1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
|
# This file is part of Pebble.
# Copyright (c) 2013-2025, Matteo Cafasso
# Pebble is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License
# as published by the Free Software Foundation,
# either version 3 of the License, or (at your option) any later version.
# Pebble is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
# You should have received a copy of the GNU Lesser General Public License
# along with Pebble. If not, see <http://www.gnu.org/licenses/>.
import time
import multiprocessing
from itertools import count
from typing import Callable
from concurrent.futures import Future
from pebble.common import ResultStatus, execute, launch_thread, CONSTS
from pebble.pool.base_pool import iter_chunks, run_initializer
from pebble.pool.base_pool import PoolStatus, MapFuture, map_results
from pebble.pool.base_pool import PoolContext, BasePool, Task, TaskPayload
class ThreadPool(BasePool):
"""Allows to schedule jobs within a Pool of Threads.
max_workers is an integer representing the amount of desired process workers
managed by the pool.
If max_tasks is a number greater than zero,
each worker will be restarted after performing an equal amount of tasks.
initializer must be callable, if passed, it will be called
every time a worker is started, receiving initargs as arguments.
"""
def __init__(self, max_workers: int = multiprocessing.cpu_count(),
max_tasks: int = 0,
initializer: Callable = None,
initargs: list = ()):
super().__init__(max_workers, max_tasks, initializer, initargs)
self._pool_manager = PoolManager(self._context)
self._pool_manager_loop = None
def _start_pool(self):
with self._context.status_mutex:
if self._context.status == PoolStatus.CREATED:
self._pool_manager.start()
self._pool_manager_loop = launch_thread(
None, pool_manager_loop, True, self._pool_manager)
self._context.status = PoolStatus.RUNNING
def _stop_pool(self):
if self._pool_manager_loop is not None:
self._pool_manager_loop.join()
self._pool_manager.stop()
def schedule(self, function, args=(), kwargs={}) -> Future:
"""Schedules *function* to be run the Pool.
*args* and *kwargs* will be forwareded to the scheduled function
respectively as arguments and keyword arguments.
A *concurrent.futures.Future* object is returned.
"""
self._check_pool_status()
future = Future()
payload = TaskPayload(function, args, kwargs)
task = Task(next(self._task_counter), future, None, payload)
self._context.task_queue.put(task)
return future
def submit(self, function: Callable, *args, **kwargs) -> Future:
"""This function is provided for compatibility with
`asyncio.loop.run_in_executor`.
For scheduling jobs within the pool use `schedule` instead.
"""
return self.schedule(function, args=args, kwargs=kwargs)
def map(self, function: Callable, *iterables, **kwargs) -> MapFuture:
"""Returns an iterator equivalent to map(function, iterables).
*chunksize* controls the size of the chunks the iterable will
be broken into before being passed to the function. If None
the size will be controlled by the Pool.
"""
self._check_pool_status()
timeout = kwargs.get('timeout')
chunksize = kwargs.get('chunksize', 1)
if chunksize < 1:
raise ValueError("chunksize must be >= 1")
futures = [self.schedule(process_chunk, args=(function, chunk))
for chunk in iter_chunks(zip(*iterables), chunksize)]
return map_results(MapFuture(futures), timeout)
def pool_manager_loop(pool_manager: 'PoolManager'):
context = pool_manager.context
while context.alive:
pool_manager.update_status()
time.sleep(CONSTS.sleep_unit)
class PoolManager:
def __init__(self, context: PoolContext):
self.workers = []
self.context = context
def start(self):
self.create_workers()
def stop(self):
for worker in self.workers:
self.context.task_queue.put(None)
for worker in tuple(self.workers):
self.join_worker(worker)
def update_status(self):
expired = self.inspect_workers()
for worker in expired:
self.join_worker(worker)
self.create_workers()
def inspect_workers(self) -> tuple:
return tuple(w for w in self.workers if not w.is_alive())
def create_workers(self):
for _ in range(self.context.workers - len(self.workers)):
worker = launch_thread(None, worker_thread, True, self.context)
self.workers.append(worker)
def join_worker(self, worker):
worker.join()
self.workers.remove(worker)
def worker_thread(context: PoolContext):
"""The worker thread routines."""
queue = context.task_queue
parameters = context.worker_parameters
if parameters.initializer is not None:
if not run_initializer(parameters.initializer, parameters.initargs):
context.status = PoolStatus.ERROR
return
for task in get_next_task(context, parameters.max_tasks):
execute_next_task(task)
queue.task_done()
def get_next_task(context: PoolContext, max_tasks: int):
counter = count()
queue = context.task_queue
while context.alive and (max_tasks == 0 or next(counter) < max_tasks):
task = queue.get()
if task is not None:
if task.future.cancelled():
task.set_running_or_notify_cancel()
queue.task_done()
else:
yield task
def execute_next_task(task: Task):
payload = task.payload
task.timestamp = time.time()
task.set_running_or_notify_cancel()
result = execute(payload.function, *payload.args, **payload.kwargs)
if result.status == ResultStatus.SUCCESS:
task.future.set_result(result.value)
else:
task.future.set_exception(result.value)
def process_chunk(function: Callable, chunk: list) -> list:
"""Processes a chunk of the iterable passed to map dealing with errors."""
return [execute(function, *args) for args in chunk]
|