1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
|
# This program is public domain
# Author: Paul Kienzle
"""
Chemical formula parser.
"""
from copy import copy
from math import pi, sqrt
# Requires that the pyparsing module is installed.
from pyparsing import (Literal, Optional, White, Regex,
ZeroOrMore, OneOrMore, Forward, StringEnd, Group)
from .core import default_table, isatom, isisotope, ision, change_table
from .constants import avogadro_number
from .util import cell_volume
PACKING_FACTORS = dict(cubic=pi/6, bcc=pi*sqrt(3)/8, hcp=pi/sqrt(18),
fcc=pi/sqrt(18), diamond=pi*sqrt(3)/16)
def mix_by_weight(*args, **kw):
"""
Generate a mixture which apportions each formula by weight.
:Parameters:
*formula1* : Formula OR string
Material
*quantity1* : float
Relative quantity of that material
*formula2* : Formula OR string
Material
*quantity2* : float
Relative quantity of that material
...
*density* : float
Density of the mixture, if known
*natural_density* : float
Density of the mixture with natural abundances, if known.
*name* : string
Name of the mixture
*table* : PeriodicTable
Private table to use when parsing string formulas.
:Returns:
*formula* : Formula
If density is not given, then it will be computed from the density
of the components, assuming the components take up no more nor less
space because they are in the mixture. If component densities are
not available, then the resulting density will not be computed. The
density calculation assumes the cell volume remains constant for the
original materials, which is not in general the case.
"""
table = default_table(kw.pop('table', None))
density = kw.pop('density', None)
natural_density = kw.pop('natural_density', None)
name = kw.pop('name', None)
if kw:
raise TypeError("Unexpected arguments "+", ".join(kw.keys()))
if len(args)%2 != 0:
raise ValueError("Need a quantity for each formula")
pairs = [(formula(args[i], table=table), args[i+1])
for i in range(0, len(args), 2)]
result = _mix_by_weight_pairs(pairs)
if natural_density:
result.natural_density = natural_density
if density:
result.density = density
if name:
result.name = name
return result
def _mix_by_weight_pairs(pairs):
# Drop pairs with zero quantity
# Note: must be first statement in order to accept iterators
pairs = [(f, q) for f, q in pairs if q > 0]
result = Formula()
if pairs:
# cell mass = mass
# target mass = q
# cell mass * n = target mass
# => n = target mass / cell mass
# = q / mass
# scale this so that n = 1 for the smallest quantity
scale = min(q/f.mass for f, q in pairs)
for f, q in pairs:
result += ((q/f.mass)/scale) * f
if all(f.density for f, _ in pairs):
volume = sum(q/f.density for f, q in pairs)/scale
result.density = result.mass/volume
return result
def mix_by_volume(*args, **kw):
"""
Generate a mixture which apportions each formula by volume.
:Parameters:
*formula1* : Formula OR string
Material
*quantity1* : float
Relative quantity of that material
*formula2* : Formula OR string
Material
*quantity2* : float
Relative quantity of that material
...
*density* : float
Density of the mixture, if known
*natural_density* : float
Density of the mixture with natural abundances, if known.
*name* : string
Name of the mixture
*table* : PeriodicTable
Private table to use when parsing string formulas.
:Returns:
*formula* : Formula
If density is not given, then it will be computed from the density
of the components, assuming the components take up no more nor less
space because they are in the mixture. If component densities are
not available, then a ValueError is raised. The density calculation
assumes the cell volume remains constant for the original materials,
which is not in general the case.
"""
table = default_table(kw.pop('table', None))
density = kw.pop('density', None)
natural_density = kw.pop('natural_density', None)
name = kw.pop('name', None)
if kw:
raise TypeError("Unexpected arguments "+", ".join(kw.keys()))
if len(args)%2 != 0:
raise ValueError("Need a quantity for each formula")
pairs = [(formula(args[i], table=table), args[i+1])
for i in range(0, len(args), 2)]
result = _mix_by_volume_pairs(pairs)
if natural_density:
result.natural_density = natural_density
if density:
result.density = density
if name:
result.name = name
return result
def _mix_by_volume_pairs(pairs):
# Drop pairs with zero quantity
# Note: must be first statement in order to accept iterators
pairs = [(f, q) for f, q in pairs if q > 0]
for f, _ in pairs:
if f.density is None or f.density == 0.:
raise ValueError("Need the mass density of "+str(f))
result = Formula()
if pairs:
# cell volume = mass/density
# target volume = q
# cell volume * n = target volume
# => n = target volume / cell volume
# = q / (mass/density)
# = q * density / mass
# scale this so that n = 1 for the smallest quantity
scale = min(q*f.density/f.mass for f, q in pairs)
for f, q in pairs:
result += ((q*f.density/f.mass)/scale) * f
volume = sum(q for _, q in pairs)/scale
result.density = result.mass/volume
return result
def formula(compound=None, density=None, natural_density=None,
name=None, table=None):
r"""
Construct a chemical formula representation from a string, a
dictionary of atoms or another formula.
:Parameters:
*compound* : Formula initializer
Chemical formula.
*density* : float | |g/cm^3|
Material density. Not needed for single element formulas.
*natural_density* : float | |g/cm^3|
Material density assuming naturally occurring isotopes and no
change in cell volume.
*name* : string
Common name for the molecule.
*table* : PeriodicTable
Private table to use when parsing string formulas.
:Exceptions:
*ValueError* : invalid formula initializer
Example compounds:
string:
m = formula( "CaCO3+6H2O" )
sequence of fragments:
m = formula( [(1, Ca), (2, C), (3, O), (6, [(2, H), (1, O)]] )
molecular math:
m = formula( "CaCO3" ) + 6*formula( "H2O" )
another formula (makes a copy):
m = formula( formula("CaCO3+6H2O") )
an atom:
m = formula( Ca )
nothing:
m = formula()
Operations:
m.atoms returns {isotope: count, ...} for each atom in the compound.
Formula strings consist of counts and atoms such as "CaCO3+6H2O".
Groups can be separated by '+' or space, so "CaCO3 6H2O" works as well.
Groups and be defined using parentheses, such as "CaCO3(H2O)6".
Parentheses can nest: "(CaCO3(H2O)6)1"
Isotopes are represented by index, e.g., "CaCO[18]3+6H2O".
Counts can be integer or decimal, e.g. "CaCO3+(3HO0.5)2".
Density can be specified in the formula using, e.g., "H2O@1". Isotopic
formulas can use natural density, e.g., "D2O@1n", or the expected density
with that isotope, e.g., "D2O@1.11".
For full details see help(periodictable.formulas.formula_grammar)
The chemical formula is designed for simple calculations such
as molar mass, not for representing bonds or atom positions.
However, we preserve the structure of the formula so that it can
be used as a basis for a rich text representation such as
matplotlib TeX markup.
After creating a formula, a rough estimate of the density can be
computed using::
formula.density = formula.molecular_mass/formula.volume(packing_factor=...)
The volume() calculation uses the covalent radii of the components and
the known packing factor or crystal structure name. If the lattice
constants for the crystal are known, then they can be used instead::
formula.density = formula.molecular_mass/formula.volume(a, b, c, alpha, beta, gamma)
Formulas are designed for calculating quantities such as molar mass and
scattering length density, not for representing bonds or atom positions.
The representations are simple, but preserve some of the structure for
display purposes.
"""
if compound is None or compound == '':
structure = tuple()
elif isinstance(compound, Formula):
structure = compound.structure
if density is None and natural_density is None:
density = compound.density
if not name:
name = compound.name
elif isatom(compound):
structure = ((1, compound), )
elif isinstance(compound, dict):
structure = _convert_to_hill_notation(compound)
elif _is_string_like(compound):
try:
chem = parse_formula(compound, table=table)
if name:
chem.name = name
if density is not None:
chem.density = density
elif natural_density is not None:
chem.natural_density = natural_density
return chem
except ValueError as exception:
raise ValueError(str(exception))
#print "parsed", compound, "as", self
else:
try:
structure = _immutable(compound)
except:
raise ValueError("not a valid chemical formula: "+str(compound))
return Formula(structure=structure, name=name, density=density,
natural_density=natural_density)
class Formula:
"""
Simple chemical formula representation.
"""
def __init__(self, structure=tuple(), density=None, natural_density=None,
name=None):
self.structure = structure
self.name = name
# If natural_density or density are specified, use them.
# If only one element in the formula, use its density.
# Otherwise, leave density unspecified, and let the user
# assign it separately if they need it.
if natural_density is not None:
self.natural_density = natural_density
elif density is not None:
self.density = density
elif len(self.atoms) == 1:
# Note: density for isotopes already corrected for natural density
atom = list(self.atoms.keys())[0]
self.density = atom.density
else:
self.density = None
@property
def atoms(self):
"""
{ *atom*: *count*, ... }
Composition of the molecule. Referencing this attribute computes
the *count* as the total number of each element or isotope in the
chemical formula, summed across all subgroups.
"""
return _count_atoms(self.structure)
@property
def hill(self):
"""
Formula
Convert the formula to a formula in Hill notation. Carbon appears
first followed by hydrogen then the remaining elements in alphabetical
order.
"""
return formula(self.atoms)
def natural_mass_ratio(self):
"""
Natural mass to isotope mass ratio.
:Returns:
*ratio* : float
The ratio is computed from the sum of the masses of the individual
elements using natural abundance divided by the sum of the masses
of the isotopes used in the formula. If the cell volume is
preserved with isotope substitution, then the ratio of the masses
will be the ratio of the densities.
"""
total_natural_mass = total_isotope_mass = 0
for el, count in self.atoms.items():
try:
natural_mass = el.element.mass
except AttributeError:
natural_mass = el.mass
total_natural_mass += count * natural_mass
total_isotope_mass += count * el.mass
return total_natural_mass/total_isotope_mass
@property
def natural_density(self):
"""
|g/cm^3|
Density of the formula with specific isotopes of each element
replaced by the naturally occurring abundance of the element
without changing the cell volume.
"""
return self.density*self.natural_mass_ratio()
@natural_density.setter
def natural_density(self, natural_density):
self.density = natural_density / self.natural_mass_ratio()
@property
def mass(self):
"""
atomic mass units u (C[12] = 12 u)
Molar mass of the molecule. Use molecular_mass to get the mass in
grams.
"""
mass = 0
for el, count in self.atoms.items():
mass += el.mass*count
return mass
@property
def molecular_mass(self):
"""
g
Mass of the molecule in grams.
"""
return self.mass/avogadro_number
@property
def charge(self):
"""
Net charge of the molecule.
"""
return sum([m*a.charge for a, m in self.atoms.items()])
@property
def mass_fraction(self):
"""
Fractional mass representation of each element/isotope/ion.
"""
total_mass = self.mass
return dict((a, m*a.mass/total_mass) for a, m in self.atoms.items())
def _pf(self):
"""
packing factor | unitless
packing factor estimated from density.
"""
return self.density
def volume(self, *args, **kw):
r"""
Estimate unit cell volume.
The crystal volume can be estimated from the element covalent radius
and the atomic packing factor using::
packing_factor = N_atoms V_atom / V_crystal
Packing factors for a number of crystal lattice structures are defined.
.. table:: Crystal lattice names and packing factors
======== ======================= ====================== ==============
Code Description Formula Packing factor
======== ======================= ====================== ==============
cubic simple cubic $\pi/6$ 0.52360
bcc body-centered cubic $\pi\sqrt{3/8}$ 0.68017
hcp hexagonal close-packed $\pi/\sqrt{18}$ 0.74048
fcc face-centered cubic $\pi/\sqrt{18}$ 0.74048
diamond diamond cubic $\pi\sqrt{3/16}$ 0.34009
======== ======================= ====================== ==============
:Parameters:
*packing_factor* = 'hcp' : float or string
Atomic packing factor. If *packing_factor* is the name of
a crystal lattice, use the *lattice* packing factor.
*a*, *b*, *c* : float | |Ang|
Lattice spacings. *b* and *c* default to *a*.
*alpha*, *beta*, *gamma* : float | |deg|
Lattice angles. These default to 90\ |deg|
:Returns:
*volume* : float | |cm^3|
Molecular volume.
:Raises:
*KeyError* : unknown lattice type
*TypeError* : missing or bad lattice parameters
Using the cell volume, mass density can be set with::
formula.density = n*formula.molecular_mass/formula.volume()
where n is the number of molecules per unit cell.
Note: a single non-keyword argument is interpreted as a packing factor
rather than a lattice spacing of 'a'.
"""
# TODO: density estimated from H.covalent_radius is much too high
#H_radius = kw.pop('H_radius', None)
# Get packing factor
if len(args) == 1 and not kw:
packing_factor = args[0]
args = []
else:
packing_factor = kw.pop('packing_factor', 'hcp')
# Let cell_volume sort out its own parameters.
if args or kw:
return cell_volume(*args, **kw)*1e-24
# Compute atomic volume
V = 0
for el, count in self.atoms.items():
radius = el.covalent_radius
#if el.number == 1 and H_radius is not None:
# radius = H_radius
V += radius**3*count
V *= 4.*pi/3
# Translate packing factor from string
try:
_ = packing_factor + ""
except Exception:
pass
else:
packing_factor = PACKING_FACTORS[packing_factor.lower()]
return V/packing_factor*1e-24
def neutron_sld(self, *, wavelength=None, energy=None):
"""
Neutron scattering information for the molecule.
:Parameters:
*wavelength* : float | |Ang|
Wavelength of the neutron beam.
:Returns:
*sld* : (float, float, float) | |1e-6/Ang^2|
Neutron scattering length density is returned as the tuple
(*real*, *imaginary*, *incoherent*), or as (None, None, None)
if the mass density is not known.
.. deprecated:: 0.95
Use periodictable.neutron_sld(formula) instead.
"""
from .nsf import neutron_sld
if self.density is None:
return None, None, None
return neutron_sld(self.atoms, density=self.density,
wavelength=wavelength, energy=energy)
def xray_sld(self, *, energy=None, wavelength=None):
"""
X-ray scattering length density for the molecule.
:Parameters:
*energy* : float | keV
Energy of atom.
*wavelength* : float | |Ang|
Wavelength of atom.
.. Note: One of *wavelength* or *energy* is required.
:Returns:
*sld* : (float, float) | |1e-6/Ang^2|
X-ray scattering length density is returned as the tuple
(*real*, *imaginary*), or as (None, None) if the mass
density is not known.
.. deprecated:: 0.95
Use periodictable.xray_sld(formula) instead.
"""
from .xsf import xray_sld
if self.density is None:
return None, None
return xray_sld(self.atoms, density=self.density,
wavelength=wavelength, energy=energy)
def change_table(self, table):
"""
Replace the table used for the components of the formula.
"""
self.structure = _change_table(self.structure, table)
return self
def replace(self, source, target, portion=1):
"""
Create a new formula with one atom/isotope substituted for another.
*formula* is the formula being updated.
*source* is the isotope/element to be substituted.
*target* is the replacement isotope/element.
*portion* is the proportion of source which is substituted for target.
"""
return _isotope_substitution(self, source, target, portion=portion)
def __eq__(self, other):
"""
Return True if two formulas represent the same structure. Note
that they may still have different names and densities.
Note: use hill representation for an order independent comparison.
"""
if not isinstance(other, Formula):
return False
return self.structure == other.structure
def __add__(self, other):
"""
Join two formulas.
"""
#print "adding", self, other
if not isinstance(other, Formula):
raise TypeError("expected formula+formula")
ret = Formula()
ret.structure = tuple(list(self.structure) + list(other.structure))
return ret
def __iadd__(self, other):
"""
Extend a formula with another.
"""
self.structure = tuple(list(self.structure) + list(other.structure))
return self
def __rmul__(self, other):
"""
Provide a multiplier for formula.
"""
#print "multiplying", self, other
try:
other += 0
except TypeError:
raise TypeError("n*formula expects numeric n")
ret = copy(self)
if other != 1 and self.structure:
if len(self.structure) == 1:
q, f = self.structure[0]
ret.structure = ((other*q, f), )
else:
ret.structure = ((other, ret.structure), )
return ret
def __str__(self):
return self.name if self.name else _str_atoms(self.structure)
def __repr__(self):
return "formula('%s')"%(str(self))
def _isotope_substitution(compound, source, target, portion=1):
"""
Substitute one atom/isotope in a formula with another in some proportion.
*compound* is the formula being updated.
*source* is the isotope/element to be substituted.
*target* is the replacement isotope/element.
*portion* is the proportion of source which is substituted for target.
"""
atoms = compound.atoms
if source in atoms:
mass = compound.mass
mass_reduction = atoms[source]*portion*(source.mass - target.mass)
density = compound.density * (mass - mass_reduction)/mass
atoms[target] = atoms.get(target, 0) + atoms[source]*portion
if portion == 1:
del atoms[source]
else:
atoms[source] *= 1-portion
else:
density = compound.density
return formula(atoms, density=density)
# TODO: Grammar should be independent of table
# TODO: Parser can't handle meters as 'm' because it conflicts with the milli prefix
LENGTH_UNITS = {'nm': 1e-9, 'um': 1e-6, 'mm': 1e-3, 'cm': 1e-2}
MASS_UNITS = {'ng': 1e-9, 'ug': 1e-6, 'mg': 1e-3, 'g': 1e+0, 'kg': 1e+3}
VOLUME_UNITS = {'nL': 1e-9, 'uL': 1e-6, 'mL': 1e-3, 'L': 1e+0}
LENGTH_RE = '('+'|'.join(LENGTH_UNITS.keys())+')'
MASS_VOLUME_RE = '('+'|'.join(list(MASS_UNITS.keys())+list(VOLUME_UNITS.keys()))+')'
def formula_grammar(table):
"""
Construct a parser for molecular formulas.
:Parameters:
*table* = None : PeriodicTable
If table is specified, then elements and their associated fields
will be chosen from that periodic table rather than the default.
:Returns:
*parser* : pyparsing.ParserElement.
The ``parser.parseString()`` method returns a list of
pairs (*count, fragment*), where fragment is an *isotope*,
an *element* or a list of pairs (*count, fragment*).
"""
# TODO: fix circular imports
# This ickiness is because the formula class returned from the circular
# import of fasta does not match the local formula class.
from .formulas import Formula
# Recursive
composite = Forward()
mixture = Forward()
# whitespace and separators
space = Optional(White().suppress())
separator = space+Literal('+').suppress()+space
# Lookup the element in the element table
symbol = Regex("[A-Z][a-z]?")
symbol = symbol.setParseAction(lambda s, l, t: table.symbol(t[0]))
# Translate isotope
openiso = Literal('[').suppress()
closeiso = Literal(']').suppress()
isotope = Optional(~White()+openiso+Regex("[1-9][0-9]*")+closeiso,
default='0')
isotope = isotope.setParseAction(lambda s, l, t: int(t[0]) if t[0] else 0)
# Translate ion
openion = Literal('{').suppress()
closeion = Literal('}').suppress()
ion = Optional(~White() +openion +Regex("([1-9][0-9]*)?[+-]") +closeion,
default='0+')
ion = ion.setParseAction(lambda s, l, t: int(t[0][-1]+(t[0][:-1] if len(t[0]) > 1 else '1')))
# Translate counts
# TODO: regex should reject a bare '.' if we want to allow dots between formula parts
fract = Regex("(0|[1-9][0-9]*|)([.][0-9]*)")
fract = fract.setParseAction(lambda s, l, t: float(t[0]) if t[0] else 1)
whole = Regex("(0|[1-9][0-9]*)")
whole = whole.setParseAction(lambda s, l, t: int(t[0]) if t[0] else 1)
number = Optional(~White()+(fract|whole), default=1)
# TODO use unicode ₀₁₉ in the code below?
sub_fract = Regex("(\u2080|[\u2081-\u2089][\u2080-\u2089]*|)([.][\u2080-\u2089]*)")
sub_fract = sub_fract.setParseAction(lambda s, l, t: float(from_subscript(t[0])) if t[0] else 1)
sub_whole = Regex("(\u2080|[\u2081-\u2089][\u2080-\u2089]*)")
sub_whole = sub_whole.setParseAction(lambda s, l, t: int(from_subscript(t[0])) if t[0] else 1)
sub_count = Optional(~White()+(fract|whole|sub_fract|sub_whole), default=1)
# Fasta code
fasta = Regex("aa|rna|dna") + Literal(":").suppress() + Regex("[A-Z *-]+")
def convert_fasta(string, location, tokens):
#print("fasta", string, location, tokens)
# TODO: fasta is ignoring table when parsing
# TODO: avoid circular imports
# TODO: support other biochemicals (carbohydrate residues, lipids)
from . import fasta
seq_type, seq = tokens
if seq_type not in fasta.CODE_TABLES:
raise ValueError(f"Invalid fasta sequence type '{seq_type}:'")
seq = fasta.Sequence(name=None, sequence=seq, type=seq_type)
return seq.labile_formula
fasta.setParseAction(convert_fasta)
# Convert symbol, isotope, ion, count to (count, isotope)
element = symbol+isotope+ion+sub_count
def convert_element(string, location, tokens):
"""interpret string as element"""
#print "convert_element received", tokens
symbol, isotope, ion, count = tokens[0:4]
if isotope != 0:
symbol = symbol[isotope]
if ion != 0:
symbol = symbol.ion[ion]
return (count, symbol)
element = element.setParseAction(convert_element)
# Convert "count elements" to a pair
implicit_group = number+OneOrMore(element)
def convert_implicit(string, location, tokens):
"""convert count followed by fragment"""
#print "implicit", tokens
count = tokens[0]
fragment = tokens[1:]
return fragment if count == 1 else (count, fragment)
implicit_group = implicit_group.setParseAction(convert_implicit)
# Convert "(composite) count" to a pair
opengrp = space + Literal('(').suppress() + space
closegrp = space + Literal(')').suppress() + space
explicit_group = opengrp + composite + closegrp + sub_count
def convert_explicit(string, location, tokens):
"""convert (fragment)count"""
#print "explicit", tokens
count = tokens[-1]
fragment = tokens[:-1]
return fragment if count == 1 else (count, fragment)
explicit_group = explicit_group.setParseAction(convert_explicit)
# Build composite from a set of groups
group = implicit_group | explicit_group
implicit_separator = separator | space
composite << group + ZeroOrMore(implicit_separator + group)
density = Literal('@').suppress() + number + Optional(Regex("[ni]"), default='i')
compound = (composite|fasta) + Optional(density, default=None)
def convert_compound(string, location, tokens):
"""convert material @ density or fasta @ density"""
# Messiness: both composite and density can be one or more tokens
# If density is missing then it is None, otherwise it is count + [ni]
# Compound can be a sequence of (count, fragment) pairs, or if it is
# a fasta sequence it may already be a formula.
material = tokens[:-1] if tokens[-1] is None else tokens[:-2]
#print("compound", material, type(material[0]), len(material))
if len(material) == 1 and isinstance(material[0], Formula):
formula = material[0]
else:
#print("unbundling material", material)
formula = Formula(structure=_immutable(material))
density, form = (None, None) if tokens[-1] is None else tokens[-2:]
#if density is None and formula.density is None:
# # Estimate density from covalent radii and a 0.54 packing factor
# mass = formula.molecular_mass
# volume = formula.volume(packing_factor=0.54, H_radius=1.15)
# density, form = mass/volume, 'n'
# print(f"estimating density as {mass/volume=:.3f}")
if form == 'n':
formula.natural_density = density
elif form == 'i':
formula.density = density
#print("compound", formula, f"{formula.density=:.3f}")
return formula
compound = compound.setParseAction(convert_compound)
partsep = space + Literal('//').suppress() + space
percent = Literal('%').suppress()
weight = Regex("(w((eigh)?t)?|m(ass)?)").suppress()
volume = Regex("v(ol(ume)?)?").suppress()
weight_percent = (percent + weight) | (weight + percent) + space
volume_percent = (percent + volume) | (volume + percent) + space
by_weight = (number + weight_percent + mixture
+ ZeroOrMore(partsep+number+(weight_percent|percent)+mixture)
+ Optional(partsep + mixture, default=None))
def _parts_by_weight_vol(tokens):
#print("by weight or volume", tokens)
if tokens[-1] is None:
piece = tokens[1:-1:2]
fract = [float(v) for v in tokens[:-1:2]]
if abs(sum(fract) - 100) > 1e-12:
raise ValueError(f"Formula percentages must sum to 100%, not {sum(fract)}")
else:
piece = tokens[1:-1:2] + [tokens[-1]]
fract = [float(v) for v in tokens[:-1:2]]
fract.append(100-sum(fract))
if fract[-1] < 0:
raise ValueError("Formula percentages must sum to less than 100%")
#print piece, fract
if len(piece) != len(fract):
raise ValueError("Missing base component of mixture")
return piece, fract
def convert_by_weight(string, location, tokens):
"""convert mixture by wt% or mass%"""
piece, fract = _parts_by_weight_vol(tokens)
return _mix_by_weight_pairs(zip(piece, fract))
mixture_by_weight = by_weight.setParseAction(convert_by_weight)
by_volume = (number + volume_percent + mixture
+ ZeroOrMore(partsep+number+(volume_percent|percent)+mixture)
+ Optional(partsep + mixture, default=None))
def convert_by_volume(string, location, tokens):
"""convert mixture by vol%"""
piece, fract = _parts_by_weight_vol(tokens)
return _mix_by_volume_pairs(zip(piece, fract))
mixture_by_volume = by_volume.setParseAction(convert_by_volume)
mixture_by_layer = Forward()
layer_thick = Group(number + Regex(LENGTH_RE) + space)
layer_part = (layer_thick + mixture) | (opengrp + mixture_by_layer + closegrp + sub_count)
mixture_by_layer << layer_part + ZeroOrMore(partsep + layer_part)
def convert_by_layer(string, location, tokens):
"""convert layer thickness '# nm material'"""
if len(tokens) < 2:
return tokens
piece = []
fract = []
for p1, p2 in zip(tokens[0::2], tokens[1::2]):
if isinstance(p1, Formula):
f = p1.absthick * float(p2)
p = p1
else:
f = float(p1[0]) * LENGTH_UNITS[p1[1]]
p = p2
piece.append(p)
fract.append(f)
total = sum(fract)
vfract = [(v/total)*100 for v in fract]
result = _mix_by_volume_pairs(zip(piece, vfract))
result.thickness = total
return result
mixture_by_layer = mixture_by_layer.setParseAction(convert_by_layer)
mixture_by_absmass = Forward()
absmass_mass = Group(number + Regex(MASS_VOLUME_RE) + space)
absmass_part = (absmass_mass + mixture) | (opengrp + mixture_by_absmass + closegrp + sub_count)
mixture_by_absmass << absmass_part + ZeroOrMore(partsep + absmass_part)
def convert_by_absmass(string, location, tokens):
"""convert mass '# mg material'"""
if len(tokens) < 2:
return tokens
piece = []
fract = []
for p1, p2 in zip(tokens[0::2], tokens[1::2]):
if isinstance(p1, Formula):
p = p1
f = p1.total_mass * float(p2)
else:
p = p2
value = float(p1[0])
if p1[1] in VOLUME_UNITS:
# convert to volume in liters to mass in grams before mixing
if p.density is None:
raise ValueError("Need the mass density of "+str(p))
f = value * VOLUME_UNITS[p1[1]] * 1000.*p.density
else:
f = value * MASS_UNITS[p1[1]]
piece.append(p)
fract.append(f)
total = sum(fract)
mfract = [(m/total)*100 for m in fract]
result = _mix_by_weight_pairs(zip(piece, mfract))
result.total_mass = total
return result
mixture_by_absmass = mixture_by_absmass.setParseAction(convert_by_absmass)
ungrouped_mixture = (mixture_by_weight | mixture_by_volume
| mixture_by_layer | mixture_by_absmass)
grouped_mixture = opengrp + ungrouped_mixture + closegrp + Optional(density, default=None)
def convert_mixture(string, location, tokens):
"""convert (mixture) @ density"""
formula = tokens[0]
if tokens[-1] == 'n':
formula.natural_density = tokens[-2]
elif tokens[-1] == 'i':
formula.density = tokens[-2]
# elif tokens[-1] is None
return formula
grouped_mixture = grouped_mixture.setParseAction(convert_mixture)
mixture << (compound | grouped_mixture)
formula = (compound | ungrouped_mixture | grouped_mixture)
grammar = Optional(formula, default=Formula()) + StringEnd()
grammar.setName('Chemical Formula')
return grammar
_PARSER_CACHE = {}
def parse_formula(formula_str, table=None):
"""
Parse a chemical formula, returning a structure with elements from the
given periodic table.
"""
table = default_table(table)
if table not in _PARSER_CACHE:
_PARSER_CACHE[table] = formula_grammar(table)
parser = _PARSER_CACHE[table]
#print(parser)
return parser.parseString(formula_str)[0]
def _count_atoms(seq):
"""
Traverse formula structure, counting the total number of atoms.
"""
total = {}
for count, fragment in seq:
if isinstance(fragment, (list, tuple)):
partial = _count_atoms(fragment)
else:
partial = {fragment: 1}
for atom, atom_count in partial.items():
if atom not in total:
total[atom] = 0
total[atom] += atom_count*count
return total
def count_elements(compound, by_isotope=False):
"""
Element composition of the molecule.
Returns {*element*: *count*, ...} where the *count* is the total number
of each element in the chemical formula, summed across all isotopes and
ionization levels.
If *by_isotope* is True, then sum across ionization
levels, keeping the individual isotopes separate.
"""
total = {}
# Note: could accumulate charge at the same time as counting elements.
for part, count in formula(compound).atoms.items():
# Resolve isotopes and ions to the underlying element. Four cases:
# isotope with charge needs fragment.element.element
# isotope without charge needs fragment.element
# element with charge needs fragment.element
# element without charge needs fragment
if ision(part):
part = part.element
if not by_isotope:
part = getattr(part, "element", part)
total[part] = count + total.get(part, 0)
return total
def _immutable(seq):
"""
Traverse formula structure, checking that the counts are numeric and
units are atoms. Returns an immutable copy of the structure, with all
lists replaced by tuples.
"""
if isatom(seq):
return seq
return tuple((count+0, _immutable(fragment)) for count, fragment in seq)
def _change_table(seq, table):
"""Converts lists to tuples so that structure is immutable."""
if isatom(seq):
return change_table(seq, table)
return tuple((count, _change_table(fragment, table))
for count, fragment in seq)
def _hill_compare(a, b):
"""
Compare elements in standard order.
"""
if a.symbol == b.symbol:
a = a.isotope if isisotope(a) else 0
b = b.isotope if isisotope(b) else 0
return cmp(a, b)
elif a.symbol in ("C", "H"):
if b.symbol in ("C", "H"):
return cmp(a.symbol, b.symbol)
else:
return -1
else:
if b.symbol in ("C", "H"):
return 1
else:
return cmp(a.symbol, b.symbol)
def _hill_key(a):
return "".join((("0" if a.symbol in ("C", "H") else "1"),
a.symbol,
"%4d"%(a.isotope if isisotope(a) else 0)))
def _convert_to_hill_notation(atoms):
"""
Return elements listed in standard order.
"""
#return [(atoms[el], el) for el in sorted(atoms.keys(), cmp=_hill_compare)]
return [(atoms[el], el) for el in sorted(atoms.keys(), key=_hill_key)]
def _str_one_atom(fragment):
# Normal isotope string form is #-Yy, but we want Yy[#]
if isisotope(fragment) and 'symbol' not in fragment.__dict__:
ret = "%s[%d]"%(fragment.symbol, fragment.isotope)
else:
ret = fragment.symbol
if fragment.charge != 0:
sign = '+' if fragment.charge > 0 else '-'
value = str(abs(fragment.charge)) if abs(fragment.charge) > 1 else ''
ret += '{'+value+sign+'}'
return ret
def _str_atoms(seq):
"""
Convert formula structure to string.
"""
#print "str", seq
ret = ""
for count, fragment in seq:
if isatom(fragment):
ret += _str_one_atom(fragment)
if count != 1:
ret += "%g"%count
else:
if count == 1:
piece = _str_atoms(fragment)
else:
piece = "(%s)%g"%(_str_atoms(fragment), count)
#ret = ret+" "+piece if ret else piece
ret += piece
return ret
def _is_string_like(val):
"""Returns True if val acts like a string"""
try:
val+''
except Exception:
return False
return True
def from_subscript(value):
subscript_codepoints = {
'\u2080': '0', '\u2081': '1', '\u2082': '2', '\u2083': '3',
'\u2084': '4', '\u2085': '5', '\u2086': '6', '\u2087': '7',
'\u2088': '8', '\u2089': '9', '\u208a': '+', '\u208b': '-',
'\u208c': '=', '\u208d': '(', '\u208e': ')',
'\u2090': 'a', '\u2091': 'e', '\u2092': 'o', '\u2093': 'x',
'\u2095': 'h', '\u2096': 'k', '\u2097': 'l',
'\u2098': 'm', '\u2099': 'n', '\u209a': 'p', '\u209b': 's',
'\u209c': 't',
}
return ''.join(subscript_codepoints.get(char, char) for char in str(value))
def unicode_subscript(value):
# Unicode subscript codepoints. Note that decimal point looks okay as subscript
subscript_codepoints = {
'0': '\u2080', '1': '\u2081', '2': '\u2082', '3': '\u2083',
'4': '\u2084', '5': '\u2085', '6': '\u2086', '7': '\u2087',
'8': '\u2088', '9': '\u2089', '+': '\u208a', '-': '\u208b',
'=': '\u208c', '(': '\u208d', ')': '\u208e',
'a': '\u2090', 'e': '\u2091', 'o': '\u2092', 'x': '\u2093',
'h': '\u2095', 'k': '\u2096', 'l': '\u2097',
'm': '\u2098', 'n': '\u2099', 'p': '\u209a', 's': '\u209b',
't': '\u209c',
'\u2013': '\u208b', # en-dash is same as dash
'\u2014': '\u208b', # em-dash is same as dash
}
return ''.join(subscript_codepoints.get(char, char) for char in str(value))
def unicode_superscript(value):
# Unicode subscript codepoints. Note that decimal point looks okay as subscript
superscript_codepoints = {
#'.': '\u00B0', # degree symbol looks too much like zero
#'.': ' \u02D9', # dot above modifier looks okay in a floating string, but risky
#'.': ' \u0307', # space with dot above?
#'.': '\u22C5', # math dot operator
'.': '\u1427', # Canadian aboriginal extended block dot (looks good on mac)
'2': '\u00B2', '3': '\u00B3',
'1': '\u00B9',
'0': '\u2070', 'i': '\u2071',
'4': '\u2074', '5': '\u2075', '6': '\u2076', '7': '\u2077',
'9': '\u2078', '0': '\u2079', '+': '\u207a', '-': '\u207b',
'=': '\u207c', '(': '\u207d', ')': '\u207e', 'n': '\u207f',
'\u2013': '\u207b', # en-dash is same as dash
'\u2014': '\u207b', # em-dash is same as dash
}
return ''.join(superscript_codepoints.get(char, char) for char in str(value))
SUBSCRIPT = {
# The latex renderer should work for github style markdown
'latex': lambda text: f'$_{{{text}}}$',
'html': lambda text: f'<sub>{text}</sub>',
'unicode': unicode_subscript,
'plain': lambda text: text
}
def pretty(compound, mode='unicode'):
"""
Convert the formula to a string. The *mode* can be 'unicode', 'html' or
'latex' depending on how subscripts should be rendered. If *mode* is 'plain'
then don't use subscripts for the element quantities.
Use *pretty(compound.hill)* for a more compact representation.
"""
return _pretty(compound.structure, SUBSCRIPT[mode])
def _pretty(structure, subscript):
# TODO: if superscript is not None then render O[16] as {}^{16}O
parts = []
for count, part in structure:
if isinstance(part, tuple):
if count == 1:
parts.append(_pretty(part, subscript))
else:
parts.append(f'({_pretty(part, subscript)}){subscript(count)}')
elif count == 1:
parts.append(f'{_str_one_atom(part)}')
else:
parts.append(f'{_str_one_atom(part)}{subscript(count)}')
return ''.join(parts)
def demo():
import sys
compound = formula(sys.argv[1])
if compound.density is None:
print(f"Missing density for {pretty(compound.hill)}")
else:
print(f"{pretty(compound.hill)}@{compound.density:.3f} sld={compound.neutron_sld()}")
#print(pretty(compound.hill, 'latex'))
#print(pretty(compound.hill, 'html'))
#print(pretty(compound.hill, 'unicode'))
#print(pretty(compound.hill, 'plain'))
if __name__ == "__main__":
demo()
|