File: PointCloud_PointNormal.pxi

package info (click to toggle)
python-pcl 0.3.0~rc1%2Bdfsg-9
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 31,388 kB
  • sloc: python: 3,102; cpp: 283; makefile: 181; sh: 24; ansic: 12
file content (167 lines) | stat: -rw-r--r-- 6,077 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
# -*- coding: utf-8 -*-
cimport pcl_defs as cpp
import numpy as np
cimport numpy as cnp

cnp.import_array()

from libcpp cimport bool
cimport indexing as idx
from _pcl cimport PointCloud_PointNormal

cdef class PointCloud_PointNormal:
    """
    Represents a cloud of points in 4-d space.
    A point cloud can be initialized from either a NumPy ndarray of shape
    (n_points, 4), from a list of triples, or from an integer n to create an
    "empty" cloud of n points.
    To load a point cloud from disk, use pcl.load.
    """
    def __cinit__(self, init=None):
        cdef PointCloud_PointNormal other
        
        self._view_count = 0
        
        # TODO: NG --> import pcl --> pyd Error(python shapedptr/C++ shard ptr collusion?)
        # <cpp.shared_ptr[cpp.PointCloud[cpp.PointNormal]]> self.thisptr_shared.reset(new cpp.PointCloud[cpp.PointNormal]())
        self.thisptr_shared.reset(new cpp.PointCloud[cpp.PointNormal]())
        
        if init is None:
            return
        elif isinstance(init, (numbers.Integral, np.integer)):
            self.resize(init)
        elif isinstance(init, np.ndarray):
            self.from_array(init)
        elif isinstance(init, Sequence):
            self.from_list(init)
        elif isinstance(init, type(self)):
            other = init
            self.thisptr()[0] = other.thisptr()[0]
        else:
            raise TypeError("Can't initialize a PointCloud from a %s"
                            % type(init))

    property width:
        """ property containing the width of the point cloud """
        def __get__(self): return self.thisptr().width
    property height:
        """ property containing the height of the point cloud """
        def __get__(self): return self.thisptr().height
    property size:
        """ property containing the number of points in the point cloud """
        def __get__(self): return self.thisptr().size()
    property is_dense:
        """ property containing whether the cloud is dense or not """
        def __get__(self): return self.thisptr().is_dense

    def __repr__(self):
        return "<PointCloud of %d points>" % self.size

    def __releasebuffer__(self, Py_buffer *buffer):
        self._view_count -= 1

    # Pickle support. XXX this copies the entire pointcloud; it would be nice
    # to have an asarray member that returns a view, or even better, implement
    # the buffer protocol (https://docs.python.org/c-api/buffer.html).
    def __reduce__(self):
        return type(self), (self.to_array(),)

    @cython.boundscheck(False)
    def from_array(self, cnp.ndarray[cnp.float32_t, ndim=2] arr not None):
        """
        Fill this object from a 2D numpy array (float32)
        """
        assert arr.shape[1] == 7
        
        cdef cnp.npy_intp npts = arr.shape[0]
        self.resize(npts)
        self.thisptr().width = npts
        self.thisptr().height = 1
        
        cdef cpp.PointNormal *p
        for i in range(npts):
            p = idx.getptr(self.thisptr(), i)
            p.x, p.y, p.z, p.normal_x, p.normal_y, p.normal_z, p.curvature = arr[i, 0], arr[i, 1], arr[i, 2], arr[i, 3], arr[i, 4], arr[i, 5], arr[i, 6]

    @cython.boundscheck(False)
    def to_array(self):
        """
        Return this object as a 2D numpy array (float32)
        """
        cdef float x,y,z
        cdef cnp.npy_intp n = self.thisptr().size()
        cdef cnp.ndarray[cnp.float32_t, ndim=2, mode="c"] result
        cdef cpp.PointNormal *p
        
        result = np.empty((n, 7), dtype=np.float32)
        for i in range(n):
            p = idx.getptr(self.thisptr(), i)
            result[i, 0] = p.x
            result[i, 1] = p.y
            result[i, 2] = p.z
            result[i, 3] = p.normal_x
            result[i, 4] = p.normal_y
            result[i, 5] = p.normal_z
            result[i, 6] = p.curvature
        return result

    @cython.boundscheck(False)
    def from_list(self, _list):
        """
        Fill this pointcloud from a list of 4-tuples
        """
        cdef Py_ssize_t npts = len(_list)
        cdef cpp.PointNormal* p
        self.resize(npts)
        self.thisptr().width = npts
        self.thisptr().height = 1
        # OK
        # p = idx.getptr(self.thisptr(), 1)
        # enumerate ? -> i -> type unknown
        for i, l in enumerate(_list):
             p = idx.getptr(self.thisptr(), <int> i)
             p.x, p.y, p.z, p.normal_x, p.normal_y, p.normal_z, p.curvature = l

    def to_list(self):
        """
        Return this object as a list of 3-tuples
        """
        return self.to_array().tolist()

    def resize(self, cnp.npy_intp x):
        if self._view_count > 0:
            raise ValueError("can't resize PointCloud while there are"
                             " arrays/memoryviews referencing it")
        self.thisptr().resize(x)

    def get_point(self, cnp.npy_intp row, cnp.npy_intp col):
        """
        Return a point (3-tuple) at the given row/column
        """
        cdef cpp.PointNormal *p = idx.getptr_at2(self.thisptr(), row, col)
        return p.x, p.y, p.z, p.normal_x, p.normal_y, p.normal_z, p.curvature

    def __getitem__(self, cnp.npy_intp nmidx):
        cdef cpp.PointNormal *p = idx.getptr_at(self.thisptr(), nmidx)
        return p.x, p.y, p.z, p.normal_x, p.normal_y, p.normal_z, p.curvature

    # def extract(self, pyindices, bool negative=False):
    #     """
    #     Given a list of indices of points in the pointcloud, return a 
    #     new pointcloud containing only those points.
    #     """
    #     cdef PointCloud_PointNormal result
    #     cdef cpp.PointIndices_t *ind = new cpp.PointIndices_t()
    #     
    #     for i in pyindices:
    #         ind.indices.push_back(i)
    #     
    #     result = PointCloud_PointNormal()
    #     # (<cpp.PointCloud[cpp.PointNormal]> deref(self.thisptr())
    #     mpcl_extract_Normal(self.thisptr_shared, result.thisptr(), ind, negative)
    #     # XXX are we leaking memory here? del ind causes a double free...
    #     
    #     return result

###