File: PKG-INFO

package info (click to toggle)
python-pebble 5.1.1-1
  • links: PTS
  • area: main
  • in suites: sid, trixie
  • size: 436 kB
  • sloc: python: 5,491; makefile: 2
file content (129 lines) | stat: -rw-r--r-- 3,752 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
Metadata-Version: 2.2
Name: Pebble
Version: 5.1.1
Summary: Threading and multiprocessing eye-candy.
Home-page: https://github.com/noxdafox/pebble
Author: Matteo Cafasso
Author-email: noxdafox@gmail.com
License: LGPL
Keywords: thread process pool decorator
Classifier: Programming Language :: Python :: 3
Classifier: Development Status :: 5 - Production/Stable
Classifier: Intended Audience :: Developers
Classifier: Operating System :: OS Independent
Classifier: Topic :: Software Development :: Libraries :: Python Modules
Classifier: License :: OSI Approved :: GNU Library or Lesser General Public License (LGPL)
Requires-Python: >=3.8
License-File: LICENSE
Dynamic: author
Dynamic: author-email
Dynamic: classifier
Dynamic: description
Dynamic: home-page
Dynamic: keywords
Dynamic: license
Dynamic: requires-python
Dynamic: summary

Pebble
======

Pebble provides a neat API to manage threads and processes within an application.

:Source: https://github.com/noxdafox/pebble
:Documentation: https://pebble.readthedocs.io
:Download: https://pypi.org/project/Pebble/

|build badge| |docs badge| |downloads badge|

.. |build badge| image:: https://github.com/noxdafox/pebble/actions/workflows/action.yml/badge.svg
   :target: https://github.com/noxdafox/pebble/actions/workflows/action.yml
   :alt: Build Status
.. |docs badge| image:: https://readthedocs.org/projects/pebble/badge/?version=latest
   :target: https://pebble.readthedocs.io
   :alt: Documentation Status
.. |downloads badge| image:: https://img.shields.io/pypi/dm/pebble
   :target: https://pypistats.org/packages/pebble
   :alt: PyPI - Downloads

Examples
--------

Run a job in a separate thread and wait for its results.

.. code:: python

    from pebble import concurrent

    @concurrent.thread
    def function(foo, bar=0):
        return foo + bar

    future = function(1, bar=2)

    result = future.result()  # blocks until results are ready

Same code with AsyncIO support.

.. code:: python

    import asyncio

    from pebble import asynchronous

    @asynchronous.thread
    def function(foo, bar=0):
        return foo + bar

    async def asynchronous_function():
        result = await function(1, bar=2)  # blocks until results are ready
        print(result)

    asyncio.run(asynchronous_function())

Run a function with a timeout of ten seconds and deal with errors.

.. code:: python

    from pebble import concurrent
    from concurrent.futures import TimeoutError

    @concurrent.process(timeout=10)
    def function(foo, bar=0):
        return foo + bar

    future = function(1, bar=2)

    try:
        result = future.result()  # blocks until results are ready
    except TimeoutError as error:
        print("Function took longer than %d seconds" % error.args[1])
    except Exception as error:
        print("Function raised %s" % error)
        print(error.traceback)  # traceback of the function

Pools support workers restart, timeout for long running tasks and more.

.. code:: python

    from pebble import ProcessPool
    from concurrent.futures import TimeoutError

    TIMEOUT_SECONDS = 3

    def function(foo, bar=0):
        return foo + bar

    def task_done(future):
        try:
            result = future.result()  # blocks until results are ready
        except TimeoutError as error:
            print("Function took longer than %d seconds" % error.args[1])
        except Exception as error:
            print("Function raised %s" % error)
            print(error.traceback)  # traceback of the function

    with ProcessPool(max_workers=5, max_tasks=10) as pool:
        for index in range(0, 10):
            future = pool.schedule(function, index, bar=1, timeout=TIMEOUT_SECONDS)
            future.add_done_callback(task_done)