File: pcl_kdtree.pxd

package info (click to toggle)
python-pcl 0.3.0~rc1%2Bdfsg-9
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 31,388 kB
  • sloc: python: 3,102; cpp: 283; makefile: 181; sh: 24; ansic: 12
file content (327 lines) | stat: -rw-r--r-- 21,803 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
# -*- coding: utf-8 -*-
from libcpp.vector cimport vector

# main
cimport pcl_defs as cpp

from libcpp.memory cimport shared_ptr

# flann.h
###

# io.h
# namespace pcl
# {
#   /** \brief Get a set of approximate indices for a given point cloud into a reference point cloud. 
#     * The coordinates of the two point clouds can differ. The method uses an internal KdTree for 
#     * finding the closest neighbors from \a cloud_in in \a cloud_ref. 
#     *
#     * \param[in] cloud_in the input point cloud dataset
#     * \param[in] cloud_ref the reference point cloud dataset
#     * \param[out] indices the resultant set of nearest neighbor indices of \a cloud_in in \a cloud_ref
#     * \ingroup kdtree
#     */
#   template <typename PointT> void 
#   getApproximateIndices (const typename pcl::PointCloud<PointT>::Ptr &cloud_in, 
#                          const typename pcl::PointCloud<PointT>::Ptr &cloud_ref,
#                          std::vector<int> &indices);
# 
#   /** \brief Get a set of approximate indices for a given point cloud into a reference point cloud. 
#     * The coordinates of the two point clouds can differ. The method uses an internal KdTree for 
#     * finding the closest neighbors from \a cloud_in in \a cloud_ref. 
#     *
#     * \param[in] cloud_in the input point cloud dataset
#     * \param[in] cloud_ref the reference point cloud dataset
#     * \param[out] indices the resultant set of nearest neighbor indices of \a cloud_in in \a cloud_ref
#     * \ingroup kdtree
#     */
#   template <typename Point1T, typename Point2T> void 
#   getApproximateIndices (const typename pcl::PointCloud<Point1T>::Ptr &cloud_in, 
#                          const typename pcl::PointCloud<Point2T>::Ptr &cloud_ref,
#                          std::vector<int> &indices);
# }
###

# kdtree.h
# namespace pcl
# template <typename PointT>
# class KdTree
cdef extern from "pcl/kdtree/kdtree.h" namespace "pcl::search":
    cdef cppclass KdTree[T]:
        KdTree()
        # KdTree (bool sorted)
        void setInputCloud (shared_ptr[cpp.PointCloud[T]])
        # public:
        # typedef boost::shared_ptr <std::vector<int> > IndicesPtr;
        # typedef boost::shared_ptr <const std::vector<int> > IndicesConstPtr;
        # typedef pcl::PointCloud<PointT> PointCloud;
        # typedef boost::shared_ptr<PointCloud> PointCloudPtr;
        # typedef boost::shared_ptr<const PointCloud> PointCloudConstPtr;
        # typedef pcl::PointRepresentation<PointT> PointRepresentation;
        # //typedef boost::shared_ptr<PointRepresentation> PointRepresentationPtr;
        # typedef boost::shared_ptr<const PointRepresentation> PointRepresentationConstPtr;
        # // Boost shared pointers
        # typedef boost::shared_ptr<KdTree<PointT> > Ptr;
        # typedef boost::shared_ptr<const KdTree<PointT> > ConstPtr;
        # /** \brief Empty constructor for KdTree. Sets some internal values to their defaults. 
        # * \param[in] sorted set to true if the application that the tree will be used for requires sorted nearest neighbor indices (default). False otherwise. 
        # */
        # KdTree (bool sorted = true)
        # /** \brief Provide a pointer to the input dataset.
        # * \param[in] cloud the const boost shared pointer to a PointCloud message
        # * \param[in] indices the point indices subset that is to be used from \a cloud - if NULL the whole cloud is used
        # virtual void setInputCloud (const PointCloudConstPtr &cloud, const IndicesConstPtr &indices = IndicesConstPtr ())
        # /** \brief Get a pointer to the vector of indices used. */
        # inline IndicesConstPtr getIndices () const
        # /** \brief Get a pointer to the input point cloud dataset. */
        # inline PointCloudConstPtr getInputCloud () const
        # /** \brief Provide a pointer to the point representation to use to convert points into k-D vectors. 
        # * \param[in] point_representation the const boost shared pointer to a PointRepresentation
        # inline void setPointRepresentation (const PointRepresentationConstPtr &point_representation)
        # /** \brief Get a pointer to the point representation used when converting points into k-D vectors. */
        # inline PointRepresentationConstPtr getPointRepresentation () const
        # /** \brief Search for k-nearest neighbors for the given query point.
        # * \param[in] p_q the given query point
        # * \param[in] k the number of neighbors to search for
        # * \param[out] k_indices the resultant indices of the neighboring points (must be resized to \a k a priori!)
        # * \param[out] k_sqr_distances the resultant squared distances to the neighboring points (must be resized to \a k 
        # * a priori!)
        # * \return number of neighbors found
        # virtual int nearestKSearch (const PointT &p_q, int k, std::vector<int> &k_indices, std::vector<float> &k_sqr_distances) const = 0;
        # * \brief Search for k-nearest neighbors for the given query point.
        # * \attention This method does not do any bounds checking for the input index
        # * (i.e., index >= cloud.points.size () || index < 0), and assumes valid (i.e., finite) data.
        # * \param[in] cloud the point cloud data
        # * \param[in] index a \a valid index in \a cloud representing a \a valid (i.e., finite) query point
        # * \param[in] k the number of neighbors to search for
        # * \param[out] k_indices the resultant indices of the neighboring points (must be resized to \a k a priori!)
        # * \param[out] k_sqr_distances the resultant squared distances to the neighboring points (must be resized to \a k 
        # * a priori!)
        # * \return number of neighbors found
        # * \exception asserts in debug mode if the index is not between 0 and the maximum number of points
        # virtual int nearestKSearch (const PointCloud &cloud, int index, int k, std::vector<int> &k_indices, std::vector<float> &k_sqr_distances) const
        # * \brief Search for k-nearest neighbors for the given query point. 
        # * This method accepts a different template parameter for the point type.
        # * \param[in] point the given query point
        # * \param[in] k the number of neighbors to search for
        # * \param[out] k_indices the resultant indices of the neighboring points (must be resized to \a k a priori!)
        # * \param[out] k_sqr_distances the resultant squared distances to the neighboring points (must be resized to \a k 
        # * a priori!)
        # * \return number of neighbors found
        # template <typename PointTDiff> inline int nearestKSearchT (const PointTDiff &point, int k, std::vector<int> &k_indices, std::vector<float> &k_sqr_distances) const
        # * \brief Search for k-nearest neighbors for the given query point (zero-copy).
        # * \attention This method does not do any bounds checking for the input index
        # * (i.e., index >= cloud.points.size () || index < 0), and assumes valid (i.e., finite) data.
        # * \param[in] index a \a valid index representing a \a valid query point in the dataset given 
        # * by \a setInputCloud. If indices were given in setInputCloud, index will be the position in 
        # * the indices vector.
        # * \param[in] k the number of neighbors to search for
        # * \param[out] k_indices the resultant indices of the neighboring points (must be resized to \a k a priori!)
        # * \param[out] k_sqr_distances the resultant squared distances to the neighboring points (must be resized to \a k 
        # * a priori!)
        # * \return number of neighbors found
        # * \exception asserts in debug mode if the index is not between 0 and the maximum number of points
        # virtual int nearestKSearch (int index, int k, std::vector<int> &k_indices, std::vector<float> &k_sqr_distances) const
        # * \brief Search for all the nearest neighbors of the query point in a given radius.
        # * \param[in] p_q the given query point
        # * \param[in] radius the radius of the sphere bounding all of p_q's neighbors
        # * \param[out] k_indices the resultant indices of the neighboring points
        # * \param[out] k_sqr_distances the resultant squared distances to the neighboring points
        # * \param[in] max_nn if given, bounds the maximum returned neighbors to this value. If \a max_nn is set to
        # * 0 or to a number higher than the number of points in the input cloud, all neighbors in \a radius will be
        # * returned.
        # * \return number of neighbors found in radius
        # virtual int radiusSearch (const PointT &p_q, double radius, std::vector<int> &k_indices,std::vector<float> &k_sqr_distances, unsigned int max_nn = 0) const = 0;
        # * \brief Search for all the nearest neighbors of the query point in a given radius.
        # * \attention This method does not do any bounds checking for the input index
        # * (i.e., index >= cloud.points.size () || index < 0), and assumes valid (i.e., finite) data.
        # * \param[in] cloud the point cloud data
        # * \param[in] index a \a valid index in \a cloud representing a \a valid (i.e., finite) query point
        # * \param[in] radius the radius of the sphere bounding all of p_q's neighbors
        # * \param[out] k_indices the resultant indices of the neighboring points
        # * \param[out] k_sqr_distances the resultant squared distances to the neighboring points
        # * \param[in] max_nn if given, bounds the maximum returned neighbors to this value. If \a max_nn is set to
        # * 0 or to a number higher than the number of points in the input cloud, all neighbors in \a radius will be
        # * returned.
        # * \return number of neighbors found in radius
        # * \exception asserts in debug mode if the index is not between 0 and the maximum number of points
        # virtual int radiusSearch (const PointCloud &cloud, int index, double radius, std::vector<int> &k_indices, std::vector<float> &k_sqr_distances, unsigned int max_nn = 0) const
        # * \brief Search for all the nearest neighbors of the query point in a given radius.
        # * \param[in] point the given query point
        # * \param[in] radius the radius of the sphere bounding all of p_q's neighbors
        # * \param[out] k_indices the resultant indices of the neighboring points
        # * \param[out] k_sqr_distances the resultant squared distances to the neighboring points
        # * \param[in] max_nn if given, bounds the maximum returned neighbors to this value. If \a max_nn is set to
        # * 0 or to a number higher than the number of points in the input cloud, all neighbors in \a radius will be
        # * returned.
        # * \return number of neighbors found in radius
        # template <typename PointTDiff> inline int radiusSearchT (const PointTDiff &point, double radius, std::vector<int> &k_indices, std::vector<float> &k_sqr_distances, unsigned int max_nn = 0) const
        # * \brief Search for all the nearest neighbors of the query point in a given radius (zero-copy).
        # * \attention This method does not do any bounds checking for the input index
        # * (i.e., index >= cloud.points.size () || index < 0), and assumes valid (i.e., finite) data.
        # * \param[in] index a \a valid index representing a \a valid query point in the dataset given 
        # * by \a setInputCloud. If indices were given in setInputCloud, index will be the position in 
        # * the indices vector.
        # * \param[in] radius the radius of the sphere bounding all of p_q's neighbors
        # * \param[out] k_indices the resultant indices of the neighboring points
        # * \param[out] k_sqr_distances the resultant squared distances to the neighboring points
        # * \param[in] max_nn if given, bounds the maximum returned neighbors to this value. If \a max_nn is set to
        # * 0 or to a number higher than the number of points in the input cloud, all neighbors in \a radius will be
        # * returned.
        # * \return number of neighbors found in radius
        # * \exception asserts in debug mode if the index is not between 0 and the maximum number of points
        # virtual int radiusSearch (int index, double radius, std::vector<int> &k_indices,std::vector<float> &k_sqr_distances, unsigned int max_nn = 0) const
        # * \brief Set the search epsilon precision (error bound) for nearest neighbors searches.
        # * \param[in] eps precision (error bound) for nearest neighbors searches
        # virtual inline void setEpsilon (float eps)
        # * \brief Get the search epsilon precision (error bound) for nearest neighbors searches. */
        # inline float getEpsilon () const
        # * \brief Minimum allowed number of k nearest neighbors points that a viable result must contain. 
        # * \param[in] min_pts the minimum number of neighbors in a viable neighborhood 
        # inline void setMinPts (int min_pts)
        # * \brief Get the minimum allowed number of k nearest neighbors points that a viable result must contain. */
        # inline int getMinPts () const

ctypedef KdTree[cpp.PointXYZ] KdTree_t
ctypedef KdTree[cpp.PointXYZI] KdTree_PointXYZI_t
ctypedef KdTree[cpp.PointXYZRGB] KdTree_PointXYZRGB_t
ctypedef KdTree[cpp.PointXYZRGBA] KdTree_PointXYZRGBA_t

ctypedef shared_ptr[KdTree[cpp.PointXYZ]] KdTreePtr_t
ctypedef shared_ptr[KdTree[cpp.PointXYZI]] KdTree_PointXYZI_Ptr_t
ctypedef shared_ptr[KdTree[cpp.PointXYZRGB]] KdTree_PointXYZRGB_Ptr_t
ctypedef shared_ptr[KdTree[cpp.PointXYZRGBA]] KdTree_PointXYZRGBA_Ptr_t
###

# kdtree_flann.h
# NG
# cdef cppclass KdTreeFLANN[T](KdTree[T]):
# namespace pcl
# template <typename PointT, typename Dist = flann::L2_Simple<float> >
# class KdTreeFLANN : public pcl::KdTree<PointT>
cdef extern from "pcl/kdtree/kdtree_flann.h" namespace "pcl":
    cdef cppclass KdTreeFLANN[T]:
        KdTreeFLANN()
        # KdTreeFLANN (bool sorted)
        # KdTreeFLANN (const KdTreeFLANN<PointT> &k) : 
        #       inline KdTreeFLANN<PointT>& operator = (const KdTreeFLANN<PointT>& k)
        void setInputCloud (shared_ptr[cpp.PointCloud[T]])
        
        # /** \brief Search for k-nearest neighbors for the given query point.
        #   * \attention This method does not do any bounds checking for the input index
        #   * (i.e., index >= cloud.points.size () || index < 0), and assumes valid (i.e., finite) data.
        #   * \param[in] point a given \a valid (i.e., finite) query point
        #   * \param[in] k the number of neighbors to search for
        #   * \param[out] k_indices the resultant indices of the neighboring points (must be resized to \a k a priori!)
        #   * \param[out] k_sqr_distances the resultant squared distances to the neighboring points (must be resized to \a k 
        #   * a priori!)
        #   * \return number of neighbors found
        #   * \exception asserts in debug mode if the index is not between 0 and the maximum number of points
        #   */
        # int nearestKSearch (cpp.PointCloud[T], int, vector[int], vector[float])
        # inline define
        int nearestKSearch (cpp.PointCloud[T], int, int, vector[int], vector[float])
        # int nearestKSearch (const PointT &point, int k, std::vector<int> &k_indices, std::vector<float> &k_sqr_distances) const;
        
        # /** \brief Search for all the nearest neighbors of the query point in a given radius.
        #   * \attention This method does not do any bounds checking for the input index
        #   * (i.e., index >= cloud.points.size () || index < 0), and assumes valid (i.e., finite) data.
        #   * \param[in] point a given \a valid (i.e., finite) query point
        #   * \param[in] radius the radius of the sphere bounding all of p_q's neighbors
        #   * \param[out] k_indices the resultant indices of the neighboring points
        #   * \param[out] k_sqr_distances the resultant squared distances to the neighboring points
        #   * \param[in] max_nn if given, bounds the maximum returned neighbors to this value. If \a max_nn is set to
        #   * 0 or to a number higher than the number of points in the input cloud, all neighbors in \a radius will be
        #   * returned.
        #   * \return number of neighbors found in radius
        #   * \exception asserts in debug mode if the index is not between 0 and the maximum number of points
        #   */
        # int radiusSearch (cpp.PointCloud[T], double, vector[int], vector[float])
        # int radiusSearch (cpp.PointCloud[T], double, vector[int], vector[float], unsigned int)
        # inline define
        int radiusSearch (cpp.PointCloud[T], int, double, vector[int], vector[float])
        # int radiusSearch (const PointT &point, double radius, std::vector<int> &k_indices, std::vector<float> &k_sqr_distances, unsigned int max_nn = 0) const;

        # using KdTree<PointT>::input_;
        # using KdTree<PointT>::indices_;
        # using KdTree<PointT>::epsilon_;
        # using KdTree<PointT>::sorted_;
        # using KdTree<PointT>::point_representation_;
        # using KdTree<PointT>::nearestKSearch;
        # using KdTree<PointT>::radiusSearch;
        # typedef typename KdTree<PointT>::PointCloud PointCloud;
        # typedef typename KdTree<PointT>::PointCloudConstPtr PointCloudConstPtr;
        # typedef boost::shared_ptr<std::vector<int> > IndicesPtr;
        # typedef boost::shared_ptr<const std::vector<int> > IndicesConstPtr;
        # typedef flann::Index<Dist> FLANNIndex;
        # // Boost shared pointers
        # typedef boost::shared_ptr<KdTreeFLANN<PointT> > Ptr;
        # typedef boost::shared_ptr<const KdTreeFLANN<PointT> > ConstPtr;
        # /** \brief Set the search epsilon precision (error bound) for nearest neighbors searches.
        #   * \param[in] eps precision (error bound) for nearest neighbors searches
        #   */
        # inline void setEpsilon (float eps)
        # inline void setSortedResults (bool sorted)
        # inline Ptr makeShared ()
###

# template <>
# class KdTreeFLANN <Eigen::MatrixXf>
#       public:
#       typedef pcl::PointCloud<Eigen::MatrixXf> PointCloud;
#       typedef PointCloud::ConstPtr PointCloudConstPtr;
#       typedef boost::shared_ptr<std::vector<int> > IndicesPtr;
#       typedef boost::shared_ptr<const std::vector<int> > IndicesConstPtr;
#       typedef flann::Index<flann::L2_Simple<float> > FLANNIndex;
#       typedef pcl::PointRepresentation<Eigen::MatrixXf> PointRepresentation;
#       typedef boost::shared_ptr<const PointRepresentation> PointRepresentationConstPtr;
#       // Boost shared pointers
#       typedef boost::shared_ptr<KdTreeFLANN<Eigen::MatrixXf> > Ptr;
#       typedef boost::shared_ptr<const KdTreeFLANN<Eigen::MatrixXf> > ConstPtr;
# 
#       KdTreeFLANN (bool sorted = true) : 
#       KdTreeFLANN (const KdTreeFLANN<Eigen::MatrixXf> &k) : 
#       inline KdTreeFLANN& operator = (const KdTreeFLANN<Eigen::MatrixXf>& k)
#       inline void setEpsilon (float eps)
#       inline Ptr makeShared ()
#       void setInputCloud (const PointCloudConstPtr &cloud, const IndicesConstPtr &indices = IndicesConstPtr ())
#       inline IndicesConstPtr getIndices () const
#       inline PointCloudConstPtr getInputCloud () const
#       template <typename T> int nearestKSearch (const T &point, int k, std::vector<int> &k_indices, std::vector<float> &k_sqr_distances) const
#       inline int nearestKSearch (const PointCloud &cloud, int index, int k, std::vector<int> &k_indices, std::vector<float> &k_sqr_distances) const
#       inline int nearestKSearch (int index, int k, std::vector<int> &k_indices, std::vector<float> &k_sqr_distances) const
#       template <typename T> int radiusSearch (const T &point, double radius, std::vector<int> &k_indices, std::vector<float> &k_sqr_dists, unsigned int max_nn = 0) const
#       inline int radiusSearch (const PointCloud &cloud, int index, double radius, 
#                     std::vector<int> &k_indices, std::vector<float> &k_sqr_distances, 
#                     unsigned int max_nn = 0) const
#       inline int radiusSearch (int index, double radius, std::vector<int> &k_indices, std::vector<float> &k_sqr_distances, unsigned int max_nn = 0) const
#       /** \brief Get the search epsilon precision (error bound) for nearest neighbors searches. */
#       inline float getEpsilon () const
#       protected:
#       /** \brief The input point cloud dataset containing the points we need to use. */
#       PointCloudConstPtr input_;
#       /** \brief A pointer to the vector of point indices to use. */
#       IndicesConstPtr indices_;
#       /** \brief Epsilon precision (error bound) for nearest neighbors searches. */
#       float epsilon_;
#       /** \brief Return the radius search neighbours sorted **/
#       bool sorted_;
### 

ctypedef KdTreeFLANN[cpp.PointXYZ] KdTreeFLANN_t
ctypedef KdTreeFLANN[cpp.PointXYZI] KdTreeFLANN_PointXYZI_t
ctypedef KdTreeFLANN[cpp.PointXYZRGB] KdTreeFLANN_PointXYZRGB_t
ctypedef KdTreeFLANN[cpp.PointXYZRGBA] KdTreeFLANN_PointXYZRGBA_t

ctypedef shared_ptr[KdTreeFLANN[cpp.PointXYZ]] KdTreeFLANNPtr_t
ctypedef shared_ptr[KdTreeFLANN[cpp.PointXYZI]] KdTreeFLANN_PointXYZI_Ptr_t
ctypedef shared_ptr[KdTreeFLANN[cpp.PointXYZRGB]] KdTreeFLANN_PointXYZRGB_Ptr_t
ctypedef shared_ptr[KdTreeFLANN[cpp.PointXYZRGBA]] KdTreeFLANN_PointXYZRGBA_Ptr_t

ctypedef shared_ptr[const KdTreeFLANN[cpp.PointXYZ]] KdTreeFLANNConstPtr_t
ctypedef shared_ptr[const KdTreeFLANN[cpp.PointXYZI]] KdTreeFLANN_PointXYZI_ConstPtr_t
ctypedef shared_ptr[const KdTreeFLANN[cpp.PointXYZRGB]] KdTreeFLANN_PointXYZRGB_ConstPtr_t
ctypedef shared_ptr[const KdTreeFLANN[cpp.PointXYZRGBA]] KdTreeFLANN_PointXYZRGBA_ConstPtr_t

###