1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
|
# -*- coding: utf-8 -*-
cimport pcl_defs as cpp
import numpy as np
cimport numpy as cnp
cnp.import_array()
from libcpp cimport bool
cimport indexing as idx
from _pcl cimport PointCloud_PointNormal
cdef class PointCloud_PointNormal:
"""
Represents a cloud of points in 4-d space.
A point cloud can be initialized from either a NumPy ndarray of shape
(n_points, 4), from a list of triples, or from an integer n to create an
"empty" cloud of n points.
To load a point cloud from disk, use pcl.load.
"""
def __cinit__(self, init=None):
cdef PointCloud_PointNormal other
self._view_count = 0
# TODO: NG --> import pcl --> pyd Error(python shapedptr/C++ shard ptr collusion?)
# <cpp.shared_ptr[cpp.PointCloud[cpp.PointNormal]]> self.thisptr_shared.reset(new cpp.PointCloud[cpp.PointNormal]())
self.thisptr_shared.reset(new cpp.PointCloud[cpp.PointNormal]())
if init is None:
return
elif isinstance(init, (numbers.Integral, np.integer)):
self.resize(init)
elif isinstance(init, np.ndarray):
self.from_array(init)
elif isinstance(init, Sequence):
self.from_list(init)
elif isinstance(init, type(self)):
other = init
self.thisptr()[0] = other.thisptr()[0]
else:
raise TypeError("Can't initialize a PointCloud from a %s"
% type(init))
property width:
""" property containing the width of the point cloud """
def __get__(self): return self.thisptr().width
property height:
""" property containing the height of the point cloud """
def __get__(self): return self.thisptr().height
property size:
""" property containing the number of points in the point cloud """
def __get__(self): return self.thisptr().size()
property is_dense:
""" property containing whether the cloud is dense or not """
def __get__(self): return self.thisptr().is_dense
def __repr__(self):
return "<PointCloud of %d points>" % self.size
def __releasebuffer__(self, Py_buffer *buffer):
self._view_count -= 1
# Pickle support. XXX this copies the entire pointcloud; it would be nice
# to have an asarray member that returns a view, or even better, implement
# the buffer protocol (https://docs.python.org/c-api/buffer.html).
def __reduce__(self):
return type(self), (self.to_array(),)
@cython.boundscheck(False)
def from_array(self, cnp.ndarray[cnp.float32_t, ndim=2] arr not None):
"""
Fill this object from a 2D numpy array (float32)
"""
assert arr.shape[1] == 7
cdef cnp.npy_intp npts = arr.shape[0]
self.resize(npts)
self.thisptr().width = npts
self.thisptr().height = 1
cdef cpp.PointNormal *p
for i in range(npts):
p = idx.getptr(self.thisptr(), i)
p.x, p.y, p.z, p.normal_x, p.normal_y, p.normal_z, p.curvature = arr[i, 0], arr[i, 1], arr[i, 2], arr[i, 3], arr[i, 4], arr[i, 5], arr[i, 6]
@cython.boundscheck(False)
def to_array(self):
"""
Return this object as a 2D numpy array (float32)
"""
cdef float x,y,z
cdef cnp.npy_intp n = self.thisptr().size()
cdef cnp.ndarray[cnp.float32_t, ndim=2, mode="c"] result
cdef cpp.PointNormal *p
result = np.empty((n, 7), dtype=np.float32)
for i in range(n):
p = idx.getptr(self.thisptr(), i)
result[i, 0] = p.x
result[i, 1] = p.y
result[i, 2] = p.z
result[i, 3] = p.normal_x
result[i, 4] = p.normal_y
result[i, 5] = p.normal_z
result[i, 6] = p.curvature
return result
@cython.boundscheck(False)
def from_list(self, _list):
"""
Fill this pointcloud from a list of 4-tuples
"""
cdef Py_ssize_t npts = len(_list)
cdef cpp.PointNormal* p
self.resize(npts)
self.thisptr().width = npts
self.thisptr().height = 1
# OK
# p = idx.getptr(self.thisptr(), 1)
# enumerate ? -> i -> type unknown
for i, l in enumerate(_list):
p = idx.getptr(self.thisptr(), <int> i)
p.x, p.y, p.z, p.normal_x, p.normal_y, p.normal_z, p.curvature = l
def to_list(self):
"""
Return this object as a list of 3-tuples
"""
return self.to_array().tolist()
def resize(self, cnp.npy_intp x):
if self._view_count > 0:
raise ValueError("can't resize PointCloud while there are"
" arrays/memoryviews referencing it")
self.thisptr().resize(x)
def get_point(self, cnp.npy_intp row, cnp.npy_intp col):
"""
Return a point (3-tuple) at the given row/column
"""
cdef cpp.PointNormal *p = idx.getptr_at2(self.thisptr(), row, col)
return p.x, p.y, p.z, p.normal_x, p.normal_y, p.normal_z, p.curvature
def __getitem__(self, cnp.npy_intp nmidx):
cdef cpp.PointNormal *p = idx.getptr_at(self.thisptr(), nmidx)
return p.x, p.y, p.z, p.normal_x, p.normal_y, p.normal_z, p.curvature
# def extract(self, pyindices, bool negative=False):
# """
# Given a list of indices of points in the pointcloud, return a
# new pointcloud containing only those points.
# """
# cdef PointCloud_PointNormal result
# cdef cpp.PointIndices_t *ind = new cpp.PointIndices_t()
#
# for i in pyindices:
# ind.indices.push_back(i)
#
# result = PointCloud_PointNormal()
# # (<cpp.PointCloud[cpp.PointNormal]> deref(self.thisptr())
# mpcl_extract_Normal(self.thisptr_shared, result.thisptr(), ind, negative)
# # XXX are we leaking memory here? del ind causes a double free...
#
# return result
###
|