1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
|
======================
Matching Python Syntax
======================
The ``peak.rules.syntax`` module allows you to define pattern-matching
predicates against snippets of parameterized Python code, such that a
rule expression like::
syntax.match(expr, type(`x`) is `y`) and isinstance(y, Const)
Will return true if ``expr`` is a PEAK-Rules AST of the form::
Compare(Call(Const(type), (v1,)), ('is', Const(v2)))
(where v1 and v2 are arbitrary values).
.. contents:: **Table of Contents**
Bind Variables
==============
Bind variables are placeholders in a pattern that "bind" themselves to the
value found in that location in the matched data structure. Thus, in the
example above, ```x``` and ```y``` are bind variables, and cause "y"
in the later part of the expression to refer to the right-hand side of the
``is`` operator being matched. (The arbitrary value ``v2`` in the example
above.)
Bind variables are represented within a tree as an AST node created from the
variable name::
>>> from peak.rules.syntax import Bind
>>> Bind('x')
Bind('x')
Compiling Tree-Match Predicates
===============================
The ``match_predicate(pattern, expr, binds)`` function is used to combine a
pattern AST and an expression AST to create a PEAK-Rules predicate object that
will match the specified pattern. The `binds` argument is a dictionary mapping
from bind-variable names to lists of expression ASTs, and is modified in-place
as the predicate is assembled::
>>> from peak.rules.syntax import match_predicate
Rules defined for this function will determine what to do based on the type of
`pattern`. If `pattern` is a bind variable, the `binds` dictionary is updated
in-place, inserting `expr` under the bind variable's name, and ``True`` is
returned, indicating that this part of the pattern will always match::
>>> from peak.util.assembler import Local
>>> b = {}
>>> match_predicate(Bind('x'), Local('y'), b)
True
>>> b
{'x': [Local('y')]}
If there's already an entry for that variable in the `binds` dictionary, a more
complex predicate is returned, performing an equality comparison between the
new binding and the old binding of the variable, and the value in `binds` is
updated::
>>> match_predicate(Bind('x'), Local('z'), b)
Test(Truth(Compare(Local('z'), (('==', Local('y')),))), True)
This is so that patterns like "`x` is not `x`" will actually compare the two
"x"s and see if they're equal. Of course, if you bind the same variable more
than once to equal expression ASTs, you will not get back a comparison, and
the `binds` will be unchanged::
>>> match_predicate(Bind('x'), Local('z'), b)
True
>>> b
{'x': [Local('y'), Local('z')]}
Finally, there is a special exception for bind variables named ```_```: that
is, a single underscore. Bind variables of this name are never stored in the
`binds`, and always return ``True`` as a predicate, allowing you to use them as
"don't care" placeholders::
>>> any = Bind('_')
>>> match_predicate(any, Local('q'), b)
True
>>> b
{'x': [Local('y'), Local('z')]}
Matching Structures and AST nodes
---------------------------------
For most node types other than ``Bind``, the predicates are a bit more complex.
By default, the predicate should be an exact (``istype``) match of the node
type, intersected with a recursive application of ``match_predicate()`` to each
of the target node's children. For example::
>>> b = {}
>>> from peak.util.assembler import *
>>> from peak.rules.codegen import *
>>> match_predicate(Add(any, any), Local('q'), b)
Test(IsInstance(Local('q')), istype(<class '...Add'>, True))
>>> b
{}
Each child is defined via a ``Getitem()`` operation on the target node, so that
any placeholders and criteria will target the right part of the tree::
>>> match_predicate(Add(Bind('x'), Bind('y')), Local('q'), b)
Test(IsInstance(Local('q')), istype(<class '...Add'>, True))
>>> b
{'y': [Getitem(Local('q'), Const(2))],
'x': [Getitem(Local('q'), Const(1))]}
Non-node patterns are treated as equality comparisons::
>>> b = {}
>>> match_predicate(42, Local('q'), b)
Test(Comparison(Local('q')), Value(42, True))
>>> b
{}
Except for ``None``, which produces an ``is None`` test::
>>> match_predicate(None, Local('q'), b)
Test(Identity(Local('q')), IsObject(None, True))
>>> b
{}
And sequences are matched by comparing their length::
>>> match_predicate((), Local('q'), b)
Test(Comparison(Call(Const(<... len>), (Local('q'),),...)), Value(0, True))
>>> match_predicate([], Local('q'), b)
Test(Comparison(Call(Const(<... len>), (Local('q'),),...)), Value(0, True))
>>> b
{}
And recursively matching their contents::
>>> match_predicate((Bind('x'), Add(Bind('y'), any)), Local('q'), b)
Signature([Test(Comparison(Call(Const(<... len>), (Local('q'),),...)),
Value(2, True)),
Test(IsInstance(Getitem(Local('q'), Const(1))),
istype(<class '...Add'>, True))])
>>> b
{'y': [Getitem(Getitem(Local('q'), Const(1)), Const(1))],
'x': [Getitem(Local('q'), Const(0))]}
Parsing Syntax Patterns
=======================
The ``syntax.SyntaxBuilder`` class is used to parse Python expressions into
AST patterns suitable for use with ``match_predicate``::
>>> from peak.rules.syntax import SyntaxBuilder, match
>>> builder = SyntaxBuilder({}, locals(), globals(), __builtins__)
>>> pe = builder.parse
It parses backquoted identifiers into ``Bind`` nodes:
>>> pe('type(`x`) is `y`')
Compare(Call(Const(<type 'type'>), (Bind('x'),), (), (), (), True),
(('is', Bind('y')),))
And rejects all other use of backquotes::
>>> pe('`type(x)`')
Traceback (most recent call last):
...
SyntaxError: backquotes may only be used around an indentifier
In all other respects, it's essentially the same as ``codegen.ExprBuilder``.
The ``match()`` Pseudo-function
-------------------------------
This isn't really a function, but you can use it in a predicate string in order
to perform a pattern match on a PEAK-Rules AST. It's mainly intended for use
in extending PEAK-Rules to recognize and replace various kinds of subexpression
patterns (e.g. by adding rules to ``predicates.expressionSignature()``), but it
can of course also be used in any other tools you build atop PEAK-Rules'
expression machinery.
In this example, we show it being used to define a rule that will recognize
expressions of the form ``"type(x) is y"``, where x and y are arbitrary
expressions::
>>> from peak.rules.syntax import match
>>> from peak.rules.predicates import CriteriaBuilder
>>> builder = CriteriaBuilder(
... {'expr':Local('expr')}, locals(), globals(), __builtins__
... )
>>> pe = builder.parse
>>> pe('match(expr, type(`x`) is `y`)')
Signature([Test(IsInstance(Local('expr')),
istype(<class 'peak.util.assembler.Compare'>, True)),
Test(IsInstance(Getitem(Local('expr'), Const(1))),
istype(<class 'peak.util.assembler.Call'>, True)),
Test(Comparison(Getitem(Getitem(Local('expr'), Const(1)),
Const(1))),
Value(Const(<type 'type'>), True)),
Test(Comparison(Call(Const(<... len>),
(Getitem(Getitem(Local('expr'),
Const(1)), Const(2)),), (),
(), (), True)),
Value(1, True)),
Test(Comparison(Call(Const(<... len>),
(Getitem(Getitem(Local('expr'), Const(1)),
Const(3)),), (), (), (), True)),
Value(0, True)),
Test(Comparison(Call(Const(<... len>),
(Getitem(Getitem(Local('expr'), Const(1)),
Const(4)),), (), (), (), True)),
Value(0, True)),
Test(Comparison(Call(Const(<... len>),
(Getitem(Getitem(Local('expr'), Const(1)),
Const(5)),), (), (), (), True)),
Value(0, True)),
Test(Comparison(Getitem(Getitem(Local('expr'), Const(1)),
Const(6))),
Value(True, True)),
Test(Comparison(Call(Const(<... len>),
(Getitem(Local('expr'), Const(2)),), (),
(), (), True)),
Value(1, True)),
Test(Comparison(Call(Const(<... len>),
(Getitem(Getitem(Local('expr'), Const(2)),
Const(0)),), (), (), (), True)),
Value(2, True)),
Test(Comparison(Getitem(Getitem(Getitem(Local('expr'),
Const(2)), Const(0)),
Const(0))),
Value('is', True))])
>>> builder.bindings[0]
{'y': Getitem(Getitem(Getitem(Local('expr'), Const(2)), Const(0)), Const(1)),
'x': Getitem(Getitem(Getitem(Local('expr'), Const(1)), Const(2)), Const(0))}
|