&p);
#         ~PPolynomial (void);
# 
#         PPolynomial& operator = (const PPolynomial&p);
# 
#         int size (void) const;
# 
#         void set (const size_t&size);
#         // Note: this method will sort the elements in sps
#         void set (StartingPolynomial<Degree>*sps,const int&count);
#         void reset (const size_t&newSize);
# 
# 
#         double operator() (const double &t) const;
#         double integral (const double &tMin,const double &tMax) const;
#         double Integral (void) const;
# 
#         template <int Degree2> PPolynomial<Degree>& operator = (const PPolynomial<Degree2>&p);
# 
#         PPolynomial operator + (const PPolynomial&p) const;
#         PPolynomial operator - (const PPolynomial &p) const;
# 
#         template <int Degree2> PPolynomial<Degree+Degree2> operator * (const Polynomial<Degree2> &p) const;
# 
#         template <int Degree2> PPolynomial<Degree+Degree2> operator* (const PPolynomial<Degree2>&p) const;
# 
# 
#         PPolynomial& operator += (const double&s);
#         PPolynomial& operator -= (const double&s);
#         PPolynomial& operator *= (const double&s);
#         PPolynomial& operator /= (const double&s);
#         PPolynomial operator +  (const double&s) const;
#         PPolynomial operator -  (const double&s) const;
#         PPolynomial operator*  (const double&s) const;
#         PPolynomial operator /  (const double &s) const;
# 
#         PPolynomial& addScaled (const PPolynomial &poly,const double &scale);
# 
#         PPolynomial scale (const double &s) const;
#         PPolynomial shift (const double &t) const;
# 
#         PPolynomial<Degree-1> derivative (void) const;
#         PPolynomial<Degree+1> integral (void) const;
# 
#         void getSolutions (const double &c,
#                            std::vector<double> &roots,
#                            const double &EPS,
#                            const double &min =- DBL_MAX,
#                            const double &max=DBL_MAX) const;
# 
#         void printnl (void) const;
# 
#         PPolynomial<Degree+1> MovingAverage (const double &radius);
# 
#         static PPolynomial ConstantFunction (const double &width=0.5);
#         static PPolynomial GaussianApproximation (const double &width=0.5);
#         void write (FILE *fp,
#                     const int &samples,
#                     const double &min,
#                     const double &max) const;
#     };
# 
# 
#   }
# }
###

# qhull.h
# 
# #if defined __GNUC__
# #  pragma GCC system_header 
# #endif
# 
# extern "C"
# {
# #ifdef HAVE_QHULL_2011
# #  include "libqhull/libqhull.h"
# #  include "libqhull/mem.h"
# #  include "libqhull/qset.h"
# #  include "libqhull/geom.h"
# #  include "libqhull/merge.h"
# #  include "libqhull/poly.h"
# #  include "libqhull/io.h"
# #  include "libqhull/stat.h"
# #else
# #  include "qhull/qhull.h"
# #  include "qhull/mem.h"
# #  include "qhull/qset.h"
# #  include "qhull/geom.h"
# #  include "qhull/merge.h"
# #  include "qhull/poly.h"
# #  include "qhull/io.h"
# #  include "qhull/stat.h"
# #endif
# }
# 
###

# simplification_remove_unused_vertices.h
# namespace pcl
# {
#   namespace surface
#   {
#     class PCL_EXPORTS SimplificationRemoveUnusedVertices
#     {
#       public:
#         /** \brief Constructor. */
#         SimplificationRemoveUnusedVertices () {};
#         /** \brief Destructor. */
#         ~SimplificationRemoveUnusedVertices () {};
# 
#         /** \brief Simply a polygonal mesh.
#           * \param[in] input the input mesh
#           * \param[out] output the output mesh
#           */
#         inline void
#         simplify (const pcl::PolygonMesh& input, pcl::PolygonMesh& output)
#         {
#           std::vector<int> indices;
#           simplify (input, output, indices);
#         }
# 
#         /** \brief Perform simplification (remove unused vertices).
#           * \param[in] input the input mesh
#           * \param[out] output the output mesh
#           * \param[out] indices the resultant vector of indices
#           */
#         void
#         simplify (const pcl::PolygonMesh& input, pcl::PolygonMesh& output, std::vector<int>& indices);
# 
#     };
#   }
###

# sparse_matrix.h
# pcl/surface/3rdparty/poisson4/sparse_matrix.h (1.7.2)
# 
# namespace pcl 
# namespace poisson 
# template <class T>
# struct MatrixEntry
#     {
#       MatrixEntry () : N (-1), Value (0) {}
#       MatrixEntry (int i) : N (i), Value (0) {}
#       int N;
#       T Value;
#     };
# 
#     template <class T,int Dim>
#     struct NMatrixEntry
#     {
#       NMatrixEntry () : N (-1), Value () { memset (Value, 0, sizeof (T) * Dim); }
#       NMatrixEntry (int i) : N (i), Value () { memset (Value, 0, sizeof (T) * Dim); }
#       int N;
#       T Value[Dim];
#     };
# 
#     template<class T> class SparseMatrix
#     {
#       private:
#         static int UseAlloc;
#       public:
#         static Allocator<MatrixEntry<T> > AllocatorMatrixEntry;
#         static int UseAllocator (void);
#         static void SetAllocator (const int& blockSize);
# 
#         int rows;
#         int* rowSizes;
#         MatrixEntry<T>** m_ppElements;
# 
#         SparseMatrix ();
#         SparseMatrix (int rows);
#         void Resize (int rows);
#         void SetRowSize (int row , int count);
#         int Entries (void);
# 
#         SparseMatrix (const SparseMatrix& M);
#         virtual ~SparseMatrix ();
# 
#         void SetZero ();
#         void SetIdentity ();
# 
#         SparseMatrix<T>& operator = (const SparseMatrix<T>& M);
# 
#         SparseMatrix<T> operator * (const T& V) const;
#         SparseMatrix<T>& operator *= (const T& V);
# 
# 
#         SparseMatrix<T> operator * (const SparseMatrix<T>& M) const;
#         SparseMatrix<T> Multiply (const SparseMatrix<T>& M) const;
#         SparseMatrix<T> MultiplyTranspose (const SparseMatrix<T>& Mt) const;
# 
#         template<class T2>
#         Vector<T2> operator * (const Vector<T2>& V) const;
#         template<class T2>
#         Vector<T2> Multiply (const Vector<T2>& V) const;
#         template<class T2>
#         void Multiply (const Vector<T2>& In, Vector<T2>& Out) const;
# 
# 
#         SparseMatrix<T> Transpose() const;
# 
#         static int Solve (const SparseMatrix<T>& M,
#                           const Vector<T>& b,
#                           const int& iters,
#                           Vector<T>& solution,
#                           const T eps = 1e-8);
# 
#         template<class T2>
#         static int SolveSymmetric (const SparseMatrix<T>& M,
#                                    const Vector<T2>& b,
#                                    const int& iters,
#                                    Vector<T2>& solution,
#                                    const T2 eps = 1e-8,
#                                    const int& reset=1);
# 
#     };
# 
#     template<class T,int Dim> class SparseNMatrix
#     {
#       private:
#         static int UseAlloc;
#       public:
#         static Allocator<NMatrixEntry<T,Dim> > AllocatorNMatrixEntry;
#         static int UseAllocator (void);
#         static void SetAllocator (const int& blockSize);
# 
#         int rows;
#         int* rowSizes;
#         NMatrixEntry<T,Dim>** m_ppElements;
# 
#         SparseNMatrix ();
#         SparseNMatrix (int rows);
#         void Resize (int rows);
#         void SetRowSize (int row, int count);
#         int Entries ();
# 
#         SparseNMatrix (const SparseNMatrix& M);
#         ~SparseNMatrix ();
# 
#         SparseNMatrix& operator = (const SparseNMatrix& M);
# 
#         SparseNMatrix  operator *  (const T& V) const;
#         SparseNMatrix& operator *= (const T& V);
# 
#         template<class T2>
#         NVector<T2,Dim> operator * (const Vector<T2>& V) const;
#         template<class T2>
#         Vector<T2> operator * (const NVector<T2,Dim>& V) const;
#     };
# 
#     template <class T>
#     class SparseSymmetricMatrix : public SparseMatrix<T>
#     {
#       public:
#         virtual ~SparseSymmetricMatrix () {}
# 
#         template<class T2>
#         Vector<T2> operator * (const Vector<T2>& V) const;
# 
#         template<class T2>
#         Vector<T2> Multiply (const Vector<T2>& V ) const;
# 
#         template<class T2> void 
#         Multiply (const Vector<T2>& In, Vector<T2>& Out ) const;
# 
#         template<class T2> static int 
#         Solve (const SparseSymmetricMatrix<T>& M,
#                const Vector<T2>& b,
#                const int& iters,
#                Vector<T2>& solution,
#                const T2 eps = 1e-8,
#                const int& reset=1);
# 
#         template<class T2> static int 
#         Solve (const SparseSymmetricMatrix<T>& M,
#                const Vector<T>& diagonal,
#                const Vector<T2>& b,
#                const int& iters,
#                Vector<T2>& solution,
#                const T2 eps = 1e-8,
#                const int& reset=1);
#     };
#   }
# 
###

# surfel_smoothing.h
# namespace pcl
# {
#   template <typename PointT, typename PointNT>
#   class SurfelSmoothing : public PCLBase<PointT>
#   {
#     using PCLBase<PointT>::input_;
#     using PCLBase<PointT>::initCompute;
# 
#     public:
#       typedef pcl::PointCloud<PointT> PointCloudIn;
#       typedef typename pcl::PointCloud<PointT>::Ptr PointCloudInPtr;
#       typedef pcl::PointCloud<PointNT> NormalCloud;
#       typedef typename pcl::PointCloud<PointNT>::Ptr NormalCloudPtr;
#       typedef pcl::search::Search<PointT> CloudKdTree;
#       typedef typename pcl::search::Search<PointT>::Ptr CloudKdTreePtr;
# 
#       SurfelSmoothing (float a_scale = 0.01)
#         : PCLBase<PointT> ()
#         , scale_ (a_scale)
#         , scale_squared_ (a_scale * a_scale)
#         , normals_ ()
#         , interm_cloud_ ()
#         , interm_normals_ ()
#         , tree_ ()
#       {
#       }
# 
#       void
#       setInputNormals (NormalCloudPtr &a_normals) { normals_ = a_normals; };
# 
#       void
#       setSearchMethod (const CloudKdTreePtr &a_tree) { tree_ = a_tree; };
# 
#       bool
#       initCompute ();
# 
#       float
#       smoothCloudIteration (PointCloudInPtr &output_positions,
#                             NormalCloudPtr &output_normals);
# 
#       void
#       computeSmoothedCloud (PointCloudInPtr &output_positions,
#                             NormalCloudPtr &output_normals);
# 
# 
#       void
#       smoothPoint (size_t &point_index,
#                    PointT &output_point,
#                    PointNT &output_normal);
# 
#       void
#       extractSalientFeaturesBetweenScales (PointCloudInPtr &cloud2,
#                                            NormalCloudPtr &cloud2_normals,
#                                            boost::shared_ptr<std::vector<int> > &output_features);
# 
#     private:
#       float scale_, scale_squared_;
#       NormalCloudPtr normals_;
# 
#       PointCloudInPtr interm_cloud_;
#       NormalCloudPtr interm_normals_;
# 
#       CloudKdTreePtr tree_;
# 
#   };
###

# texture_mapping.h
# namespace pcl
# {
#   namespace texture_mapping
#   {
#         
#     /** \brief Structure to store camera pose and focal length. */
#     struct Camera
#     {
#       Camera () : pose (), focal_length (), height (), width (), texture_file () {}
#       Eigen::Affine3f pose;
#       double focal_length;
#       double height;
#       double width;
#       std::string texture_file;
# 
#       EIGEN_MAKE_ALIGNED_OPERATOR_NEW
#     };
# 
#     /** \brief Structure that links a uv coordinate to its 3D point and face.
#       */
#     struct UvIndex
#     {
#       UvIndex () : idx_cloud (), idx_face () {}
#       int idx_cloud; // Index of the PointXYZ in the camera's cloud
#       int idx_face; // Face corresponding to that projection
#     };
#     
#     typedef std::vector<Camera, Eigen::aligned_allocator<Camera> > CameraVector;
#     
#   }
#   
#   /** \brief The texture mapping algorithm
#     * \author Khai Tran, Raphael Favier
#     * \ingroup surface
#     */
#   template<typename PointInT>
#   class TextureMapping
#   {
#     public:
#      
#       typedef boost::shared_ptr< PointInT > Ptr;
#       typedef boost::shared_ptr< const PointInT > ConstPtr;
# 
#       typedef pcl::PointCloud<PointInT> PointCloud;
#       typedef typename PointCloud::Ptr PointCloudPtr;
#       typedef typename PointCloud::ConstPtr PointCloudConstPtr;
# 
#       typedef pcl::octree::OctreePointCloudSearch<PointInT> Octree;
#       typedef typename Octree::Ptr OctreePtr;
#       typedef typename Octree::ConstPtr OctreeConstPtr;
#       
#       typedef pcl::texture_mapping::Camera Camera;
#       typedef pcl::texture_mapping::UvIndex UvIndex;
# 
#       /** \brief Constructor. */
#       TextureMapping () :
#         f_ (), vector_field_ (), tex_files_ (), tex_material_ ()
#       {
#       }
# 
#       /** \brief Destructor. */
#       ~TextureMapping ()
#       {
#       }
# 
#       /** \brief Set mesh scale control
#         * \param[in] f
#         */
#       inline void
#       setF (float f)
#       {
#         f_ = f;
#       }
# 
#       /** \brief Set vector field
#         * \param[in] x data point x
#         * \param[in] y data point y
#         * \param[in] z data point z
#         */
#       inline void
#       setVectorField (float x, float y, float z)
#       {
#         vector_field_ = Eigen::Vector3f (x, y, z);
#         // normalize vector field
#         vector_field_ = vector_field_ / std::sqrt (vector_field_.dot (vector_field_));
#       }
# 
#       /** \brief Set texture files
#         * \param[in] tex_files list of texture files
#         */
#       inline void
#       setTextureFiles (std::vector<std::string> tex_files)
#       {
#         tex_files_ = tex_files;
#       }
# 
#       /** \brief Set texture materials
#         * \param[in] tex_material texture material
#         */
#       inline void
#       setTextureMaterials (TexMaterial tex_material)
#       {
#         tex_material_ = tex_material;
#       }
# 
#       /** \brief Map texture to a mesh synthesis algorithm
#         * \param[in] tex_mesh texture mesh
#         */
#       void
#       mapTexture2Mesh (pcl::TextureMesh &tex_mesh);
# 
#       /** \brief map texture to a mesh UV mapping
#         * \param[in] tex_mesh texture mesh
#         */
#       void
#       mapTexture2MeshUV (pcl::TextureMesh &tex_mesh);
# 
#       /** \brief map textures aquired from a set of cameras onto a mesh.
#         * \details With UV mapping, the mesh must be divided into NbCamera + 1 sub-meshes.
#         * Each sub-mesh corresponding to the faces visible by one camera. The last submesh containing all non-visible faces
#         * \param[in] tex_mesh texture mesh
#         * \param[in] cams cameras used for UV mapping
#         */
#       void
#       mapMultipleTexturesToMeshUV (pcl::TextureMesh &tex_mesh, 
#                                    pcl::texture_mapping::CameraVector &cams);
# 
#       /** \brief computes UV coordinates of point, observed by one particular camera
#         * \param[in] pt XYZ point to project on camera plane
#         * \param[in] cam the camera used for projection
#         * \param[out] UV_coordinates the resulting uv coordinates. Set to (-1.0,-1.0) if the point is not visible by the camera
#         * \returns false if the point is not visible by the camera
#         */
#       inline bool
#       getPointUVCoordinates (const pcl::PointXYZ &pt, const Camera &cam, Eigen::Vector2f &UV_coordinates)
#       {
#         // if the point is in front of the camera
#         if (pt.z > 0)
#         {
#           // compute image center and dimension
#           double sizeX = cam.width;
#           double sizeY = cam.height;
#           double cx = (sizeX) / 2.0;
#           double cy = (sizeY) / 2.0;
# 
#           double focal_x = cam.focal_length;
#           double focal_y = cam.focal_length;
# 
#           // project point on image frame
#           UV_coordinates[0] = static_cast<float> ((focal_x * (pt.x / pt.z) + cx) / sizeX); //horizontal
#           UV_coordinates[1] = 1.0f - static_cast<float> (((focal_y * (pt.y / pt.z) + cy) / sizeY)); //vertical
# 
#           // point is visible!
#           if (UV_coordinates[0] >= 0.0 && UV_coordinates[0] <= 1.0 && UV_coordinates[1] >= 0.0 && UV_coordinates[1]
#                                                                                                                  <= 1.0)
#             return (true);
#         }
# 
#         // point is NOT visible by the camera
#         UV_coordinates[0] = -1.0;
#         UV_coordinates[1] = -1.0;
#         return (false);
#       }
# 
#       /** \brief Check if a point is occluded using raycasting on octree.
#         * \param[in] pt XYZ from which the ray will start (toward the camera)
#         * \param[in] octree the octree used for raycasting. It must be initialized with a cloud transformed into the camera's frame
#         * \returns true if the point is occluded.
#         */
#       inline bool
#       isPointOccluded (const pcl::PointXYZ &pt, const OctreePtr octree);
# 
#       /** \brief Remove occluded points from a point cloud
#         * \param[in] input_cloud the cloud on which to perform occlusion detection
#         * \param[out] filtered_cloud resulting cloud, containing only visible points
#         * \param[in] octree_voxel_size octree resolution (in meters)
#         * \param[out] visible_indices will contain indices of visible points
#         * \param[out] occluded_indices will contain indices of occluded points
#         */
#       void
#       removeOccludedPoints (const PointCloudPtr &input_cloud,
#                             PointCloudPtr &filtered_cloud, const double octree_voxel_size,
#                             std::vector<int> &visible_indices, std::vector<int> &occluded_indices);
# 
#       /** \brief Remove occluded points from a textureMesh
#         * \param[in] tex_mesh input mesh, on witch to perform occlusion detection
#         * \param[out] cleaned_mesh resulting mesh, containing only visible points
#         * \param[in] octree_voxel_size octree resolution (in meters)
#         */
#       void
#       removeOccludedPoints (const pcl::TextureMesh &tex_mesh, pcl::TextureMesh &cleaned_mesh, const double octree_voxel_size);
# 
# 
#       /** \brief Remove occluded points from a textureMesh
#         * \param[in] tex_mesh input mesh, on witch to perform occlusion detection
#         * \param[out] filtered_cloud resulting cloud, containing only visible points
#         * \param[in] octree_voxel_size octree resolution (in meters)
#         */
#       void
#       removeOccludedPoints (const pcl::TextureMesh &tex_mesh, PointCloudPtr &filtered_cloud, const double octree_voxel_size);
# 
# 
#       /** \brief Segment faces by camera visibility. Point-based segmentation.
#         * \details With N camera, faces will be arranged into N+1 groups: 1 for each camera, plus 1 for faces not visible from any camera.
#         * \param[in] tex_mesh input mesh that needs sorting. Must contain only 1 sub-mesh.
#         * \param[in] sorted_mesh resulting mesh, will contain nbCamera + 1 sub-mesh.
#         * \param[in] cameras vector containing the cameras used for texture mapping.
#         * \param[in] octree_voxel_size octree resolution (in meters)
#         * \param[out] visible_pts cloud containing only visible points
#         */
#       int
#       sortFacesByCamera (pcl::TextureMesh &tex_mesh, 
#                          pcl::TextureMesh &sorted_mesh, 
#                          const pcl::texture_mapping::CameraVector &cameras,
#                          const double octree_voxel_size, PointCloud &visible_pts);
# 
#       /** \brief Colors a point cloud, depending on its occlusions.
#         * \details If showNbOcclusions is set to True, each point is colored depending on the number of points occluding it.
#         * Else, each point is given a different a 0 value is not occluded, 1 if occluded.
#         * By default, the number of occlusions is bounded to 4.
#         * \param[in] input_cloud input cloud on which occlusions will be computed.
#         * \param[out] colored_cloud resulting colored cloud showing the number of occlusions per point.
#         * \param[in] octree_voxel_size octree resolution (in meters).
#         * \param[in] show_nb_occlusions If false, color information will only represent.
#         * \param[in] max_occlusions Limit the number of occlusions per point.
#         */
#       void
#       showOcclusions (const PointCloudPtr &input_cloud, 
#                       pcl::PointCloud<pcl::PointXYZI>::Ptr &colored_cloud,
#                       const double octree_voxel_size, 
#                       const bool show_nb_occlusions = true,
#                       const int max_occlusions = 4);
# 
#       /** \brief Colors the point cloud of a Mesh, depending on its occlusions.
#         * \details If showNbOcclusions is set to True, each point is colored depending on the number of points occluding it.
#         * Else, each point is given a different a 0 value is not occluded, 1 if occluded.
#         * By default, the number of occlusions is bounded to 4.
#         * \param[in] tex_mesh input mesh on which occlusions will be computed.
#         * \param[out] colored_cloud resulting colored cloud showing the number of occlusions per point.
#         * \param[in] octree_voxel_size octree resolution (in meters).
#         * \param[in] show_nb_occlusions If false, color information will only represent.
#         * \param[in] max_occlusions Limit the number of occlusions per point.
#         */
#       void
#       showOcclusions (pcl::TextureMesh &tex_mesh, 
#                       pcl::PointCloud<pcl::PointXYZI>::Ptr &colored_cloud,
#                       double octree_voxel_size, 
#                       bool show_nb_occlusions = true, 
#                       int max_occlusions = 4);
# 
#       /** \brief Segment and texture faces by camera visibility. Face-based segmentation.
#         * \details With N camera, faces will be arranged into N+1 groups: 1 for each camera, plus 1 for faces not visible from any camera.
#         * The mesh will also contain uv coordinates for each face
#         * \param[in/out] tex_mesh input mesh that needs sorting. Should contain only 1 sub-mesh.
#         * \param[in] cameras vector containing the cameras used for texture mapping.
#         */
#       void 
#       textureMeshwithMultipleCameras (pcl::TextureMesh &mesh, 
#                                       const pcl::texture_mapping::CameraVector &cameras);
# 
#     protected:
#       /** \brief mesh scale control. */
#       float f_;
# 
#       /** \brief vector field */
#       Eigen::Vector3f vector_field_;
# 
#       /** \brief list of texture files */
#       std::vector<std::string> tex_files_;
# 
#       /** \brief list of texture materials */
#       TexMaterial tex_material_;
# 
#       /** \brief Map texture to a face
#         * \param[in] p1 the first point
#         * \param[in] p2 the second point
#         * \param[in] p3 the third point
#         */
#       std::vector<Eigen::Vector2f>
#       mapTexture2Face (const Eigen::Vector3f &p1, const Eigen::Vector3f &p2, const Eigen::Vector3f &p3);
# 
#       /** \brief Returns the circumcenter of a triangle and the circle's radius.
#         * \details see http://en.wikipedia.org/wiki/Circumcenter for formulas.
#         * \param[in] p1 first point of the triangle.
#         * \param[in] p2 second point of the triangle.
#         * \param[in] p3 third point of the triangle.
#         * \param[out] circumcenter resulting circumcenter
#         * \param[out] radius the radius of the circumscribed circle.
#         */
#       inline void
#       getTriangleCircumcenterAndSize (const pcl::PointXY &p1, const pcl::PointXY &p2, const pcl::PointXY &p3, pcl::PointXY &circomcenter, double &radius);
# 
#       /** \brief computes UV coordinates of point, observed by one particular camera
#         * \param[in] pt XYZ point to project on camera plane
#         * \param[in] cam the camera used for projection
#         * \param[out] UV_coordinates the resulting UV coordinates. Set to (-1.0,-1.0) if the point is not visible by the camera
#         * \returns false if the point is not visible by the camera
#         */
#       inline bool
#       getPointUVCoordinates (const pcl::PointXYZ &pt, const Camera &cam, pcl::PointXY &UV_coordinates);
# 
#       /** \brief Returns true if all the vertices of one face are projected on the camera's image plane.
#         * \param[in] camera camera on which to project the face.
#         * \param[in] p1 first point of the face.
#         * \param[in] p2 second point of the face.
#         * \param[in] p3 third point of the face.
#         * \param[out] proj1 UV coordinates corresponding to p1.
#         * \param[out] proj2 UV coordinates corresponding to p2.
#         * \param[out] proj3 UV coordinates corresponding to p3.
#         */
#       inline bool
#       isFaceProjected (const Camera &camera, 
#                        const pcl::PointXYZ &p1, const pcl::PointXYZ &p2, const pcl::PointXYZ &p3, 
#                        pcl::PointXY &proj1, pcl::PointXY &proj2, pcl::PointXY &proj3);
# 
#       /** \brief Returns True if a point lays within a triangle
#         * \details see http://www.blackpawn.com/texts/pointinpoly/default.html
#         * \param[in] p1 first point of the triangle.
#         * \param[in] p2 second point of the triangle.
#         * \param[in] p3 third point of the triangle.
#         * \param[in] pt the querry point.
#         */
#       inline bool
#       checkPointInsideTriangle (const pcl::PointXY &p1, const pcl::PointXY &p2, const pcl::PointXY &p3, const pcl::PointXY &pt);
# 
#       /** \brief Class get name method. */
#       std::string
#       getClassName () const
#       {
#         return ("TextureMapping");
#       }
# 
#     public:
#       EIGEN_MAKE_ALIGNED_OPERATOR_NEW
#   };
# 
###

# vector.h (1.6.0)
# pcl/surface/3rdparty/poisson4/vector.h (1.7.2)
# namespace pcl {
# namespace poisson {
# 
#     template<class T>
#     class Vector
#     {
#     public:
#       Vector ();
#       Vector (const Vector<T>& V);
#       Vector (size_t N);
#       Vector (size_t N, T* pV);
#       ~Vector();
# 
#       const T& operator () (size_t i) const;
#       T& operator () (size_t i);
#       const T& operator [] (size_t i) const;
#       T& operator [] (size_t i);
# 
#       void SetZero();
# 
#       size_t Dimensions() const;
#       void Resize( size_t N );
# 
#       Vector operator * (const T& A) const;
#       Vector operator / (const T& A) const;
#       Vector operator - (const Vector& V) const;
#       Vector operator + (const Vector& V) const;
# 
#       Vector& operator *= (const T& A);
#       Vector& operator /= (const T& A);
#       Vector& operator += (const Vector& V);
#       Vector& operator -= (const Vector& V);
# 
#       Vector& AddScaled (const Vector& V,const T& scale);
#       Vector& SubtractScaled (const Vector& V,const T& scale);
#       static void Add (const Vector& V1,const T& scale1,const Vector& V2,const T& scale2,Vector& Out);
#       static void Add (const Vector& V1,const T& scale1,const Vector& V2,Vector& Out);
# 
#       Vector operator - () const;
# 
#       Vector& operator = (const Vector& V);
# 
#       T Dot (const Vector& V) const;
# 
#       T Length() const;
# 
#       T Norm (size_t Ln) const;
#       void Normalize();
# 
#       T* m_pV;
#     protected:
#       size_t m_N;
# 
#     };
# 
#     template<class T,int Dim>
#     class NVector
#     {
#     public:
#       NVector ();
#       NVector (const NVector& V);
#       NVector (size_t N);
#       NVector (size_t N, T* pV);
#       ~NVector ();
# 
#       const T* operator () (size_t i) const;
#       T* operator () (size_t i);
#       const T* operator [] (size_t i) const;
#       T* operator [] (size_t i);
# 
#       void SetZero();
# 
#       size_t Dimensions() const;
#       void Resize( size_t N );
# 
#       NVector operator * (const T& A) const;
#       NVector operator / (const T& A) const;
#       NVector operator - (const NVector& V) const;
#       NVector operator + (const NVector& V) const;
# 
#       NVector& operator *= (const T& A);
#       NVector& operator /= (const T& A);
#       NVector& operator += (const NVector& V);
#       NVector& operator -= (const NVector& V);
# 
#       NVector& AddScaled (const NVector& V,const T& scale);
#       NVector& SubtractScaled (const NVector& V,const T& scale);
#       static void Add (const NVector& V1,const T& scale1,const NVector& V2,const T& scale2,NVector& Out);
#       static void Add (const NVector& V1,const T& scale1,const NVector& V2, NVector& Out);
# 
#       NVector operator - () const;
# 
#       NVector& operator = (const NVector& V);
# 
#       T Dot (const NVector& V) const;
# 
#       T Length () const;
# 
#       T Norm (size_t Ln) const;
#       void Normalize ();
# 
#       T* m_pV;
#     protected:
#       size_t m_N;
# 
#     };
# 
#   }
# }
###

# vtk.h (1.6.0)
# pcl\surface\vtk_smoothing\vtk_smoothing.h (1.7.2)
# #include <vtkPolyData.h>
# #include <vtkSmartPointer.h>
###

# pcl\surface\vtk_smoothing\vtk_mesh_quadric_decimation.h (1.7.2)

# vtk_mesh_smoothing_laplacian.h (1.6.0)
# pcl\surface\vtk_smoothing\vtk_mesh_smoothing_laplacian.h (1.7.2)
# namespace pcl
# {
#   /** \brief PCL mesh smoothing based on the vtkSmoothPolyDataFilter algorithm from the VTK library.
#     * Please check out the original documentation for more details on the inner workings of the algorithm
#     * Warning: This wrapper does two fairly computationally expensive conversions from the PCL PolygonMesh
#     * data structure to the vtkPolyData data structure and back.
#     */
#   class PCL_EXPORTS MeshSmoothingLaplacianVTK : public MeshProcessing
#   {
#     public:
#       /** \brief Empty constructor that sets the values of the algorithm parameters to the VTK defaults */
#       MeshSmoothingLaplacianVTK ()
#         : MeshProcessing ()
#         , vtk_polygons_ ()
#         , num_iter_ (20)
#         , convergence_ (0.0f)
#         , relaxation_factor_ (0.01f)
#         , feature_edge_smoothing_ (false)
#         , feature_angle_ (45.f)
#         , edge_angle_ (15.f)
#         , boundary_smoothing_ (true)
#       {};
# 
#       /** \brief Set the number of iterations for the smoothing filter.
#         * \param[in] num_iter the number of iterations
#         */
#       inline void
#       setNumIter (int num_iter)
#       {
#         num_iter_ = num_iter;
#       };
# 
#       /** \brief Get the number of iterations. */
#       inline int
#       getNumIter ()
#       {
#         return num_iter_;
#       };
# 
#       /** \brief Specify a convergence criterion for the iteration process. Smaller numbers result in more smoothing iterations.
#        * \param[in] convergence convergence criterion for the Laplacian smoothing
#        */
#       inline void
#       setConvergence (float convergence)
#       {
#         convergence_ = convergence;
#       };
# 
#       /** \brief Get the convergence criterion. */
#       inline float
#       getConvergence ()
#       {
#         return convergence_;
#       };
# 
#       /** \brief Specify the relaxation factor for Laplacian smoothing. As in all iterative methods,
#        * the stability of the process is sensitive to this parameter.
#        * In general, small relaxation factors and large numbers of iterations are more stable than larger relaxation
#        * factors and smaller numbers of iterations.
#        * \param[in] relaxation_factor the relaxation factor of the Laplacian smoothing algorithm
#        */
#       inline void
#       setRelaxationFactor (float relaxation_factor)
#       {
#         relaxation_factor_ = relaxation_factor;
#       };
# 
#       /** \brief Get the relaxation factor of the Laplacian smoothing */
#       inline float
#       getRelaxationFactor ()
#       {
#         return relaxation_factor_;
#       };
# 
#       /** \brief Turn on/off smoothing along sharp interior edges.
#        * \param[in] status decision whether to enable/disable smoothing along sharp interior edges
#        */
#       inline void
#       setFeatureEdgeSmoothing (bool feature_edge_smoothing)
#       {
#         feature_edge_smoothing_ = feature_edge_smoothing;
#       };
# 
#       /** \brief Get the status of the feature edge smoothing */
#       inline bool
#       getFeatureEdgeSmoothing ()
#       {
#         return feature_edge_smoothing_;
#       };
# 
#       /** \brief Specify the feature angle for sharp edge identification.
#        * \param[in] feature_angle the angle threshold for considering an edge to be sharp
#        */
#       inline void
#       setFeatureAngle (float feature_angle)
#       {
#         feature_angle_ = feature_angle;
#       };
# 
#       /** \brief Get the angle threshold for considering an edge to be sharp */
#       inline float
#       getFeatureAngle ()
#       {
#         return feature_angle_;
#       };
# 
#       /** \brief Specify the edge angle to control smoothing along edges (either interior or boundary).
#        * \param[in] edge_angle the angle to control smoothing along edges
#        */
#       inline void
#       setEdgeAngle (float edge_angle)
#       {
#         edge_angle_ = edge_angle;
#       };
# 
#       /** \brief Get the edge angle to control smoothing along edges */
#       inline float
#       getEdgeAngle ()
#       {
#         return edge_angle_;
#       };
# 
#       /** \brief Turn on/off the smoothing of vertices on the boundary of the mesh.
#        * \param[in] boundary_smoothing decision whether boundary smoothing is on or off
#        */
#       inline void
#       setBoundarySmoothing (bool boundary_smoothing)
#       {
#         boundary_smoothing_ = boundary_smoothing;
#       };
# 
#       /** \brief Get the status of the boundary smoothing */
#       inline bool
#       getBoundarySmoothing ()
#       {
#         return boundary_smoothing_;
#       }
# 
#     protected:
#       void
#       performProcessing (pcl::PolygonMesh &output);
# 
#     private:
#       vtkSmartPointer<vtkPolyData> vtk_polygons_;
# 
#       /// Parameters
#       int num_iter_;
#       float convergence_;
#       float relaxation_factor_;
#       bool feature_edge_smoothing_;
#       float feature_angle_;
#       float edge_angle_;
#       bool boundary_smoothing_;
#   };
###

# vtk_mesh_smoothing_windowed_sinc.h (1.6.0)
# pcl\surface\vtk_smoothing\vtk_mesh_smoothing_windowed_sinc.h (1.7.2)
# namespace pcl
# /** \brief PCL mesh smoothing based on the vtkWindowedSincPolyDataFilter algorithm from the VTK library.
#   * Please check out the original documentation for more details on the inner workings of the algorithm
#   * Warning: This wrapper does two fairly computationally expensive conversions from the PCL PolygonMesh
#   * data structure to the vtkPolyData data structure and back.
#   */
# class PCL_EXPORTS MeshSmoothingWindowedSincVTK : public MeshProcessing
#       public:
#       /** \brief Empty constructor that sets the values of the algorithm parameters to the VTK defaults */
#       MeshSmoothingWindowedSincVTK ()
#         : MeshProcessing (),
#           num_iter_ (20),
#           pass_band_ (0.1f),
#           feature_edge_smoothing_ (false),
#           feature_angle_ (45.f),
#           edge_angle_ (15.f),
#           boundary_smoothing_ (true),
#           normalize_coordinates_ (false)
#       {};
# 
#       /** \brief Set the number of iterations for the smoothing filter.
#         * \param[in] num_iter the number of iterations
#       inline void setNumIter (int num_iter)
#       /** \brief Get the number of iterations. */
#       inline int getNumIter ()
#       /** \brief Set the pass band value for windowed sinc filtering.
#         * \param[in] pass_band value for the pass band.
#       inline void setPassBand (float pass_band)
#       /** \brief Get the pass band value. */
#       inline float getPassBand ()
#       /** \brief Turn on/off coordinate normalization. The positions can be translated and scaled such that they fit
#        * within a [-1, 1] prior to the smoothing computation. The default is off. The numerical stability of the
#        * solution can be improved by turning normalization on. If normalization is on, the coordinates will be rescaled
#        * to the original coordinate system after smoothing has completed.
#        * \param[in] normalize_coordinates decision whether to normalize coordinates or not
#       inline void setNormalizeCoordinates (bool normalize_coordinates)
#       /** \brief Get whether the coordinate normalization is active or not */
#       inline bool getNormalizeCoordinates ()
#       /** \brief Turn on/off smoothing along sharp interior edges.
#        * \param[in] status decision whether to enable/disable smoothing along sharp interior edges
#       inline void setFeatureEdgeSmoothing (bool feature_edge_smoothing)
#       /** \brief Get the status of the feature edge smoothing */
#       inline bool getFeatureEdgeSmoothing ()
#       /** \brief Specify the feature angle for sharp edge identification.
#        * \param[in] feature_angle the angle threshold for considering an edge to be sharp
#       inline void setFeatureAngle (float feature_angle)
#       /** \brief Get the angle threshold for considering an edge to be sharp */
#       inline float getFeatureAngle ()
#       /** \brief Specify the edge angle to control smoothing along edges (either interior or boundary).
#        * \param[in] edge_angle the angle to control smoothing along edges
#       inline void setEdgeAngle (float edge_angle)
#       /** \brief Get the edge angle to control smoothing along edges */
#       inline float getEdgeAngle ()
#       /** \brief Turn on/off the smoothing of vertices on the boundary of the mesh.
#        * \param[in] boundary_smoothing decision whether boundary smoothing is on or off
#       inline void setBoundarySmoothing (bool boundary_smoothing)
#       /** \brief Get the status of the boundary smoothing */
#       inline bool getBoundarySmoothing ()
#       protected:
#       void performProcessing (pcl::PolygonMesh &output);
###

# vtk_mesh_subdivision.h (1.6.0)
# pcl\surface\vtk_smoothing\vtk_mesh_subdivision.h (1.7.2)
# namespace pcl
# /** \brief PCL mesh smoothing based on the vtkLinearSubdivisionFilter, vtkLoopSubdivisionFilter, vtkButterflySubdivisionFilter
#   * depending on the selected MeshSubdivisionVTKFilterType algorithm from the VTK library.
#   * Please check out the original documentation for more details on the inner workings of the algorithm
#   * Warning: This wrapper does two fairly computationally expensive conversions from the PCL PolygonMesh
#   * data structure to the vtkPolyData data structure and back.
#   */
# class PCL_EXPORTS MeshSubdivisionVTK : public MeshProcessing
#       public:
#       /** \brief Empty constructor */
#       MeshSubdivisionVTK ();
#       enum MeshSubdivisionVTKFilterType
#       { LINEAR, LOOP, BUTTERFLY };
#       /** \brief Set the mesh subdivision filter type
#         * \param[in] type the filter type
#       inline void setFilterType (MeshSubdivisionVTKFilterType type)
#       /** \brief Get the mesh subdivision filter type */
#       inline MeshSubdivisionVTKFilterType getFilterType ()
#       protected:
#       void performProcessing (pcl::PolygonMesh &output);
###

# vtk_utils.h (1.6.0)
# pcl\surface\vtk_smoothing\vtk_utils.h (1.7.2)
# namespace pcl
# class PCL_EXPORTS VTKUtils
#       public:
#       /** \brief Convert a PCL PolygonMesh to a VTK vtkPolyData.
#         * \param[in] triangles PolygonMesh to be converted to vtkPolyData, stored in the object.
#         */
#       static int
#       convertToVTK (const pcl::PolygonMesh &triangles, vtkSmartPointer<vtkPolyData> &triangles_out_vtk);
#       /** \brief Convert the vtkPolyData object back to PolygonMesh.
#         * \param[out] triangles the PolygonMesh to store the vtkPolyData in.
#         */
#       static void
#       convertToPCL (vtkSmartPointer<vtkPolyData> &vtk_polygons, pcl::PolygonMesh &triangles);
#       /** \brief Convert vtkPolyData object to a PCL PolygonMesh
#         * \param[in] poly_data Pointer (vtkSmartPointer) to a vtkPolyData object
#         * \param[out] mesh PCL Polygon Mesh to fill
#         * \return Number of points in the point cloud of mesh.
#         */
#       static int
#       vtk2mesh (const vtkSmartPointer<vtkPolyData>& poly_data, pcl::PolygonMesh& mesh);
#       /** \brief Convert a PCL PolygonMesh to a vtkPolyData object
#         * \param[in] mesh Reference to PCL Polygon Mesh
#         * \param[out] poly_data Pointer (vtkSmartPointer) to a vtkPolyData object
#         * \return Number of points in the point cloud of mesh.
#         */
#       static int
#       mesh2vtk (const pcl::PolygonMesh& mesh, vtkSmartPointer<vtkPolyData> &poly_data);
###

###############################################################################
# Enum
###############################################################################