File: AST-Builder.txt

package info (click to toggle)
python-peak.rules 0.5a1%2Br2713-1
  • links: PTS, VCS
  • area: main
  • in suites: buster, stretch
  • size: 632 kB
  • ctags: 658
  • sloc: python: 3,625; makefile: 29
file content (670 lines) | stat: -rwxr-xr-x 18,472 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
=============================================
Building Expressions from Python Syntax Trees
=============================================

The ``ast_builder`` module allows you to quickly navigate a Python syntax
tree and perform operations on it.  While Python 2.5 has a new "AST" feature
that provides a high-level syntax tree, older Python versions offer a very
low-level interface that provides complex tuple trees with lots of redundant
information.  The ``ast_builder`` module simplifies these trees dramatically,
without creating an intermediate AST data structure (the way the stdlib
``compiler`` package does).  Instead, it allows you to effectively "visit"
a virtual AST structure and generate your desired output directly.  In
addition, it allows you to skip, delay, or repeat traversals of arbitrary
subtrees.

This document describes the design (and tests the implementation) of the
``ast_builder`` module.  You don't need to read it unless you want to use
this module directly in your own programs.  If you do want to use it directly,
you should keep in mind that it currently only implements a **subset** of Python
*expression* syntax: it does not support lambdas, yield expressions, or any
kind of statements.

.. contents:: **Table of Contents**


------------------------
Parse Trees and Builders
------------------------

``ast_builder`` operates on parse tuple trees, as created by the standard
library ``parser`` module.  The two API functions it provides are ``build``
and ``parse_expr``::

    >>> from peak.rules.ast_builder import build, parse_expr

The ``build()`` function accepts two arguments, a "builder" and a "nodelist".
A "builder" is an object that you supply that will perform actions on nodes in
the parse tree.  The "nodelist" is a parse tuple tree.  As a shortcut, you
can use ``parse_expr()`` to parse a string into a nodelist and invoke
``build()`` in one step.

A simple example::

    >>> class Builder:
    ...     def Const(self, const):
    ...         print const

    >>> parse_expr("1", Builder())
    1

    >>> parse_expr("'foo'", Builder())
    foo

As you can see, the builder's ``Const()`` method is invoked for integer and
string constants, and it receives an actual value.  Many other method names
are used for more complex operations::

    >>> class Builder:
    ...     def Const(self, const):
    ...         return repr(const)
    ...     def Add(self, left, right):
    ...         return "Add(%s, %s)" % (build(self,left), build(self,right))

    >>> parse_expr("1+2", Builder())
    'Add(1, 2)'

    >>> parse_expr("'foo'+'bar'", Builder())
    "Add('foo', 'bar')"

Most builder methods accept nodelists as arguments.  These nodelists can be
recursively passed to ``build()`` in order to process expression subtrees.
This is not done automatically, because it's possible you might want to skip
processing of a particular subtree, or need to process a subtree with a
different builder than the one currently in use, or even process a subtree with
more than one builder (e.g. a builder that sees what names are bound within
a function body, and a second builder to generate code).

For convenience in the rest of this document, we'll use a shorthand function to
create a ``Builder()``, parse an expression, and print the result::

    >>> def pe(expr):
    ...     print parse_expr(expr, Builder())


Tokens
======

The ``Const`` and ``Name`` methods receive token values for constants and
names respectively::

    >>> class Builder:
    ...     def Const(self, const):
    ...         return repr(const)
    ...
    ...     def Name(self, name):
    ...         return name

    >>> pe("a")
    a
    >>> pe("b")
    b
    >>> pe("123")
    123
    >>> pe("'xyz'")
    'xyz'

Note that adjacent string constants are automatically merged::

    >>> pe("'abc' 'xyz'")
    'abcxyz'


Unary Operators
===============

There are five "unary" operator methods, that take a single argument: an AST
tuple representing the expression the operator is applied to::

    >>> class Builder(Builder):
    ...     def unaryOp(fmt):
    ...         def method(self,expr):
    ...             return fmt % build(self,expr)
    ...         return method
    ...
    ...     UnaryPlus  = unaryOp('Plus(%s)')
    ...     UnaryMinus = unaryOp('Minus(%s)')
    ...     Invert     = unaryOp('Invert(%s)')
    ...     Backquote  = unaryOp('repr(%s)')
    ...     Not        = unaryOp('Not(%s)')

    >>> pe("not - + ~`x`")
    Not(Minus(Plus(Invert(repr(x)))))


Attribute Access
================

The ``Getattr()`` method is called with a node and a string; the node is the
base expression, and the string is the attribute that was accessed::

    >>> class Builder(Builder):
    ...     def Getattr(self, expr, attr):
    ...         return 'Getattr(%s,%r)' % (build(self,expr), attr)

    >>> pe("a.b")
    Getattr(a,'b')

    >>> pe("a.b.c")
    Getattr(Getattr(a,'b'),'c')


Simple Binary Operators
=======================

There are 10 "simple" binary operator methods, that take a pair of left and
right nodelists as arguments::

    >>> class Builder(Builder):
    ...     def mkBinOp(op):
    ...         pat = op + '(%s,%s)'
    ...         def method(self, left, right):
    ...             return pat % (build(self,left), build(self,right))
    ...         return method
    ...
    ...     Add        = mkBinOp('Add')
    ...     Sub        = mkBinOp('Sub')
    ...     Mul        = mkBinOp('Mul')
    ...     Div        = mkBinOp('Div')
    ...     Mod        = mkBinOp('Mod')
    ...     FloorDiv   = mkBinOp('FloorDiv')
    ...     Power      = mkBinOp('Power')
    ...     LeftShift  = mkBinOp('LeftShift')
    ...     RightShift = mkBinOp('RightShift')
    ...     Subscript  = mkBinOp('Subscript')

Most of these operators correspond to normal Python binary operators::

    >>> pe("a+b")
    Add(a,b)
    >>> pe("b-a")
    Sub(b,a)
    >>> pe("c*d")
    Mul(c,d)
    >>> pe("c/d")
    Div(c,d)
    >>> pe("c%d")
    Mod(c,d)
    >>> pe("c//d")
    FloorDiv(c,d)
    >>> pe("a**b")
    Power(a,b)
    >>> pe("a<<b")
    LeftShift(a,b)
    >>> pe("a>>b")
    RightShift(a,b)

    >>> pe("a[1]")
    Subscript(a,1)
    >>> pe("a[1][2]")
    Subscript(Subscript(a,1),2)

By the way, ``Ellipsis`` is also handled by the ``Const`` method, in the case
where you have an expression like ``foo[...]``::

    >>> pe("a[...]")
    Subscript(a,Ellipsis)


"List" Operators
================

The 7 "list operator" methods take a single argument: a sequence of nodes
that represent a list of expressions delimited by the corresponding operator::

    >>> class Builder(Builder):
    ...     def multiOp(fmt,sep=','):
    ...         def method(self,items):
    ...             return fmt % sep.join([build(self,item) for item in items])
    ...         return method
    ...
    ...     And        = multiOp('And(%s)')
    ...     Or         = multiOp('Or(%s)')
    ...     Tuple      = multiOp('Tuple(%s)')
    ...     List       = multiOp('List(%s)')
    ...     Bitor      = multiOp('Bitor(%s)')
    ...     Bitxor     = multiOp('Bitxor(%s)')
    ...     Bitand     = multiOp('Bitand(%s)')

    >>> pe("a and b")
    And(a,b)
    >>> pe("a or b")
    Or(a,b)
    >>> pe("a and b and c")
    And(a,b,c)
    >>> pe("a or b or c")
    Or(a,b,c)
    >>> pe("a and b and c and d")
    And(a,b,c,d)
    >>> pe("a or b or c or d")
    Or(a,b,c,d)

    >>> pe("a&b&c")
    Bitand(a,b,c)
    >>> pe("a|b|c")
    Bitor(a,b,c)
    >>> pe("a^b^c")
    Bitxor(a,b,c)

    >>> pe("a&b&c&d")
    Bitand(a,b,c,d)
    >>> pe("a|b|c|d")
    Bitor(a,b,c,d)
    >>> pe("a^b^c^d")
    Bitxor(a,b,c,d)


Tuples
------

No parens::

    >>> pe("a,")
    Tuple(a)
    >>> pe("a,b")
    Tuple(a,b)
    >>> pe("a,b,c")
    Tuple(a,b,c)
    >>> pe("a,b,c,")
    Tuple(a,b,c)

With parens::

    >>> pe("()")
    Tuple()
    >>> pe("(a)")
    a
    >>> pe("(a,)")
    Tuple(a)
    >>> pe("(a,b)")
    Tuple(a,b)
    >>> pe("(a,b,)")
    Tuple(a,b)
    >>> pe("(a,b,c)")
    Tuple(a,b,c)
    >>> pe("(a,b,c,)")
    Tuple(a,b,c)


Lists
-----

::

    >>> pe("[]")
    List()
    >>> pe("[a]")
    List(a)
    >>> pe("[a,]")
    List(a)
    >>> pe("[a,b]")
    List(a,b)
    >>> pe("[a,b,]")
    List(a,b)
    >>> pe("[a,b,c]")
    List(a,b,c)
    >>> pe("[a,b,c,]")
    List(a,b,c)



Slicing
=======

The ``Slice2`` method takes two arguments: a start and stop value.  Each is
either a node list or ``None`` (in which case there is no expression for that
part of the slice)::

    >>> class Builder(Builder):
    ...     def Slice2(self,start,stop):
    ...         txt = 'Slice('
    ...         if start:
    ...             txt += build(self, start)
    ...         txt += ':'
    ...         if stop:
    ...             txt += build(self, stop)
    ...         return txt+')'

    >>> pe("a[:]")
    Subscript(a,Slice(:))

    >>> pe("a[1:2]")
    Subscript(a,Slice(1:2))

    >>> pe("a[1:]")
    Subscript(a,Slice(1:))

    >>> pe("a[:2]")
    Subscript(a,Slice(:2))


The ``Slice3`` method is similar, but takes three arguments::

    >>> class Builder(Builder):
    ...     def Slice3(self,start,stop,stride):
    ...         txt = 'Slice('
    ...         if start:
    ...             txt += build(self, start)
    ...         txt += ':'
    ...         if stop:
    ...             txt += build(self, stop)
    ...         txt += ':'
    ...         if stride:
    ...             txt += build(self, stride)
    ...         return txt+')'

    >>> pe("a[::]")
    Subscript(a,Slice(::))

    >>> pe("a[1::]")
    Subscript(a,Slice(1::))

    >>> pe("a[:2:]")
    Subscript(a,Slice(:2:))

    >>> pe("a[1:2:]")
    Subscript(a,Slice(1:2:))

    >>> pe("a[::3]")
    Subscript(a,Slice(::3))

    >>> pe("a[1::3]")
    Subscript(a,Slice(1::3))

    >>> pe("a[:2:3]")
    Subscript(a,Slice(:2:3))

    >>> pe("a[1:2:3]")
    Subscript(a,Slice(1:2:3))


Comparisons and Conditional Expressions
=======================================

The ``Compare`` method receives two arguments: a node for the first expression
to be compared, followed by a list of ``(op, expr)`` tuples for subsequent
comparisons.  The ``op`` value is a string representing the comparison operator
used, and each ``expr`` is a node::

    >>> class Builder(Builder):
    ...     def Compare(self,initExpr,comparisons):
    ...         data = [build(self,initExpr)]
    ...         for op,val in comparisons:
    ...             data.append(op)
    ...             data.append(build(self,val))
    ...         return 'Compare(%s)' % ' '.join(data)

    >>> pe("a>b")
    Compare(a > b)
    >>> pe("a>=b")
    Compare(a >= b)
    >>> pe("a<b")
    Compare(a < b)
    >>> pe("a<=b")
    Compare(a <= b)
    >>> pe("a<>b")
    Compare(a <> b)
    >>> pe("a!=b")
    Compare(a != b)
    >>> pe("a==b")
    Compare(a == b)
    >>> pe("a in b")
    Compare(a in b)
    >>> pe("a is b")
    Compare(a is b)
    >>> pe("a not in b")
    Compare(a not in b)
    >>> pe("a is not b")
    Compare(a is not b)

N-Way Comparisons
-----------------

If you don't want to have to process N-way comparisons in your builder, you
can set the ``simplify_comparisons`` flag on your class to ``True``, and N-way
comparisons will be converted to ``and`` expressions::

    >>> Builder.simplify_comparisons = True

    >>> pe("1<2<3")
    And(Compare(1 < 2),Compare(2 < 3))

Otherwise, you can set the flag to ``False``, and you will receive N-way
comparisons as additional values in the list of ``(op, expr)`` tuples::

    >>> Builder.simplify_comparisons = False

    >>> pe("1<2<3")
    Compare(1 < 2 < 3)

    >>> pe("a>=b>c<d")
    Compare(a >= b > c < d)

Note that you *must* explicitly set ``simplify_comparisons`` to either a true
or false value; there is no default.


Conditional Expressions
-----------------------

The ``IfElse`` method receives three arguments: a node for the "true" value,
a node for the condition, and a node for the "false" value::

    >>> class Builder(Builder):
    ...     def IfElse(self, trueVal, condition, falseVal):
    ...         return 'IfElse(%s, %s, %s)' % (
    ...             build(self, trueVal), build(self, condition),
    ...             build(self, falseVal)
    ...         )

    >>> import sys
    >>> if sys.version>='2.5':
    ...     pe("a if b else c")
    ... else:
    ...     print "IfElse(a, b, c)"
    IfElse(a, b, c)



List Comprehensions and Generator Expressions
=============================================

The ``ListComp`` and ``GenExpr`` methods receive two arguments: a node for the
output expression, and a list of ``(op, node)`` tuples, where `op` is the name
of an operator (either "for", "in", or "if"), and `node` is the node
corresponding to the operator's argument::

    >>> class Builder(Builder):
    ...     def ListComp(self, initExpr, clauses):
    ...         data = [build(self,initExpr)]
    ...         for op,val in clauses:
    ...             data.append(op)
    ...             data.append(build(self,val))
    ...         return 'ListComp(%s)' % ' '.join(data)
    ...
    ...     def GenExpr(self, initExpr, clauses):
    ...         data = [build(self,initExpr)]
    ...         for op,val in clauses:
    ...             data.append(op)
    ...             data.append(build(self,val))
    ...         return 'GenExpr(%s)' % ' '.join(data)

    >>> pe("[x for x in y if z]")
    ListComp(x for x in y if z)

    >>> pe("[(x+1, 42) for x in y for y in z if q>z]")
    ListComp(Tuple(Add(x,1),42) for x in y for y in z if Compare(q > z))

    >>> pe("[x+1 for x in y if x in z for y in q if r if p]")
    ListComp(Add(x,1) for x in y if Compare(x in z) for y in q if r if p)

    >>> if sys.version>='2.4':
    ...     pe("(x for x in y if z)")
    ... else:
    ...     print "GenExpr(x for x in y if z)"
    GenExpr(x for x in y if z)

Note, by the way, that when you are building the "for" clause assignments,
you'll need to handle arbitrary assignments (e.g. tuple unpacking)::

    >>> pe("[x for y, x in z]")
    ListComp(x for Tuple(y,x) in z)

    >>> pe("[x.y for x.y in z]")
    ListComp(Getattr(x,'y') for Getattr(x,'y') in z)

    >>> pe("[x[y] for x[y] in z]")
    ListComp(Subscript(x,y) for Subscript(x,y) in z)

(Normally, you would handle this by passing the "for" clauses to a different
builder instance that's set up to handle calls to ``Name``, ``Getattr``,
``Tuple``, etc. by generating assignments instead of lookups.)


Dictionaries
============

The ``Dict`` method takes one argument: a list of ``(key, value)`` tuples,
where both the keys and values are expression nodes::

    >>> class Builder(Builder):
    ...     def Dict(self, items):
    ...         return '{%s}' % ','.join([
    ...             '%s:%s' % (build(self,k),build(self,v)) for k,v in items
    ...         ])

    >>> pe("{ (a,b):c+d, e:[f,g]  }")
    {Tuple(a,b):Add(c,d),e:List(f,g)}


Calls
=====

The ``CallFunc`` method takes five arguments:

`func`
    The expression to be called.

`args`
    A list of positional argument expression nodes.

`kw`
    A list of ``(argname, value)`` expression node pairs

`star_node`
    The node for the ``*args`` expression, or ``None`` if there isn't one.

`dstar_node`
    The node for the ``*kw`` expression, or ``None`` if there isn't one.


    >>> class Builder(Builder):
    ...     def CallFunc(self, func, args, kw, star_node, dstar_node):
    ...         if star_node:
    ...             star_node=build(self, star_node)
    ...         else:
    ...             star_node = 'None'
    ...         if dstar_node:
    ...             dstar_node=build(self, dstar_node)
    ...         else:
    ...             dstar_node = 'None'
    ...         return 'Call(%s,%s,%s,%s,%s)' % (
    ...             build(self,func), self.Tuple(args), self.Dict(kw),
    ...             star_node, dstar_node
    ...         )

    >>> pe("a()")
    Call(a,Tuple(),{},None,None)

    >>> pe("a(1,2)")
    Call(a,Tuple(1,2),{},None,None)
    >>> pe("a(1,2,)")
    Call(a,Tuple(1,2),{},None,None)
    >>> pe("a(b=3)")
    Call(a,Tuple(),{'b':3},None,None)
    >>> pe("a(1,2,b=3)")
    Call(a,Tuple(1,2),{'b':3},None,None)

    >>> pe("a(*x)")
    Call(a,Tuple(),{},x,None)
    >>> pe("a(1,*x)")
    Call(a,Tuple(1),{},x,None)
    >>> pe("a(b=3,*x)")
    Call(a,Tuple(),{'b':3},x,None)
    >>> pe("a(1,2,b=3,*x)")
    Call(a,Tuple(1,2),{'b':3},x,None)

    >>> pe("a(**y)")
    Call(a,Tuple(),{},None,y)
    >>> pe("a(1,**y)")
    Call(a,Tuple(1),{},None,y)
    >>> pe("a(b=3,**y)")
    Call(a,Tuple(),{'b':3},None,y)
    >>> pe("a(1,2,b=3,**y)")
    Call(a,Tuple(1,2),{'b':3},None,y)

    >>> pe("a(*x,**y)")
    Call(a,Tuple(),{},x,y)
    >>> pe("a(1,*x,**y)")
    Call(a,Tuple(1),{},x,y)
    >>> pe("a(b=3,*x,**y)")
    Call(a,Tuple(),{'b':3},x,y)
    >>> pe("a(1,2,b=3,*x,**y)")
    Call(a,Tuple(1,2),{'b':3},x,y)


    >>> if sys.version>='2.4':
    ...     pe("a(x for x in y if z)")
    ...     pe("a(x for x in y if z, q)")
    ... else:
    ...     print "Call(a,Tuple(GenExpr(x for x in y if z)),{},None,None)"
    ...     print "Call(a,Tuple(GenExpr(x for x in y if z),q),{},None,None)"
    Call(a,Tuple(GenExpr(x for x in y if z)),{},None,None)
    Call(a,Tuple(GenExpr(x for x in y if z),q),{},None,None)


Miscellaneous Tests
===================

An interesting quirk of the AST module is that it supports parsing some calls
that *should* be syntax errors.  The ``ast_builder`` module thus has to trap
these itself::

    >>> pe("a(1=2)")    # expr as kw
    Traceback (most recent call last):
      ...
    SyntaxError: keyword can't be an expression (...)

    >>> pe("a(b=2,c)")
    Traceback (most recent call last):
      ...
    SyntaxError: non-keyword arg after keyword arg


Most of Python's operator associativity and precedence is grammar-driven, but
certain parts have to be handled by ``ast_builder``.  These are just some tests
to make sure that associativity is correct::

    >>> pe("a+b+c")
    Add(Add(a,b),c)
    >>> pe("a*b*c")
    Mul(Mul(a,b),c)
    >>> pe("a/b/c")
    Div(Div(a,b),c)
    >>> pe("a//b//c")
    FloorDiv(FloorDiv(a,b),c)
    >>> pe("a%b%c")
    Mod(Mod(a,b),c)
    >>> pe("a<<b<<c")
    LeftShift(LeftShift(a,b),c)
    >>> pe("a>>b>>c")
    RightShift(RightShift(a,b),c)
    >>> pe("a()()")
    Call(Call(a,Tuple(),{},None,None),Tuple(),{},None,None)

    >>> pe("a**b**c")   # power is right-associative
    Power(a,Power(b,c))

    >>> pe("5*x**2 + 4*x + -1")
    Add(Add(Mul(5,Power(x,2)),Mul(4,x)),Minus(1))