1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
|
Metadata-Version: 2.2
Name: Pebble
Version: 5.1.1
Summary: Threading and multiprocessing eye-candy.
Home-page: https://github.com/noxdafox/pebble
Author: Matteo Cafasso
Author-email: noxdafox@gmail.com
License: LGPL
Keywords: thread process pool decorator
Classifier: Programming Language :: Python :: 3
Classifier: Development Status :: 5 - Production/Stable
Classifier: Intended Audience :: Developers
Classifier: Operating System :: OS Independent
Classifier: Topic :: Software Development :: Libraries :: Python Modules
Classifier: License :: OSI Approved :: GNU Library or Lesser General Public License (LGPL)
Requires-Python: >=3.8
License-File: LICENSE
Dynamic: author
Dynamic: author-email
Dynamic: classifier
Dynamic: description
Dynamic: home-page
Dynamic: keywords
Dynamic: license
Dynamic: requires-python
Dynamic: summary
Pebble
======
Pebble provides a neat API to manage threads and processes within an application.
:Source: https://github.com/noxdafox/pebble
:Documentation: https://pebble.readthedocs.io
:Download: https://pypi.org/project/Pebble/
|build badge| |docs badge| |downloads badge|
.. |build badge| image:: https://github.com/noxdafox/pebble/actions/workflows/action.yml/badge.svg
:target: https://github.com/noxdafox/pebble/actions/workflows/action.yml
:alt: Build Status
.. |docs badge| image:: https://readthedocs.org/projects/pebble/badge/?version=latest
:target: https://pebble.readthedocs.io
:alt: Documentation Status
.. |downloads badge| image:: https://img.shields.io/pypi/dm/pebble
:target: https://pypistats.org/packages/pebble
:alt: PyPI - Downloads
Examples
--------
Run a job in a separate thread and wait for its results.
.. code:: python
from pebble import concurrent
@concurrent.thread
def function(foo, bar=0):
return foo + bar
future = function(1, bar=2)
result = future.result() # blocks until results are ready
Same code with AsyncIO support.
.. code:: python
import asyncio
from pebble import asynchronous
@asynchronous.thread
def function(foo, bar=0):
return foo + bar
async def asynchronous_function():
result = await function(1, bar=2) # blocks until results are ready
print(result)
asyncio.run(asynchronous_function())
Run a function with a timeout of ten seconds and deal with errors.
.. code:: python
from pebble import concurrent
from concurrent.futures import TimeoutError
@concurrent.process(timeout=10)
def function(foo, bar=0):
return foo + bar
future = function(1, bar=2)
try:
result = future.result() # blocks until results are ready
except TimeoutError as error:
print("Function took longer than %d seconds" % error.args[1])
except Exception as error:
print("Function raised %s" % error)
print(error.traceback) # traceback of the function
Pools support workers restart, timeout for long running tasks and more.
.. code:: python
from pebble import ProcessPool
from concurrent.futures import TimeoutError
TIMEOUT_SECONDS = 3
def function(foo, bar=0):
return foo + bar
def task_done(future):
try:
result = future.result() # blocks until results are ready
except TimeoutError as error:
print("Function took longer than %d seconds" % error.args[1])
except Exception as error:
print("Function raised %s" % error)
print(error.traceback) # traceback of the function
with ProcessPool(max_workers=5, max_tasks=10) as pool:
for index in range(0, 10):
future = pool.schedule(function, index, bar=1, timeout=TIMEOUT_SECONDS)
future.add_done_callback(task_done)
|