1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
|
==================
Predicate Dispatch
==================
Here, we document and test the internals of PEAK-Rules' predicate dispatch
implementation. Specifically, how it assembles the things we've already seen
in the `AST Building`_, `Code Generation`_, `Criteria`_ and `Indexing`_
documents, into a complete implementation.
.. _AST Building: http://peak.telecommunity.com/DevCenter/PEAK-Rules/AST-Builder
.. _Code Generation: http://peak.telecommunity.com/DevCenter/PEAK-Rules/Code-Generation
.. _Criteria: http://peak.telecommunity.com/DevCenter/PEAK-Rules/Criteria
.. _Indexing: http://peak.telecommunity.com/DevCenter/PEAK-Rules/Indexing
.. contents:: **Table of Contents**
Predicate Expression Types
==========================
Predicate expression types wrap expressions to specify what kind of dispatching
should be done on the base expression. For example, ``predicates.IsInstance``
indicates that an expression is to be looked up by what it's an instance of.
There are five built-in expression types::
>>> from peak.rules.predicates import \
... Truth, Identity, Comparison, IsSubclass, IsInstance
And we will test them using code objects:
>>> from peak.util.assembler import Code, Const, dump
>>> from dis import dis
Truth
-----
The ``Truth`` predicate tests whether its subject expression is true or false,
and selects the appropriate sub-node from a ``(true_node, false_node)`` tuple::
>>> c = Code()
>>> c(Truth(42))
>>> dump(c.code())
LOAD_FAST 0 ($Arg)
UNPACK_SEQUENCE 2
LOAD_CONST 1 (42)
JUMP_IF_TRUE L1
ROT_THREE
L1: POP_TOP
ROT_TWO
POP_TOP
The generated code unpacks the 2-tuple, and then does a bit of stack
manipulation to select the correct subnode.
The ``disjuncts()`` of a Truth Test is the Test itself::
>>> from peak.rules.core import disjuncts
>>> from peak.rules.criteria import Test, Signature, Value
>>> disjuncts(Test(Truth(88), Value(True)))
[Test(Truth(88), Value(True, True))]
>>> disjuncts(Test(Truth(88), Value(True, False)))
[Test(Truth(88), Value(True, False))]
Identity
--------
The ``Identity`` predicate looks up the ``id()`` of its subject expression in
a dictionary of sub-nodes. If the id isn't found, the ``None`` entry is used::
>>> c = Code()
>>> c(Identity(99))
>>> dump(c.code())
LOAD_CONST 1 (<built-in function id>)
LOAD_CONST 2 (99)
CALL_FUNCTION 1
DUP_TOP
LOAD_FAST 0 ($Arg)
COMPARE_OP 6 (in)
JUMP_IF_FALSE L1
POP_TOP
LOAD_FAST 0 ($Arg)
ROT_TWO
BINARY_SUBSCR
JUMP_FORWARD L2
L1: POP_TOP
POP_TOP
LOAD_FAST 0 ($Arg)
LOAD_CONST 0 (None)
BINARY_SUBSCR
Comparison
----------
The ``Comparison`` predicate expects its "arg" to be an ``(exact, ranges)``
pair, such as might be generated by the ``peak.rules.indexing.split_ranges``
function::
>>> c = Code()
>>> c(Comparison(555))
>>> dis(c.code())
0 0 LOAD_CONST 1 (<function value_check at ...>)
3 LOAD_CONST 2 (555)
6 LOAD_FAST 0 ($Arg)
9 CALL_FUNCTION 2
The generated code simply calls a helper function, ``value_check``, with its
expression and argument. The helper function looks up and returns the
appropriate subnode, first by trying for an exact match, and then looking for
a range match if no exact match is found::
>>> from peak.rules.predicates import value_check
>>> from peak.util.extremes import Min, Max
>>> exact = {'x':1, 'y':2}
>>> ranges = [((Min,'x'),42), (('x','y'),99), (('y',Max),88)]
>>> for letter in 'wxyz':
... print value_check(letter, (exact, ranges))
42
1
2
88
>>> value_check('xx', (exact, ranges))
99
IsSubclass
----------
The ``IsSubclass`` predicate uses a ``(cache, lookup)`` node pair, where
`cache` is a dictionary from classes to nodes, and `lookup` is a function to
call with the class, in the event that the target class isn't found in the
cache::
>>> c = Code()
>>> c(IsSubclass(Const(int)))
>>> dump(c.code())
LOAD_CONST 1 (<type 'int'>)
SETUP_EXCEPT L1
DUP_TOP
LOAD_FAST 0 ($Arg)
UNPACK_SEQUENCE 2
ROT_THREE
POP_TOP
BINARY_SUBSCR
ROT_TWO
POP_TOP
POP_BLOCK
JUMP_FORWARD L3
L1: DUP_TOP
LOAD_CONST 2 (<...KeyError...>)
COMPARE_OP 10 (exception match)
JUMP_IF_FALSE L2
POP_TOP
POP_TOP
POP_TOP
POP_TOP
LOAD_FAST 0 ($Arg)
UNPACK_SEQUENCE 2
POP_TOP
ROT_TWO
CALL_FUNCTION 1
JUMP_FORWARD L3
L2: POP_TOP
END_FINALLY
IsInstance
----------
The ``IsInstance`` predicate is virtually identical to ``IsSubclass``, except
that it first obtains the ``__class__`` or ``type()`` of its target::
>>> c = Code()
>>> c(IsInstance(Const(999)))
>>> dump(c.code())
LOAD_CONST 1 (999)
SETUP_EXCEPT L1
DUP_TOP
LOAD_ATTR 0 (__class__)
ROT_TWO
POP_TOP
POP_BLOCK
JUMP_FORWARD L3
L1: DUP_TOP
LOAD_CONST 2 (<...AttributeError...>)
COMPARE_OP 10 (exception match)
JUMP_IF_FALSE L2
POP_TOP
POP_TOP
POP_TOP
POP_TOP
LOAD_CONST 3 (<type 'type'>)
ROT_TWO
CALL_FUNCTION 1
JUMP_FORWARD L3
L2: POP_TOP
END_FINALLY
L3: SETUP_EXCEPT L4
DUP_TOP
LOAD_FAST 0 ($Arg)
UNPACK_SEQUENCE 2
ROT_THREE
POP_TOP
BINARY_SUBSCR
ROT_TWO
POP_TOP
POP_BLOCK
JUMP_FORWARD L6
L4: DUP_TOP
LOAD_CONST 4 (<...KeyError...>)
COMPARE_OP 10 (exception match)
JUMP_IF_FALSE L5
POP_TOP
POP_TOP
POP_TOP
POP_TOP
LOAD_FAST 0 ($Arg)
UNPACK_SEQUENCE 2
POP_TOP
ROT_TWO
CALL_FUNCTION 1
JUMP_FORWARD L6
L5: POP_TOP
END_FINALLY
Defining New Predicate Types
-----------------------------
A predicate type must be a ``peak.util.assembler.nodetype``, capable of
generating its own lookup code. The code will be used in a ``SMIGenerator``
context (see the `Code Generation`_ manual), so ``SMIGenerator.ARG`` will
contain a lookup node.
Each predicate type must be usable with the ``predicates.predicate_node_for``
function, and the ``predicates.always_testable`` function:
predicate_node_for(builder, expr, cases, remaining_exprs, memo)
Return a dispatch tree node argument appropriate for the expr. The return
value(s) of this function will be in the ``SMIGenerator.ARG`` local
variable when the predicate type's bytecode is executed.
always_testable(expr)
Return true if the expression can always be tested, regardless of its
position among the signature condition(s). Most predicate types should
just implement this by calling ``always_testable()`` recursively on their
target expression, and in fact all of the built-in predicate types do this.
For more details, see the section on `Order Independence`_ below.
Predicate Parsing
=================
The ``CriteriaBuilder`` class can be used to parse Python expressions into
tests and signatures. It's initialized using the same arguments as the
``codegen.ExprBuilder`` class::
>>> from peak.rules.predicates import CriteriaBuilder, Comparison, istype
>>> from peak.rules.criteria import Disjunction, Value, Test, Range, Class, OrElse
>>> from peak.util.assembler import Local
>>> builder = CriteriaBuilder(
... dict(x=Local('x'), y=Local('y')), locals(), globals(), __builtins__
... )
>>> pe = builder.parse
>>> pe('x+42 > 23*2')
Test(Comparison(Add(Local('x'), Const(42))), Range((46, 1), (Max, 1)))
Iterable constants into or-ed equality tests::
>>> pe('x in (1,2,3)') == Disjunction([
... Test(Comparison(Local('x')), Value(2, True)),
... Test(Comparison(Local('x')), Value(3, True)),
... Test(Comparison(Local('x')), Value(1, True))
... ])
True
>>> pe('x not in (1,2,3)') == Test(
... Comparison(Local('x')),
... Disjunction([
... Range((Min, -1), (1, -1)), Range((1, 1), (2, -1)),
... Range((2, 1), (3, -1)), Range((3, 1), (Max, 1))
... ])
... )
True
And non-iterable constants into plain expressions::
>>> pe('x in 27')
Test(Truth(Compare(Local('x'), (('in', Const(27)),))), Value(True, True))
>>> pe('x not in 27')
Test(Truth(Compare(Local('x'), (('not in', Const(27)),))), Value(True, True))
The ``is`` operator produces identity tests, if either side is a constant::
>>> pe('x is 42')
Test(Identity(Local('x')), IsObject(42, True))
>>> pe('42 is not x')
Test(Identity(Local('x')), IsObject(42, False))
And plain expressions when neither side is constant::
>>> pe('x is y')
Test(Truth(Compare(Local('x'), (('is', Local('y')),))), Value(True, True))
>>> pe('x is not y')
Test(Truth(Compare(Local('x'), (('is not', Local('y')),))), Value(True, True))
>>> pe('not (x is y)')
Test(Truth(Compare(Local('x'), (('is', Local('y')),))), Value(True, False))
>>> pe('not (x is not y)')
Test(Truth(Compare(Local('x'), (('is not', Local('y')),))), Value(True, False))
Complex logical expressions are always rendered in disjunctive normal form,
with negations simplified away or reduced to match flags on criteria objects::
>>> pe('isinstance(x, int) and isinstance(y, str)')
Signature([Test(IsInstance(Local('x')), Class(<type 'int'>, True)),
Test(IsInstance(Local('y')), Class(<type 'str'>, True))])
>>> pe('not(not isinstance(x, int) or not isinstance(y, str))')
Signature([Test(IsInstance(Local('x')), Class(<type 'int'>, True)),
Test(IsInstance(Local('y')), Class(<type 'str'>, True))])
>>> pe('isinstance(x,int) and (isinstance(y, str) or isinstance(y, unicode))')
OrElse([Signature([Test(IsInstance(Local('x')),
Class(<type 'int'>, True)),
Test(IsInstance(Local('y')),
Class(<type 'str'>, True))]),
Signature([Test(IsInstance(Local('x')),
Class(<type 'int'>, True)),
Test(IsInstance(Local('y')),
Class(<type 'unicode'>, True))])])
>>> pe('not (isinstance(x, int) or isinstance(y, str))')
Signature([Test(IsInstance(Local('x')), Class(<type 'int'>, False)),
Test(IsInstance(Local('y')), Class(<type 'str'>, False))])
>>> pe('not(not isinstance(x, int) and not isinstance(y, str))') == OrElse([
... Test(IsInstance(Local('x')), Class(int)),
... Test(IsInstance(Local('y')), Class(str))
... ])
True
>>> pe('not( isinstance(x, int) and isinstance(y, str))')
OrElse([Test(IsInstance(Local('x')), Class(<type 'int'>, False)),
Test(IsInstance(Local('y')), Class(<type 'str'>, False))])
And arbitrary expressions are handled as truth tests::
>>> pe('x')
Test(Truth(Local('x')), Value(True, True))
>>> pe('not x')
Test(Truth(Local('x')), Value(True, False))
Note, by the way, that backquotes are not allowed in predicate expressions, as
they are reserved for use by macros or "meta functions" to create specialized
syntax::
>>> pe('`x`')
Traceback (most recent call last):
...
SyntaxError: backquotes are not allowed in predicates
Pattern Matching
----------------
Arbitrary expressions can be pattern matched for conversion into signatures.
At the moment, the only patterns matched are ``isinstance`` and ``issubclass``
calls where the second argument is a constant, and ``type(x) is y`` expressions
where `y` is a constant::
>>> from peak.rules.criteria import Test, Signature, Conjunction
>>> pe('isinstance(x,int)')
Test(IsInstance(Local('x')), Class(<type 'int'>, True))
>>> pe('isinstance(x,(str,unicode))') == Disjunction([
... Test(IsInstance(Local('x')), Class(str)),
... Test(IsInstance(Local('x')), Class(unicode))
... ])
True
>>> pe('type(x) is int')
Test(IsInstance(Local('x')), istype(<type 'int'>, True))
>>> pe('str is not type(x)')
Test(IsInstance(Local('x')), istype(<type 'str'>, False))
>>> pe('not isinstance(x,(int,(str,unicode)))') == Test(
... IsInstance(Local('x')), Conjunction([
... Class(unicode, False), Class(int, False), Class(str, False)])
... )
True
>>> pe('isinstance(x,(int,(str,unicode)))') == Disjunction([
... Test(IsInstance(Local('x')), Class(str)),
... Test(IsInstance(Local('x')), Class(int)),
... Test(IsInstance(Local('x')), Class(unicode))
... ])
True
>>> pe('issubclass(x,int)')
Test(IsSubclass(Local('x')), Class(<type 'int'>, True))
>>> pe('issubclass(x,(str,unicode))') == Disjunction([
... Test(IsSubclass(Local('x')), Class(str)),
... Test(IsSubclass(Local('x')), Class(unicode))
... ])
True
>>> pe('issubclass(x,(int,(str,unicode)))') == Disjunction([
... Test(IsSubclass(Local('x')), Class(str)),
... Test(IsSubclass(Local('x')), Class(int)),
... Test(IsSubclass(Local('x')), Class(unicode))
... ])
True
>>> pe('not issubclass(x,(int,(str,unicode)))') == Test(
... IsSubclass(Local('x')), Conjunction([
... Class(unicode, False), Class(int, False), Class(str, False)])
... )
True
>>> pe('issubclass(int, object)')
True
"Meta Function" Expansion
-------------------------
To create special functions with the ability to manipulate the compile-time
representation of a rule, you can register "meta functions" with the
``meta_function`` decorator. You begin by defining a stub function which
will be imported and used by the caller in their rules::
>>> def let(**kw):
... """This is a function that will have special behavior in rules"""
... raise NotImplementedError("`let` can only be used in rules")
Then, you define a "meta function" for this function, that will be called at
compile time. The signature of this function must match the signature with
which it will be called, except that it can have zero or more extra parameters
at the beginning named ``__builder__``, ``__star__`` and/or ``__dstar__``.
``__builder__``, for example, will be the active ``ExpressionBuilder``::
>>> def compile_let(__builder__, **kw):
... __builder__.bind(kw)
... return True
(Note: the above is not the actual implementation of the ``peak.rules.let()``
pseudo-function; the actual implementation uses a lower-level interface that
allows the keywords to be seen in definition order, so this is just a demo
to illustrate the operation of the ``meta_function`` decorator.)
To register your "meta function", you use ``@meta_function(stub_function)``::
>>> from peak.rules.predicates import meta_function
>>> compile_let = meta_function(let)(compile_let)
Then, when the stub function is used in a rule, the meta function is called
with the PEAK-Rules AST objects resulting from compiling the invocation of
the stub function in the rule::
>>> builder = CriteriaBuilder(
... dict(x=Local('x'), y=Local('y')), locals(), globals(), __builtins__
... )
>>> pe = builder.parse
>>> pe('let(q=x*y) and q>42')
Test(Comparison(Mul(Local('x'), Local('y'))), Range((42, 1), (Max, 1)))
As you can see, our ``compile_let`` meta-function bound ``q`` to
``Mul(Local('x'), Local('y'))``, which was the compiled form of the keyword
argument it received.
Notice, by the way, that our meta-function does NOT accept ``**`` arguments::
>>> pe('let(**{"z":x*y}) and z>42')
Traceback (most recent call last):
...
TypeError: <function compile_let at ...> does not support parsing **kw
Or ``*`` arguments:::
>>> pe('let(*[1,2]) and z>42')
Traceback (most recent call last):
...
TypeError: <function compile_let at ...> does not support parsing *args
This is because we didn't include ``__star__`` or ``__dstar__`` parameters
at the beginning of the ``compile_let()`` parameter list; if we had, the
function would have received either the compiled AST for the corresponding
part of the call, or ``None`` if no star or double-star arguments were
provided.
Dynamic Arguments
~~~~~~~~~~~~~~~~~
Notice, by the way, that ``__star__`` and ``__dstar__`` refer to the *caller's*
use of ``*`` and ``**`` to make dynamic calls. The meta function can have
``*`` and ``**`` parameters, but these are passed any *static* positional or
keyword arguments used by the caller. For example::
>>> def dummy(*args, **kw):
... """Just a dummy"""
>>> def compile_dummy(__star__, __dstar__, p1, p2=None, *args, **kw):
... print "p1 =", p1
... print "p2 =", p2
... print "args =", args
... print "kw =", kw
... print "__star__ =", __star__
... print "__dstar__ =", __dstar__
... return True
>>> compile_dummy = meta_function(dummy)(compile_dummy)
>>> builder = CriteriaBuilder(
... dict(x=Local('x'), y=Local('y')), locals(), globals(), __builtins__
... )
>>> pe = builder.parse
>>> pe('dummy(x, y, x*x, y*y, k1=x, k2=y, *x+1, **y*2)')
p1 = Local('x')
p2 = Local('y')
args = (Mul(Local('x'), Local('x')), Mul(Local('y'), Local('y')))
kw = {'k2': Local('y'), 'k1': Local('x')}
__star__ = Add(Local('x'), Const(1))
__dstar__ = Mul(Local('y'), Const(2))
True
>>> pe('dummy(x)')
p1 = Local('x')
p2 = None
args = ()
kw = {}
__star__ = None
__dstar__ = None
True
Argument Errors
~~~~~~~~~~~~~~~
Static argument errors, such as failure to pass the right number of positional
arguments, and duplicate keyword arguments that occur in the source (as opposed
to runtime ``*`` or ``**`` problems), are detected at compile time::
>>> pe('dummy(x, p1=y)')
Traceback (most recent call last):
...
TypeError: Duplicate keyword p1 for <... compile_dummy at ...>
>>> pe('dummy(p2=x, p2=y)')
Traceback (most recent call last):
...
TypeError: Duplicate keyword p2 for <... compile_dummy at ...>
>>> pe('dummy()')
Traceback (most recent call last):
...
TypeError: Missing positional argument p1 for <... compile_dummy at ...>
>>> pe('let(x)')
Traceback (most recent call last):
...
TypeError: Too many arguments for <... compile_let at ...>
Also, note that meta functions cannot have packed-tuple arguments::
>>> meta_function(lambda x,y:None)(lambda x,(y,z): True)
Traceback (most recent call last):
...
TypeError: Meta-functions cannot have packed-tuple arguments
Custom Argument Compiling
~~~~~~~~~~~~~~~~~~~~~~~~~
On occasion, a meta function may wish to interpret one or more of its arguments
using a custom expression builder in place of the standard one, so that instead
of a PEAK-Rules AST, it gets some other data structure. You can do this
by passing keyword arguments to ``@meta_function()`` that supply a builder
function for each argument that needs custom building.
A builder function is a 2-argument callable that will be passed the active
``ExpressionBuilder`` instance and the raw Python AST tuples of the argument
it is supposed to parse. The function must then return whatever value should
be used as the parsed form of the argument supplied to the meta function.
For example::
>>> def make_builder(text):
... def builder_function(old_builder, arg_node):
... return text
... return builder_function
>>> def dummy2(*args, **kw):
... """Just another dummy"""
>>> compile_dummy = meta_function(dummy2,
... p1=make_builder('p1'), p2=make_builder('p2'),
... args=make_builder('args'), kw=make_builder('kw'),
... k2=make_builder('k2'),
... __star__ = make_builder('*'), __dstar__=make_builder('**')
... )(compile_dummy)
>>> builder = CriteriaBuilder(
... dict(x=Local('x'), y=Local('y')), locals(), globals(), __builtins__
... )
>>> pe = builder.parse
>>> pe('dummy2(x, y, x*x, y*y, k1=x, k2=y, *x+1, **y*2)')
p1 = p1
p2 = p2
args = ('args', 'args')
kw = {'k2': 'k2', 'k1': 'kw'}
__star__ = *
__dstar__ = **
True
As you can see, build functions are selected on the basis of the argument
name they target. If the meta function has a ``*`` parameter, each of the
overflow positional arguments is parsed with the builder function of the
corresponding name. If a named keyword argument has a build function, that one
is used, otherwise any build function for the ``**`` parameter is used.
Binding Scope
~~~~~~~~~~~~~
Note that bindings defined by meta-functions (e.g. our ``let`` example) cannot
escape "or" or "not" clauses in an expression::
>>> pe('let(q=1) or x>q')
Traceback (most recent call last):
...
NameError: q
>>> pe('not let(q=1) and x<q')
Traceback (most recent call last):
...
NameError: q
But they can work within an overall ``not`` clause, as long as there are only
``and`` operators between the function call and the place where the bindings
are used::
>>> pe('not (let(q=1) and x<q)')
Test(Comparison(Local('x')), Range((1, -1), (Max, 1)))
Note that whenever an "or" is encountered or a "not" clause is completed, any
previous bindings in effect are restored. So in this example ``x<q`` becomes
``x<2``, since that's the binding that was in effect before the ``or`` clause::
>>> pe('let(q=2) and (not let(q=3) or x<q)')
Test(Comparison(Local('x')), Range((Min, -1), (2, -1)))
Method Argument Binding
~~~~~~~~~~~~~~~~~~~~~~~
Any bindings defined in an expression can be converted into arguments for the
function associated with the rule that defined the bindings., by having its
first positional argument be a named argument tuple::
>>> from peak.rules import abstract, when, around, let
>>> def f(x): pass
>>> f = abstract(f)
>>> def dummy((q,z), x):
... print "Got q =", q, "and z =", z
... print "x was", x
>>> when(f, "let(q=x*2, z='whatever') and True")(dummy)
<function dummy ...>
>>> f(42)
Got q = 84 and z = whatever
x was 42
This even works when you have a ``next_method`` argument after the tuple, and
even if your method is defined inside a closure::
>>> def closure(y):
... def dummy2((a,b,c), next_method, x):
... print "a, b, c =", (a,b,c)
... print "y was", y
... return next_method(x)
... return dummy2
>>> around(f, "let(a='a', b=x*3, c=b+23)")(closure(99))
<function dummy2 ...>
>>> f(42)
a, b, c = ('a', 126, 149)
y was 99
Got q = 84 and z = whatever
x was 42
At the moment, this actually works by recalculating the expressions in a
wrapper function that then invokes your original method, so it's more of a DRY
thing than an efficiency thing. That is, it keeps you from accidentally
getting your rule and your function out of sync, and saves on retyping or
copy-pasting.
(Future versions of PEAK-Rules, however, may improve this so that the bindings
aren't recalculated at every method level, or perhaps aren't recalculated at
all. It's tricky, though, because depending on the calculations involved, it
might be more efficient to redo them than to do the dynamic stack inspection
that would be needed to locate the active expression cache! So, in that event,
the main value would be supporting at-most-once execution of expressions with
side-effects.)
Custom Predicate Functions
==========================
The ``@expand_as`` decorator lets you specify a string that will be used in
place of a function, when the function is referenced in a condition.
Here's a trivial example::
>>> from peak.rules import expand_as, value
>>> def just(arg): pass
>>> expand_as("arg")(just)
<function just ...>
>>> def f(x): pass
>>> when(f, "x==just(42)")(value(23))
value(23)
>>> f(42)
23
In the above, the ``just(arg)`` function is defined as being the same as its
argument. So, the ``"x==just(42)`` is treated as though you'd just said
``"x==42"``.
And, although we never defined an actual *implementation* of the ``just()``
function, it actually still works::
>>> just(42)
42
This is because if you decorate an empty function with ``@expand_as``, the
supplied condition will be compiled and attached to the existing function
object for you. (This saves you having to actually write the body.)
Of course, if you decorate, say, an already-existing function that you want
to replace, then nothing happens to that function::
>>> def isint(ob):
... print "called!"
... return isinstance(ob, int)
>>> expand_as("isinstance(x, int)")(isint)
<function isint ...>
>>> isint(42)
called!
True
But, the correct expansion still happens when you use that function in a rule::
>>> around(f, "isint(x)")(value(99))
value(99)
>>> f(42)
99
Note that it's ok to use ``let()`` or other binding-creating expressions inside
an expansion string, and they won't interfere with the surrounding conditions::
>>> def oddment(a, b): pass
>>> expand_as("let(x=a*2, y=x+b+1) and y")(oddment)
<function oddment ...>
>>> oddment(27, 51) # prove bindings work even in a function
106
>>> around(f, "x==oddment(27, 51) and x==106 and isint(x)")(value('yeah!'))
value('yeah!')
>>> f(106) # prove that x doesn't get redefined after oddment
'yeah!'
In the above, temporary variables ``x`` and ``y`` are created in the
expansion, but they don't affect the original value of x in the rule where
the function is expanded.
Of course, this also means that you can't implement something like a
pattern-matching feature or the ``let()`` function using ``@expand_as``.
It's just an easier way to handle the sort of common cases where meta-functions
would be overkill.
Expression to Predicate Conversion
==================================
Meta-functions are only one way to transform a Python expression into a
predicate. It's also possible to register somewhat-arbitrary transformations
by registering methods with the ``expressionSignature()`` generic function.
In this section, we'll create a simple "priority" predicate that doesn't
influence method selection, but affects implication order between predicates.
The basic idea is that we'll create a ``priority`` type that's an integer
subclass, and use it in expressions of the form ``isisntance(foo, Bar) and
priority(3)``, that will then have precedence over an identical expression with
a lower priority::
>>> from peak.rules import when
>>> from peak.rules.core import implies
>>> class priority(int):
... """A simple priority"""
>>> when(implies, (priority, priority))(lambda p1,p2: p1>p2)
<function <lambda> ...>
>>> implies(priority(3), priority(2))
True
>>> implies(priority(2), priority(3))
False
To use our new type, we'll need to implement a conversion from a
``Const(somepriority)`` expression, to a ``Test(priority, somepriority)``
condition.
Normally, these conversions are handled by the ``expressionSignature()``
generic function in the ``peak.rules.predicates`` module.
By default, ``expressionSignature()`` simply takes the expression object it's
given, and returns ``Test(Truth(expr), Value(True))`` -- that is, a truth test
on the boolean value of the expression. Or, if the value given is a constant,
it simply returns an immediate boolean value::
>>> from peak.rules.predicates import expressionSignature
>>> expressionSignature(Const(priority(3)))
True
So, we need to register a method that handles priorities appropriately::
>>> when(expressionSignature, "isinstance(expr, Const) and isinstance(expr.value, priority)")(
... lambda expr: Test(None, expr.value)
... )
<function <lambda> ...>
Okay, let's try out our new condition::
>>> from peak.rules import value
>>> def dummy(arg): return "default"
>>> when(dummy, "arg==1 and priority(1)")(value("1 @ 1"))
value('1 @ 1')
>>> dummy(1)
'1 @ 1'
>>> dummy(2)
'default'
>>> when(dummy, "arg==1 and priority(2)")(value("1 @ 2"))
value('1 @ 2')
>>> dummy(1)
'1 @ 2'
>>> dummy(2)
'default'
>>> when(dummy, "arg==2 and priority(2)")(value("2 @ 2"))
value('2 @ 2')
>>> dummy(1)
'1 @ 2'
>>> dummy(2)
'2 @ 2'
>>> when(dummy, "arg==2 and priority(1)")(value("2 @ 1"))
value('2 @ 1')
>>> dummy(1)
'1 @ 2'
>>> dummy(2)
'2 @ 2'
Upgrading from ``TypeEngine``
=============================
In order to allow a function to safely upgrade from type-only dispatch to full
predicate dispatch, it's necessary for predicate engines to support using type
tuples as signatures (since such tuples may already be registered with the
function's ``RuleSet``).
To support this, the ``tests_for()`` function takes an optional second
parameter, representing the engine that "wants" the tests, and whose argument
names will be used to accomplish the conversion::
>>> from peak.rules.core import Dispatching, implies
>>> from peak.rules.criteria import tests_for
>>> engine = Dispatching(implies).engine
>>> list(tests_for((int,str), engine))
[Test(IsInstance(Local('s1')), Class(<type 'int'>, True)),
Test(IsInstance(Local('s2')), Class(<type 'str'>, True))]
>>> list(tests_for((istype(tuple),), engine))
[Test(IsInstance(Local('s1')), istype(<type 'tuple'>, True))]
Each element of the type tuple is converted using a second generic function,
``type_to_test``::
>>> from peak.rules.predicates import type_to_test
>>> type_to_test(int, Local('x'), engine)
Test(IsInstance(Local('x')), Class(<type 'int'>, True))
>>> type_to_test(istype(str), Local('x'), engine)
Test(IsInstance(Local('x')), istype(<type 'str'>, True))
>>> class x: pass
>>> type_to_test(x, Local('x'), engine)
Test(IsInstance(Local('x')), Class(<class ...x at ...>, True))
If you implement a new kind of class test for use in type tuples, you'll need
to add the appropriate method(s) to ``type_to_test`` if you want it to also
work with the predicate engine.
So, let's test the actual upgrade process, and also confirm that you can
still pass in type tuples (or precomputed tests, signatures, etc.) after
upgrading::
>>> def demo(ob): pass
>>> tmp = when(demo, (int,))(value('int'))
>>> tmp = when(demo, (str,))(value('str'))
>>> demo(42)
'int'
>>> demo('test')
'str'
>>> tmp = when(demo, "isinstance(ob, int) and ob==42")(value('Ultimate answer'))
>>> tmp = when(demo, (list,))(value('list'))
>>> tmp = when(demo, Test(IsInstance(Local('ob')), Class(tuple)))(
... value('tuple')
... )
>>> demo(42)
'Ultimate answer'
>>> demo([])
'list'
>>> demo(())
'tuple'
>>> demo('test'), demo(23)
('str', 'int')
And, just for the heck of it, let's make sure that you can upgrade to an
IndexedEngine by using any other values on a TypeEngine function::
>>> def demo(ob): pass
>>> tmp = when(demo, Test(IsInstance(Local('ob')), Class(tuple)))(
... value('tuple')
... )
>>> demo(())
'tuple'
Criterion Ordering
==================
Criterion ordering for a predicate dispatch engine is defined by the ordering
of the tests in its signatures. Any test expression that is not defined as
``always_testable``, must not be computed until after any test expressions
to its left have been tested. But tests whose expression is just a local
variable (i.e., a plain function argument), do not have such restrictions::
>>> from peak.rules.predicates import IndexedEngine
>>> from peak.rules import abstract, when
>>> from peak.rules.indexing import Ordering
>>> from peak.rules.codegen import Add
>>> def f(a,b): pass
>>> f = abstract(f)
>>> m = when(f, "isinstance(a, int) and a+b==42")(value(None))
>>> engine = Dispatching(f).engine
>>> list(Ordering(engine, IsInstance(Local('a'))).constraints)
[frozenset([])]
>>> list(Ordering(engine, Comparison(Add(Local('a'),Local('b')))).constraints)
[frozenset([IsInstance(Local('a'))])]
>>> def f(a,b): pass
>>> f = abstract(f)
>>> m = when(f, "isinstance(b, str) and a+b==42 and isinstance(a, int)")(
... value(None)
... )
>>> engine = Dispatching(f).engine
>>> list(Ordering(engine, IsInstance(Local('a'))).constraints)
[frozenset([])]
>>> list(Ordering(engine, IsInstance(Local('b'))).constraints)
[frozenset([])]
>>> list(Ordering(engine, Comparison(Add(Local('a'),Local('b')))).constraints)
[frozenset([IsInstance(Local('b'))])]
>>> def f(a,b): pass
>>> f = abstract(f)
>>> m = when(f, "isinstance(a, int) and isinstance(b, str) and a+b==42")(
... value(None)
... )
>>> engine = Dispatching(f).engine
>>> list(Ordering(engine, IsInstance(Local('a'))).constraints)
[frozenset([])]
>>> list(Ordering(engine, IsInstance(Local('b'))).constraints)
[frozenset([])]
>>> try: frozenset and None
... except NameError: from peak.rules.core import frozenset
>>> list(
... Ordering(engine, Comparison(Add(Local('a'),Local('b')))).constraints
... ) == [frozenset([IsInstance(Local('a')), IsInstance(Local('b'))])]
True
Order Independence
------------------
The determination of whether a test expression can be used in an order-
independent way, is via the ``always_testable()`` function::
>>> from peak.rules.predicates import always_testable
In general, only locals and constants can have their tests applied independent
of signature ordering::
>>> always_testable(Local('x'))
True
>>> always_testable(Const(99))
True
>>> always_testable(Add(Local('a'),Local('b')))
False
And predicate test expressions are evaluated according to their tested
expression::
>>> always_testable(IsInstance(Local('x')))
True
>>> always_testable(IsInstance(Add(Local('a'),Local('b'))))
False
>>> always_testable(Comparison(Local('x')))
True
>>> always_testable(Comparison(Add(Local('a'),Local('b'))))
False
>>> always_testable(Identity(Local('x')))
True
>>> always_testable(Identity(Add(Local('a'),Local('b'))))
False
>>> always_testable(Truth(Local('x')))
True
>>> always_testable(Truth(Add(Local('a'),Local('b'))))
False
Except for ``IsSubclass()``, which may need to have other tests applied before
it::
>>> always_testable(IsSubclass(Local('x')))
False
If you create a new predicate type, be sure to define a method for
``always_testable`` that will recursively invoke ``always_testable`` on the
predicate's target expression. If you don't do this, then your predicate
type will always be treated as order-dependent, even if its target expression
is a local or constant.
|