1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
|
import unittest
import pdal
import os
import numpy as np
from packaging.version import Version
DATADIRECTORY = "./test/data"
bad_json = u"""
{
"pipeline": [
"nofile.las",
{
"type": "filters.sort",
"dimension": "X"
}
]
}
"""
class PDALTest(unittest.TestCase):
def fetch_json(self, filename):
import os
fn = DATADIRECTORY + os.path.sep + filename
output = ''
with open(fn, 'rb') as f:
output = f.read().decode('UTF-8')
return output
class TestPipeline(PDALTest):
#
@unittest.skipUnless(os.path.exists(os.path.join(DATADIRECTORY, 'sort.json')),
"missing test data")
def test_construction(self):
"""Can we construct a PDAL pipeline"""
json = self.fetch_json('sort.json')
r = pdal.Pipeline(json)
#
@unittest.skipUnless(os.path.exists(os.path.join(DATADIRECTORY, 'sort.json')),
"missing test data")
def test_execution(self):
"""Can we execute a PDAL pipeline"""
x = self.fetch_json('sort.json')
r = pdal.Pipeline(x)
r.validate()
r.execute()
self.assertGreater(len(r.pipeline), 200)
#
def test_validate(self):
"""Do we complain with bad pipelines"""
r = pdal.Pipeline(bad_json)
with self.assertRaises(RuntimeError):
r.validate()
#
@unittest.skipUnless(os.path.exists(os.path.join(DATADIRECTORY, 'sort.json')),
"missing test data")
def test_array(self):
"""Can we fetch PDAL data as a numpy array"""
json = self.fetch_json('sort.json')
r = pdal.Pipeline(json)
r.validate()
r.execute()
arrays = r.arrays
self.assertEqual(len(arrays), 1)
#
a = arrays[0]
self.assertAlmostEqual(a[0][0], 635619.85, 7)
self.assertAlmostEqual(a[1064][2], 456.92, 7)
#
@unittest.skipUnless(os.path.exists(os.path.join(DATADIRECTORY, 'sort.json')),
"missing test data")
def test_metadata(self):
"""Can we fetch PDAL metadata"""
json = self.fetch_json('sort.json')
r = pdal.Pipeline(json)
r.validate()
r.execute()
metadata = r.metadata
import json
j = json.loads(metadata)
self.assertEqual(j["metadata"]["readers.las"][0]["count"], 1065)
#
#
@unittest.skipUnless(os.path.exists(os.path.join(DATADIRECTORY, 'sort.json')),
"missing test data")
def test_no_execute(self):
"""Does fetching arrays without executing throw an exception"""
json = self.fetch_json('sort.json')
r = pdal.Pipeline(json)
with self.assertRaises(RuntimeError):
r.arrays
#
@unittest.skipUnless(os.path.exists(os.path.join(DATADIRECTORY, 'reproject.json')),
"missing test data")
def test_logging(self):
"""Can we fetch log output"""
json = self.fetch_json('reproject.json')
r = pdal.Pipeline(json)
r.loglevel = 8
r.validate()
count = r.execute()
self.assertEqual(count, 789)
self.assertEqual(r.log.split()[0], '(pypipeline')
#
@unittest.skipUnless(os.path.exists(os.path.join(DATADIRECTORY, 'sort.json')),
"missing test data")
def test_schema(self):
"""Fetching a schema works"""
json = self.fetch_json('sort.json')
r = pdal.Pipeline(json)
r.validate()
r.execute()
self.assertEqual(r.schema['schema']['dimensions'][0]['name'], 'X')
#
@unittest.skipUnless(os.path.exists(os.path.join(DATADIRECTORY, 'chip.json')),
"missing test data")
def test_merged_arrays(self):
"""Can we fetch multiple point views from merged PDAL data """
json = self.fetch_json('chip.json')
r = pdal.Pipeline(json)
r.validate()
r.execute()
arrays = r.arrays
self.assertEqual(len(arrays), 43)
#
class TestArrayLoad(PDALTest):
@unittest.skipUnless(os.path.exists(os.path.join(DATADIRECTORY, 'perlin.npy')),
"missing test data")
def test_merged_arrays(self):
"""Can we load data from a a list of arrays to PDAL"""
if Version(pdal.info.version) < Version('1.8'):
return True
data = np.load(os.path.join(DATADIRECTORY, 'perlin.npy'))
arrays = [data, data, data]
json = self.fetch_json('chip.json')
chip =u"""{
"pipeline":[
{
"type":"filters.range",
"limits":"Intensity[0:0.10]"
}
]
}"""
p = pdal.Pipeline(chip, arrays)
p.loglevel = 8
count = p.execute()
arrays = p.arrays
self.assertEqual(len(arrays), 3)
data = arrays[0]
self.assertEqual(len(data), 1836)
self.assertEqual(sum([len(i) for i in arrays]), 3*1836)
class TestDimensions(PDALTest):
def test_fetch_dimensions(self):
"""Ask PDAL for its valid dimensions list"""
dims = pdal.dimensions
if Version(pdal.info.version) < Version('1.8'):
self.assertEqual(len(dims), 71)
else:
self.assertEqual(len(dims), 72)
def test_suite():
return unittest.TestSuite(
[TestPipeline])
if __name__ == '__main__':
unittest.main()
|