1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
|
========================================
Code Generation from Python Syntax Trees
========================================
The ``peak.rules.codegen`` module extends ``peak.util.assembler`` (from the
"BytecodeAssembler" project) with additional AST node types to allow generation
of code for simple Python expressions (i.e., those without lambdas,
comprehensions, generators, or yields). It also provides "builder"
classes that work with the ``peak.rules.ast_builder`` module to generate
expression ASTs from Python source code, thus creating an end-to-end compiler
tool chain, common subexpression caching support, and a state-machine
interpreter generator.
This document describes the design (and tests the implementation) of the
``codegen`` module. You don't need to read it unless you want to use
this module directly in your own programs, or to create specialized add-ons
to PEAK-Rules. If you do want to use it directly, keep in mind that it
inherits the limitations and restrictions of both ``peak.util.assembler`` and
``peak.rules.ast_builder``, so you should consult the documentation for those
tools before proceeding.
.. contents:: **Table of Contents**
--------------
AST Generation
--------------
To generate an AST from Python code, you need the ``ast_builder.parse_expr()``
function, and the ``codegen.ExprBuilder`` type::
>>> from peak.rules.ast_builder import parse_expr
>>> from peak.rules.codegen import ExprBuilder
``ExprBuilder`` instances are created using one or more namespaces. The first
namespace maps names to arbitrary AST nodes that will be substituted for any
matching names found in an expression. The second and remaining namespaces
will have their values wrapped in ``Const`` nodes, so they can be used for
constant-folding. For our examples, we'll define a base namespace containing
arguments named "a" through "g"::
>>> from peak.util.assembler import Local
>>> argmap = dict([(name,Local(name)) for name in 'abcdefg'])
>>> builder = ExprBuilder(argmap, locals(), globals(), __builtins__)
And, for convenience, we'll save the builder's ``parse()`` method as ``pe``::
>>> pe = builder.parse
Names and Constants
===================
Constants are wrapped in BytecodeAsssembler ``Const()`` nodes::
>>> pe("1")
Const(1)
Names found in the first namespace are mapped to whatever value is in the
namespace::
>>> pe("a")
Local('a')
Names found in subsequent namespaces get their values wrapped in ``Const()``
nodes::
>>> pe("ExprBuilder")
Const(<...peak.rules.codegen.ExprBuilder...>)
>>> pe("isinstance")
Const(<built-in function isinstance>)
And unfound names produce a compile-time error::
>>> pe("fubar")
Traceback (most recent call last):
...
NameError: fubar
Namespaces and Binding
======================
An ``ExprBuilder`` object's ``bindings`` attribute is a list of dictionaries,
mapping names to the desired outputs::
>>> builder.bindings
[{}, {'a': Local('a'), 'c': Local('c'), 'b': Local('b'), 'e': Local('e'),
'd': Local('d'), 'g': Local('g'), 'f': Local('f')},
{...}, {...}, {...}]
You can add more bindings temporarily with the ``.push()`` method, then
remove them with ``.pop()``::
>>> builder.push({'q': pe('42')})
>>> builder.Name('q')
Const(42)
>>> builder.pop()
{'q': Const(42)}
>>> builder.Name('q')
Traceback (most recent call last):
...
NameError: q
If you omit the argument to ``.push()``, it just adds an empty namespace to
the bindings::
>>> builder.push()
>>> builder.bindings
[{}, {}, {'a': Local('a'), 'c': Local('c'), 'b': Local('b'),
'e': Local('e'), 'd': Local('d'), 'g': Local('g'),
'f': Local('f')}, {...}, {...}, {...}]
Which you can then modify using ``.bind()``::
>>> builder.bind({'x': pe('99')})
>>> builder.bindings
[{'x': Const(99)}, {}, {'a': Local('a'), 'c': Local('c'), 'b': Local('b'),
'e': Local('e'), 'd': Local('d'), 'g': Local('g'),
'f': Local('f')}, {...}, {...}, {...}]
And finally remove with ``.pop()``::
>>> builder.pop()
{'x': Const(99)}
>>> builder.bindings
[{}, {'a': Local('a'), 'c': Local('c'), 'b': Local('b'), 'e': Local('e'),
'd': Local('d'), 'g': Local('g'), 'f': Local('f')},
{...}, {...}, {...}]
Operators
=========
Unary operators::
>>> pe("not - + ~ `a`")
Not(Minus(Plus(Invert(Repr(Local('a'))))))
Attribute access::
>>> pe("a.b.c")
Getattr(Getattr(Local('a'), 'b'), 'c')
Simple binary operators::
>>> pe("a+b")
Add(Local('a'), Local('b'))
>>> pe("b-a")
Sub(Local('b'), Local('a'))
>>> pe("c*d")
Mul(Local('c'), Local('d'))
>>> pe("c/d")
Div(Local('c'), Local('d'))
>>> pe("c%d")
Mod(Local('c'), Local('d'))
>>> pe("c//d")
FloorDiv(Local('c'), Local('d'))
>>> pe("a**b")
Power(Local('a'), Local('b'))
>>> pe("a<<b")
LeftShift(Local('a'), Local('b'))
>>> pe("a>>b")
RightShift(Local('a'), Local('b'))
>>> pe("a[1]")
Getitem(Local('a'), Const(1))
>>> pe("a[1][2]")
Getitem(Getitem(Local('a'), Const(1)), Const(2))
>>> pe("a&b&c")
Bitand(Bitand(Local('a'), Local('b')), Local('c'))
>>> pe("a|b|c")
Bitor(Bitor(Local('a'), Local('b')), Local('c'))
>>> pe("a^b^c")
Bitxor(Bitxor(Local('a'), Local('b')), Local('c'))
List operators::
>>> pe("a and b")
And((Local('a'), Local('b')))
>>> pe("a or b")
Or((Local('a'), Local('b')))
>>> pe("a and b and c")
And((Local('a'), Local('b'), Local('c')))
>>> pe("a or b or c")
Or((Local('a'), Local('b'), Local('c')))
>>> pe("[]")
Const([])
>>> pe("[a]")
List((Local('a'),))
>>> pe("[a,b]")
List((Local('a'), Local('b')))
>>> pe("()")
Const(())
>>> pe("a,")
Tuple((Local('a'),))
>>> pe("a,b")
Tuple((Local('a'), Local('b')))
Slicing::
>>> pe("a[:]")
GetSlice(Local('a'), Pass, Pass)
>>> pe("a[1:2]")
GetSlice(Local('a'), Const(1), Const(2))
>>> pe("a[1:]")
GetSlice(Local('a'), Const(1), Pass)
>>> pe("a[:2]")
GetSlice(Local('a'), Pass, Const(2))
>>> pe("a[::]")
Getitem(Local('a'), Const(slice(None, None, None)))
>>> pe("a[1:2:3]")
Getitem(Local('a'), Const(slice(1, 2, 3)))
>>> pe("a[b:c:d]")
Getitem(Local('a'), BuildSlice(Local('b'), Local('c'), Local('d')))
Comparisons::
>>> pe("a>b")
Compare(Local('a'), (('>', Local('b')),))
>>> pe("a>=b")
Compare(Local('a'), (('>=', Local('b')),))
>>> pe("a<b")
Compare(Local('a'), (('<', Local('b')),))
>>> pe("a<=b")
Compare(Local('a'), (('<=', Local('b')),))
>>> pe("a<>b")
Compare(Local('a'), (('!=', Local('b')),))
>>> pe("a!=b")
Compare(Local('a'), (('!=', Local('b')),))
>>> pe("a==b")
Compare(Local('a'), (('==', Local('b')),))
>>> pe("a in b")
Compare(Local('a'), (('in', Local('b')),))
>>> pe("a is b")
Compare(Local('a'), (('is', Local('b')),))
>>> pe("a not in b")
Compare(Local('a'), (('not in', Local('b')),))
>>> pe("a is not b")
Compare(Local('a'), (('is not', Local('b')),))
>>> pe("a>=b>c")
Compare(Local('a'), (('>=', Local('b')), ('>', Local('c'))))
Dictionaries::
>>> pe("{a:b,c:d}")
Dict(((Local('a'), Local('b')), (Local('c'), Local('d'))))
Conditional Expressions::
>>> import sys
>>> if sys.version>='2.5':
... pe("a if b else c")
... else:
... print "IfElse(Local('a'), Local('b'), Local('c'))"
IfElse(Local('a'), Local('b'), Local('c'))
Calls::
>>> pe("a()")
Call(Local('a'), (), (), (), (), True)
>>> pe("a(1,2)")
Call(Local('a'), (Const(1), Const(2)), (), (), (), True)
>>> pe("a(1, b=2)")
Call(Local('a'), (Const(1),), ((Const('b'), Const(2)),), (), (), True)
>>> pe("a(*b)")
Call(Local('a'), (), (), Local('b'), (), True)
>>> pe("a(**c)")
Call(Local('a'), (), (), (), Local('c'), True)
>>> pe("a(*b, **c)")
Call(Local('a'), (), (), Local('b'), Local('c'), True)
-------------------
Bytecode Generation
-------------------
AST's generated using ``ExprBuilder`` can be used directly with
BytecodeAssembler ``Code`` objects to generate bytecode, complete with
constant-folding. Note that the node types not demonstrated below (e.g.
``And``, ``Or``, ``Compare``, ``Call``) are not defined by the ``codegen``
module, but instead are imported from ``peak.util.assembler``::
>>> from peak.rules.codegen import *
>>> from peak.util.assembler import Const, Pass
>>> Minus(1), Plus(2), Not(True), Invert(-1), Repr(4)
(Const(-1), Const(2), Const(False), Const(0), Const('4'))
>>> Add(1,2), Sub(3,2), Mul(4,5), Div(10,2), Mod(7,3), FloorDiv(7,3)
(Const(3), Const(1), Const(20), Const(5), Const(1), Const(2))
>>> Power(2,3), LeftShift(1,4), RightShift(12,2)
(Const(8), Const(16), Const(3))
>>> Getitem(Const([1,2]), 1)
Const(2)
>>> Bitand(3, 1), Bitor(1,2), Bitxor(3,1)
(Const(1), Const(3), Const(2))
>>> Dict([(1,2)])
Const({1: 2})
>>> aList = Const([1,2,3,4])
>>> GetSlice(aList)
Const([1, 2, 3, 4])
>>> GetSlice(aList, 1)
Const([2, 3, 4])
>>> GetSlice(aList, 1, -1)
Const([2, 3])
>>> GetSlice(aList, Pass, -1)
Const([1, 2, 3])
>>> BuildSlice(1, 2, 3)
Const(slice(1, 2, 3))
>>> BuildSlice(1, 2)
Const(slice(1, 2, None))
>>> Tuple([1,2])
Const((1, 2))
>>> List([1,2])
Const([1, 2])
>>> IfElse(1,2,3)
Const(1)
>>> IfElse(1,0,3)
Const(3)
State Machine Interpreter Generation
====================================
PEAK-Rules often processes fairly large dispatch trees that would take a long
time to generate if translated entirely to bytecode. Plus, they would need to
be regenerated every time rules were added to a dispatch tree.
So, instead of generating bytecode that encodes the entire dispatch tree,
PEAK-Rules uses a "state machine interpreter" approach. The dispatch tree
is represented as a tree of objects. Each node consists of an "action" and
an "argument". The generated code is simply an interpreter with inlined
bytecode to implement the actions associated with the nodes. To minimize
interpretation overhead, actions are encoded in the dispatch tree as jump
offsets into the generated bytecode.
Interpreter functions are generated using the ``SMIGenerator`` class,
instantiated with a function whose calling signature will serve as a template
for the interpreter function::
>>> from peak.rules.codegen import SMIGenerator
>>> def interpreter(input):
... return input
>>> smig = SMIGenerator(interpreter)
To generate the interpreter function, you call the ``generate()`` method with
a root node: an action/argument tuple::
>>> exit_node = (0, interpreter)
>>> gfunc = smig.generate(exit_node)
The action must either be zero, or a value returned by the ``action_id()``
method (described later below). When the generated interpreter encounters
action zero, it will treat the argument as a callback. The callback must
accept the same number and type of arguments as the interpreter function, and
it will be called with the values of the corresponding local variables. The
interpreter will invoke the callback, and then exit, returning whatever value
or exception was provided by the exit callback::
>>> gfunc(23)
23
Now let's use the same generator, but add some more actions to it. Actions are
added using the ``action_id()`` method, which takes a code generation target
and returns an action ID for use in the interpreter.
The code generation target will execute with no values on the stack, and must
finish execution with one value on the stack -- another (action, argument)
pair. It can use the generator's ``ARG`` attribute to refer to the action
argument, and the generator's ``NEXT_STATE`` attribute to
jump back to the action dispatch loop. A ``NEXT_STATE`` jump is automatically
generated after each action, so you don't need to include it.
For demonstration and testing, we'll create two new actions: an action that
sets the ``input`` local variable to its argument, and an action that simply
treats the argument as the next state -- a sort of "pass" action. We'll start
with the "pass" action::
>>> pass_id = smig.action_id(smig.ARG)
This is about the simplest possible action that meets the requirements of an
action: it takes no values on the stack, and puts one value on the stack. In
this case, the argument part of the current state.
Now let's create a slightly more complex action, ``set_input``::
>>> from peak.util.assembler import nodetype
>>> def SetInput(code=None):
... """Argument is a (value, nextstate) tuple; sets 'input' to value"""
... if code is None: return ()
... code(smig.ARG)
... code.UNPACK_SEQUENCE(2)
... code.STORE_FAST('input')
>>> SetInput = nodetype()(SetInput)
>>> set_input = smig.action_id(SetInput())
This action treats its argument as a (`value`, `nextstate`) pair, where
`value` is stored in the ``input`` local variable, and `nextstate` is the
next state to proceed to.
By the way, note that Action ID's are cached, so that passing in equivalent
code targets will return the same ID each time::
>>> set_input == smig.action_id(SetInput())
True
>>> pass_id == smig.action_id(smig.ARG)
True
>>> pass_id == smig.action_id(SetInput())
False
Whenever you add new actions, you must regenerate the interpreter function
in order to be able to use them in the dispatch tree. So we'll regenerate
our input function, this time using the ``set_input`` action::
>>> gfunc = smig.generate((set_input, (99, exit_node)))
>>> gfunc(27)
99
Now let's create a conditional action and try a more complex tree. This
action will proceed to its argument if the input is true, otherwise it will
exit immediately::
>>> input_arg_or_exit = smig.action_id(
... IfElse(smig.ARG, Local('input'), Const(exit_node))
... )
>>> gfunc = smig.generate(
... (input_arg_or_exit, (set_input, (True, exit_node)))
... )
>>> gfunc(27)
True
>>> gfunc('')
''
By the way, using unrecognized action IDs in a dispatch tree will cause an
``AssertionError`` at the point where the action is encountered::
>>> gfunc = smig.generate(("foo", "bar"))
>>> gfunc(643)
Traceback (most recent call last):
...
AssertionError: Invalid action: foo, bar
Finally, note that ``SMIGenerator`` objects have a ``maybe_cache`` method,
that allows you to do `subexpression caching`_ as described in the next
section::
>>> smig.maybe_cache
<bound method CSECode.maybe_cache of <...CSECode object...>>
Note, however, that the cache lifetime is one full run of the generated
interpreter function, so take care when choosing candidate expressions for
caching.
Subexpression Caching
=====================
The ``peak.rules.codegen`` module includes a common-subexpression caching
extension of ``peak.util.assembler``, used to implement "at most once"
calculation of any intermediate results during rule evaluation. It works
by setting aside a local variable (``$CSECache``) to hold a dictionary of
temporary values, keyed by strings.
Any time a cached value is needed, the dictionary is checked first. However,
the local variable is initially set to ``None``, to avoid creating a dictionary
unnecessarily. In this way, only those portions of the dispatch tree that
require intermediate expression evaluation will incur the cost of creating or
accessing the dictionary.
Note that this caching mechanism is not primarily aimed at improving the
performance of the underlying code, although in some cases it *might* have this
effect. It is also not aimed at producing compact code; the code it generates
may be considerably larger than the unadorned code would be!
Rather, the goal is to provide the desired semantics (i.e. no duplicated
calculations) with better performance than the ``RuleDispatch`` package
provides for the same operations. In ``RuleDispatch``, expressions are
calculated using partial functions and a similar cache dictionary to this one,
whereas here the functions are effectively inlined as Python bytecode.
The ``CSECode`` class replaces the ``assembler.Code`` class::
>>> from dis import dis
>>> c = CSECode()
>>> a, b = Local('a'), Local('b')
>>> dis(c.code())
And the added ``cache()`` method takes an expression to cache. If no previous
expressions were cached, a preamble is emitted to initialize the cache::
>>> c.cache(Add(a,b))
>>> dis(c.code())
0 0 LOAD_CONST 0 (None)
3 STORE_FAST 0 ($CSECache)
But subsequent ``cache()`` calls of course do not repeat the preamble::
>>> c.cache(Add(a,b)) # deliberate dupe to verify above only happens once
>>> dis(c.code())
0 0 LOAD_CONST 0 (None)
3 STORE_FAST 0 ($CSECache)
Generating a cached object results in extra code being added to ensure that
the cache variable is initialized and to retrieve the cached value, if present.
The resulting code looks complex, but each of the possible code paths are
actually fairly short. The cache keys are the string forms of the cached
expressions, with an added number to ensure uniqueness::
>>> c.return_(Add(a,b))
>>> from peak.util.assembler import dump
>>> dump(c.code())
LOAD_CONST 0 (None)
STORE_FAST 0 ($CSECache)
LOAD_CONST 1 ("Add(Local('a'), Local('b')) #1")
LOAD_FAST 0 ($CSECache)
JUMP_IF_TRUE L1
POP_TOP
BUILD_MAP 0
DUP_TOP
STORE_FAST 0 ($CSECache)
L1: COMPARE_OP 6 (in)
JUMP_IF_FALSE L2
POP_TOP
LOAD_FAST 0 ($CSECache)
LOAD_CONST 1 ("Add(Local('a'), Local('b')) #1")
BINARY_SUBSCR
JUMP_FORWARD L3
L2: POP_TOP
LOAD_FAST 1 (a)
LOAD_FAST 2 (b)
BINARY_ADD
DUP_TOP
LOAD_FAST 0 ($CSECache)
LOAD_CONST 1 ("Add(Local('a'), Local('b')) #1")
STORE_SUBSCR
L3: RETURN_VALUE
While the ``cache()`` method marks an expression as definitely cacheable, the
``maybe_cache()`` method allows the code object to decide for itself whether
the expression should be cached. Specifically, the given expression and all
its subexpressions are evaluated against a dummy code object, and its tree
structure is examined. Any non-leaf node that appears as a child of two
or more parents, or twice or more as a child of the same parent, is considered
suitable for caching.
In our first example, the expression ``(a+b)/c*d`` is cached, because it's
passed to ``maybe_cache()`` twice -- once by itself, and once as a child of
``((a+b)/c*d) % 3``::
>>> a_plus_b = Add(a,b)
>>> c_times_d = Mul(Local('c'), Local('d'))
>>> abcd = Div(a_plus_b, c_times_d)
>>> m3 = Mod(abcd, 3)
>>> c = CSECode()
>>> c.maybe_cache(abcd)
>>> c.maybe_cache(m3)
>>> c.return_(m3)
>>> dump(c.code())
LOAD_CONST 0 (None)
STORE_FAST 0 ($CSECache)
LOAD_CONST 1 ("Div(Add(Local('a'), Local('b')), Mul(Local('c'), Local('d'))) #1")
LOAD_FAST 0 ($CSECache)
JUMP_IF_TRUE L1
POP_TOP
BUILD_MAP 0
DUP_TOP
STORE_FAST 0 ($CSECache)
L1: COMPARE_OP 6 (in)
JUMP_IF_FALSE L2
POP_TOP
LOAD_FAST 0 ($CSECache)
LOAD_CONST 1 ("Div(Add(Local('a'), Local('b')), Mul(Local('c'), Local('d'))) #1")
BINARY_SUBSCR
JUMP_FORWARD L3
L2: POP_TOP
LOAD_FAST 1 (a)
LOAD_FAST 2 (b)
BINARY_ADD
LOAD_FAST 3 (c)
LOAD_FAST 4 (d)
BINARY_MULTIPLY
BINARY_DIVIDE
DUP_TOP
LOAD_FAST 0 ($CSECache)
LOAD_CONST 1 ("Div(Add(Local('a'), Local('b')), Mul(Local('c'), Local('d'))) #1")
STORE_SUBSCR
L3: LOAD_CONST 2 (3)
BINARY_MODULO
RETURN_VALUE
In the next example, we compute ``(a+b)*(a+b)`` after inspecting
``(a+b)*(b+a)`` and ``(b+a)*(a+b)`` for recurring sub-expressions. Naturally,
we detect that ``(a+b)`` is used more than once, so it is cached::
>>> c = CSECode()
>>> b_plus_a = Add(b,a)
>>> ab_2 = Mul(a_plus_b, a_plus_b)
>>> c.maybe_cache(Mul(b_plus_a, a_plus_b))
>>> c.maybe_cache(Mul(a_plus_b, b_plus_a))
>>> c.return_(ab_2)
>>> dump(c.code())
LOAD_CONST 0 (None)
STORE_FAST 0 ($CSECache)
LOAD_CONST 1 ("Add(Local('a'), Local('b')) #1")
LOAD_FAST 0 ($CSECache)
JUMP_IF_TRUE L1
POP_TOP
BUILD_MAP 0
DUP_TOP
STORE_FAST 0 ($CSECache)
L1: COMPARE_OP 6 (in)
JUMP_IF_FALSE L2
POP_TOP
LOAD_FAST 0 ($CSECache)
LOAD_CONST 1 ("Add(Local('a'), Local('b')) #1")
BINARY_SUBSCR
JUMP_FORWARD L3
L2: POP_TOP
LOAD_FAST 1 (a)
LOAD_FAST 2 (b)
BINARY_ADD
DUP_TOP
LOAD_FAST 0 ($CSECache)
LOAD_CONST 1 ("Add(Local('a'), Local('b')) #1")
STORE_SUBSCR
L3: LOAD_CONST 1 ("Add(Local('a'), Local('b')) #1")
LOAD_FAST 0 ($CSECache)
JUMP_IF_TRUE L4
POP_TOP
BUILD_MAP 0
DUP_TOP
STORE_FAST 0 ($CSECache)
L4: COMPARE_OP 6 (in)
JUMP_IF_FALSE L5
POP_TOP
LOAD_FAST 0 ($CSECache)
LOAD_CONST 1 ("Add(Local('a'), Local('b')) #1")
BINARY_SUBSCR
JUMP_FORWARD L6
L5: POP_TOP
LOAD_FAST 1 (a)
LOAD_FAST 2 (b)
BINARY_ADD
DUP_TOP
LOAD_FAST 0 ($CSECache)
LOAD_CONST 1 ("Add(Local('a'), Local('b')) #1")
STORE_SUBSCR
L6: BINARY_MULTIPLY
RETURN_VALUE
And in this example, we also compute ``(a+b)*(a+b)``, but this time only
inspecting that one expression for recurrences. We still find the recurrence,
because ``(a+b)`` occurs more than once under the parent expression::
>>> c = CSECode()
>>> c.maybe_cache(ab_2)
>>> c.return_(ab_2)
>>> dump(c.code())
LOAD_CONST 0 (None)
STORE_FAST 0 ($CSECache)
LOAD_CONST 1 ("Add(Local('a'), Local('b')) #1")
LOAD_FAST 0 ($CSECache)
JUMP_IF_TRUE L1
POP_TOP
BUILD_MAP 0
DUP_TOP
STORE_FAST 0 ($CSECache)
L1: COMPARE_OP 6 (in)
JUMP_IF_FALSE L2
POP_TOP
LOAD_FAST 0 ($CSECache)
LOAD_CONST 1 ("Add(Local('a'), Local('b')) #1")
BINARY_SUBSCR
JUMP_FORWARD L3
L2: POP_TOP
LOAD_FAST 1 (a)
LOAD_FAST 2 (b)
BINARY_ADD
DUP_TOP
LOAD_FAST 0 ($CSECache)
LOAD_CONST 1 ("Add(Local('a'), Local('b')) #1")
STORE_SUBSCR
L3: LOAD_CONST 1 ("Add(Local('a'), Local('b')) #1")
LOAD_FAST 0 ($CSECache)
JUMP_IF_TRUE L4
POP_TOP
BUILD_MAP 0
DUP_TOP
STORE_FAST 0 ($CSECache)
L4: COMPARE_OP 6 (in)
JUMP_IF_FALSE L5
POP_TOP
LOAD_FAST 0 ($CSECache)
LOAD_CONST 1 ("Add(Local('a'), Local('b')) #1")
BINARY_SUBSCR
JUMP_FORWARD L6
L5: POP_TOP
LOAD_FAST 1 (a)
LOAD_FAST 2 (b)
BINARY_ADD
DUP_TOP
LOAD_FAST 0 ($CSECache)
LOAD_CONST 1 ("Add(Local('a'), Local('b')) #1")
STORE_SUBSCR
L6: BINARY_MULTIPLY
RETURN_VALUE
Finally, it's important to note that only subexpressions that increase the
stack size by exactly 1 are considered for caching::
>>> from peak.util.assembler import Suite, Code
>>> c = CSECode()
>>> s = Suite([a, b])
>>> ss = Suite([s, s])
>>> c.maybe_cache(ss)
>>> c.return_(ss)
>>> dis(c.code())
0 0 LOAD_FAST 0 (a)
3 LOAD_FAST 1 (b)
6 LOAD_FAST 0 (a)
9 LOAD_FAST 1 (b)
12 RETURN_VALUE
>>> c = CSECode()
>>> s = Suite([a, b, Code.POP_TOP, Code.POP_TOP, Code.POP_TOP])
>>> ss = Suite([a, s, a, s])
>>> c.maybe_cache(ss)
>>> c(ss)
>>> dis(c.code())
0 0 LOAD_FAST 0 (a)
3 LOAD_FAST 0 (a)
6 LOAD_FAST 1 (b)
9 POP_TOP
10 POP_TOP
11 POP_TOP
12 LOAD_FAST 0 (a)
15 LOAD_FAST 0 (a)
18 LOAD_FAST 1 (b)
21 POP_TOP
22 POP_TOP
23 POP_TOP
|