1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
|
# This program is public domain
# Author: Paul Kienzle
"""
Core classes for the periodic table.
* :class:`PeriodicTable`
The periodic table with attributes for each element.
.. Note:: PeriodicTable is not a singleton class. Use ``periodictable.element``
to access the common table.
* :class:`Element`
Element properties such as name, symbol, mass, density, etc.
* :class:`Isotope`
Isotope properties such as mass, density and neutron scattering factors.
* :class:`Ion`
Ion properties such as charge.
Elements are accessed from a periodic table using ``table[number]``,
``table.name`` or ``table.symbol`` where *symbol* is the two letter symbol.
Individual isotopes are accessed using ``element[isotope]``. Individual ions
are references using ``element.ion[charge]``. Note that
``element[isotope].ion[charge].mass`` will depend on the particular charge
since we subtract the charge times the rest mass of the electron from the
overall mass.
Helper functions:
* :func:`delayed_load`
Delay loading the element attributes until they are needed.
* :func:`get_data_path`
Return the path to the periodic table data files.
* :func:`define_elements`
Define external variables for each element in namespace.
* :func:`isatom`, :func:`iselement`, :func:`isisotope`, :func:`ision`
Tests for different types of structure components.
* :func:`default_table`
Returns the common periodic table.
* :func:`change_table`
Return the same item from a different table.
.. seealso::
:ref:`Adding properties <extending>` for details on extending the periodic
table with your own attributes.
:ref:`Custom tables <custom-table>` for details on managing your own
periodic table with custom values for the attributes.
"""
__docformat__ = 'restructuredtext en'
__all__ = ['delayed_load', 'define_elements', 'get_data_path',
'default_table', 'change_table',
'Ion', 'Isotope', 'Element', 'PeriodicTable',
'isatom', 'iselement', 'isisotope', 'ision']
from . import constants
PUBLIC_TABLE_NAME = "public"
def delayed_load(all_props, loader, element=True, isotope=False, ion=False):
"""
Delayed loading of an element property table. When any of property
is first accessed the loader will be called to load the associated
data. The help string starts out as the help string for the loader
function. The attribute may be associated with any of :class:`Isotope`,
:class:`Ion`, or :class:`Element`. Some properties, such as
:mod:`mass <periodictable.mass>`, have both an isotope property for the
mass of specific isotopes, as well as an element property for the
mass of the collection of isotopes at natural abundance. Set the
keyword flags *element*, *isotope* and/or *ion* to specify which
of these classes will be assigned specific information on load.
"""
def clearprops():
"""
Remove the properties so that the attribute can be accessed
directly.
"""
if element:
for p in all_props:
delattr(Element, p)
if isotope:
for p in all_props:
delattr(Isotope, p)
if ion:
for p in all_props:
delattr(Ion, p)
def getter(propname):
"""
Property getter for attribute propname.
The first time the prop is accessed, the prop itself will be
deleted and the data loader for the property will be called
to set the real values. Subsequent references to the property
will be to the actual data.
"""
def getfn(el):
#print "get", el, propname
clearprops()
loader()
return getattr(el, propname)
return getfn
def setter(propname):
"""
Property setter for attribute propname.
This function is assumed to be called when the data loader for the
attribute is called before the property is referenced (for example,
if somebody imports periodictable.xsf before referencing Ni.xray).
In this case, we simply need to clear the delayed load property and
let the loader set the values as usual.
If the user tries to override a value in the table before first
referencing the table, then the above assumption is false. E.g.,
"Ni.K_alpha=5" followed by "print Cu.K_alpha" will yield an
undefined Cu.K_alpha. This will be difficult for future users
to debug.
"""
def setfn(el, value):
#print "set", el, propname, value
clearprops()
# Since the property is now cleared the lazy loader will not be
# triggered in the getter for a different element, so call it here.
loader()
setattr(el, propname, value)
return setfn
doc = loader.__doc__
if element:
for p in all_props:
prop = property(getter(p), setter(p), doc=doc)
setattr(Element, p, prop)
if isotope:
for p in all_props:
prop = property(getter(p), setter(p), doc=doc)
setattr(Isotope, p, prop)
if ion:
for p in all_props:
prop = property(getter(p), setter(p), doc=doc)
setattr(Ion, p, prop)
# Define the element names from the element table.
class PeriodicTable:
"""
Defines the periodic table of the elements with isotopes.
Individidual elements are accessed by name, symbol or atomic number.
Individual isotopes are addressable by ``element[mass_number]`` or
``elements.isotope(element name)``, ``elements.isotope(element symbol)``.
For example, the following all retrieve iron:
.. doctest::
>>> from periodictable import *
>>> print(elements[26])
Fe
>>> print(elements.Fe)
Fe
>>> print(elements.symbol('Fe'))
Fe
>>> print(elements.name('iron'))
Fe
>>> print(elements.isotope('Fe'))
Fe
To get iron-56, use:
.. doctest::
>>> print(elements[26][56])
56-Fe
>>> print(elements.Fe[56])
56-Fe
>>> print(elements.isotope('56-Fe'))
56-Fe
Deuterium and tritium are defined as 'D' and 'T'.
To show all the elements in the table, use the iterator:
.. doctest::
>>> from periodictable import *
>>> for el in elements: # lists the element symbols
... print("%s %s"%(el.symbol, el.name)) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE
H hydrogen
He helium
...
Og oganesson
.. Note::
Properties can be added to the elements as needed, including *mass*,
*nuclear* and *X-ray* scattering cross sections.
See section :ref:`Adding properties <extending>` for details.
"""
def __init__(self, table):
# type: (str) -> None
if table in PRIVATE_TABLES:
raise ValueError("Periodic table '%s' is already defined"%table)
PRIVATE_TABLES[table] = self
self.properties = []
self._element = {}
for Z, (name, symbol, ions, uncommon_ions) in element_base.items():
element = Element(name=name.lower(), symbol=symbol, Z=Z,
ions=tuple(sorted(ions+uncommon_ions)), table=table)
self._element[element.number] = element
setattr(self, symbol, element)
# There are two specially named isotopes D and T
self.D = self.H.add_isotope(2)
self.D.name = 'deuterium'
self.D.symbol = 'D'
self.T = self.H.add_isotope(3)
self.T.name = 'tritium'
self.T.symbol = 'T'
def __getitem__(self, Z):
"""
Retrieve element Z.
"""
return self._element[Z]
def __iter__(self):
"""
Process the elements in Z order
"""
# CRUFT: Since 3.7 dictionaries use insertion order, so no need to sort
elements = sorted(self._element.items())
# Skipping the first entry (neutron) in the iterator
for _, el in elements[1:]:
yield el
def symbol(self, input):
"""
Lookup the an element in the periodic table using its symbol. Symbols
are included for 'D' and 'T', deuterium and tritium.
:Parameters:
*input* : string
Element symbol to be looked up in periodictable.
:Returns: Element
:Raises:
ValueError if the element symbol is not defined.
For example, print the element corresponding to 'Fe':
.. doctest::
>>> import periodictable
>>> print(periodictable.elements.symbol('Fe'))
Fe
"""
if hasattr(self, input):
value = getattr(self, input)
if isinstance(value, (Element, Isotope)):
return value
raise ValueError("unknown element "+input)
def name(self, input):
"""
Lookup an element given its name.
:Parameters:
*input* : string
Element name to be looked up in periodictable.
:Returns: Element
:Raises:
*ValueError* if element does not exist.
For example, print the element corresponding to 'iron':
.. doctest::
>>> import periodictable
>>> print(periodictable.elements.name('iron'))
Fe
"""
for el in self:
if input == el.name:
return el
if input == self.D.name:
return self.D
if input == self.T.name:
return self.T
raise ValueError("unknown element "+input)
def isotope(self, input):
"""
Lookup the element or isotope in the periodic table. Elements
are assumed to be given by the standard element symbols. Isotopes
are given by number-symbol, or 'D' and 'T' for 2-H and 3-H.
:Parameters:
*input* : string
Element name or isotope to be looked up in periodictable.
:Returns: Element
:Raises:
*ValueError* if element or isotope is not defined.
For example, print the element corresponding to '58-Ni'.
.. doctest::
>>> import periodictable
>>> print(periodictable.elements.isotope('58-Ni'))
58-Ni
"""
# Parse #-Sym or Sym
# If # is not an integer, set isotope to -1 so that the isotope
# lookup will fail later.
parts = input.split('-')
if len(parts) == 1:
isotope = 0
symbol = parts[0]
elif len(parts) == 2:
try:
isotope = int(parts[0])
except Exception:
isotope = -1
symbol = parts[1]
else:
symbol = ''
isotope = -1
# All elements are attributes of the table
# Check that the attribute is an Element or an Isotope (for D or T)
# If it is an element, check that the isotope exists
if hasattr(self, symbol):
attr = getattr(self, symbol)
if isinstance(attr, Element):
# If no isotope, return the element
if isotope == 0:
return attr
# If isotope, check that it is valid
if isotope in attr.isotopes:
return attr[isotope]
elif isinstance(attr, Isotope):
# D, T must not have an associated isotope; 4-D is meaningless.
if isotope == 0:
return attr
# If we can't parse the string as an element or isotope, raise an error
raise ValueError("unknown element "+input)
def list(self, *props, **kw):
"""
Print a list of elements with the given set of properties.
:Parameters:
*prop1*, *prop2*, ... : string
Name of the properties to print
*format*: string
Template for displaying the element properties, with one
% for each property.
:Returns: None
For example, print a table of mass and density.
.. doctest::
>>> from periodictable import elements
>>> elements.list('symbol', 'mass', 'density',
... format="%-2s: %6.2f u %6.2f g/cm^3") # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE
H : 1.01 u 0.07 g/cm^3
He: 4.00 u 0.12 g/cm^3
Li: 6.94 u 0.53 g/cm^3
...
Bk: 247.00 u 14.00 g/cm^3
"""
#TODO: override signature in sphinx with
# .. method:: list(prop1, prop2, ..., format='')
format = kw.pop('format', None)
assert not kw # make sure *format* is the only keyword argument
for el in self:
try:
L = tuple(getattr(el, p) for p in props)
except AttributeError:
# Skip elements which don't define all the attributes
continue
# Skip elements with a value of None
if any(v is None for v in L):
continue
if format is None:
print(" ".join(str(p) for p in L))
else:
#try:
print(format%L)
#except:
# print "format", format, "args", L
# raise
class IonSet:
def __init__(self, element_or_isotope):
self.element_or_isotope = element_or_isotope
self.ionset = {}
def __getitem__(self, charge):
if charge not in self.ionset:
if charge not in self.element_or_isotope.ions:
raise ValueError("%(charge)d is not a valid charge for %(symbol)s"
% dict(charge=charge,
symbol=self.element_or_isotope.symbol))
self.ionset[charge] = Ion(self.element_or_isotope, charge)
return self.ionset[charge]
class Ion:
"""
Periodic table entry for an individual ion.
An ion is associated with an element. In addition to the element
properties (*symbol*, *name*, *atomic number*), it has specific ion
properties (*charge*). Properties not specific to the ion (i.e., *charge*)
are retrieved from the associated element.
"""
def __init__(self, element, charge):
self.element = element
self.charge = charge
def __getattr__(self, attr):
return getattr(self.element, attr)
@property
def mass(self):
return getattr(self.element, 'mass') - constants.electron_mass*self.charge
def __str__(self):
sign = '+' if self.charge > 0 else '-'
value = '%d'%abs(self.charge) if abs(self.charge) > 1 else ''
charge_str = '{'+value+sign+'}' if self.charge != 0 else ''
return str(self.element)+charge_str
def __repr__(self):
return repr(self.element)+'.ion[%d]'%self.charge
def __reduce__(self):
try:
return _make_isotope_ion, (self.element.table,
self.element.number,
self.element.isotope,
self.charge)
except Exception:
return _make_ion, (self.element.table,
self.element.number,
self.charge)
class Isotope:
"""
Periodic table entry for an individual isotope.
An isotope is associated with an element. In addition to the element
properties (*symbol*, *name*, *atomic number*), it has specific isotope
properties (*isotope number*, *nuclear spin*, *relative abundance*).
Properties not specific to the isotope (e.g., *x-ray scattering factors*)
are retrieved from the associated element.
"""
def __init__(self, element, isotope_number):
self.element = element
self.isotope = isotope_number
self.ion = IonSet(self)
def __getattr__(self, attr):
return getattr(self.element, attr)
def __str__(self):
# Deuterium and Tritium are special
if 'symbol' in self.__dict__:
return self.symbol
return "%d-%s"%(self.isotope, self.element.symbol)
def __repr__(self):
return "%s[%d]"%(self.element.symbol, self.isotope)
def __reduce__(self):
return _make_isotope, (self.element.table,
self.element.number,
self.isotope)
class Element:
"""
Periodic table entry for an element.
An element is a name, symbol and number, plus a set of properties.
Individual isotopes can be referenced as element[*isotope_number*].
Individual ionization states can be referenced by element.ion[*charge*].
"""
table = PUBLIC_TABLE_NAME
charge = 0
def __init__(self, name, symbol, Z, ions, table):
self.name = name
self.symbol = symbol
self.number = Z
self._isotopes = {} # The actual isotopes
self.ions = ions
self.ion = IonSet(self)
# Remember the table name for pickle dump/load
if table != self.table:
self.table = table
@property
def isotopes(self):
"""List of all isotopes"""
# Note: may want to return the iterator rather than the list...
return list(sorted(self._isotopes.keys()))
def add_isotope(self, number):
"""
Add an isotope for the element.
:Parameters:
*number* : integer
Isotope number, which is the number protons plus neutrons.
:Returns: None
"""
if number not in self._isotopes:
self._isotopes[number] = Isotope(self, number)
return self._isotopes[number]
def __getitem__(self, number):
try:
return self._isotopes[number]
except KeyError:
raise KeyError("%s is not an isotope of %s"%(number, self.symbol))
def __iter__(self):
"""
Process the isotopes in order
"""
for _, iso in sorted(self._isotopes.items()):
yield iso
# Note: using repr rather than str for the element symbol so
# that lists of elements print nicely. Since elements are
# effectively singletons, the symbol name is the representation
# of the instance.
def __repr__(self):
return self.symbol
def __reduce__(self):
return _make_element, (self.table, self.number)
def isatom(val):
"""Return true if value is an element, isotope or ion"""
return isinstance(val, (Element, Isotope, Ion))
def isisotope(val):
"""Return true if value is an isotope or isotope ion."""
if ision(val):
val = val.element
return isinstance(val, Isotope)
def ision(val):
"""Return true if value is a specific ion of an element or isotope"""
return isinstance(val, Ion)
def iselement(val):
"""Return true if value is an element or ion in natural abundance"""
if ision(val):
val = val.element
return isinstance(val, Element)
def change_table(atom, table):
# type: (Union[Element,Isotope,Ion])
"""Search for the same element, isotope or ion from a different table"""
if ision(atom):
if isisotope(atom):
return table[atom.number][atom.isotope].ion[atom.charge]
else:
return table[atom.number].ion[atom.charge]
else:
if isisotope(atom):
return table[atom.number][atom.isotope]
else:
return table[atom.number]
PRIVATE_TABLES = {}
def _get_table(name):
try:
return PRIVATE_TABLES[name]
except KeyError:
raise ValueError("Periodic table '%s' is not initialized"%name)
def _make_element(table, Z):
return _get_table(table)[Z]
def _make_isotope(table, Z, n):
return _get_table(table)[Z][n]
def _make_ion(table, Z, c):
return _get_table(table)[Z].ion[c]
def _make_isotope_ion(table, Z, n, c):
return _get_table(table)[Z][n].ion[c]
# pylint: disable=bad-whitespace
element_base = {
# number: name symbol common_ions uncommon_ions
# ion info comes from Wikipedia: list of oxidation states of the elements.
0: ['neutron', 'n', [], []],
1: ['Hydrogen', 'H', [-1, 1], []],
2: ['Helium', 'He', [], [1, 2]], # +1,+2 http://periodic.lanl.gov/2.shtml
3: ['Lithium', 'Li', [1], []],
4: ['Beryllium', 'Be', [2], [1]],
5: ['Boron', 'B', [3], [-5, -1, 1, 2]],
6: ['Carbon', 'C', [-4, -3, -2, -1, 1, 2, 3, 4], []],
7: ['Nitrogen', 'N', [-3, 3, 5], [-2, -1, 1, 2, 4]],
8: ['Oxygen', 'O', [-2], [-1, 1, 2]],
9: ['Fluorine', 'F', [-1], []],
10: ['Neon', 'Ne', [], []],
11: ['Sodium', 'Na', [1], [-1]],
12: ['Magnesium', 'Mg', [2], [1]],
13: ['Aluminum', 'Al', [3], [-2, -1, 1, 2]],
14: ['Silicon', 'Si', [-4, 4], [-3, -2, -1, 1, 2, 3]],
15: ['Phosphorus', 'P', [-3, 3, 5], [-2, -1, 1, 2, 4]],
16: ['Sulfur', 'S', [-2, 2, 4, 6], [-1, 1, 3, 5]],
17: ['Chlorine', 'Cl', [-1, 1, 3, 5, 7], [2, 4, 6]],
18: ['Argon', 'Ar', [], []],
19: ['Potassium', 'K', [1], [-1]],
20: ['Calcium', 'Ca', [2], [1]],
21: ['Scandium', 'Sc', [3], [1, 2]],
22: ['Titanium', 'Ti', [4], [-2, -1, 1, 2, 3]],
23: ['Vanadium', 'V', [5], [-3, -1, 1, 2, 3, 4]],
24: ['Chromium', 'Cr', [3, 6], [-4, -2, -1, 1, 2, 4, 5]],
25: ['Manganese', 'Mn', [2, 4, 7], [-3, -2, -1, 1, 3, 5, 6]],
26: ['Iron', 'Fe', [2, 3, 6], [-4, -2, -1, 1, 4, 5, 7]],
27: ['Cobalt', 'Co', [2, 3], [-3, -1, 1, 4, 5]],
28: ['Nickel', 'Ni', [2], [-2, -1, 1, 3, 4]],
29: ['Copper', 'Cu', [2], [-2, 1, 3, 4]],
30: ['Zinc', 'Zn', [2], [-2, 1]],
31: ['Gallium', 'Ga', [3], [-5, -4, -2, -1, 1, 2]],
32: ['Germanium', 'Ge', [-4, 2, 4], [-3, -2, -1, 1, 3]],
33: ['Arsenic', 'As', [-3, 3, 5], [-2, -1, 1, 2, 4]],
34: ['Selenium', 'Se', [-2, 2, 4, 6], [-1, 1, 3, 5]],
35: ['Bromine', 'Br', [-1, 1, 3, 5], [4, 7]],
36: ['Krypton', 'Kr', [2], []],
37: ['Rubidium', 'Rb', [1], [-1]],
38: ['Strontium', 'Sr', [2], [1]],
39: ['Yttrium', 'Y', [3], [1, 2]],
40: ['Zirconium', 'Zr', [4], [-2, 1, 2, 3]],
41: ['Niobium', 'Nb', [5], [-3, -1, 1, 2, 3, 4]],
42: ['Molybdenum', 'Mo', [4, 6], [-4, -2, -1, 1, 2, 3, 5]],
43: ['Technetium', 'Tc', [4, 7], [-3, -1, 1, 2, 3, 5, 6]],
44: ['Ruthenium', 'Ru', [3, 4], [-4, -2, 1, 2, 5, 6, 7, 8]],
45: ['Rhodium', 'Rh', [3], [-3, -1, 1, 2, 4, 5, 6]],
46: ['Palladium', 'Pd', [2, 4], [1, 3, 5, 6]],
47: ['Silver', 'Ag', [1], [-2, -1, 2, 3, 4]],
48: ['Cadmium', 'Cd', [2], [-2, 1]],
49: ['Indium', 'In', [3], [-5, -2, -1, 1, 2]],
50: ['Tin', 'Sn', [-4, 2, 4], [-3, -2, -1, 1, 3]],
51: ['Antimony', 'Sb', [-3, 3, 5], [-2, -1, 1, 2, 4]],
52: ['Tellurium', 'Te', [-2, 2, 4, 6], [-1, 1, 3, 5]],
53: ['Iodine', 'I', [-1, 1, 3, 5, 7], [4, 6]],
54: ['Xenon', 'Xe', [2, 4, 6], [8]],
55: ['Cesium', 'Cs', [1], [-1]],
56: ['Barium', 'Ba', [2], [1]],
57: ['Lanthanum', 'La', [3], [1, 2]],
58: ['Cerium', 'Ce', [3, 4], [2]],
59: ['Praseodymium', 'Pr', [3], [2, 4, 5]],
60: ['Neodymium', 'Nd', [3], [2, 4]],
61: ['Promethium', 'Pm', [3], [2]],
62: ['Samarium', 'Sm', [3], [2]],
63: ['Europium', 'Eu', [2, 3], []],
64: ['Gadolinium', 'Gd', [3], [1, 2]],
65: ['Terbium', 'Tb', [3], [1, 2, 4]],
66: ['Dysprosium', 'Dy', [3], [2, 4]],
67: ['Holmium', 'Ho', [3], [2]],
68: ['Erbium', 'Er', [3], [2]],
69: ['Thulium', 'Tm', [3], [2]],
70: ['Ytterbium', 'Yb', [3], [2]],
71: ['Lutetium', 'Lu', [3], [2]],
72: ['Hafnium', 'Hf', [4], [-2, 1, 2, 3]],
73: ['Tantalum', 'Ta', [5], [-3, -1, 1, 2, 3, 4]],
74: ['Tungsten', 'W', [4, 6], [-4, -2, -1, 1, 2, 3, 5]],
75: ['Rhenium', 'Re', [4], [-3, -1, 1, 2, 3, 5, 6, 7]],
76: ['Osmium', 'Os', [4], [-4, -2, -1, 1, 2, 3, 5, 6, 7, 8]],
77: ['Iridium', 'Ir', [3, 4], [-3, -1, 1, 2, 5, 6, 7, 8, 9]],
78: ['Platinum', 'Pt', [2, 4], [-3, -2, -1, 1, 3, 5, 6]],
79: ['Gold', 'Au', [3], [-3, -2, -1, 1, 2, 5]],
80: ['Mercury', 'Hg', [1, 2], [-2, 4]], # +4 doi:10.1002/anie.200703710
81: ['Thallium', 'Tl', [1, 3], [-5, -2, -1, 2]],
82: ['Lead', 'Pb', [2, 4], [-4, -2, -1, 1, 3]],
83: ['Bismuth', 'Bi', [3], [-3, -2, -1, 1, 2, 4, 5]],
84: ['Polonium', 'Po', [-2, 2, 4], [5, 6]],
85: ['Astatine', 'At', [-1, 1], [3, 5, 7]],
86: ['Radon', 'Rn', [2], [6]],
87: ['Francium', 'Fr', [1], []],
88: ['Radium', 'Ra', [2], []],
89: ['Actinium', 'Ac', [3], []],
90: ['Thorium', 'Th', [4], [1, 2, 3]],
91: ['Protactinium', 'Pa', [5], [3, 4]],
92: ['Uranium', 'U', [6], [1, 2, 3, 4, 5]],
93: ['Neptunium', 'Np', [5], [2, 3, 4, 6, 7]],
94: ['Plutonium', 'Pu', [4], [2, 3, 5, 6, 7]],
95: ['Americium', 'Am', [3], [2, 4, 5, 6, 7]],
96: ['Curium', 'Cm', [3], [4, 6]],
97: ['Berkelium', 'Bk', [3], [4]],
98: ['Californium', 'Cf', [3], [2, 4]],
99: ['Einsteinium', 'Es', [3], [2, 4]],
100: ['Fermium', 'Fm', [3], [2]],
101: ['Mendelevium', 'Md', [3], [2]],
102: ['Nobelium', 'No', [2], [3]],
103: ['Lawrencium', 'Lr', [3], []],
104: ['Rutherfordium', 'Rf', [4], []],
105: ['Dubnium', 'Db', [5], []],
106: ['Seaborgium', 'Sg', [6], []],
107: ['Bohrium', 'Bh', [7], []],
108: ['Hassium', 'Hs', [8], []],
109: ['Meitnerium', 'Mt', [], []],
110: ['Darmstadtium', 'Ds', [], []],
111: ['Roentgenium', 'Rg', [], []],
112: ['Copernicium', 'Cn', [2], []],
113: ['Nihonium', 'Nh', [], []],
114: ['Flerovium', 'Fl', [], []],
115: ['Moscovium', 'Mc', [], []],
116: ['Livermorium', 'Lv', [], []],
117: ['Tennessine', 'Ts', [], []],
118: ['Oganesson', 'Og', [], []],
}
# pylint: enable=bad-whitespace
def default_table(table=None):
"""
Return the default table unless a specific table has been requested.
This is to be used in a context like::
def summary(table=None):
table = core.default_table(table)
...
"""
return table if table is not None else PUBLIC_TABLE
def define_elements(table, namespace):
"""
Define external variables for each element in namespace. Elements
are defined both by name and by symbol.
This is called from *__init__* as::
elements = core.default_table()
__all__ += core.define_elements(elements, globals())
:Parameters:
*table* : PeriodicTable
Set of elements
*namespace* : dict
Namespace in which to add the symbols.
:Returns: [string, ...]
A sequence listing the names defined.
.. Note:: This will only work for *namespace* globals(), not locals()!
"""
# Build the dictionary of element symbols
names = {}
for el in table:
names[el.symbol] = el
names[el.name] = el
for el in [table.D, table.T, table.n]:
names[el.symbol] = el
names[el.name] = el
# Copy it to the namespace
for k, v in names.items():
namespace[k] = v
# return the keys
return list(names.keys())
def get_data_path(data):
"""
Locate the directory for the tables for the named extension.
:Parameters:
*data* : string
Name of the extension data directory. For example, the xsf
extension has data in the 'xsf' data directory.
:Returns: string
Path to the data.
"""
import sys
import os
# Check for data path in the environment
key = 'PERIODICTABLE_DATA'
if key in os.environ:
path = os.path.join(os.environ[key], data)
if not os.path.isdir(path):
raise RuntimeError('Path in environment %s not a directory'%key)
return path
# Check for data path in the package
path = os.path.join(os.path.dirname(__file__), data)
if os.path.isdir(path):
return path
# Check for data path next to exe/zip file.
exepath = os.path.dirname(sys.executable)
path = os.path.join(exepath, 'periodictable-data', data)
if os.path.isdir(path):
return path
# py2app puts the data in Contents/Resources, but the executable
# is in Contents/MacOS.
path = os.path.join(exepath, '..', 'Resources', 'periodictable-data', data)
if os.path.isdir(path):
return path
raise RuntimeError('Could not find the periodic table data files')
# Make a common copy of the table for everyone to use --- equivalent to
# a singleton without incurring any complexity.
PUBLIC_TABLE = PeriodicTable(PUBLIC_TABLE_NAME)
|