File: README.txt

package info (click to toggle)
python-peak.util 20160204-1
  • links: PTS, VCS
  • area: main
  • in suites: buster, stretch
  • size: 720 kB
  • ctags: 453
  • sloc: python: 2,478; makefile: 33
file content (3109 lines) | stat: -rw-r--r-- 104,737 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
=======================================================
Generating Python Bytecode with ``peak.util.assembler``
=======================================================

``peak.util.assembler`` is a simple bytecode assembler module that handles most
low-level bytecode generation details like jump offsets, stack size tracking,
line number table generation, constant and variable name index tracking, etc.
That way, you can focus your attention on the desired semantics of your
bytecode instead of on these mechanical issues.

In addition to a low-level opcode-oriented API for directly generating specific
Python bytecodes, this module also offers an extensible mini-AST framework for
generating code from high-level specifications.  This framework does most of
the work needed to transform tree-like structures into linear bytecode
instructions, and includes the ability to do compile-time constant folding.

Please see the `BytecodeAssembler reference manual`_ for more details.

.. _BytecodeAssembler reference manual: http://peak.telecommunity.com/DevCenter/BytecodeAssembler#toc


Changes since version 0.5.2:

* Symbolic disassembly with full emulation of backward-compatible
  ``JUMP_IF_TRUE`` and ``JUMP_IF_FALSE`` opcodes on Python 2.7 -- tests now
  run clean on Python 2.7.

* Support for backward emulation of Python 2.7's ``JUMP_IF_TRUE_OR_POP`` and
  ``JUMP_IF_FALSE_OR_POP`` instructions on earlier Python versions; these
  emulations are also used in BytecodeAssembler's internal code generation,
  for maximum performance on 2.7+ (with no change to performance on older
  versions).

Changes since version 0.5.1:

* Initial support for Python 2.7's new opcodes and semantics changes, mostly
  by emulating older versions' behavior with macros.  (0.5.2 is really just
  a quick-fix release to allow packages using BytecodeAssembler to run on 2.7
  without having to change any of their code generation; future releases will
  provide proper support for the new and changed opcodes, as well as a test
  suite that doesn't show spurious differences in the disassembly listings
  under Python 2.7.)

Changes since version 0.5:

* Fix incorrect stack size calculation for ``MAKE_CLOSURE`` on Python 2.5+

Changes since version 0.3:

* New node types:

  * ``For(iterable, assign, body)`` -- define a "for" loop over `iterable`

  * ``UnpackSequence(nodes)`` -- unpacks a sequence that's ``len(nodes)`` long,
    and then generates the given nodes.

  * ``LocalAssign(name)`` -- issues a ``STORE_FAST``, ``STORE_DEREF`` or
    ``STORE_LOCAL`` as appropriate for the given name.

  * ``Function(body, name='<lambda>', args=(), var=None, kw=None, defaults=())``
    -- creates a nested function from `body` and puts it on the stack.

  * ``If(cond, then_, else_=Pass)`` -- "if" statement analogue

  * ``ListComp(body)`` and ``LCAppend(value)`` -- implement list comprehensions

  * ``YieldStmt(value)`` -- generates a ``YIELD_VALUE`` (plus a ``POP_TOP`` in
    Python 2.5+)

* ``Code`` objects are now iterable, yielding ``(offset, op, arg)`` triples,
  where `op` is numeric and `arg` is either numeric or ``None``.

* ``Code`` objects' ``.code()`` method can now take a "parent" ``Code`` object,
  to link the child code's free variables to cell variables in the parent.

* Added ``Code.from_spec()`` classmethod, that initializes a code object from a
  name and argument spec.

* ``Code`` objects now have a ``.nested(name, args, var, kw)`` method, that
  creates a child code object with the same ``co_filename`` and the supplied
  name/arg spec.

* Fixed incorrect stack tracking for the ``FOR_ITER`` and ``YIELD_VALUE``
  opcodes

* Ensure that ``CO_GENERATOR`` flag is set if ``YIELD_VALUE`` opcode is used

* Change tests so that Python 2.3's broken line number handling in ``dis.dis``
  and constant-folding optimizer don't generate spurious failures in this
  package's test suite.


Changes since version 0.2:

* Added ``Suite``, ``TryExcept``, and ``TryFinally`` node types

* Added a ``Getattr`` node type that does static or dynamic attribute access
  and constant folding

* Fixed ``code.from_function()`` not copying the ``co_filename`` attribute when
  ``copy_lineno`` was specified.

* The ``repr()`` of AST nodes doesn't include a trailing comma for 1-argument
  node types any more.

* Added a ``Pass`` symbol that generates no code, a ``Compare()`` node type
  that does n-way comparisons, and ``And()`` and ``Or()`` node types for doing
  logical operations.

* The ``COMPARE_OP()`` method now accepts operator strings like ``"<="``,
  ``"not in"``, ``"exception match"``, and so on, as well as numeric opcodes.
  See the standard library's ``opcode`` module for a complete list of the
  strings accepted (in the ``cmp_op`` tuple).  ``"<>"`` is also accepted as an
  alias for ``"!="``.

* Added code to verify that forward jump offsets don't exceed a 64KB span, and
  support absolute backward jumps to locations >64KB.

Changes since version 0.1:

* Constant handling has been fixed so that it doesn't confuse equal values of
  differing types (e.g. ``1.0`` and ``True``), or equal unhashable objects
  (e.g. two empty lists).

* Removed ``nil``, ``ast_curry()`` and ``folding_curry()``, replacing them with
  the ``nodetype()`` decorator and ``fold_args()``; please see the docs for
  more details.

* Added stack tracking across jumps, globally verifying stack level prediction
  consistency and automatically rejecting attempts to generate dead code.  It
  should now be virtually impossible to accidentally generate bytecode that can
  crash the interpreter.  (If you find a way, let me know!)

Changes since version 0.0.1:

* Added massive quantities of new documentation and examples

* Full block, loop, and closure support

* High-level functional code generation from trees, with smart labels and
  blocks, constant folding, extensibility, smart local variable names, etc.

* The ``.label()`` method was renamed to ``.here()`` to distinguish it from
  the new smart ``Label`` objects.

* Docs and tests were moved to README.txt instead of assembler.txt

* Added a demo that implements a "switch"-like statement template that shows
  how to extend the code generation system and how to abuse ``END_FINALLY``
  to implement a "computed goto" in bytecode.

* Various bug fixes

There are a few features that aren't tested yet, and not all opcodes may be
fully supported.  Also note the following limitations:

* Jumps to as-yet-undefined labels cannot span a distance greater than 65,535
  bytes.

* The ``dis()`` function in Python 2.3 has a bug that makes it show incorrect
  line numbers when the difference between two adjacent line numbers is
  greater than 255.  (To work around this, the test_suite uses a later version
  of ``dis()``, but do note that it may affect your own tests if you use
  ``dis()`` with Python 2.3 and use widely separated line numbers.)
  
If you find any other issues, please let me know.

Please also keep in mind that this is a work in progress, and the API may
change if I come up with a better way to do something.

Questions and discussion regarding this software should be directed to the
`PEAK Mailing List <http://www.eby-sarna.com/mailman/listinfo/peak>`_.

.. _toc:
.. contents:: **Table of Contents**


--------------
Programmer API
--------------


Code Objects
============

To generate bytecode, you create a ``Code`` instance and perform operations
on it.  For example, here we create a ``Code`` object representing lines
15 and 16 of some input source::

    >>> from peak.util.assembler import Code
    >>> c = Code()
    >>> c.set_lineno(15)   # set the current line number (optional)
    >>> c.LOAD_CONST(42)

    >>> c.set_lineno(16)   # set it as many times as you like
    >>> c.RETURN_VALUE()

You'll notice that most ``Code`` methods are named for a CPython bytecode
operation, but there also some other methods like ``.set_lineno()`` to let you
set the current line number.  There's also a ``.code()`` method that returns
a Python code object, representing the current state of the ``Code`` you've
generated::

    >>> from dis import dis
    >>> dis(c.code())
      15          0 LOAD_CONST               1 (42)
      16          3 RETURN_VALUE

As you can see, ``Code`` instances automatically generate a line number table
that maps each ``set_lineno()`` to the corresponding position in the bytecode.
    
And of course, the resulting code objects can be run with ``eval()`` or
``exec``, or used with ``new.function`` to create a function::

    >>> eval(c.code())
    42

    >>> exec c.code()   # exec discards the return value, so no output here

    >>> import new
    >>> f = new.function(c.code(), globals())
    >>> f()
    42

Finally, code objects are also iterable, yielding ``(offset, opcode, arg)``
tuples, where `arg` is ``None`` for opcodes with no arguments, and an integer
otherwise::

    >>> import peak.util.assembler as op
    >>> list(c) == [
    ...     (0, op.LOAD_CONST, 1),
    ...     (3, op.RETURN_VALUE, None)
    ... ]
    True

This can be useful for testing or otherwise inspecting code you've generated.


Symbolic Disassembler
=====================

Python's built-in disassembler can be verbose and hard to read when inspecting
complex generated code -- usually you don't care about bytecode offsets or
line numbers as much as you care about labels, for example.

So, BytecodeAssembler provides its own, simplified disassembler, which we'll
be using for more complex listings in this manual::

    >>> from peak.util.assembler import dump  

Some sample output, that also showcases some of BytecodeAssembler's
`High-Level Code Generation`_ features::

    >>> c = Code()
    >>> from peak.util.assembler import Compare, Local
    >>> c.return_(Compare(Local('a'), [('<', Local('b')), ('<', Local('c'))]))
    >>> dump(c.code())
                    LOAD_FAST                0 (a)
                    LOAD_FAST                1 (b)
                    DUP_TOP
                    ROT_THREE
                    COMPARE_OP               0 (<)
                    JUMP_IF_FALSE           L1
                    POP_TOP
                    LOAD_FAST                2 (c)
                    COMPARE_OP               0 (<)
                    JUMP_FORWARD            L2
            L1:     ROT_TWO
                    POP_TOP
            L2:     RETURN_VALUE

As you can see, the line numbers and bytecode offsets have been dropped,
making it esier to see where the jumps go.  (This also makes doctests more
robust against Python version changes, as ``dump()`` has some extra code to
make conditional jumps appear consistent across the major changes that were
made to conditional jump instructions between Python 2.6 and 2.7.)


Opcodes and Arguments
=====================

``Code`` objects have methods for all of CPython's symbolic opcodes.  Generally
speaking, each method accepts either zero or one argument, depending on whether
the opcode accepts an argument.

Python bytecode always encodes opcode arguments as 16 or 32-bit integers, but
sometimes these numbers are actually offsets into a sequence of names or
constants.  ``Code`` objects take care of maintaining these sequences for you,
allowing you to just pass in a name or value directly, instead of needing to
keep track of what numbers map to what names or values.

The name or value you pass in to such methods will be looked up in the
appropriate table (see `Code Attributes`_ below for a list), and if not found,
it will be added::

    >>> c = Code()
    >>> c.co_consts, c.co_varnames, c.co_names
    ([None], [], [])

    >>> c.LOAD_CONST(42)
    >>> c.LOAD_FAST('x')
    >>> c.LOAD_GLOBAL('y')
    >>> c.LOAD_NAME('z')

    >>> c.co_consts, c.co_varnames, c.co_names
    ([None, 42], ['x'], ['y', 'z'])

The one exception to this automatic addition feature is that opcodes referring
to "free" or "cell" variables will not automatically add new names, because the
names need to be defined first::

    >>> c.LOAD_DEREF('q')
    Traceback (most recent call last):
      ...
    NameError: ('Undefined free or cell var', 'q')

In general, opcode methods take the same arguments as their Python bytecode
equivalent.  But there are a few special cases.


Call Arguments
--------------

First, the ``CALL_FUNCTION()``, ``CALL_FUNCTION_VAR()``, ``CALL_FUNCTION_KW()``,
and ``CALL_FUNCTION_VAR_KW()`` methods all take *two* arguments, both of which
are optional.  (The ``_VAR`` and ``_KW`` suffixes in the method names indicate
whether or not a ``*args`` or ``**kwargs`` or both are also present on the
stack, in addition to the explicit positional and keyword arguments.)

The first argument of each of these methods, is the number of positional
arguments on the stack, and the second is the number of keyword/value pairs on
the stack (to be used as keyword arguments).  Both default to zero if not
supplied::

    >>> c = Code()
    >>> c.LOAD_CONST(type)
    >>> c.LOAD_CONST(27)
    >>> c.CALL_FUNCTION(1)      # 1 positional, no keywords
    >>> c.RETURN_VALUE()

    >>> eval(c.code())          # computes type(27)
    <type 'int'>

    >>> c = Code()
    >>> c.LOAD_CONST(dict)
    >>> c.LOAD_CONST('x')
    >>> c.LOAD_CONST(42)
    >>> c.CALL_FUNCTION(0,1)    # no positional, 1 keyword
    >>> c.RETURN_VALUE()

    >>> eval(c.code())          # computes dict(x=42)
    {'x': 42}


Jump Targets
------------

Opcodes that perform jumps or refer to addresses can be invoked in one of
two ways.  First, if you are jumping backwards (e.g. with ``JUMP_ABSOLUTE`` or
``CONTINUE_LOOP``), you can obtain the target bytecode offset using the
``.here()`` method, and then later pass that offset into the appropriate
method::

    >>> c = Code()
    >>> c.LOAD_CONST(42)
    >>> where = c.here()         # get a location near the start of the code
    >>> c.DUP_TOP()
    >>> c.POP_TOP()
    >>> c.JUMP_ABSOLUTE(where)   # now jump back to it

    >>> dump(c.code())
                    LOAD_CONST               1 (42)
            L1:     DUP_TOP
                    POP_TOP
                    JUMP_ABSOLUTE            L1

But if you are jumping *forward*, you will need to call the jump or setup
method without any arguments.  The return value will be a "forward reference"
object that can be called later to indicate that the desired jump target has
been reached::

    >>> c = Code()
    >>> c.LOAD_CONST(99)
    >>> forward = c.JUMP_IF_TRUE() # create a jump and a forward reference

    >>> c.LOAD_CONST(42)            # this is what we want to skip over
    >>> c.POP_TOP()

    >>> forward()   # calling the reference changes the jump to point here
    >>> c.LOAD_CONST(23)
    >>> c.RETURN_VALUE()

    >>> dump(c.code())
                    LOAD_CONST               1 (99)
                    JUMP_IF_TRUE             L1
                    LOAD_CONST               2 (42)
                    POP_TOP
            L1:     LOAD_CONST               3 (23)
                    RETURN_VALUE

    >>> eval(c.code())
    23


Other Special Opcodes
---------------------

The ``MAKE_CLOSURE`` method takes an argument for the number of default values
on the stack, just like the "real" Python opcode.  However, it also has an
an additional required argument: the number of closure cells on the stack.
The Python interpreter normally gets this number from a code object that's on
the stack, but ``Code`` objects need this value in order to update the
current stack size, for purposes of computing the required total stack size::

    >>> def x(a,b):     # a simple closure example
    ...     def y():
    ...         return a+b
    ...     return y

    >>> c = Code()
    >>> c.co_cellvars = ('a','b')

    >>> import sys
    >>> c.LOAD_CLOSURE('a')
    >>> c.LOAD_CLOSURE('b')
    >>> if sys.version>='2.5':
    ...     c.BUILD_TUPLE(2) # In Python 2.5+, free vars must be in a tuple
    >>> c.LOAD_CONST(None)   # in real code, this'd be a Python code constant
    >>> c.MAKE_CLOSURE(0,2)  # no defaults, 2 free vars in the new function

    >>> c.stack_size         # This will be 1, no matter what Python version
    1

The ``COMPARE_OP`` method takes an argument which can be a valid comparison
integer constant, or a string containing a Python operator, e.g.::

    >>> c = Code()
    >>> c.LOAD_CONST(1)
    >>> c.LOAD_CONST(2)
    >>> c.COMPARE_OP('not in')
    >>> dis(c.code())
      0           0 LOAD_CONST               1 (1)
                  3 LOAD_CONST               2 (2)
                  6 COMPARE_OP               7 (not in)

The full list of valid operator strings can be found in the standard library's
``opcode`` module.  ``"<>"`` is also accepted as an alias for ``"!="``::

    >>> c.LOAD_CONST(3)
    >>> c.COMPARE_OP('<>')
    >>> dis(c.code())
      0           0 LOAD_CONST               1 (1)
                  3 LOAD_CONST               2 (2)
                  6 COMPARE_OP               7 (not in)
                  9 LOAD_CONST               3 (3)
                 12 COMPARE_OP               3 (!=)


High-Level Code Generation
==========================

Typical real-life code generation use cases call for transforming tree-like
data structures into bytecode, rather than linearly outputting instructions.
``Code`` objects provide for this using a simple but high-level transformation
API.

``Code`` objects may be *called*, passing in one or more arguments.  Each
argument will have bytecode generated for it, according to its type:


Simple Constants
----------------

If an argument is an integer, long, float, complex, string, unicode, boolean,
``None``, or Python code object, it is treated as though it was passed to
the ``LOAD_CONST`` method directly::

    >>> c = Code()
    >>> c(1, 2L, 3.0, 4j+5, "6", u"7", False, None, c.code())
    >>> dis(c.code())
      0           0 LOAD_CONST               1 (1)
                  3 LOAD_CONST               2 (2L)
                  6 LOAD_CONST               3 (3.0)
                  9 LOAD_CONST               4 ((5+4j))
                 12 LOAD_CONST               5 ('6')
                 15 LOAD_CONST               6 (u'7')
                 18 LOAD_CONST               7 (False)
                 21 LOAD_CONST               0 (None)
                 24 LOAD_CONST               8 (<code object <lambda> at ...>)

Note that although some values of different types may compare equal to each
other, ``Code`` objects will not substitute a value of a different type than
the one you requested::

    >>> c = Code()
    >>> c(1, True, 1.0, 1L)     # equal, but different types
    >>> dis(c.code())
      0           0 LOAD_CONST               1 (1)
                  3 LOAD_CONST               2 (True)
                  6 LOAD_CONST               3 (1.0)
                  9 LOAD_CONST               4 (1L)

Simple Containers
-----------------

If an argument is a tuple, list, or dictionary, code is generated to
reconstruct the given data, recursively::

    >>> c = Code()
    >>> c({1:(2,"3"), 4:[5,6]})
    >>> dis(c.code())
      0           0 BUILD_MAP                0
                  3 DUP_TOP
                  4 LOAD_CONST               1 (1)
                  7 LOAD_CONST               2 (2)
                 10 LOAD_CONST               3 ('3')
                 13 BUILD_TUPLE              2
                 16 ROT_THREE
                 17 STORE_SUBSCR
                 18 DUP_TOP
                 19 LOAD_CONST               4 (4)
                 22 LOAD_CONST               5 (5)
                 25 LOAD_CONST               6 (6)
                 28 BUILD_LIST               2
                 31 ROT_THREE
                 32 STORE_SUBSCR


Arbitrary Constants
-------------------

The ``Const`` wrapper allows you to treat any object as a literal constant,
regardless of its type::

    >>> from peak.util.assembler import Const

    >>> c = Code()
    >>> c( Const( (1,2,3) ) )
    >>> dis(c.code())
      0           0 LOAD_CONST               1 ((1, 2, 3))

As you can see, the above creates code that references an actual tuple as
a constant, rather than generating code to recreate the tuple using a series of
``LOAD_CONST`` operations followed by a ``BUILD_TUPLE``.

If the value wrapped in a ``Const`` is not hashable, it is compared by identity
rather than value.  This prevents equal mutable values from being reused by
accident, e.g. if you plan to mutate the "constant" values later::

    >>> c = Code()
    >>> c(Const([]), Const([]))     # equal, but not the same object!
    >>> dis(c.code())
      0           0 LOAD_CONST               1 ([])
                  3 LOAD_CONST               2 ([])

Thus, although ``Const`` objects hash and compare based on equality for
hashable types::

    >>> hash(Const(3)) == hash(3)
    True
    >>> Const(3)==Const(3)
    True

They hash and compare based on object identity for non-hashable types::

    >>> c = Const([])
    >>> hash(c) == hash(id(c.value))
    True
    >>> c == Const(c.value)     # compares equal if same object
    True
    >>> c == Const([])          # but is not equal to a merely equal object
    False


``Suite`` and ``Pass``
----------------------

On occasion, it's helpful to be able to group a sequence of opcodes,
expressions, or statements together, to be passed as an argument to other node
types.  The ``Suite`` node type accomplishes this::

    >>> from peak.util.assembler import Suite, Pass

    >>> c = Code()
    >>> c.return_(Suite([Const(42), Code.DUP_TOP, Code.POP_TOP]))
    >>> dis(c.code())
      0           0 LOAD_CONST               1 (42)
                  3 DUP_TOP
                  4 POP_TOP
                  5 RETURN_VALUE    

And ``Pass`` is a shortcut for an empty ``Suite``, that generates nothing::

    >>> Suite([])
    Pass

    >>> c = Code()
    >>> c(Pass)
    >>> c.return_(None)
    >>> dis(c.code())
      0           0 LOAD_CONST               0 (None)
                  3 RETURN_VALUE    


Local and Global Names
----------------------

The ``Local`` and ``Global`` wrappers take a name, and load either a local or
global variable, respectively::

    >>> from peak.util.assembler import Global, Local

    >>> c = Code()
    >>> c( Local('x'), Global('y') )
    >>> dis(c.code())
      0           0 LOAD_FAST                0 (x)
                  3 LOAD_GLOBAL              0 (y)

As with simple constants and ``Const`` wrappers, these objects can be used to
construct more complex expressions, like ``{a:(b,c)}``::

    >>> c = Code()
    >>> c( {Local('a'): (Local('b'), Local('c'))} )
    >>> dis(c.code())
      0           0 BUILD_MAP                0
                  3 DUP_TOP
                  4 LOAD_FAST                0 (a)
                  7 LOAD_FAST                1 (b)
                 10 LOAD_FAST                2 (c)
                 13 BUILD_TUPLE              2
                 16 ROT_THREE
                 17 STORE_SUBSCR

The ``LocalAssign`` node type takes a name, and stores a value in a local
variable::

    >>> from peak.util.assembler import LocalAssign
    >>> c = Code()
    >>> c(42, LocalAssign('x'))
    >>> dis(c.code())
      0           0 LOAD_CONST               1 (42)
                  3 STORE_FAST               0 (x)

If the code object is not using "fast locals" (i.e. ``CO_OPTIMIZED`` isn't
set), local variables will be referenced using ``LOAD_NAME`` and ``STORE_NAME``
instead of ``LOAD_FAST`` and ``STORE_FAST``, and if the referenced local name
is a "cell" or "free" variable, ``LOAD_DEREF`` and ``STORE_DEREF`` are used
instead::

    >>> from peak.util.assembler import CO_OPTIMIZED
    >>> c = Code()
    >>> c.co_flags &= ~CO_OPTIMIZED
    >>> c.co_cellvars = ('y',)
    >>> c.co_freevars = ('z',)
    >>> c( Local('x'), Local('y'), Local('z') )
    >>> c( LocalAssign('x'), LocalAssign('y'), LocalAssign('z') )
    >>> dis(c.code())
      0           0 LOAD_NAME                0 (x)
                  3 LOAD_DEREF               0 (y)
                  6 LOAD_DEREF               1 (z)
                  9 STORE_NAME               0 (x)
                 12 STORE_DEREF              0 (y)
                 15 STORE_DEREF              1 (z)


Obtaining Attributes
--------------------

The ``Getattr`` node type takes an expression and an attribute name.  The
attribute name can be a constant string, in which case a ``LOAD_ATTR`` opcode
is used, and constant folding is done if possible::

    >>> from peak.util.assembler import Getattr

    >>> c = Code()
    >>> c(Getattr(Local('x'), '__class__'))
    >>> dis(c.code())
      0           0 LOAD_FAST                0 (x)
                  3 LOAD_ATTR                0 (__class__)


    >>> Getattr(Const(object), '__class__') # const expression, const result
    Const(<type 'type'>)

Or the attribute name can be an expression, in which case a ``getattr()`` call
is compiled instead::

    >>> c = Code()
    >>> c(Getattr(Local('x'), Local('y')))
    >>> dis(c.code())
      0           0 LOAD_CONST               1 (<built-in function getattr>)
                  3 LOAD_FAST                0 (x)
                  6 LOAD_FAST                1 (y)
                  9 CALL_FUNCTION            2


Calling Functions and Methods
-----------------------------

    >>> from peak.util.assembler import Call

The ``Call`` wrapper takes 1-4 arguments: the expression to be called, a
sequence of positional arguments, a sequence of keyword/value pairs for
explicit keyword arguments, an "*" argument, and a "**" argument.  To omit any
of the optional arguments, just pass in an empty sequence in its place::

    >>> c = Code()
    >>> c( Call(Global('type'), [Const(27)]) )

    >>> dis(c.code())   # type(27)
      0           0 LOAD_GLOBAL              0 (type)
                  3 LOAD_CONST               1 (27)
                  6 CALL_FUNCTION            1

    >>> c = Code()
    >>> c(Call(Global('dict'), (), [('x', 42)]))

    >>> dis(c.code())   # dict(x=42)
      0           0 LOAD_GLOBAL              0 (dict)
                  3 LOAD_CONST               1 ('x')
                  6 LOAD_CONST               2 (42)
                  9 CALL_FUNCTION            256

    >>> c = Code()
    >>> c(Call(Global('foo'), (), (), Local('args'), Local('kw')))

    >>> dis(c.code())   # foo(*args, **kw)
      0           0 LOAD_GLOBAL              0 (foo)
                  3 LOAD_FAST                0 (args)
                  6 LOAD_FAST                1 (kw)
                  9 CALL_FUNCTION_VAR_KW     0


Returning Values
----------------

The ``Return(target)`` wrapper generates code for its target, followed by
a ``RETURN_VALUE`` opcode::

    >>> from peak.util.assembler import Return

    >>> c = Code()
    >>> c( Return(1) )
    >>> dis(c.code())
      0           0 LOAD_CONST               1 (1)
                  3 RETURN_VALUE


``Code`` objects also have a ``return_()`` method that provides a more compact
spelling of the same thing::

    >>> c = Code()
    >>> c.return_((1,2))
    >>> dis(c.code())
      0           0 LOAD_CONST               1 (1)
                  3 LOAD_CONST               2 (2)
                  6 BUILD_TUPLE              2
                  9 RETURN_VALUE

Both ``Return`` and ``return_()`` can be used with no argument, in which case
``None`` is returned::

    >>> c = Code()
    >>> c.return_()
    >>> dis(c.code())
      0           0 LOAD_CONST               0 (None)
                  3 RETURN_VALUE

    >>> c = Code()
    >>> c( Return() )
    >>> dis(c.code())
      0           0 LOAD_CONST               0 (None)
                  3 RETURN_VALUE


``If`` Conditions
-----------------

The ``If()`` node type generates conditional code, roughly equivalent to a
Python if/else statement::

    >>> from peak.util.assembler import If
    >>> c = Code()
    >>> c( If(Local('a'), Return(42), Return(55)) )
    >>> dump(c.code())
                    LOAD_FAST                0 (a)
                    JUMP_IF_FALSE            L1
                    POP_TOP
                    LOAD_CONST               1 (42)
                    RETURN_VALUE
            L1:     POP_TOP
                    LOAD_CONST               2 (55)
                    RETURN_VALUE

However, it can also be used like a Python 2.5+ conditional expression
(regardless of the targeted Python version)::

    >>> c = Code()
    >>> c( Return(If(Local('a'), 42, 55)) )
    >>> dump(c.code())
                    LOAD_FAST                0 (a)
                    JUMP_IF_FALSE            L1
                    POP_TOP
                    LOAD_CONST               1 (42)
                    JUMP_FORWARD             L2
            L1:     POP_TOP
                    LOAD_CONST               2 (55)
            L2:     RETURN_VALUE


Note that ``If()`` does *not* do constant-folding on its condition; even if the
condition is a constant, it will be tested at runtime.  This avoids issues with
using mutable constants, e.g.::

    >>> c = Code()
    >>> c(If(Const([]), 42, 55))
    >>> dump(c.code())
                    LOAD_CONST               1 ([])
                    JUMP_IF_FALSE            L1
                    POP_TOP
                    LOAD_CONST               2 (42)
                    JUMP_FORWARD             L2
            L1:     POP_TOP
                    LOAD_CONST               3 (55)


Labels and Jump Targets
-----------------------

The forward reference callbacks returned by jump operations are also usable
as code generation values, indicating that the jump should go to the
current location.  For example::

    >>> c = Code()
    >>> c.LOAD_CONST(99)
    >>> forward = c.JUMP_IF_FALSE()
    >>> c( 1, Code.POP_TOP, forward, Return(3) )
    >>> dump(c.code())
                    LOAD_CONST               1 (99)
                    JUMP_IF_FALSE            L1
                    LOAD_CONST               2 (1)
                    POP_TOP
            L1:     LOAD_CONST               3 (3)
                    RETURN_VALUE

However, there's an easier way to do the same thing, using ``Label`` objects::

    >>> from peak.util.assembler import Label
    >>> c = Code()
    >>> skip = Label()

    >>> c(99, skip.JUMP_IF_FALSE, 1, Code.POP_TOP, skip, Return(3))
    >>> dump(c.code())
                    LOAD_CONST               1 (99)
                    JUMP_IF_FALSE            L1
                    LOAD_CONST               2 (1)
                    POP_TOP
            L1:     LOAD_CONST               3 (3)
                    RETURN_VALUE

This approach has the advantage of being easy to use in complex trees.
``Label`` objects have attributes corresponding to every opcode that uses a
bytecode address argument.  Generating code for these attributes emits the
the corresponding opcode, and generating code for the label itself defines
where the previous opcodes will jump to.  Labels can have multiple jumps
targeting them, either before or after they are defined.  But they can't be
defined more than once::

    >>> c(skip)
    Traceback (most recent call last):
      ...
    AssertionError: Label previously defined


More Conditional Jump Instructions
----------------------------------

In Python 2.7, the traditional ``JUMP_IF_TRUE`` and ``JUMP_IF_FALSE``
instructions were replaced with four new instructions that either conditionally
or unconditionally pop the value being tested.  This was done to improve
performance, since virtually all conditional jumps in Python code pop the
value on one branch or the other.

To provide better cross-version compatibility, BytecodeAssembler emulates the
old instructions on Python 2.7 by emitting a ``DUP_TOP`` followed by a
``POP_JUMP_IF_FALSE`` or ``POP_JUMP_IF_TRUE`` instruction.

However, since this decreases performance, BytecodeAssembler *also* emulates
Python 2.7's ``JUMP_IF_FALSE_OR_POP`` and ``JUMP_IF_FALSE_OR_TRUE`` opcodes
on *older* Pythons::

    >>> c = Code()
    >>> l1, l2 = Label(), Label()
    >>> c(Local('a'), l1.JUMP_IF_FALSE_OR_POP, Return(27), l1)
    >>> c(l2.JUMP_IF_TRUE_OR_POP, Return(42), l2, Code.RETURN_VALUE)
    >>> dump(c.code())
                    LOAD_FAST                0 (a)
                    JUMP_IF_FALSE           L1
                    POP_TOP
                    LOAD_CONST               1 (27)
                    RETURN_VALUE   
            L1:     JUMP_IF_TRUE            L2
                    POP_TOP
                    LOAD_CONST               2 (42)
                    RETURN_VALUE
            L2:     RETURN_VALUE

This means that you can immediately begin using the "or-pop" variations, in
place of a jump followed by a pop, and BytecodeAssembler will use the faster
single instruction automatically on Python 2.7+.

BytecodeAssembler *also* supports using Python 2.7's conditional jumps
that do unconditional pops, but currently cannot emulate them on older Python
versions, so at the moment you should use them only when your code requires
Python 2.7.

(Note: for ease in doctesting across Python versions, the ``dump()`` function
*always* shows the code as if it were generated for Python 2.6 or lower, so
if you need to check the *actual* bytecodes generated, you must use Python's
``dis.dis()`` function instead!)


N-Way Comparisons
-----------------

You can generate N-way comparisons using the ``Compare()`` node type::

    >>> from peak.util.assembler import Compare

    >>> c = Code()
    >>> c(Compare(Local('a'), [('<', Local('b'))]))
    >>> dis(c.code())
      0           0 LOAD_FAST                0 (a)
                  3 LOAD_FAST                1 (b)
                  6 COMPARE_OP               0 (<)

3-way comparisons generate code that's a bit more complex.  Here's a three-way
comparison (``a<b<c``)::

    >>> c = Code()
    >>> c.return_(Compare(Local('a'), [('<', Local('b')), ('<', Local('c'))]))
    >>> dump(c.code())
                    LOAD_FAST                0 (a)
                    LOAD_FAST                1 (b)
                    DUP_TOP
                    ROT_THREE
                    COMPARE_OP               0 (<)
                    JUMP_IF_FALSE           L1
                    POP_TOP
                    LOAD_FAST                2 (c)
                    COMPARE_OP               0 (<)
                    JUMP_FORWARD            L2
            L1:     ROT_TWO
                    POP_TOP
            L2:     RETURN_VALUE

And a four-way (``a<b>c!=d``)::

    >>> c = Code()
    >>> c.return_(
    ...     Compare( Local('a'), [
    ...         ('<', Local('b')), ('>', Local('c')), ('!=', Local('d'))
    ...     ])
    ... )
    >>> dump(c.code())
                    LOAD_FAST                0 (a)
                    LOAD_FAST                1 (b)
                    DUP_TOP
                    ROT_THREE
                    COMPARE_OP               0 (<)
                    JUMP_IF_FALSE           L1
                    POP_TOP
                    LOAD_FAST                2 (c)
                    DUP_TOP
                    ROT_THREE
                    COMPARE_OP               4 (>)
                    JUMP_IF_FALSE           L1
                    POP_TOP
                    LOAD_FAST                3 (d)
                    COMPARE_OP               3 (!=)
                    JUMP_FORWARD            L2
            L1:     ROT_TWO
                    POP_TOP
            L2:     RETURN_VALUE


Sequence Unpacking
------------------

The ``UnpackSequence`` node type takes a sequence of code generation targets,
and generates an ``UNPACK_SEQUENCE`` of the correct length, followed by the
targets::

    >>> from peak.util.assembler import UnpackSequence
    >>> c = Code()  
    >>> c((1,2), UnpackSequence([LocalAssign('x'), LocalAssign('y')]))
    >>> dis(c.code())   # x, y = 1, 2
      0           0 LOAD_CONST               1 (1)
                  3 LOAD_CONST               2 (2)
                  6 BUILD_TUPLE              2
                  9 UNPACK_SEQUENCE          2
                 12 STORE_FAST               0 (x)
                 15 STORE_FAST               1 (y)


Yield Statements
----------------

The ``YieldStmt`` node type generates the necessary opcode(s) for a ``yield``
statement, based on the target Python version.  (In Python 2.5+, a ``POP_TOP``
must be generated after a ``YIELD_VALUE`` in order to create a yield statement,
as opposed to a yield expression.)  It also sets the code flags needed to make
the resulting code object a generator::

    >>> from peak.util.assembler import YieldStmt
    >>> c = Code()
    >>> c(YieldStmt(1), YieldStmt(2), Return(None))
    >>> list(eval(c.code()))
    [1, 2]



Constant Detection and Folding
==============================

The ``const_value()`` function can be used to check if an expression tree has
a constant value, and to obtain that value.  Simple constants are returned
as-is::

    >>> from peak.util.assembler import const_value

    >>> simple_values = [1, 2L, 3.0, 4j+5, "6", u"7", False, None, c.code()]

    >>> map(const_value, simple_values)
    [1, 2L, 3.0, (5+4j), '6', u'7', False, None, <code object <lambda> ...>]

Values wrapped in a ``Const()`` are also returned as-is::

    >>> map(const_value, map(Const, simple_values))
    [1, 2L, 3.0, (5+4j), '6', u'7', False, None, <code object <lambda> ...>]

But no other node types produce constant values; instead, ``NotAConstant`` is
raised::

    >>> const_value(Local('x'))
    Traceback (most recent call last):
      ...
    NotAConstant: Local('x')

Tuples of constants are recursively replaced by constant tuples::

    >>> const_value( (1,2) )
    (1, 2)

    >>> const_value( (1, (2, Const(3))) )
    (1, (2, 3))

But any non-constant values anywhere in the structure cause an error::

    >>> const_value( (1,Global('y')) )
    Traceback (most recent call last):
      ...
    NotAConstant: Global('y')

As do any types not previously described here::

    >>> const_value([1,2])
    Traceback (most recent call last):
      ...
    NotAConstant: [1, 2]

Unless of course they're wrapped with ``Const``::

    >>> const_value(Const([1,2]))
    [1, 2]


Folding Function Calls
----------------------

The ``Call`` wrapper can also do simple constant folding, if all of its input
parameters are constants.  (Actually, the `args` and `kwargs` arguments must be
*sequences* of constants and 2-tuples of constants, respectively.)

If a ``Call`` can thus compute its value in advance, it does so, returning a
``Const`` node instead of a ``Call`` node::

    >>> Call( Const(type), [1] )
    Const(<type 'int'>)

Thus, you can also take the ``const_value()`` of such calls::

    >>> const_value( Call( Const(dict), [], [('x',27)] ) )
    {'x': 27}

Which means that constant folding can propagate up an AST if the result is
passed in to another ``Call``::

    >>> Call(Const(type), [Call( Const(dict), [], [('x',27)] )])
    Const(<type 'dict'>)

Notice that this folding takes place eagerly, during AST construction.  If you
want to implement delayed folding after constant propagation or variable
substitution, you'll need to recreate the tree, or use your own custom AST
types.  (See `Custom Code Generation`_, below.)

Note that you can disable folding using the ``fold=False`` keyword argument to
``Call``, if you want to ensure that even compile-time constants are computed
at runtime.  Compare::

    >>> c = Code()
    >>> c( Call(Const(type), [1]) )
    >>> dis(c.code())
      0           0 LOAD_CONST               1 (<type 'int'>)

    >>> c = Code()
    >>> c( Call(Const(type), [1], fold=False) )
    >>> dis(c.code())
      0           0 LOAD_CONST               1 (<type 'type'>)
                  3 LOAD_CONST               2 (1)
                  6 CALL_FUNCTION            1

Folding is also *automatically* disabled for calls with no arguments of any
kind (such as ``globals()`` or ``locals()``), whose values are much more likely
to change dynamically at runtime::

    >>> c = Code()
    >>> c( Call(Const(locals)) )
    >>> dis(c.code())
      0           0 LOAD_CONST               1 (<built-in function locals>)
                  3 CALL_FUNCTION            0

Note, however, that folding is disabled for *any* zero-argument call,
regardless of the thing being called.  It is not specific to ``locals()`` and
``globals()``, in other words.


Logical And/Or
--------------

You can evaluate logical and/or expressions using the ``And`` and ``Or`` node
types::

    >>> from peak.util.assembler import And, Or

    >>> c = Code()
    >>> c.return_( And([Local('x'), Local('y')]) )
    >>> dump(c.code())
                    LOAD_FAST                0 (x)
                    JUMP_IF_FALSE           L1        
                    POP_TOP
                    LOAD_FAST                1 (y)
            L1:     RETURN_VALUE

    >>> c = Code()
    >>> c.return_( Or([Local('x'), Local('y')]) )
    >>> dump(c.code())
                    LOAD_FAST                0 (x)
                    JUMP_IF_TRUE            L1
                    POP_TOP
                    LOAD_FAST                1 (y)
            L1:     RETURN_VALUE


True or false constants are folded automatically, avoiding code generation
for intermediate values that will never be used in the result::

    >>> c = Code()
    >>> c.return_( And([1, 2, Local('y')]) )
    >>> dis(c.code())
      0           0 LOAD_FAST                0 (y)
                  3 RETURN_VALUE

    >>> c = Code()
    >>> c.return_( And([1, 2, Local('y'), 0]) )
    >>> dump(c.code())
                    LOAD_FAST                0 (y)
                    JUMP_IF_FALSE           L1
                    POP_TOP
                    LOAD_CONST               1 (0)
            L1:     RETURN_VALUE

    >>> c = Code()
    >>> c.return_( Or([1, 2, Local('y')]) )
    >>> dis(c.code())
      0           0 LOAD_CONST               1 (1)
                  3 RETURN_VALUE

    >>> c = Code()
    >>> c.return_( Or([False, Local('y'), 3]) )
    >>> dump(c.code())
                    LOAD_FAST                0 (y)
                    JUMP_IF_TRUE            L1
                    POP_TOP
                    LOAD_CONST               1 (3)
            L1:     RETURN_VALUE


Custom Code Generation
======================

Code generation is extensible: you can use any callable as a code-generation
target.  It will be called with exactly one argument: the code object.  It can
then perform whatever operations are desired.

In the most trivial case, you can use any unbound ``Code`` method as a code
generation target, e.g.::

    >>> c = Code()
    >>> c.LOAD_GLOBAL('foo')
    >>> c(Call(Code.DUP_TOP, ()))
    >>> dis(c.code())
      0           0 LOAD_GLOBAL              0 (foo)
                  3 DUP_TOP
                  4 CALL_FUNCTION            0

As you can see, the ``Code.DUP_TOP()`` is called on the code instance, causing
a ``DUP_TOP`` opcode to be output.  This is sometimes a handy trick for
accessing values that are already on the stack.  More commonly, however, you'll
want to implement more sophisticated callables.

To make it easy to create diverse target types, a ``nodetype()`` decorator is
provided::

    >>> from peak.util.assembler import nodetype

It allows you to create code generation target types using functions.  Your
function should take one or more arguments, with a ``code=None`` optional
argument in the last position.  It should check whether ``code is None`` when
called, and if so, return a tuple of the preceding arguments.  If ``code``
is not ``None``, then it should do whatever code generating tasks are required.
For example::

    >>> def TryFinally(block1, block2, code=None):
    ...     if code is None:
    ...         return block1, block2
    ...     code(
    ...         Code.SETUP_FINALLY,
    ...             block1,
    ...         Code.POP_BLOCK,
    ...             block2,
    ...         Code.END_FINALLY
    ...     )
    >>> TryFinally = nodetype()(TryFinally)

Note: although the nodetype() generator can be used above the function
definition in either Python 2.3 or 2.4, it cannot be done in a doctest under
Python 2.3, so this document doesn't attempt to demonstrate that.  Under
2.4, you would do something like this::

    @nodetype()
    def TryFinally(...):

and code that needs to also work under 2.3 should do something like this::

    nodetype()
    def TryFinally(...):

But to keep the examples here working with doctest, we'll be doing our
``nodetype()`` calls after the end of the function definitions, e.g.::

    >>> def ExprStmt(value, code=None):
    ...     if code is None:
    ...         return value,
    ...     code( value, Code.POP_TOP )
    >>> ExprStmt = nodetype()(ExprStmt)

    >>> c = Code()
    >>> c( TryFinally(ExprStmt(1), ExprStmt(2)) )
    >>> dump(c.code())
                    SETUP_FINALLY           L1
                    LOAD_CONST               1 (1)
                    POP_TOP
                    POP_BLOCK
                    LOAD_CONST               0 (None)
            L1:     LOAD_CONST               2 (2)
                    POP_TOP
                    END_FINALLY

The ``nodetype()`` decorator is virtually identical to the ``struct()``
decorator in the DecoratorTools package, except that it does not support
``*args``, does not create a field for the ``code`` argument, and generates a
``__call__()`` method that reinvokes the wrapped function to do the actual
code generation.

Among the benefits of this decorator are:

* It gives your node types a great debugging format::

    >>> tf = TryFinally(ExprStmt(1), ExprStmt(2))
    >>> tf
    TryFinally(ExprStmt(1), ExprStmt(2))

* It makes named fields accessible::

    >>> tf.block1
    ExprStmt(1)

    >>> tf.block2
    ExprStmt(2)

* Hashing and comparison work as expected (handy for algorithms that require
  comparing or caching AST subtrees, such as common subexpression
  elimination)::

    >>> ExprStmt(1) == ExprStmt(1)
    True
    >>> ExprStmt(1) == ExprStmt(2)
    False


Please see the `struct decorator documentation`_ for info on how to customize
node types further.

.. _struct decorator documentation: http://peak.telecommunity.com/DevCenter/DecoratorTools#the-struct-decorator

Note: hashing only works if all the values you return in your argument tuple
are hashable, so you should try to convert them if possible.  For example, if
an argument accepts any sequence, you should probably convert it to a tuple
before returning it.  Most of the examples in this document, and the node types
supplied by ``peak.util.assembler`` itself do this.


Constant Folding in Custom Targets
----------------------------------

If you want to incorporate constant-folding into your AST nodes, you can do
so by checking for constant values and folding them at either construction
or code generation time.  For example, this ``And`` node type (a simpler
version of the one included in ``peak.util.assembler``) folds constants during
code generation, by not generating unnecessary branches when it can
prove which way a branch will go::

    >>> from peak.util.assembler import NotAConstant

    >>> def And(values, code=None):
    ...     if code is None:
    ...         return tuple(values),
    ...     end = Label()
    ...     for value in values[:-1]:
    ...         try:
    ...             if const_value(value):
    ...                 continue        # true constants can be skipped
    ...         except NotAConstant:    # but non-constants require code
    ...             code(value, end.JUMP_IF_FALSE_OR_POP)
    ...         else:       # and false constants end the chain right away
    ...             return code(value, end)
    ...     code(values[-1], end)
    >>> And = nodetype()(And)

    >>> c = Code()
    >>> c.return_( And([1, 2]) )
    >>> dis(c.code())
      0           0 LOAD_CONST               1 (2)
                  3 RETURN_VALUE

    >>> c = Code()
    >>> c.return_( And([1, 2, Local('x')]) )
    >>> dis(c.code())
      0           0 LOAD_FAST                0 (x)
                  3 RETURN_VALUE

    >>> c = Code()
    >>> c.return_( And([Local('x'), False, 27]) )
    >>> dump(c.code())
                    LOAD_FAST                0 (x)
                    JUMP_IF_FALSE           L1
                    POP_TOP
                    LOAD_CONST               1 (False)
            L1:     RETURN_VALUE

The above example only folds constants at code generation time, however.  You
can also do constant folding at AST construction time, using the
``fold_args()`` function.  For example::

    >>> from peak.util.assembler import fold_args

    >>> def Getattr(ob, name, code=None):
    ...     try:
    ...         name = const_value(name)
    ...     except NotAConstant:
    ...         return Call(Const(getattr), [ob, name])
    ...     if code is None:
    ...         return fold_args(Getattr, ob, name)
    ...     code(ob)
    ...     code.LOAD_ATTR(name)
    >>> Getattr = nodetype()(Getattr)

    >>> const_value(Getattr(1, '__class__'))
    <type 'int'>

The ``fold_args()`` function tries to evaluate the node immediately, if all of
its arguments are constants, by creating a temporary ``Code`` object, and
running the supplied function against it, then doing an ``eval()`` on the
generated code and wrapping the result in a ``Const``.  However, if any of the
arguments are non-constant, the original arguments (less the function) are
returned. This causes a normal node instance to be created instead of a
``Const``.

This isn't a very *fast* way of doing partial evaluation, but it makes it
really easy to define new code generation targets without writing custom
constant-folding code for each one.  Just ``return fold_args(ThisType, *args)``
instead of ``return args``, if you want your node constructor to be able to do
eager evaluation.  If you need to, you can check your parameters in order to
decide whether to call ``fold_args()`` or not; this is in fact how ``Call``
implements its ``fold`` argument and the suppression of folding when
the call has no arguments.

(By the way, this same ``Getattr`` node type is also available


Setting the Code's Calling Signature
====================================

The simplest way to set up the calling signature for a ``Code`` instance is
to clone an existing function or code object's signature, using the
``Code.from_function()`` or ``Code.from_code()`` classmethods.  These methods
create a new ``Code`` instance whose calling signature (number and names of
arguments) matches that of the original function or code objects::

    >>> def f1(a,b,*c,**d):
    ...     pass

    >>> c = Code.from_function(f1)
    >>> f2 = new.function(c.code(), globals())

    >>> import inspect

    >>> tuple(inspect.getargspec(f1))
    (['a', 'b'], 'c', 'd', None)

    >>> tuple(inspect.getargspec(f2))
    (['a', 'b'], 'c', 'd', None)

Note that these constructors do not copy any actual *code* from the code
or function objects.  They simply copy the signature, and, if you set the
``copy_lineno`` keyword argument to a true value, they will also set the
created code object's ``co_firstlineno`` to match that of the original code or
function object::

    >>> c1 = Code.from_function(f1, copy_lineno=True)
    >>> c1.co_firstlineno
    1
    >>> c1.co_filename is f1.func_code.co_filename
    True

If you create a ``Code`` instance from a function that has nested positional
arguments, the returned code object will include a prologue to unpack the
arguments properly::

    >>> def f3(a, (b,c), (d,(e,f))):
    ...     pass

    >>> f4 = new.function(Code.from_function(f3).code(), globals())
    >>> dis(f4)
      0           0 LOAD_FAST                1 (.1)
                  3 UNPACK_SEQUENCE          2
                  6 STORE_FAST               3 (b)
                  9 STORE_FAST               4 (c)
                 12 LOAD_FAST                2 (.2)
                 15 UNPACK_SEQUENCE          2
                 18 STORE_FAST               5 (d)
                 21 UNPACK_SEQUENCE          2
                 24 STORE_FAST               6 (e)
                 27 STORE_FAST               7 (f)

This is roughly the same code that Python would generate to do the same
unpacking process, and is designed so that the ``inspect`` module will
recognize it as an argument unpacking prologue::

    >>> tuple(inspect.getargspec(f3))
    (['a', ['b', 'c'], ['d', ['e', 'f']]], None, None, None)

    >>> tuple(inspect.getargspec(f4))
    (['a', ['b', 'c'], ['d', ['e', 'f']]], None, None, None)

You can also use the ``from_spec(name='<lambda>', args=(), var=None, kw=None)``
classmethod to explicitly set a name and argument spec for a new code object::

    >>> c = Code.from_spec('a', ('b', ('c','d'), 'e'), 'f', 'g')
    >>> c.co_name
    'a'

    >>> c.co_varnames
    ['b', '.1', 'e', 'f', 'g', 'c', 'd']

    >>> c.co_argcount
    3
    
    >>> tuple(inspect.getargs(c.code()))
    (['b', ['c', 'd'], 'e'], 'f', 'g')


Code Attributes
===============

``Code`` instances have a variety of attributes corresponding to either the
attributes of the Python code objects they generate, or to the current state
of code generation.

For example, the ``co_argcount`` and ``co_varnames`` attributes
correspond to those used in creating the code for a Python function.  If you
want your code to be a function, you can set them as follows::

    >>> c = Code()
    >>> c.co_argcount = 3
    >>> c.co_varnames = ['a','b','c']

    >>> c.LOAD_CONST(42)
    >>> c.RETURN_VALUE()

    >>> f = new.function(c.code(), globals())
    >>> f(1,2,3)
    42

    >>> import inspect
    >>> tuple(inspect.getargspec(f))
    (['a', 'b', 'c'], None, None, None)

Although Python code objects want ``co_varnames`` to be a tuple, ``Code``
instances use a list, so that names can be added during code generation.  The
``.code()`` method automatically creates tuples where necessary.

Here are all of the ``Code`` attributes you may want to read or write:

co_filename
    A string representing the source filename for this code.  If it's an actual
    filename, then tracebacks that pass through the generated code will display
    lines from the file.  The default value is ``'<generated code>'``.

co_name
    The name of the function, class, or other block that this code represents.
    The default value is ``'<lambda>'``.

co_argcount
    Number of positional arguments a function accepts; defaults to 0

co_varnames
    A list of strings naming the code's local variables, beginning with its
    positional argument names, followed by its ``*`` and ``**`` argument names,
    if applicable, followed by any other local variable names.  These names
    are used by the ``LOAD_FAST`` and ``STORE_FAST`` opcodes, and invoking
    the ``.LOAD_FAST(name)`` and ``.STORE_FAST(name)`` methods of a code object
    will automatically add the given name to this list, if it's not already
    present.

co_flags
    The flags for the Python code object.  This defaults to
    ``CO_OPTIMIZED | CO_NEWLOCALS``, which is the correct value for a function
    using "fast" locals.  This value is automatically or-ed with ``CO_NOFREE``
    when generating a code object, if the ``co_cellvars`` and ``co_freevars``
    attributes are empty.  And if you use the ``LOAD_NAME()``,
    ``STORE_NAME()``, or ``DELETE_NAME()`` methods, the ``CO_OPTIMIZED`` bit
    is automatically reset, since these opcodes can only be used when the
    code is running with a real (i.e. not virtualized) ``locals()`` dictionary.

    If you need to change any other flag bits besides the above, you'll need to
    set or clear them manually.  For your convenience, the
    ``peak.util.assembler`` module exports all the ``CO_`` constants used by
    Python.  For example, you can use ``CO_VARARGS`` and ``CO_VARKEYWORDS`` to
    indicate whether a function accepts ``*`` or ``**`` arguments, as long as
    you extend the ``co_varnames`` list accordingly.  (Assuming you don't have
    an existing function or code object with the desired signature, in which
    case you could just use the ``from_function()`` or ``from_code()``
    classmethods instead of messing with these low-level attributes and flags.)

stack_size
    The predicted height of the runtime value stack, as of the current opcode.
    Its value is automatically updated by most opcodes, but if you are doing
    something sufficiently tricky (as in the ``Switch`` demo, below) you may
    need to explicitly set it.

    The ``stack_size`` automatically becomes ``None`` after any unconditional
    jump operations, such as ``JUMP_FORWARD``, ``BREAK_LOOP``, or
    ``RETURN_VALUE``.  When the stack size is ``None``, the only operations
    that can be performed are the resolving of forward references (which will
    set the stack size to what it was when the reference was created), or
    manually setting the stack size.

co_freevars
    A tuple of strings naming a function's "free" variables.  Defaults to an
    empty tuple.  A function's free variables are the variables it "inherits"
    from its surrounding scope.  If you're going to use this, you should set
    it only once, before generating any code that references any free *or* cell
    variables.

co_cellvars
    A tuple of strings naming a function's "cell" variables.  Defaults to an
    empty tuple.  A function's cell variables are the variables that are
    "inherited" by one or more of its nested functions.  If you're going to use
    this, you should set it only once, before generating any code that
    references any free *or* cell variables.

These other attributes are automatically generated and maintained, so you'll
probably never have a reason to change them:

co_consts
    A list of constants used by the code; the first (zeroth?) constant is
    always ``None``.  Normally, this is automatically maintained; the
    ``.LOAD_CONST(value)`` method checks to see if the constant is already
    present in this list, and adds it if it is not there.

co_names
    A list of non-optimized or global variable names.  It's automatically
    updated whenever you invoke a method to generate an opcode that uses
    such names.

co_code
    A byte array containing the generated code.  Don't mess with this.

co_firstlineno
    The first line number of the generated code.  It automatically gets set
    if you call ``.set_lineno()`` before generating any code; otherwise it
    defaults to zero.

co_lnotab
    A byte array containing a generated line number table.  It's automatically
    generated, so don't mess with it.

co_stacksize
    The maximum amount of stack space the code will require to run.  This
    value is updated automatically as you generate code or change
    the ``stack_size`` attribute.



Stack Size Tracking and Dead Code Detection
===========================================

``Code`` objects automatically track the predicted stack size as code is
generated, by updating the ``stack_size`` attribute as each operation occurs.
A history is kept so that backward jumps can be checked to ensure that the
current stack height is the same as at the jump's target.  Similarly, when
forward jumps are resolved, the stack size at the jump target is checked
against the stack size at the jump's origin.  If there are multiple jumps to
the same location, they must all have the same stack size at the origin and
the destination.

In addition, whenever any unconditional jump code is generated (i.e.
``JUMP_FORWARD``, ``BREAK_LOOP``, ``CONTINUE_LOOP``, ``JUMP_ABSOLUTE``, or
``RETURN_VALUE``), the predicted ``stack_size`` is set to ``None``.  This
means that the ``Code`` object does not know what the stack size will be at
the current location.  You cannot issue *any* instructions when the predicted
stack size is ``None``, as you will receive an ``AssertionError``::

    >>> c = Code()
    >>> fwd = c.JUMP_FORWARD()
    >>> print c.stack_size  # forward jump marks stack size as unknown
    None

    >>> c.LOAD_CONST(42)
    Traceback (most recent call last):
      ...
    AssertionError: Unknown stack size at this location

Instead, you must resolve a forward reference (or define a previously-jumped to
label).  This will propagate the stack size at the source of the jump to the
current location, updating the stack size::

    >>> fwd()
    >>> c.stack_size
    0

Note, by the way, that this means it is impossible for you to generate static
"dead code".  In other words, you cannot generate code that isn't reachable.
You should therefore check if ``stack_size`` is ``None`` before generating
code that might be unreachable.  For example, consider this ``If``
implementation::

    >>> def If(cond, then, else_=Pass, code=None):
    ...     if code is None:
    ...         return cond, then, else_
    ...     else_clause = Label()
    ...     end_if = Label()
    ...     code(cond, else_clause.JUMP_IF_FALSE_OR_POP, then)
    ...     code(end_if.JUMP_FORWARD, else_clause, Code.POP_TOP, else_)
    ...     code(end_if)
    >>> If = nodetype()(If)

It works okay if there's no dead code::

    >>> c = Code()
    >>> c( If(Local('a'), 42, 55) )
    >>> dump(c.code())
                    LOAD_FAST                0 (a)
                    JUMP_IF_FALSE           L1
                    POP_TOP
                    LOAD_CONST               1 (42)
                    JUMP_FORWARD            L2
            L1:     POP_TOP
                    LOAD_CONST               2 (55)

But it breaks if you end the "then" block with a return::

    >>> c = Code()
    >>> c( If(23, Return(42), 55) )
    Traceback (most recent call last):
      ...
    AssertionError: Unknown stack size at this location

What we need is something like this instead::

    >>> def If(cond, then, else_=Pass, code=None):
    ...     if code is None:
    ...         return cond, then, else_
    ...     else_clause = Label()
    ...     end_if = Label()
    ...     code(cond, else_clause.JUMP_IF_FALSE_OR_POP, then)
    ...     if code.stack_size is not None:
    ...         end_if.JUMP_FORWARD(code)
    ...     code(else_clause, Code.POP_TOP, else_, end_if)           
    >>> If = nodetype()(If)

As you can see, the dead code is now eliminated::

    >>> c = Code()
    >>> c( If(Local('a'), Return(42), 55) )
    >>> dump(c.code())
                    LOAD_FAST                0 (a)
                    JUMP_IF_FALSE           L1
                    POP_TOP
                    LOAD_CONST               1 (42)
                    RETURN_VALUE
            L1:     POP_TOP
                    LOAD_CONST               2 (55)


Blocks, Loops, and Exception Handling
=====================================

The Python ``SETUP_FINALLY``, ``SETUP_EXCEPT``, and ``SETUP_LOOP`` opcodes
all create "blocks" that go on the frame's "block stack" at runtime.  Each of
these opcodes *must* be matched with *exactly one* ``POP_BLOCK`` opcode -- no
more, and no less.  ``Code`` objects enforce this using an internal block stack
that matches each setup with its corresponding ``POP_BLOCK``.  Trying to pop
a nonexistent block, or trying to generate code when unclosed blocks exist is
an error::

    >>> c = Code()
    >>> c.POP_BLOCK()
    Traceback (most recent call last):
      ...
    AssertionError: Not currently in a block

    >>> c.SETUP_FINALLY()
    >>> c.code()
    Traceback (most recent call last):
      ...
    AssertionError: 1 unclosed block(s)

    >>> c.POP_BLOCK()
    >>> c.code()
    <code object <lambda> ...>


Exception Stack Size Adjustment
-------------------------------

When you issue a ``SETUP_EXCEPT`` or ``SETUP_FINALLY``, the code's maximum
stack size is raised to ensure that it's at least 3 items higher than
the current stack size.  That way, there will be room for the items that Python
puts on the stack when jumping to a block's exception handling code::

    >>> c = Code()
    >>> c.SETUP_FINALLY()
    >>> c.stack_size, c.co_stacksize
    (0, 3)

As you can see, the current stack size is unchanged, but the maximum stack size
has increased.  This increase is relative to the current stack size, though;
it's not an absolute increase::

    >>> c = Code()
    >>> c(1,2,3,4, *[Code.POP_TOP]*4)   # push 4 things, then pop 'em
    >>> c.SETUP_FINALLY()
    >>> c.stack_size, c.co_stacksize
    (0, 4)

And this stack adjustment doesn't happen for loops, because they don't have
exception handlers::

    >>> c = Code()
    >>> c.SETUP_LOOP()
    >>> c.stack_size, c.co_stacksize
    (0, 0)


Try/Except Blocks
-----------------

In the case of ``SETUP_EXCEPT``, the *current* stack size is increased by 3
after a ``POP_BLOCK``, because the code that follows will be an exception
handler and will thus always have exception items on the stack::

    >>> c = Code()
    >>> c.SETUP_EXCEPT()
    >>> else_ = c.POP_BLOCK()
    >>> c.stack_size, c.co_stacksize
    (3, 3)

When a ``POP_BLOCK()`` is matched with a ``SETUP_EXCEPT``, it automatically
emits a ``JUMP_FORWARD`` and returns a forward reference that should be called
back when the "else" clause or end of the entire try/except statement is
reached::

    >>> c.POP_TOP()     # get rid of exception info
    >>> c.POP_TOP()
    >>> c.POP_TOP()
    >>> else_()
    >>> c.return_()
    >>> dump(c.code())
                    SETUP_EXCEPT            L1
                    POP_BLOCK
                    JUMP_FORWARD            L2
            L1:     POP_TOP
                    POP_TOP
                    POP_TOP
            L2:     LOAD_CONST               0 (None)
                    RETURN_VALUE

In the example above, an empty block executes with an exception handler that
begins at offset 7.  When the block is done, it jumps forward to the end of
the try/except construct at offset 10.  The exception handler does nothing but
remove the exception information from the stack before it falls through to the
end.

Note, by the way, that it's usually easier to use labels to define blocks
like this::

    >>> c = Code()
    >>> done = Label()
    >>> c(
    ...     done.SETUP_EXCEPT,
    ...     done.POP_BLOCK,
    ...         Code.POP_TOP, Code.POP_TOP, Code.POP_TOP,
    ...     done,
    ...     Return()
    ... )

    >>> dump(c.code())
                    SETUP_EXCEPT             L1
                    POP_BLOCK
                    JUMP_FORWARD             L2
            L1:     POP_TOP
                    POP_TOP
                    POP_TOP
            L2:     LOAD_CONST               0 (None)
                    RETURN_VALUE

(Labels have a ``POP_BLOCK`` attribute that you can pass in when generating
code.)

And, for generating typical try/except blocks, you can use the ``TryExcept``
node type, which takes a body, a sequence of exception-type/handler pairs,
and an optional "else" clause::

    >>> from peak.util.assembler import TryExcept
    >>> c = Code()
    >>> c.return_(
    ...     TryExcept(
    ...         Return(1),                                      # body
    ...         [(Const(KeyError),2), (Const(TypeError),3)],    # handlers
    ...         Return(4)                                       # else clause
    ...     )
    ... )

    >>> dump(c.code())
                    SETUP_EXCEPT            L1
                    LOAD_CONST               1 (1)
                    RETURN_VALUE
                    POP_BLOCK
                    JUMP_FORWARD            L4
            L1:     DUP_TOP
                    LOAD_CONST               2 (<...exceptions.KeyError...>)
                    COMPARE_OP              10 (exception match)
                    JUMP_IF_FALSE           L2
                    POP_TOP
                    POP_TOP
                    POP_TOP
                    POP_TOP
                    LOAD_CONST               3 (2)
                    JUMP_FORWARD            L5
            L2:     POP_TOP
                    DUP_TOP
                    LOAD_CONST               4 (<...exceptions.TypeError...>)
                    COMPARE_OP              10 (exception match)
                    JUMP_IF_FALSE           L3
                    POP_TOP
                    POP_TOP
                    POP_TOP
                    POP_TOP
                    LOAD_CONST               5 (3)
                    JUMP_FORWARD            L5
            L3:     POP_TOP
                    END_FINALLY
            L4:     LOAD_CONST               6 (4)
                    RETURN_VALUE
            L5:     RETURN_VALUE


Try/Finally Blocks
------------------

When a ``POP_BLOCK()`` is matched with a ``SETUP_FINALLY``, it automatically
emits a ``LOAD_CONST(None)``, so that when the corresponding ``END_FINALLY``
is reached, it will know that the "try" block exited normally.  Thus, the
normal pattern for producing a try/finally construct is as follows::

    >>> c = Code()
    >>> c.SETUP_FINALLY()
    >>> # "try" suite goes here
    >>> c.POP_BLOCK()
    >>> # "finally" suite goes here
    >>> c.END_FINALLY()

And it produces code that looks like this::

    >>> dump(c.code())
                    SETUP_FINALLY           L1
                    POP_BLOCK
                    LOAD_CONST               0 (None)
            L1:     END_FINALLY

The ``END_FINALLY`` opcode will remove 1, 2, or 3 values from the stack at
runtime, depending on how the "try" block was exited.  In the case of simply
"falling off the end" of the "try" block, however, the inserted
``LOAD_CONST(None)`` puts one value on the stack, and that one value is popped
off by the ``END_FINALLY``.  For that reason, ``Code`` objects treat
``END_FINALLY`` as if it always popped exactly one value from the stack, even
though at runtime this may vary.  This means that the estimated stack levels
within the "finally" clause may not be accurate -- which is why ``POP_BLOCK()``
adjusts the maximum expected stack size to accomodate up to three values being
put on the stack by the Python interpreter for exception handling.

For your convenience, the ``TryFinally`` node type can also be used to generate
try/finally blocks::

    >>> from peak.util.assembler import TryFinally
    >>> c = Code()
    >>> c( TryFinally(ExprStmt(1), ExprStmt(2)) )
    >>> dump(c.code())
                    SETUP_FINALLY           L1
                    LOAD_CONST               1 (1)
                    POP_TOP
                    POP_BLOCK
                    LOAD_CONST               0 (None)
            L1:     LOAD_CONST               2 (2)
                    POP_TOP
                    END_FINALLY


Loops
-----

The ``POP_BLOCK`` for a loop marks the end of the loop body, and the beginning
of the "else" clause, if there is one.  It returns a forward reference that
should be called back either at the end of the "else" clause, or immediately if
there is no "else".  Any ``BREAK_LOOP`` opcodes that appear in the loop body
will jump ahead to the point at which the forward reference is resolved.

Here, we'll generate a loop that counts down from 5 to 0, with an "else" clause
that returns 42.  Three labels are needed: one to mark the end of the overall
block, one that's looped back to, and one that marks the "else" clause::

    >>> c = Code()
    >>> block = Label()
    >>> loop = Label()
    >>> else_ = Label()
    >>> c(
    ...     block.SETUP_LOOP,
    ...         5,      # initial setup - this could be a GET_ITER instead
    ...     loop,
    ...         else_.JUMP_IF_FALSE,        # while x:
    ...         1, Code.BINARY_SUBTRACT,    #     x -= 1
    ...         loop.CONTINUE_LOOP,
    ...     else_,                          # else:
    ...         Code.POP_TOP,
    ...     block.POP_BLOCK,
    ...         Return(42),                 #     return 42
    ...     block,
    ...     Return()
    ... )

    >>> dump(c.code())
                    SETUP_LOOP              L3
                    LOAD_CONST               1 (5)
            L1:     JUMP_IF_FALSE           L2
                    LOAD_CONST               2 (1)
                    BINARY_SUBTRACT
                    JUMP_ABSOLUTE           L1
            L2:     POP_TOP
                    POP_BLOCK
                    LOAD_CONST               3 (42)
                    RETURN_VALUE
            L3:     LOAD_CONST               0 (None)
                    RETURN_VALUE

    >>> eval(c.code())
    42


Break and Continue
------------------

The ``BREAK_LOOP`` and ``CONTINUE_LOOP`` opcodes can only be used inside of
an active loop::

    >>> c = Code()
    >>> c.BREAK_LOOP()
    Traceback (most recent call last):
      ...
    AssertionError: Not inside a loop

    >>> c.CONTINUE_LOOP(c.here())
    Traceback (most recent call last):
      ...
    AssertionError: Not inside a loop

And ``CONTINUE_LOOP`` is automatically replaced with a ``JUMP_ABSOLUTE`` if
it occurs directly inside a loop block::

    >>> c.LOAD_CONST(57)
    >>> c.SETUP_LOOP()
    >>> fwd = c.JUMP_IF_TRUE()
    >>> c.CONTINUE_LOOP(c.here())
    >>> fwd()
    >>> c.BREAK_LOOP()
    >>> c.POP_BLOCK()()
    >>> dump(c.code())
                    LOAD_CONST               1 (57)
                    SETUP_LOOP              L3
                    JUMP_IF_TRUE            L2
            L1:     JUMP_ABSOLUTE           L1
            L2:     BREAK_LOOP
                    POP_BLOCK

In other words, ``CONTINUE_LOOP`` only really emits a ``CONTINUE_LOOP`` opcode
if it's inside some other kind of block within the loop, e.g. a "try" clause::

    >>> c = Code()
    >>> c.LOAD_CONST(57)
    >>> c.SETUP_LOOP()
    >>> loop = c.here()
    >>> c.SETUP_FINALLY()
    >>> fwd = c.JUMP_IF_TRUE()
    >>> c.CONTINUE_LOOP(loop)
    >>> fwd()
    >>> c.POP_BLOCK()
    >>> c.END_FINALLY()
    >>> c.POP_BLOCK()()
    >>> dump(c.code())
                    LOAD_CONST               1 (57)
                    SETUP_LOOP              L4
            L1:     SETUP_FINALLY           L3
                    JUMP_IF_TRUE            L2
                    CONTINUE_LOOP           L1
            L2:     POP_BLOCK
                    LOAD_CONST               0 (None)
            L3:     END_FINALLY
                    POP_BLOCK

``for`` Loops
-------------

There is a ``For()`` node type available for generating simple loops (without
break/continue support).  It takes an iterable expression, an assignment
clause, and a loop body::

    >>> from peak.util.assembler import For
    >>> y = Call(Const(range), (3,))
    >>> x = LocalAssign('x')
    >>> body = Suite([Local('x'), Code.PRINT_EXPR])

    >>> c = Code()
    >>> c(For(y, x, body))  # for x in range(3): print x
    >>> c.return_()
    >>> dump(c.code())
                    LOAD_CONST               1 ([0, 1, 2])
                    GET_ITER
            L1:     FOR_ITER                L2
                    STORE_FAST               0 (x)
                    LOAD_FAST                0 (x)
                    PRINT_EXPR
                    JUMP_ABSOLUTE           L1
            L2:     LOAD_CONST               0 (None)
                    RETURN_VALUE

The arguments are given in execution order: first the "in" value of the loop,
then the assignment to a loop variable, and finally the body of the loop.  The
distinction between the assignment and body, however, is only for clarity and
convenience (to avoid needing to glue the assignment to the body with a
``Suite``).  If you already have a suite or only need one node for the entire
loop body, you can do the same thing with only two arguments::

    >>> c = Code()
    >>> c(For(y, Code.PRINT_EXPR))
    >>> c.return_()
    >>> dump(c.code())
                    LOAD_CONST               1 ([0, 1, 2])
                    GET_ITER
            L1:     FOR_ITER                L2
                    PRINT_EXPR
                    JUMP_ABSOLUTE           L1
            L2:     LOAD_CONST               0 (None)
                    RETURN_VALUE

Notice, by the way, that ``For()`` does NOT set up a loop block for you, so if
you want to be able to use break and continue, you'll need to wrap the loop in
a labelled SETUP_LOOP/POP_BLOCK pair, as described in the preceding sections.


List Comprehensions
-------------------

In order to generate correct list comprehension code for the target Python
version, you must use the ``ListComp()`` and ``LCAppend()`` node types.  This
is because Python versions 2.4 and up store the list being built in a temporary
variable, and use a special ``LIST_APPEND`` opcode to append values, while 2.3
stores the list's ``append()`` method in the temporary variable, and calls it
to append values.

The ``ListComp()`` node wraps a code body (usually a ``For()`` loop) and
manages the creation and destruction of a temporary variable (e.g. ``_[1]``,
``_[2]``, etc.).  The ``LCAppend()`` node type wraps a value or expression to
be appended to the innermost active ``ListComp()`` in progress::

    >>> from peak.util.assembler import ListComp, LCAppend
    >>> c = Code()
    >>> simple = ListComp(For(y, x, LCAppend(Local('x'))))
    >>> c.return_(simple)
    >>> eval(c.code())
    [0, 1, 2]

    >>> c = Code()
    >>> c.return_(ListComp(For(y, x, LCAppend(simple))))
    >>> eval(c.code())
    [[0, 1, 2], [0, 1, 2], [0, 1, 2]]


Closures and Nested Functions
=============================

Free and Cell Variables
-----------------------

To implement closures and nested scopes, your code objects must use "free" or
"cell" variables in place of regular "fast locals".  A "free" variable is one
that is defined in an outer scope, and a "cell" variable is one that's defined
in the current scope, but will also be used by nested functions.

The simplest way to set up free or cell variables is to use a code object's
``makefree(names)`` and ``makecells(names)`` methods::

    >>> c = Code()
    >>> c.co_cellvars
    ()
    >>> c.co_freevars
    ()

    >>> c.makefree(['x', 'y'])
    >>> c.makecells(['z'])

    >>> c.co_cellvars
    ('z',)
    >>> c.co_freevars
    ('x', 'y')

When a name has been defined as a free or cell variable, the ``_DEREF`` opcode
variants are used to generate ``Local()`` and ``LocalAssign()`` nodes::

    >>> c((Local('x'), Local('y')), LocalAssign('z'))
    >>> dis(c.code())
      0           0 LOAD_DEREF               1 (x)
                  3 LOAD_DEREF               2 (y)
                  6 BUILD_TUPLE              2
                  9 STORE_DEREF              0 (z)

If you have already written code in a code object that operates on the relevant
locals, the code is retroactively patched to use the ``_DEREF`` opcodes::

    >>> c = Code()
    >>> c((Local('x'), Local('y')), LocalAssign('z'))
    >>> dis(c.code())
      0           0 LOAD_FAST                0 (x)
                  3 LOAD_FAST                1 (y)
                  6 BUILD_TUPLE              2
                  9 STORE_FAST               2 (z)

    >>> c.makefree(['x', 'y'])
    >>> c.makecells(['z'])

    >>> dis(c.code())
      0           0 LOAD_DEREF               1 (x)
                  3 LOAD_DEREF               2 (y)
                  6 BUILD_TUPLE              2
                  9 STORE_DEREF              0 (z)

This means that you can defer the decision of which locals are free/cell
variables until the code is ready to be generated.  In fact, by passing in
a "parent" code object to the ``.code()`` method, you can get BytecodeAssembler
to automatically call ``makefree()`` and ``makecells()`` for the correct
variable names in the child and parent code objects, as we'll see in the next
section.


Nested Code Objects
-------------------

To create a code object for use in a nested scope, you can use the parent code
object's ``nested()`` method.  It works just like the ``from_spec()``
classmethod, except that the ``co_filename`` of the parent is copied to the
child::

    >>> p = Code()
    >>> p.co_filename = 'testname'

    >>> c = p.nested('sub', ['a','b'], 'c', 'd')

    >>> c.co_name
    'sub'
    
    >>> c.co_filename
    'testname'

    >>> tuple(inspect.getargs(c.code(p)))
    (['a', 'b'], 'c', 'd')

Notice that you must pass the parent code object to the child's ``.code()``
method to ensure that free/cell variables are properly set up.  When the
``code()`` method is given another code object as a parameter, it automatically
converts any locally-read (but not written) to "free" variables in the child
code, and ensures that those same variables become "cell" variables in the
supplied parent code object::

    >>> p.LOAD_CONST(42)
    >>> p(LocalAssign('a'))
    >>> dis(p.code())
      0           0 LOAD_CONST               1 (42)
                  3 STORE_FAST               0 (a)
    
    >>> c = p.nested()
    >>> c(Local('a'))

    >>> dis(c.code(p))
      0           0 LOAD_DEREF               0 (a)

    >>> dis(p.code())
      0           0 LOAD_CONST               1 (42)
                  3 STORE_DEREF              0 (a)

Notice that the ``STORE_FAST`` in the parent code object was automatically
patched to a ``STORE_DEREF``, with an updated offset if applicable.  Any
future use of ``Local('a')`` or ``LocalAssign('a')`` in the parent or child
code objects will now refer to the free/cell variable, rather than the "local"
variable::

    >>> p(Local('a'))
    >>> dis(p.code())
      0           0 LOAD_CONST               1 (42)
                  3 STORE_DEREF              0 (a)
                  6 LOAD_DEREF               0 (a)

    >>> c(LocalAssign('a'))
    >>> dis(c.code(p))
      0           0 LOAD_DEREF               0 (a)
                  3 STORE_DEREF              0 (a)


``Function()``
--------------

The ``Function(body, name='<lambda>', args=(), var=None, kw=None, defaults=())``
node type creates a function object from the specified body and the optional
name, argument specs, and defaults.  The ``Function()`` node generates code to
create the function object with the appropriate defaults and closure (if
applicable), and any needed free/cell variables are automatically set up in the
parent and child code objects.  The newly generated function will be on top of
the stack at the end of the generated code::

    >>> from peak.util.assembler import Function
    >>> c = Code()
    >>> c.co_filename = '<string>'
    >>> c.return_(Function(Return(Local('a')), 'f', ['a'], defaults=[42]))
    >>> dis(c.code())
      0           0 LOAD_CONST               1 (42)
                  3 LOAD_CONST               2 (<... f ..., file "<string>", line -1>)
                  6 MAKE_FUNCTION            1
                  9 RETURN_VALUE

Now that we've generated the code for a function returning a function, let's
run it, to get the function we defined::

    >>> f = eval(c.code())
    >>> f
    <function f at ...>

    >>> tuple(inspect.getargspec(f))
    (['a'], None, None, (42,))

    >>> f()
    42

    >>> f(99)
    99

Now let's create a doubly nested function, with some extras::

    >>> c = Code()
    >>> c.co_filename = '<string>'
    >>> c.return_(
    ...     Function(Return(Function(Return(Local('a')))),
    ...     'f', ['a', 'b'], 'c', 'd', [99, 66])
    ... )
    >>> dis(c.code())
      0           0 LOAD_CONST               1 (99)
                  3 LOAD_CONST               2 (66)
                  6 LOAD_CONST               3 (<... f ..., file "<string>", line -1>)
                  9 MAKE_FUNCTION            2
                 12 RETURN_VALUE

    >>> f = eval(c.code())
    >>> f
    <function f at ...>

    >>> tuple(inspect.getargspec(f))
    (['a', 'b'], 'c', 'd', (99, 66))

    >>> dis(f)
      0           0 LOAD_CLOSURE             0 (a)
                  ... LOAD_CONST               1 (<... <lambda> ..., file "<string>", line -1>)
                  ... MAKE_CLOSURE             0
                  ... RETURN_VALUE

    >>> dis(f())
      0           0 LOAD_DEREF               0 (a)
                  3 RETURN_VALUE    

    >>> f(42)()
    42

    >>> f()()
    99

As you can see, ``Function()`` not only takes care of setting up free/cell
variables in all the relevant scopes, it also chooses whether to use
``MAKE_FUNCTION`` or ``MAKE_CLOSURE``, and generates code for the defaults.

(Note, by the way, that the `defaults` argument should be a sequence of
generatable expressions; in the examples here, we used numbers, but they could
have been arbitrary expression nodes.)


----------------------
Internals and Doctests
----------------------

Line number tracking::

    >>> def simple_code(flno, slno, consts=1, ):
    ...     c = Code()
    ...     c.set_lineno(flno)
    ...     for i in range(consts): c.LOAD_CONST(None)
    ...     c.set_lineno(slno)
    ...     c.RETURN_VALUE()
    ...     return c.code()

    >>> dis(simple_code(1,1))
      1           0 LOAD_CONST               0 (None)
                  3 RETURN_VALUE

    >>> simple_code(1,1).co_stacksize
    1

    >>> dis(simple_code(13,414))
     13           0 LOAD_CONST               0 (None)
    414           3 RETURN_VALUE

    >>> dis(simple_code(13,14,100))
     13           0 LOAD_CONST               0 (None)
                  3 LOAD_CONST               0 (None)
    ...
     14         300 RETURN_VALUE

    >>> simple_code(13,14,100).co_stacksize
    100

    >>> dis(simple_code(13,572,120))
     13           0 LOAD_CONST               0 (None)
                  3 LOAD_CONST               0 (None)
    ...
    572         360 RETURN_VALUE


Stack size tracking::

    >>> c = Code()          # 0
    >>> c.LOAD_CONST(1)     # 1
    >>> c.POP_TOP()         # 0
    >>> c.LOAD_CONST(2)     # 1
    >>> c.LOAD_CONST(3)     # 2
    >>> c.co_stacksize
    2
    >>> c.stack_history
    [0, ..., 1, 0, ..., 1]
    >>> c.BINARY_ADD()      # 1
    >>> c.LOAD_CONST(4)     # 2
    >>> c.co_stacksize
    2
    >>> c.stack_history
    [0, ..., 1, 0, 1, ..., 2, ..., 1]
    >>> c.LOAD_CONST(5)
    >>> c.LOAD_CONST(6)
    >>> c.co_stacksize
    4
    >>> c.POP_TOP()
    >>> c.stack_size
    3

Stack underflow detection/recovery, and global/local variable names::

    >>> c = Code()
    >>> c.LOAD_GLOBAL('foo')
    >>> c.stack_size
    1
    >>> c.STORE_ATTR('bar')     # drops stack by 2
    Traceback (most recent call last):
      ...
    AssertionError: Stack underflow

    >>> c.co_names  # 'bar' isn't added unless success
    ['foo']

    >>> c.LOAD_ATTR('bar')
    >>> c.co_names
    ['foo', 'bar']

    >>> c.DELETE_FAST('baz')
    >>> c.co_varnames
    ['baz']

    >>> dis(c.code())
      0           0 LOAD_GLOBAL              0 (foo)
                  3 LOAD_ATTR                1 (bar)
                  6 DELETE_FAST              0 (baz)

Code iteration::

    >>> c.DUP_TOP()
    >>> c.return_(Code.POP_TOP)
    >>> list(c) == [
    ...     (0, op.LOAD_GLOBAL, 0),
    ...     (3, op.LOAD_ATTR, 1),
    ...     (6, op.DELETE_FAST, 0),
    ...     (9, op.DUP_TOP, None),
    ...     (10, op.POP_TOP, None),
    ...     (11, op.RETURN_VALUE, None)
    ... ]
    True

Code patching::

    >>> c = Code()
    >>> c.LOAD_CONST(42)
    >>> c.STORE_FAST('x')
    >>> c.LOAD_FAST('x')
    >>> c.DELETE_FAST('x')
    >>> c.RETURN_VALUE()

    >>> dis(c.code())
      0           0 LOAD_CONST               1 (42)
                  3 STORE_FAST               0 (x)
                  6 LOAD_FAST                0 (x)
                  9 DELETE_FAST              0 (x)
                 12 RETURN_VALUE


    >>> c.co_varnames
    ['x']
    >>> c.co_varnames.append('y')

    >>> c._patch(
    ...     {op.LOAD_FAST:  op.LOAD_FAST,
    ...      op.STORE_FAST: op.STORE_FAST,
    ...      op.DELETE_FAST: op.DELETE_FAST},
    ...     {0: 1}
    ... )

    >>> dis(c.code())
      0           0 LOAD_CONST               1 (42)
                  3 STORE_FAST               1 (y)
                  6 LOAD_FAST                1 (y)
                  9 DELETE_FAST              1 (y)
                 12 RETURN_VALUE

    >>> c._patch({op.RETURN_VALUE: op.POP_TOP})
    >>> dis(c.code())
      0           0 LOAD_CONST               1 (42)
                  3 STORE_FAST               1 (y)
                  6 LOAD_FAST                1 (y)
                  9 DELETE_FAST              1 (y)
                 12 POP_TOP

Converting locals to free/cell vars::

    >>> c = Code()
    >>> c.LOAD_CONST(42)
    >>> c.STORE_FAST('x')
    >>> c.LOAD_FAST('x')

    >>> dis(c.code())
      0           0 LOAD_CONST               1 (42)
                  3 STORE_FAST               0 (x)
                  6 LOAD_FAST                0 (x)

    >>> c.co_freevars = 'y', 'x'
    >>> c.co_cellvars = 'z',

    >>> c._locals_to_cells()
    >>> dis(c.code())
      0           0 LOAD_CONST               1 (42)
                  3 STORE_DEREF              2 (x)
                  6 LOAD_DEREF               2 (x)

    >>> c.DELETE_FAST('x')
    >>> c._locals_to_cells()
    Traceback (most recent call last):
      ...
    AssertionError: Can't delete local 'x' used in nested scope

    >>> c = Code()
    >>> c.LOAD_CONST(42)
    >>> c.STORE_FAST('x')
    >>> c.LOAD_FAST('x')

    >>> c.co_freevars
    ()
    >>> c.makefree(['x'])
    >>> c.co_freevars
    ('x',)

    >>> dis(c.code())
      0           0 LOAD_CONST               1 (42)
                  3 STORE_DEREF              0 (x)
                  6 LOAD_DEREF               0 (x)

    >>> c = Code()
    >>> c.LOAD_CONST(42)
    >>> c.STORE_FAST('x')
    >>> c.LOAD_FAST('x')
    >>> c.makecells(['x'])
    >>> c.co_freevars
    ()
    >>> c.co_cellvars
    ('x',)
    >>> dis(c.code())
      0           0 LOAD_CONST               1 (42)
                  3 STORE_DEREF              0 (x)
                  6 LOAD_DEREF               0 (x)
    
    >>> c = Code()
    >>> c.LOAD_CONST(42)
    >>> c.STORE_FAST('x')
    >>> c.LOAD_FAST('x')
    >>> c.makefree('x')
    >>> c.makecells(['y'])
    >>> c.co_freevars
    ('x',)
    >>> c.co_cellvars
    ('y',)
    >>> dis(c.code())
      0           0 LOAD_CONST               1 (42)
                  3 STORE_DEREF              1 (x)
                  6 LOAD_DEREF               1 (x)

    >>> c = Code()
    >>> c.co_flags &= ~op.CO_OPTIMIZED
    >>> c.makecells(['q'])
    Traceback (most recent call last):
      ...
    AssertionError: Can't use cellvars in unoptimized scope
    


Auto-free promotion with code parent:

    >>> p = Code()
    >>> c = Code()
    >>> c.LOAD_FAST('x')
    >>> dis(c.code(p))
      0           0 LOAD_DEREF               0 (x)
    >>> p.co_cellvars
    ('x',)

    >>> p = Code()
    >>> c = Code.from_function(lambda x,y,z=2: None)
    >>> c.LOAD_FAST('x')
    >>> c.LOAD_FAST('y')
    >>> c.LOAD_FAST('z')
    
    >>> dis(c.code(p))
      0           0 LOAD_FAST                0 (x)
                  3 LOAD_FAST                1 (y)
                  6 LOAD_FAST                2 (z)
    >>> p.co_cellvars
    ()

    >>> c.LOAD_FAST('q')
    >>> dis(c.code(p))
      0           0 LOAD_FAST                0 (x)
                  3 LOAD_FAST                1 (y)
                  6 LOAD_FAST                2 (z)
                  9 LOAD_DEREF               0 (q)
    >>> p.co_cellvars
    ('q',)

    >>> p = Code()
    >>> c = Code.from_function(lambda x,*y,**z: None)
    >>> c.LOAD_FAST('q')
    >>> c.LOAD_FAST('x')
    >>> c.LOAD_FAST('y')
    >>> c.LOAD_FAST('z')
    >>> dis(c.code(p))
      0           0 LOAD_DEREF               0 (q)
                  3 LOAD_FAST                0 (x)
                  6 LOAD_FAST                1 (y)
                  9 LOAD_FAST                2 (z)
    >>> p.co_cellvars
    ('q',)

    >>> p = Code()
    >>> c = Code.from_function(lambda x,*y: None)
    >>> c.LOAD_FAST('x')
    >>> c.LOAD_FAST('y')
    >>> c.LOAD_FAST('z')
    >>> dis(c.code(p))
      0           0 LOAD_FAST                0 (x)
                  3 LOAD_FAST                1 (y)
                  6 LOAD_DEREF               0 (z)
    >>> p.co_cellvars
    ('z',)

    >>> p = Code()
    >>> c = Code.from_function(lambda x,**y: None)
    >>> c.LOAD_FAST('x')
    >>> c.LOAD_FAST('y')
    >>> c.LOAD_FAST('z')
    >>> dis(c.code(p))
      0           0 LOAD_FAST                0 (x)
                  3 LOAD_FAST                1 (y)
                  6 LOAD_DEREF               0 (z)
    >>> p.co_cellvars
    ('z',)


Stack tracking on jumps::

    >>> c = Code()
    >>> else_ = Label()
    >>> end = Label()
    >>> c(99, else_.JUMP_IF_TRUE_OR_POP, end.JUMP_FORWARD)
    >>> c(else_, Code.POP_TOP, end)
    >>> dump(c.code())
                    LOAD_CONST               1 (99)
                    JUMP_IF_TRUE            L1
                    POP_TOP
                    JUMP_FORWARD            L2
            L1:     POP_TOP

    >>> c.stack_size
    0
    >>> if sys.version>='2.7':
    ...     print c.stack_history == [0, 1, 1, 1,    0, 0, 0, None, None, 1]
    ... else:
    ...     print c.stack_history == [0, 1, 1, 1, 1, 1, 1, 0, None, None, 1]
    True
    

    >>> c = Code()
    >>> fwd = c.JUMP_FORWARD()
    >>> c.LOAD_CONST(42)    # forward jump marks stack size unknown
    Traceback (most recent call last):
      ...
    AssertionError: Unknown stack size at this location

    >>> c.stack_size = 0
    >>> c.LOAD_CONST(42)
    >>> fwd()
    Traceback (most recent call last):
      ...
    AssertionError: Stack level mismatch: actual=1 expected=0

    >>> from peak.util.assembler import For
    >>> c = Code()
    >>> c(For((), Code.POP_TOP, Pass))
    >>> c.return_()
    >>> dump(c.code())
                    BUILD_TUPLE              0
                    GET_ITER
            L1:     FOR_ITER                L2
                    POP_TOP
                    JUMP_ABSOLUTE           L1
            L2:     LOAD_CONST               0 (None)
                    RETURN_VALUE

    >>> c.stack_history
    [0, 1, 1, 1, 1, 2, 2, 2, 1, None, None, 0, 1, 1, 1]


Yield value::

    >>> import sys
    >>> from peak.util.assembler import CO_GENERATOR
    >>> c = Code()
    >>> c.co_flags & CO_GENERATOR
    0
    >>> c(42, Code.YIELD_VALUE)
    >>> c.stack_size == int(sys.version>='2.5')
    True
    >>> (c.co_flags & CO_GENERATOR) == CO_GENERATOR
    True

    
    
Sequence operators and stack tracking:



Function calls and raise::

    >>> c = Code()
    >>> c.LOAD_GLOBAL('locals')
    >>> c.CALL_FUNCTION()   # argc/kwargc default to 0
    >>> c.POP_TOP()
    >>> c.LOAD_GLOBAL('foo')
    >>> c.LOAD_CONST(1)
    >>> c.LOAD_CONST('x')
    >>> c.LOAD_CONST(2)
    >>> c.CALL_FUNCTION(1,1)    # argc, kwargc
    >>> c.POP_TOP()

    >>> dis(c.code())
      0           0 LOAD_GLOBAL              0 (locals)
                  3 CALL_FUNCTION            0
                  6 POP_TOP
                  7 LOAD_GLOBAL              1 (foo)
                 10 LOAD_CONST               1 (1)
                 13 LOAD_CONST               2 ('x')
                 16 LOAD_CONST               3 (2)
                 19 CALL_FUNCTION          257
                 22 POP_TOP

    >>> c = Code()
    >>> c.LOAD_GLOBAL('foo')
    >>> c.LOAD_CONST(1)
    >>> c.LOAD_CONST('x')
    >>> c.LOAD_CONST(2)
    >>> c.BUILD_MAP(0)
    >>> c.stack_size
    5
    >>> c.CALL_FUNCTION_KW(1,1)
    >>> c.POP_TOP()
    >>> c.stack_size
    0

    >>> c = Code()
    >>> c.LOAD_GLOBAL('foo')
    >>> c.LOAD_CONST(1)
    >>> c.LOAD_CONST('x')
    >>> c.LOAD_CONST(1)
    >>> c.BUILD_TUPLE(1)
    >>> c.CALL_FUNCTION_VAR(0,1)
    >>> c.POP_TOP()
    >>> c.stack_size
    0

    >>> c = Code()
    >>> c.LOAD_GLOBAL('foo')
    >>> c.LOAD_CONST(1)
    >>> c.LOAD_CONST('x')
    >>> c.LOAD_CONST(1)
    >>> c.BUILD_TUPLE(1)
    >>> c.BUILD_MAP(0)
    >>> c.CALL_FUNCTION_VAR_KW(0,1)
    >>> c.POP_TOP()
    >>> c.stack_size
    0

    >>> c = Code()
    >>> c.RAISE_VARARGS(0)
    >>> c.RAISE_VARARGS(1)
    Traceback (most recent call last):
      ...
    AssertionError: Stack underflow
    >>> c.LOAD_CONST(1)
    >>> c.RAISE_VARARGS(1)

    >>> dis(c.code())
      0           0 RAISE_VARARGS            0
                  3 LOAD_CONST               1 (1)
                  6 RAISE_VARARGS            1

Sequence building, unpacking, dup'ing::

    >>> c = Code()
    >>> c.LOAD_CONST(1)
    >>> c.LOAD_CONST(2)
    >>> c.BUILD_TUPLE(3)
    Traceback (most recent call last):
      ...
    AssertionError: Stack underflow

    >>> c.BUILD_LIST(3)
    Traceback (most recent call last):
      ...
    AssertionError: Stack underflow

    >>> c.BUILD_TUPLE(2)
    >>> c.stack_size
    1

    >>> c.UNPACK_SEQUENCE(2)
    >>> c.stack_size
    2
    >>> c.DUP_TOPX(3)
    Traceback (most recent call last):
      ...
    AssertionError: Stack underflow

    >>> c.DUP_TOPX(2)
    >>> c.stack_size
    4
    >>> c.LOAD_CONST(3)
    >>> c.BUILD_LIST(5)
    >>> c.stack_size
    1
    >>> c.UNPACK_SEQUENCE(5)
    >>> c.BUILD_SLICE(3)
    >>> c.stack_size
    3
    >>> c.BUILD_SLICE(3)
    >>> c.stack_size
    1
    >>> c.BUILD_SLICE(2)
    Traceback (most recent call last):
      ...
    AssertionError: Stack underflow

    >>> dis(c.code())
      0           0 LOAD_CONST               1 (1)
                  3 LOAD_CONST               2 (2)
                  6 BUILD_TUPLE              2
                  9 UNPACK_SEQUENCE          2
                 12 DUP_TOPX                 2
                 15 LOAD_CONST               3 (3)
                 18 BUILD_LIST               5
                 21 UNPACK_SEQUENCE          5
                 24 BUILD_SLICE              3
                 27 BUILD_SLICE              3

Stack levels for MAKE_FUNCTION/MAKE_CLOSURE::

    >>> c = Code()
    >>> c.MAKE_FUNCTION(0)
    Traceback (most recent call last):
      ...
    AssertionError: Stack underflow

    >>> c.LOAD_CONST(1)
    >>> c.LOAD_CONST(2) # simulate being a function
    >>> c.MAKE_FUNCTION(1)
    >>> c.stack_size
    1

    >>> c = Code()
    >>> c.MAKE_CLOSURE(0, 0)
    Traceback (most recent call last):
      ...
    AssertionError: Stack underflow

    >>> c = Code()
    >>> c.LOAD_CONST(1) # closure
    >>> if sys.version>='2.5': c.BUILD_TUPLE(1)
    >>> c.LOAD_CONST(2) # default
    >>> c.LOAD_CONST(3) # simulate being a function
    >>> c.MAKE_CLOSURE(1, 1)
    >>> c.stack_size
    1

    >>> c = Code()
    >>> c.LOAD_CONST(1)
    >>> c.LOAD_CONST(2)
    >>> if sys.version>='2.5': c.BUILD_TUPLE(2)
    >>> c.LOAD_CONST(3) # simulate being a function
    >>> c.MAKE_CLOSURE(0, 2)
    >>> c.stack_size
    1



Labels and backpatching forward references::

    >>> c = Code()
    >>> where = c.here()
    >>> c.LOAD_CONST(1)
    >>> c.JUMP_FORWARD(where)
    Traceback (most recent call last):
      ...
    AssertionError: Relative jumps can't go backwards


"Call" combinations::


    >>> c = Code()
    >>> c.set_lineno(1)
    >>> c(Call(Global('foo'), [Local('q')],
    ...        [('x',Const(1))], Local('starargs'))
    ... )
    >>> c.RETURN_VALUE()
    >>> dis(c.code())
      1           0 LOAD_GLOBAL              0 (foo)
                  3 LOAD_FAST                0 (q)
                  6 LOAD_CONST               1 ('x')
                  9 LOAD_CONST               2 (1)
                 12 LOAD_FAST                1 (starargs)
                 15 CALL_FUNCTION_VAR      257
                 18 RETURN_VALUE


    >>> c = Code()
    >>> c.set_lineno(1)
    >>> c(Call(Global('foo'), [Local('q')], [('x',Const(1))],
    ...        None, Local('kwargs'))
    ... )
    >>> c.RETURN_VALUE()
    >>> dis(c.code())
      1           0 LOAD_GLOBAL              0 (foo)
                  3 LOAD_FAST                0 (q)
                  6 LOAD_CONST               1 ('x')
                  9 LOAD_CONST               2 (1)
                 12 LOAD_FAST                1 (kwargs)
                 15 CALL_FUNCTION_KW       257
                 18 RETURN_VALUE


Cloning::

    >>> c = Code.from_function(lambda (x,y):1, True)
    >>> dis(c.code())
      1           0 LOAD_FAST                0 (.0)
                  3 UNPACK_SEQUENCE          2
                  6 STORE_FAST               1 (x)
                  9 STORE_FAST               2 (y)

    >>> c = Code.from_function(lambda x,(y,(z,a,b)):1, True)
    >>> dis(c.code())
      1           0 LOAD_FAST                1 (.1)
                  3 UNPACK_SEQUENCE          2
                  6 STORE_FAST               2 (y)
                  9 UNPACK_SEQUENCE          3
                 12 STORE_FAST               3 (z)
                 15 STORE_FAST               4 (a)
                 18 STORE_FAST               5 (b)

Constant folding for ``*args`` and ``**kw``::

    >>> c = Code()
    >>> c.return_(Call(Const(type), [], [], (1,)))
    >>> dis(c.code())
      0           0 LOAD_CONST               1 (<type 'int'>)
                  3 RETURN_VALUE


    >>> c = Code()
    >>> c.return_(Call(Const(dict), [], [], [], Const({'x':1})))
    >>> dis(c.code())
      0           0 LOAD_CONST               1 ({'x': 1})
                  3 RETURN_VALUE

Try/Except stack level tracking::

    >>> def class_or_type_of(expr):
    ...     return Suite([expr, TryExcept(
    ...         Suite([Getattr(Code.DUP_TOP, '__class__'), Code.ROT_TWO]),
    ...         [(Const(AttributeError), Call(Const(type), (Code.ROT_TWO,)))]
    ...     )])

    >>> def type_or_class(x): pass
    >>> c = Code.from_function(type_or_class)
    >>> c.return_(class_or_type_of(Local('x')))
    >>> dump(c.code())
                    LOAD_FAST                0 (x)
                    SETUP_EXCEPT            L1
                    DUP_TOP
                    LOAD_ATTR                0 (__class__)
                    ROT_TWO
                    POP_BLOCK
                    JUMP_FORWARD            L3
            L1:     DUP_TOP
                    LOAD_CONST               1 (<...exceptions.AttributeError...>)
                    COMPARE_OP              10 (exception match)
                    JUMP_IF_FALSE           L2
                    POP_TOP
                    POP_TOP
                    POP_TOP
                    POP_TOP
                    LOAD_CONST               2 (<type 'type'>)
                    ROT_TWO
                    CALL_FUNCTION            1
                    JUMP_FORWARD            L3
            L2:     POP_TOP
                    END_FINALLY
            L3:     RETURN_VALUE

    >>> type_or_class.func_code = c.code()
    >>> type_or_class(23)
    <type 'int'>
    




Demo: "Computed Goto"/"Switch Statement"
========================================

Finally, to give an example of a creative way to abuse Python bytecode, here
is an implementation of a simple "switch/case/else" structure::

    >>> from peak.util.assembler import LOAD_CONST, POP_BLOCK

    >>> import sys
    >>> WHY_CONTINUE = {'2.3':5}.get(sys.version[:3], 32)

    >>> def Switch(expr, cases, default=Pass, code=None):
    ...     if code is None:
    ...         return expr, tuple(cases), default
    ...
    ...     d = {}
    ...     else_block  = Label()
    ...     cleanup     = Label()
    ...     end_switch  = Label()
    ...
    ...     code(
    ...         end_switch.SETUP_LOOP,
    ...             Call(Const(d.get), [expr]),
    ...         else_block.JUMP_IF_FALSE,
    ...             WHY_CONTINUE, Code.END_FINALLY
    ...     )
    ...
    ...     cursize = code.stack_size - 1   # adjust for removed WHY_CONTINUE
    ...     for key, value in cases:
    ...         d[const_value(key)] = code.here()
    ...         code.stack_size = cursize
    ...         code(value)
    ...         if code.stack_size is not None: # if the code can fall through,
    ...             code(cleanup.JUMP_FORWARD)  # jump forward to the cleanup
    ...
    ...     code(
    ...         else_block,
    ...             Code.POP_TOP, default,
    ...         cleanup,
    ...             Code.POP_BLOCK,
    ...         end_switch
    ...     )
    >>> Switch = nodetype()(Switch)

    >>> c = Code()
    >>> c.co_argcount=1
    >>> c(Switch(Local('x'), [(1,Return(42)),(2,Return("foo"))], Return(27)))
    >>> c.return_()

    >>> f = new.function(c.code(), globals())
    >>> f(1)
    42
    >>> f(2)
    'foo'
    >>> f(3)
    27

    >>> dump(c.code())
                    SETUP_LOOP              L2
                    LOAD_CONST               1 (<...method get of dict...>)
                    LOAD_FAST                0 (x)
                    CALL_FUNCTION            1
                    JUMP_IF_FALSE           L1
                    LOAD_CONST               2 (...)
                    END_FINALLY
                    LOAD_CONST               3 (42)
                    RETURN_VALUE
                    LOAD_CONST               4 ('foo')
                    RETURN_VALUE
            L1:     POP_TOP
                    LOAD_CONST               5 (27)
                    RETURN_VALUE
                    POP_BLOCK
            L2:     LOAD_CONST               0 (None)
                    RETURN_VALUE


TODO
====

* Test NAME vs. FAST operators flag checks/sets

* Test code flags generation/cloning

* Exhaustive tests of all opcodes' stack history effects

* Test wide jumps and wide argument generation in general