File: nsf.py

package info (click to toggle)
python-periodictable 2.0.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 3,068 kB
  • sloc: python: 13,338; makefile: 103; sh: 92; javascript: 7
file content (2038 lines) | stat: -rw-r--r-- 84,594 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
# -*- coding: utf-8 -*-
# This program is public domain
# Author: Paul Kienzle
r"""

Neutron scattering factors for the elements and isotopes.

For details of neutron scattering factor values, see :class:`Neutron`.
The property is set to *None* if there is no neutron scattering information
for the element. Individual isotopes may have their own scattering
information.

Example
=======

Print a table of coherent scattering length densities for isotopes
of a particular element:

.. doctest::

    >>> import periodictable
    >>> for iso in periodictable.Ni:
    ...     if iso.neutron.has_sld():
    ...         print("%s %7.4f"%(iso,iso.neutron.sld()[0]))
    58-Ni 13.1526
    60-Ni  2.5575
    61-Ni  6.9417
    62-Ni -7.9464
    64-Ni -0.3379


Details
=======

There are a number of functions available in periodictable.nsf

    :func:`neutron_energy`
        Return neutron energy given wavelength.

    :func:`neutron_wavelength`
        Return wavelength given neutron energy.

    :func:`neutron_wavelength_from_velocity`
        Return wavelength given neutron velocity.

    :func:`neutron_scattering`
        Computes scattering length density, cross sections and
        penetration depth for a compound.

    :func:`neutron_sld`
        Computes scattering length density for a compound.

    :func:`neutron_composite_sld`
        Returns a scattering length density for a compound whose composition
        is variable.

    :func:`energy_dependent_table`
        Lists isotopes with energy dependence.

    :func:`sld_table`
        Lists scattering length densitys for all elements in natural abundance.

    :func:`absorption_comparison_table`
        Compares the imaginary bound coherent scattering length to the
        absorption cross section.

    :func:`coherent_comparison_table`
        Compares the bound coherent scattering length to the
        coherent scattering cross section.

    :func:`total_comparison_table`
        Compares the total scattering cross section to the sum of the
        coherent and incoherent scattering cross sections.

For private tables use :func:`init` to set the data.

The neutron scattering information table is reproduced from the Atomic
Institute for Austrian Universities\ [#Rauch2003]_,\ [#Rauch2000]_:

    `<http://www.ati.ac.at/~neutropt/scattering/table.html>`_

The above site has references to the published values for every entry in
the table.  We have included these in the documentation directory
within the periodictable source package. Some typographical errors have
been fixed. In particular, Zn-70 has b_c listed as 6.9 in the table,
but 6.0 in the source materials for the table.

Note that enteries in the table have been measured independently, so the values
for the scattering length of an element or isotope may be inconsistent with
the values measured for the corresponding cross section. The comparison table
functions highlight these differences.

Tables from Sears\ [#Sears1992]_\ [#Sears2006]_, Rauch\ [#Rauch2003]_ and
Dawidowski\ [#Dawidowski2013]_ make different choices for the recommended
values. These are noted in periodictable issue #59
`<https://github.com/python-periodictable/periodictable/issues/59>`_
with changes from Sears to Rauch
`(a) <https://github.com/python-periodictable/periodictable/issues/59#issuecomment-1693686953>`__
and from Rauch to Dawidowski
`(b) <https://github.com/python-periodictable/periodictable/issues/59#issuecomment-1690212205>`__.

The following newer measurements from the literature are included:

    1H b_c -3.7423(12) => -3.7395(11) [1]
    2H b_c 6.674(6) => 6.6681(27) [1]
    4He b_c 3.26(3) => 3.0982(21) [3] (see also [5], which gives 3.075(6))
    4He coherent = total cross sections computed from 4 pi b_c^2/100
    natHe computed from isotopic weighting of 3He and 4He
    natC b_c 6.6484(13) => 6.6472(9) [1]
    natO b_c 5.805(4) => 5.8037(29) [1]
    17O b_c 5.6(5) => 5.867(4) [2]
    18O b_c 5.84(7) => 6.009(5) [2]
    natSn b_c 6.225(2) => 6.2239(13) [1]
    154Sm b_c 8.0(1.0) => 8.97(6) [4]
    153Eu b_c 8.22(12) => 8.85(3) [4]
    191Ir b_c => 12.1(9) [6]
    193Ir b_c => 9.71(18) [6]
    natPb b_c 9.401(2) => 9.4024(13) [1]
    natBi b_c 8.532(2) => 8.5242(18) [1]

    He total 1.34(2) => 1.188(5) [5] (ignored; using 4 pi b_c^2/100)
    Ar total 0.683(4) => 0.683(5) [5] (ignored; existing value is more precise)
    Kr total 7.68(13) => 7.685(26) [5]
    Xe total --- => 4.344(17) [5]

    [1] Snow (2020) 10.1103/PhysRevD.101.062004 [average of values in Table 1]
    [2] Fischer (2012) 10.1088/0953-8984/24/50/505105
    [3] Haun (2020) 10.1103/PhysRevLett.124.012501
    [4] Kohlmann (2016) 10.1515/zkri-2016-1984
    [5] Haddock (2019) 10.1103/PhysRevC.100.064002
    [6] Hannon (2018) 10.1107/S1600576718006064

.. [#Rauch2003] Rauch, H. and Waschkowski, W. (2003)
    Neutron Scattering Lengths in ILL
    Neutron Data Booklet (second edition), A.-J. Dianoux, G. Lander, Eds.
    Old City Publishing, Philidelphia, PA. pp 1.1-1 to 1.1-17.
    (https://www.ill.eu/fileadmin/user_upload/ILL/1_About_ILL/Documentation/NeutronDataBooklet.pdf
    Retrieved March 2008)

.. [#Rauch2000] Rauch, H. and Waschkowski, W. (2000)
    Neutron scattering lengths. Schopper, H. (ed.). SpringerMaterials -
    The Landolt-Börnstein Database (http://www.springermaterials.com).
    doi:10.1007/10499706_6

.. [#Lynn1990] Lynn, J.E. and Seeger, P.A. (1990)
    Resonance effects in neutron scattering lengths of rare-earth nuclides.
    Atomic Data and Nuclear Data Tables 44, 191-207.
    doi:10.1016/0092-640X(90)90013-A

.. [#Sears2006] Sears, V. F. (2006)
    4.4.4 Scattering lengths for neutrons.
    In Prince, E. ed. Intl. Tables for Crystallography C.
    Kluwer Academic Publishers. pp 444-454.
    (https://it.iucr.org/Cb/ch4o4v0001/sec4o4o4/)
    doi:10.1107/97809553602060000103

.. [#Sears1992] Sears, V.F. (1992)
    Neutron scattering lengths and cross sections.
    Neutron News 3, No. 3, 26-37.

.. [#May1982] May, R.P.,  Ibel, K. and Haas, J. (1982)
    The forward scattering of cold neutrons by mixtures of light and heavy water.
    J. Appl. Cryst. 15, 15-19. doi:10.1107/S0021889882011285

.. [#Mildner1998] Mildner, D.F.R., Lamaze, G.P. (1998)
   Neutron Transmission of Single-Crystal Sapphire.
   J Appl Crystallogr 31, 835–840. doi:10.1107/S0021889898005846

.. [#Glinka2011] Glinka, C.J. (2011)
    Incoherent Neutron Scattering from Multi-element Materials.
    J. Appl. Cryst. 44, 618-624. doi:10.1107/S0021889811008223

.. [#Dawidowski2013] Dawidowski, J., Granada, J. R., Santisteban,
    J. R., Cantargi, F., & Palomino, L. A. R. (2013).
    Appendix—Neutron Scattering Lengths and Cross Sections.
    In F. Fernandez-Alonso & D. L. Price (Eds.),
    Experimental Methods in the Physical Sciences (Vol. 44, pp. 471–528).
    Academic Press. doi:10.1016/B978-0-12-398374-9.09989-7
"""

#.. [#Koester1991] Koester, L., Rauch, H., Seymann. E. (1991)
#    Atomic Data Nuclear Data Tables 49, 65. doi:10.1016/0092-640X(91)90012-S
#.. [#Smith2006] Smith, G.S. and Majkrzak, C.M. (2006)
#    2.9 Neutron reflectometry.
#    In E. Prince ed. Intl. Tables for Crystallography C.
#    Wiley InterScience. pp 126-146. doi:10.1107/97809553602060000584
#

import numpy as np
from numpy import sqrt, pi, asarray, inf
from .core import Element, Isotope, default_table
from .constants import (avogadro_number, planck_constant, electron_volt,
                        neutron_mass, atomic_mass_constant)
from .util import parse_uncertainty

__all__ = ['init', 'Neutron',
           'neutron_energy', 'neutron_wavelength',
           'neutron_wavelength_from_velocity',
           'neutron_scattering', 'neutron_sld', 'neutron_composite_sld',
           'sld_plot',
           'absorption_comparison_table', 'coherent_comparison_table',
           'incoherent_comparison_table', 'total_comparison_table',
           'energy_dependent_table', 'sld_table',
           'neutron_sld_from_atoms',
           #'scattering_potential',
          ]

#: Wavelength [Å] for which neutron scattering cross sections are tabulated.
ABSORPTION_WAVELENGTH = 1.798 # [Å]


#: Energy [eV] <=> wavelength [Å]:
#:   E = 1/2 m v² = h² / (2 m λ²)
#:   E[meV s]  = h[J s]²/(2 m_n[u] m_u[kg/u] λ[Å]²/10^20[Å/m])
#:             * 1000[meV/eV] / electron_volt[J/eV]
ENERGY_FACTOR = (
    1e23 * planck_constant**2/electron_volt
    / (2 * neutron_mass * atomic_mass_constant))

#: Velocity[m/s] <=> wavelength[Å]:
#:  h = p λ = m v λ
#:  λ[Å] = h[J s] / ( m_n[kg] v[m/s] ) 10^10[Å/m]
VELOCITY_FACTOR = (
    1e10 * planck_constant / (neutron_mass * atomic_mass_constant))

def neutron_wavelength(energy):
    r"""
    Convert neutron energy to wavelength.

    :Parameters:
        *energy* \: float or vector | meV

    :Returns:
        *wavelength* \: float or vector | |Ang|

    Energy is converted to wavelength using

    .. math::

        E = 1/2 m_n v^2 = h^2 / (2 m_n \lambda^2)
        \Rightarrow \lambda = \sqrt{h^2 / (2 m_n E)}

    where

        $h$ = Planck constant in |Js|

        $m_n$ = neutron mass in kg

    """
    return sqrt(ENERGY_FACTOR / asarray(energy))

def neutron_wavelength_from_velocity(velocity):
    r"""
    Convert neutron velocity to wavelength.

    :Parameters:
        *velocity* \: float or vector | m/s

    :Returns:
        *wavelength* \: float or vector | |Ang|

    Velocity is converted to wavelength using

    .. math::

        \lambda = h/p = h/(m_n v)

    where

        $h$ = Planck constant in |Js|

        $m_n$ = neutron mass in kg
    """
    return VELOCITY_FACTOR / velocity

def neutron_energy(wavelength):
    r"""
    Convert neutron wavelength to energy.

    :Parameters:
        *wavelength* \: float or vector | |Ang|

    :Returns:
        *energy* \: float or vector | meV

    Wavelength is converted to energy using

    .. math::

        E = 1/2 m_n v^2 = h^2 / (2 m_n \lambda^2)

    where:

        $h$ = Planck constant in |Js|

        $m_n$ = neutron mass in kg
    """
    return ENERGY_FACTOR / asarray(wavelength)**2

def _CHECK_scattering_potential(sld):
    r"""
    Convert neutron scattering length density to energy potential.

    :Parameters:
        *sld* \: float or vector | |1e-6/Ang^2|

            Scattering length density.

    :Returns:
        *energy* \: float or vector | $10^{-6}$ eV

            Scattering potential.

    Computes:[#Smith2006]_

    .. math::

        V = 2 \pi \hbar^2 N_b / m_n

    where:

        $\hbar = h / (2 \pi)$

        $h$ = Planck constant in |Js|

        $N_b = \sum{ n_i b_i } / V$

        $m_n$ = neutron mass in kg
    """
    return (ENERGY_FACTOR/pi) * asarray(sld)

_4PI_100 = 4*np.pi/100
class Neutron:
    r"""
    Neutron scattering factors are attached to each element in the periodic
    table for which values are available.  If no information is available,
    then the neutron field of the element will be *None*. Even when neutron
    information is available, it may not be complete, so individual fields
    may be *None*.

    The following fields are defined:

    * b_c (fm)
        Bounds coherent scattering length.

    * total (barn)
        Total scattering cross section $\sigma_s$.  This does not include the
        absorption cross section.  To compute the total collision cross
        section use $\sigma_t = \sigma_s + \sigma_a$

    * absorption (barn)
        Absorption cross section $\sigma_a$ at 1.798 |Ang|.  Scale to your beam
        by dividing by periodictable.nsf.ABSORPTION_WAVELENGTH and multiplying
        by your wavelength. This wavelength corresponds to a neutron velocity
        of 2200 m/s and neutron energy of 25.3 meV.

    * b_c_complex (fm)
        Complex coherent scattering length derived from the tabulated
        values using $b_c - i \sigma_a / (1000 \cdot 2 \lambda)$.

    Additional columns not used for calculation include:

    * b_c_i (fm)
        Imaginary bound coherent scattering length.  This is related to
        absorption cross section by $\sigma_a = 4 \pi \mathrm{Im}(b_c)/k$ where
        $k = 2 \pi/\lambda$ and an additional factor of 1000 for converting
        between |Ang|\ |cdot|\ fm and barns.  b_c_i is not available for
        all isotopes for which absorption cross sections have been measured.

    * bp, bm (fm)
        Spin-dependent scattering for I+1/2 and I-1/2 (not always available).
        Incoherent scattering arises from the spin-dependent scattering b+
        and b-. The Neutron Data Booklet\ [#Rauch2003]_ gives formulas for
        calculating coherent and incoherent scattering from b+ and b- alone.

    * bp_i, bm_i (fm)
        Imaginary portion of bp and bm.

    * is_energy_dependent (boolean)
        Do not use this data if scattering is energy dependent.

    * coherent (barn)
        Coherent scattering cross section.  This is tabulated but not used.
        In theory coherent scattering is related to bound coherent scattering
        by $\sigma_c = 4 \pi |\mathrm{Re}(b_c) + i \mathrm{Im}(b_c)|^2/100$.
        In practice, these values are different, with the following table
        showing the largest relative difference:

        ========  ========  ========  ========  ========
        Sc   3%   Ti   4%   V   34%   Mn   1%   Cd  2%
        Te   4%   Xe   9%   Sm  19%   Eu  44%   Tb  1%
        Ho  11%   W    4%   Au   7%   Hg   2%   Ra  3%
        ========  ========  ========  ========  ========

    * incoherent (barn)
        Incoherent scattering cross section $\sigma_i$.  This is tabulated but
        not used. Instead, the incoherent cross section is computed from the
        total cross section minus the coherent cross section even for single
        atoms so that results from compounds are consistent with results from
        single atoms.

    For elements, the scattering cross-sections are based on the natural
    abundance of the individual isotopes. Individual isotopes may have
    the following additional fields

    * abundance (%)
        Isotope abundance used to compute the properties of the element in
        natural abundance.

    * nuclear_spin (string)
        Spin on the nucleus: '0', '1/2', '3/2', etc.

    Each field ``T`` above has a corresponding ``T_units`` attribute with
    the name of the units.

    For scattering calculations the scattering length density is the value
    of interest. This is computed from the *number_density* of the individual
    elements, as derived from the element density and atomic mass.

    .. Note:: 1 barn = 100 |fm^2|
    """
    b_c = None
    b_c_units = "fm"
    b_c_i = None
    b_c_i_units = "fm"
    b_c_complex = None
    b_c_complex_units = "fm"
    bp = None
    bp_i = None
    bp_units = "fm"
    bm = None
    bm_i = None
    bm_units = "fm"
    coherent = None
    coherent_units = "barn"
    incoherent = None
    incoherent_units = "barn"
    total = None
    total_units = "barn"
    absorption = None
    absorption_units = "barn"
    abundance = 0.
    abundance_units = "%"
    is_energy_dependent = False
    nsf_table = None
    def __init__(self):
        self._number_density = None
    def __str__(self):
        return ("b_c=%.3g coh=%.3g inc=%.3g abs=%.3g"
                % (self.b_c, self.coherent, self.incoherent, self.absorption))

    def has_sld(self):
        """Returns *True* if sld is defined for this element/isotope."""
        # TODO: use NaN for missing information
        #return np.isnan(self.b_c * self._number_density)
        return self.b_c is not None and self._number_density is not None

    # PAK 2021-04-05: allow energy dependent b_c
    def scattering_by_wavelength(self, wavelength):
        r"""
        Return scattering length and total cross section for each wavelength.

        For rare earth isotopes this returns the energy-dependent
        $\mathrm{Re}(b_c)$ and $\mathrm{Im}(b_c)$ interpolated into the
        scattering length tables. Values are extrapolated with constant
        values at the ends of the table. Total scattering is returned as
        $4\pi/100 |b_c|^2$ with no contribution for bound incoherent
        scattering.

        :Parameters:
            *wavelength* \: float(s) | |Ang|

        :Returns:
            *b_c* \: complex(s) | fm

            *sigma_s* \: float(s) | barn
        """
        # TODO: do vector conversion at the end rather than the beginning.
        if self.nsf_table is None:
            ones = 1 if np.isscalar(wavelength) else np.ones_like(wavelength)
            return ones*self.b_c_complex, ones*self.total
        #energy = neutron_energy(wavelength)
        #b_c = np.interp(energy, self.nsf_table[0], self.nsf_table[1])
        b_c = np.interp(wavelength, self.nsf_table[0], self.nsf_table[1])
        # TODO: sigma_s should include an incoherent contribution
        sigma_s = _4PI_100*abs(b_c)**2 # 1 barn = 1 fm^2 1e-2 barn/fm^2
        return b_c, sigma_s

    def sld(self, *, wavelength=ABSORPTION_WAVELENGTH):
        r"""
        Returns scattering length density for the element at natural
        abundance and density.

        :Parameters:
            *wavelength* \: float(s) | |Ang|

        :Returns:
            *sld* \: float(s), float(s), float(s) | |1e-6/Ang^2|
                (*real*, -*imaginary*, *incoherent*) scattering length density.

        Returns (None, None, None) if sld is not known for this element.

        See :func:`neutron_scattering` for details.
        """
        # TODO: deprecate in favour of neutron_scattering(el)
        if not self.has_sld():
            return None, None, None
        return self.scattering(wavelength=wavelength)[0]

    def scattering(self, *, wavelength=ABSORPTION_WAVELENGTH):
        r"""
        Returns neutron scattering information for the element at natural
        abundance and density.

        :Parameters:
            *wavelength* \: float(s) | |Ang|

        :Returns:
            *sld* \: float(s), float(s), float(s) | |1e-6/Ang^2|
                (*real*, -*imaginary*, *incoherent*) scattering length density

            *xs* \: float(s), float(s), float(s) | |1/cm|
                (*coherent*, *absorption*, *incoherent*) cross sections.
                :w

            *penetration* \: float(s) | cm
                1/e penetration length.

        Returns (None, None, None) if sld is not known for this element.

        See :func:`neutron_scattering` for details.
        """
        # TODO: deprecate in favour of neutron_scattering(el)
        # Compute number and absorption density assuming isotope has
        # same structure as the bulk element
        if not self.has_sld():
            return None, None, None

        number_density = self._number_density*1e-24  # N/A^3 = N/cm^3 (1e-8 cm/A)^3
        b_c, sigma_s = self.scattering_by_wavelength(wavelength)
        return _calculate_scattering(number_density, wavelength, b_c, sigma_s)

def energy_dependent_init(table):
    from .nsf_tables import ENERGY_DEPENDENT_TABLES

    for (el_name, iso_num), values in ENERGY_DEPENDENT_TABLES.items():
        energy, re_a, im_a, _ = zip(*values) # Ignoring abs(a)
        wavelength = neutron_wavelength(asarray(energy)*1000) # 1 eV = 1000 meV
        el = getattr(table, el_name)
        atom = el if iso_num is None else el[iso_num]
        xs = asarray(re_a) + 1j*asarray(im_a)
        #atom.neutron.nsf_table = asarray(energy)*1000, xs
        atom.neutron.nsf_table = wavelength[::-1], xs[::-1]
        #print(f"adding {atom}")

    # Lu nat missing from Lynn and Seeger, so mix Lu[175] and Lu[176]
    Lu175 = table.Lu[175]
    Lu176 = table.Lu[176]
    bc_175 = Lu175.neutron.b_c_complex
    wavelength, bc_176 = Lu176.neutron.nsf_table
    bc_nat = (bc_175*Lu175.abundance + bc_176*Lu176.abundance)/100.0 # 1 fm = 1fm * %/100
    table.Lu.neutron.nsf_table = wavelength, bc_nat
    #table.Lu.neutron.total = 0.  # zap total cross section

def init(table, reload=False):
    """
    Loads the Rauch table from the neutron data book.
    """
    if 'neutron' in table.properties and not reload:
        return
    table.properties.append('neutron')
    assert ('density' in table.properties and 'mass' in table.properties), \
        "Neutron table requires mass and density properties"

    # Defaults for missing neutron information
    missing = Neutron()
    Isotope.neutron = missing
    Element.neutron = missing

    for line in nsftable.split('\n'):
        columns = line.split(',')

        nsf = Neutron()
        p = columns[1]
        spin = columns[2]
        nsf.b_c, nsf.bp, nsf.bm = [fix_number(a) for a in columns[3:6]]
        nsf.is_energy_dependent = (columns[6] == 'E')
        nsf.coherent, nsf.incoherent, nsf.total, nsf.absorption \
            = [fix_number(a) for a in columns[7:]]
        # 1 fm = (1 barn)(100 fm^2/barn)/(1 A) (1e-5 A/fm)
        # Note: Sears (1992) uses b = b' - i b'', so negate sigma_a for b''.
        # Warning: -b_c.imag may be -0, which can mess with your calculations.
        #if nsf.b_c is None: print(f"b_c unavailable for {columns[0]}")
        b_c = nsf.b_c if nsf.b_c is not None else np.nan
        b_c_i = -nsf.absorption/(2000*ABSORPTION_WAVELENGTH)
        nsf.b_c_complex = b_c + 1j*b_c_i

        if not np.isnan(b_c):
            # Ir-191 and Ir-193 don't list scattering cross sections so deduce
            # them from the bound coherent cross section. Since these are both
            # odd isotopes there ought to be some incoherent scattering, but
            # zero is well within the uncertainty measured in bulk Ir.
            if nsf.coherent is None:
                nsf.coherent = 4*pi/100*abs(nsf.b_c_complex)**2
            if nsf.incoherent is None:
                nsf.incoherent = 0
            if nsf.total is None:
                nsf.total = nsf.coherent + nsf.incoherent

        parts = columns[0].split('-')
        Z = int(parts[0])
        symbol = parts[1]
        isotope_number = int(parts[2]) if len(parts) == 3 else 0

        # Fetch element from the table and check that the symbol matches
        element = table[Z]
        assert element.symbol == symbol, \
            "Symbol %s does not match %s" % (symbol, element.symbol)

        # Plug the default number density for the element into the nsf so
        # it can calculate sld.
        nsf._number_density = element.number_density # N/cm^3 = N/cm^3

        if isotope_number == 0:
            # Value for element using laboratory abundances of isotopes
            element.neutron = nsf
        else:
            # Values for the individual isotope
            isotope = element.add_isotope(isotope_number)
            isotope.neutron = nsf
            isotope.nuclear_spin = spin
            # p column contains either abundance(uncertainty) or "half-life Y"
            isotope.neutron.abundance = fix_number(p) if ' ' not in p else 0

            # If the element is not yet initialized, copy info into the atom.
            # This serves to set the element info for elements with only
            # one isotope.
            if element.neutron is missing:
                element.neutron = nsf

    for line in nsftableI.split('\n'):
        columns = line.split(',')

        # Fetch the nsf record
        parts = columns[0].split('-')
        Z = int(parts[0])
        symbol = parts[1]
        isotope_number = int(parts[2]) if len(parts) == 3 else 0
        element = table[Z]
        if isotope_number == 0:
            nsf = element.neutron
        else:
            nsf = element[isotope_number].neutron

        # Read imaginary values
        nsf.b_c_i, nsf.bp_i, nsf.bm_i = [
            fix_number(a) for a in columns[1:]]

    # Add energy-dependent tables
    energy_dependent_init(table)


# TODO: split incoherent into spin and isotope incoherence (eq 17-19 of Sears)
# TODO: require parsed compound rather than including formula() keywords in api
# Note: docs and function prototype are reproduced in __init__
def neutron_scattering(compound, *, density=None,
                       wavelength=None, energy=None,
                       natural_density=None, table=None):
    r"""
    Computes neutron scattering cross sections for molecules.

    :Parameters:
        *compound* \: Formula initializer
            Chemical formula
        *density* \: float | |g/cm^3|
            Mass density
        *natural_density* \: float | |g/cm^3|
            Mass density of formula with naturally occuring abundances
        *wavelength* 1.798 \: float(s) | |Ang|
            Neutron wavelength (default=1.798 |Ang|).
        *energy* \: float(s) | meV
            Neutron energy.  If energy is specified then wavelength is ignored.
        *table* \: PeriodicTable
            Alternate table to use when parsing *compound*.

    :Returns:
        *sld* \: float(s), float(s), float(s) | |1e-6/Ang^2|
            (*real*, -*imaginary*, *incoherent*) scattering length density.
        *xs* \: float(s), float(s), float(s) | |1/cm|
            (*coherent*, *absorption*, *incoherent*) cross sections.
        *penetration* \: float(s) | cm
            1/e penetration depth of the beam

    Returns (None, None, None) if sld is unknown for any component.

    :Raises:
        *AssertionError* \: density is missing.


    .. Note:

        The returned values will be vectors if *wavelength* is a vector.

    Neutron scattering cross sections for materials are calculated from
    tabulated values for the different nuclei. The result is only an
    approximation. Actual scattering depends on details of sample composition,
    as well as the incoming neutron energy and sample temperature, especially
    for light elements. For low energy neutrons the tabulated
    cross sections are generally a lower limit. The measured incoherent
    scattering from hydrogen, for example, can be considerably larger
    (by more than 20%) than its bound value, leading to an estimate of 5.621/cm
    for H2O as computed compared to ~7.0/cm as measured with 5 meV neutrons
    at 290K.\ [#May1982]_ The alignment of the neutron spin with the nuclei
    spin also matters, as demonstrated by $^3\mathrm{He}$ polarizers.

    The tables themselves are not self-consistent.  Because the different
    quantities are measured indirectly with a variety of techniques, there
    are discrepencies when converting values from one column to another. These
    differences can be seen with the following:

        :func:`absorption_comparison_table`

        :func:`coherent_comparison_table`

        :func:`total_comparison_table`

    For our calculations we use the real part of the bound coherent scattering
    length $\mathrm{Re}(b_c)$ (labelled b_c in the tables) and the absorption
    cross section $\sigma_a$ from which we derive the imaginary scattering
    length, $\mathrm{Im}(b_c)$. See Sears (1992) for details.\ [#Sears1992]_

    We first need to average quantities for the unit cell of the molecule.
    Molar mass *m* (g/mol) is the sum of the masses of each component:

    .. math::

        m = \sum{n_k m_k}\ {\rm for\ each\ atom}\ k=1,2,\ldots

    Cell volume $V$ (|Ang^3|/molecule) is molar mass $m$ over density
    $\rho$, with a correction based on Avogadro's number $N_A$ (atoms/mol)
    and the length conversion $10^8$ |Ang|/cm:

    .. math::

        V = m/\rho \cdot 1/N_A \cdot (10^8)^3

    Number density $N$ is the number of scatterers per unit volume:

    .. math::

        N = \left.\sum{n_k} \right/ V

    The coherent scattering length of the molecule is computed from the
    average scattering length $b_c = \mathrm{Re}(b_c) + i \mathrm{Im}(b_c)$
    weighted by frequency:

    .. math::

        \mathrm{Re}(b_c) &= \left.\sum n_k \mathrm{Re}(b_{ck}) \right/ \sum n_k \\
        \mathrm{Im}(b_c) &= \left.\sum n_k \mathrm{Im}(b_{ck}) \right/ \sum n_k

    The individual $\mathrm{Im}(b_{ck})$ values are derived from the absorption
    cross sections $\sigma_a$, tabulated at wavelength $\lambda = 1.798$ |Ang|
    and scaled to fm (with 1000 fm = 1 barn/|Ang|):

    .. math::

        \mathrm{Im}(b_{ck}) = -\left. \sigma_{ak} \right/ (1000 \cdot 2 \lambda)

    Note the sign change relative to $b''$ in Sears (1992), with Eq 2
    defining $b = b' - i b''$. Since we are not considering polarized
    nuclei, the imaginary incoherent contribution is zero and
    $b'' = -\mathrm{Im}(b_c)$.

    Some rare earth isotopes are energy-dependent with complex bound coherent
    scattering length $b_c$ tabulated by energy.\ [#Lynn1990]_ For the given
    input wavelength $\lambda$, $b_c$ is interpolated from the table values,
    with the end points used for values outside the tabulated range.

    The average scattering length is converted to scattering cross
    sections, with $\sigma_c$ scaled to barn (with 1 barn= 100 |fm^2|)
    and $\sigma_a$ scaled to barn (with 1000 barn = 1 fm |Ang|):

    .. math::

        \sigma_c &= \left. 4 \pi |\mathrm{Re}(b_c) + i \mathrm{Im}(b_c)|^2 \right/ 100 \\
        \sigma_a &= -\left. 1000 \cdot 4 \pi \left< \mathrm{Im}(b_c) \right> \right/k
            \ {\rm for} \ k=2\pi / \lambda

    For most elements the scattering length is independent of energy in
    the thermal neutron energy range so the coherent scattering length
    $\sigma_c$ is unchanged. The absorption cross section $\sigma_a$ for
    these elements scales linearly with wavelength and can be adjusted
    with a simple multiplication:

    .. math::

        \sigma_a' = \sigma_a \lambda' / \lambda_o = \sigma_a \lambda' / 1.798

    The incoherent scattering length is more complicated, including
    contributions from spin incoherence for different possible spin states
    as well as isotope incoherence from diffuse coherent
    scattering.\ [#Glinka2011]_ Using the total cross section $\sigma_s$ from
    the table, the incoherent scattering length is estimated as:

    .. math::

        \sigma_s &= \left.\sum n_k \sigma_{sk} \right/ \sum n_k \\
        \sigma_i &= \sigma_s - \sigma_c \\
        b_i &= \sqrt{ 100 \sigma_i / (4 \pi) }

    For the energy dependent rare earth isotopes the total scattering is
    estimated from $b = \mathrm{Re}(b_c) + i \mathrm{Im}(b_c)$, ignoring
    any spin incoherence effects. As a result, incoherent scattering for
    materials with energy-dependent rare earth isotopes with non-zero
    nuclear spin will be underestimated.

    The scattering potential can be expressed as a scattering length
    density (SLD).  This is the number density of the scatterers
    (per |Ang^3|) times their scattering lengths, scaled to
    |1e-6/Ang^2| (with |1/Ang^2| = $10^{5}$ fm/|Ang^3|).
    Following the convention of Sears (1992), we define sld as
    $\rho = \rho_{\rm re} - i \rho_{\rm im}$.

    .. math::

        \rho_{\rm re} (10^6 / Å^2) &= 10 N \mathrm{Re}(b_c) \\
        \rho_{\rm im} (10^6 / Å^2) &= -10 N \mathrm{Im}(b_c) \\
        \rho_{\rm inc} (10^6 / Å^2) &= 10 N b_i

    Similarly, the macroscopic scattering cross section for the sample includes
    number density:

    .. math::

        \Sigma_{\rm coh} (1/{\rm cm}) &= N \sigma_c \\
        \Sigma_{\rm inc} (1/{\rm cm}) &= N \sigma_i \\
        \Sigma_{\rm abs} (1/{\rm cm}) &= N \sigma_a \\
        \Sigma_{\rm s} (1/{\rm cm}) &= N \sigma_s

    The 1/e penetration depth $t_u$ represents the the depth into the sample
    at which the unscattered intensity is reduced by a factor of $e$:

    .. math::

        t_u (cm) = \left. 1 \right/ (\Sigma_{\rm s} + \Sigma_{\rm abs})

    The calculated penetration depth includes the effects of both
    absorption and incoherent scattering (which spreads the beam over the
    full $4\pi$ spherical surface, and so it looks like absorption with
    respect to the beam), as well as the coherent scattering from the sample.
    If you instead want to calculate the effective shielding of the sample,
    you should recalculate penetration depth with absorption only.

    Transmission rate can be computed from $e^{-d/t_u}$ for penetration
    depth $t_u$ and sample thickness $d$. This does not include many
    real world effects, such as single phonon scattering\ [#Mildner1998]_
    and forward scattering\ [#May1982]_, which result in measured
    transmission significantly different from the values predicted from
    nuclear properties alone.

    There is also a wavelength dependence for single phonon interactions which
    gives rise to significant inelastic scattering for lighter isotopes (H, D)
    and/or longer wavelengths (above 5 |Ang|). This factor is both
    temperature and material dependent and will not be included
    in the scattering calculations. In particular, penetration length and
    transmitted flux are going to be significantly overestimated.

    Including unit conversion with $\mu=10^{-6}$ the full scattering equations
    are:

    .. math::

        \rho_{\rm re}\,(\mu/Å^2) &= (N/Å^3)
            \, (\mathrm{Re}(b_c)\,{\rm fm})
            \, (10^{-5} Å/{\rm\,fm})
            \, (10^6\,\mu) \\
        \rho_{\rm im}\,(\mu/Å^2) &= (N/Å^3)
            \, (\sigma_a\,{\rm barn})
            \, (10^{-8}\,Å^2/{\rm barn}) / (2 \lambda\, Å)
            \, (10^6\,\mu) \\
            &= (N/Å^3)
            \, (-\mathrm{Im}(b_c)\,{\rm fm})
            \, (10^{-5} Å/{\rm\,fm})
            \, (10^6\,\mu) \\
        \rho_{\rm inc}\,(\mu/Å^2) &= (N/Å^3)
            \, \sqrt{(\sigma_i\, {\rm barn})/(4 \pi)
                \, (100\, {\rm fm}^2/{\rm barn})}
            \, (10^{-5}\, Å/{\rm fm})
            \, (10^6\, \mu) \\
        \Sigma_{\rm coh}\,(1/{\rm cm}) &= (N/Å^3)
            \, (\sigma_c\, {\rm barn})
            \, (10^{-8}\, Å^2/{\rm barn})
            \, (10^8\, Å/{\rm cm}) \\
        \Sigma_{\rm inc}\,(1/{\rm cm}) &= (N/Å^3)
            \,(\sigma_i\, {\rm barn})
            \, (10^{-8}\, Å^2/{\rm barn})
            \, (10^8\, Å/{\rm cm}) \\
        \Sigma_{\rm abs}\,(1/{\rm cm}) &= (N/Å^3)
            \,(\sigma_a\,{\rm barn})
            \, (10^{-8}\, Å^2/{\rm barn})
            \, (10^8\, Å/{\rm cm}) \\
        \Sigma_{\rm s}\,(1/{\rm cm}) &= (N/Å^3)
            \,(\sigma_s\,{\rm barn})
            \, (10^{-8}\, Å^2/{\rm barn})
            \, (10^8\, Å/{\rm cm}) \\
        t_u\,({\rm cm}) &= 1/(\Sigma_{\rm s}\, 1/{\rm cm}
            \,+\, \Sigma_{\rm abs}\, 1/{\rm cm})
    """

    from . import formulas
    compound = formulas.formula(
        compound, density=density, natural_density=natural_density, table=table)
    assert compound.density is not None, "scattering calculation needs density"
    #print("sld", compound, compound.density)
    if energy is not None:
        wavelength = neutron_wavelength(energy)
    # PAK: 1.5.3 wavelength now defaults to ABSORPTION_WAVELENGTH
    elif wavelength is None:
        wavelength = ABSORPTION_WAVELENGTH

    # Sum over the quantities
    molar_mass = num_atoms = 0
    b_c = sigma_s = 0
    is_energy_dependent = False
    for element, quantity in compound.atoms.items():
        # TODO: use NaN rather than None
        if not element.neutron.has_sld():
            return None, None, None
        molar_mass += element.mass*quantity
        num_atoms += quantity
        # PAK 2021-04-05: allow energy dependent b_c, b''
        b_ck, sigma_sk = element.neutron.scattering_by_wavelength(wavelength)
        #print(f"{element=}; {b_ck=}; {sigma_sk=}")
        b_c += quantity * b_ck
        sigma_s += quantity * sigma_sk
        is_energy_dependent |= element.neutron.is_energy_dependent

    # If nothing to sum, return values for a vacuum.  This might be because
    # the material has no atoms or it might be because the density is zero.
    if molar_mass*compound.density == 0:
        return (0, 0, 0), (0, 0, 0), inf

    # Turn weighted sums into scattering factors
    b_c /= num_atoms
    sigma_s /= num_atoms

    # Compute number density (N/A^3)
    # volume A^3/N = ((1 g/mole) / (1 g/cm^3)) / (N/mole) * (10^8 A/cm)^3
    cell_volume = (molar_mass/compound.density)/avogadro_number*1e24
    number_density = num_atoms / cell_volume # N/A^3 = N/A^3

    return _calculate_scattering(number_density, wavelength, b_c, sigma_s)


def _calculate_scattering(number_density, wavelength, b_c, sigma_s):
    r"""
    :Parameters:
        *number_density* \: float | N/|Ang^3|
            Scatterers per unit volume.
        *wavelength* \: float(s) | |Ang|
            Neutron wavelength(s).
        *b_c* \: complex(s) | fm
            Complex bound coherent scattering length $b_c$.
        *sigma_c* \: float(s) | barn
            Total cross section.

    See neutron_scattering docstring for calculation details.

    Note: returns -sld_im for historical reasons.
    """
    #print("in scat", number_density, wavelength, b_c, sigma_s)
    # Compute SLD (1e-6/A^2). Extending Sears (1992) convention, b = b' - i b'',
    # returning sld = sld_re - i sld_im.
    sld = 10*number_density * b_c # 1e-6/A^2 = 1/A^3 1 fm 1e-5 A/fm 1e6 1e-6
    sld_re, sld_im = sld.real, abs(sld.imag)

    # PAK 2017-04-21: compute incoherent xs from total xs
    # PAK 2021-04-20: include imaginary b_c in coherent cross section
    # Compute coherent and incoherent cross sections (barn)
    sigma_c = _4PI_100 * abs(b_c)**2 # 1 barn = 1e-2 fm^2
    sigma_i = np.maximum(sigma_s - sigma_c, 0.)  # 1 barn = 1 barn

    # Compute incoherent scattering length from incoherent cross section (fm)
    b_i = sqrt(sigma_i / _4PI_100) # 1 fm = sqrt(1 barn * 1e-2 fm^2/barn)

    # Compute incoherent scattering length density (1e-6/A^2)
    sld_inc = number_density * b_i * 10 # 1e-6/A^2 = 1/A^3 1 fm 1e-5 A/fm 1e6 1e-6

    # Compute absorption cross section (barn)
    # Note: Sears (1992) uses b = b' - i b'', so use |Im(b_c)| for sigma_a.
    sigma_a = 2000 * abs(b_c.imag) * wavelength # 1 barn = 1 fm 1 A 1e5 A/fm 1e-2 barn/fm

    # print(f"σ_a {sigma_c:.3f} σ_i {sigma_i:.3f} σ_s {sigma_s:.3f} σ_a {sigma_a:.3f}")

    # Compute macroscopic scattering cross section per unit volume (1/cm)
    total_xs = number_density * sigma_s # 1/cm = 1/A^3 1 barn 1e-8 A^2/barn 1e8 A/cm
    coh_xs = number_density * sigma_c
    abs_xs = number_density * sigma_a
    inc_xs = number_density * sigma_i

    # Compute 1/e length (cm)
    penetration = 1/(abs_xs + total_xs) # 1 cm = 1 / (1/cm)

    return (sld_re, sld_im, sld_inc), (coh_xs, abs_xs, inc_xs), penetration


def neutron_sld(*args, **kw):
    r"""
    Computes neutron scattering length densities for molecules.

    :Parameters:
        *compound* \: Formula initializer
            Chemical formula
        *density* \: float | |g/cm^3|
            Mass density
        *natural_density* \: float | |g/cm^3|
            Mass density of formula with naturally occuring abundances
        *wavelength* \: float | |Ang|
            Neutron wavelength (default=1.798 |Ang|).
        *energy* \: float | meV
            Neutron energy.  If energy is specified then wavelength is ignored.
        *table* \: PeriodicTable
            Alternate table to use when parsing *compound*.
    :Returns:
        *sld* \: (float, float, float) | |1e-6/Ang^2|
            (*real*, -*imaginary*, *incoherent*) scattering length density.

    :Raises:
        *AssertionError* \: density is missing.

    Returns the scattering length density of the compound.
    See :func:`neutron_scattering` for details.
    """
    return neutron_scattering(*args, **kw)[0]

def neutron_sld_from_atoms(*args, **kw):
    r"""
    .. deprecated:: 0.91

        :func:`neutron_sld` accepts dictionaries of \{atom\: count\}.

    """
    return neutron_scattering(*args, **kw)[0]


def D2O_match(compound, **kw):
    """
    Find the D2O contrast match point for the compound.

    *wavelength* or *energy* select neutron wavelength or energy.

    Additional keyword arguments (*density*, *natural_density*, *name*, *table*)
    are passed to :func:`formulas.formula` when parsing the compound.

    Returns *D2O_fraction* and *SLD* at match point.

    See :func:`D2O_sld` for details on the calculation.

    Note that the resulting fraction is only meaningful in [0, 1]. Beyond
    100% you will need an additional constrast agent in the 100% D2O
    solvent to increase the SLD enough to match.
    """
    H2O_sld, D2O_sld, Hsld, Dsld = _D2O_slds(compound, **kw)
    # SLD(%Dsample + (1-%)Hsample) = SLD(%D2O + (1-%)H2O)
    # => %SLD(Dsample) + (1-%)SLD(Hsample) = %SLD(D2O) + (1-%)SLD(H2O)
    # => %(SLD(Dsample) - SLD(Hsample) + SLD(H2O) - SLD(D2O))
    #      = SLD(H2O) - SLD(Hsample)
    # => % = 100*(SLD(H2O) - SLD(Hsample))
    #      / (SLD(Dsample) - SLD(Hsample) + SLD(H2O) - SLD(D2O))
    D2O_fraction = (
        (H2O_sld[0] - Hsld[0]) / (Dsld[0] - Hsld[0] + H2O_sld[0] - D2O_sld[0]))

    match_point_sld = mix_values(Dsld, Hsld, D2O_fraction)
    return D2O_fraction, match_point_sld[0]

def D2O_sld(compound, volume_fraction=1., D2O_fraction=0., **kw):
    """
    Compute the neutron SLD for a D2O contrast solution.

    *compound* is a string or parsed formula object. Labile hydrogen should
    be marked as H[1] in the formula. These will be substituted according to
    %D2O in the solvent.

    The D2O contrast mixture is assumed to be made using pure H2O (with
    its natural H:D ratios) and pure D2O with no H present, so H[1] will be
    substituted alternately with H and D when computing mixture SLD.
    Solvent SLD is calculated using the density at 20 C.

    Only the coherent scattering crosssection will be matched. Incoherent
    and absorption crosssections are likely to be different for the compound
    and the solvent, especially due to the large incoherent crosssection for
    hydrogen.

    Note that incoherent scattering does not mix linearly, so the incoherent
    sld for the mixture will differ slightly from incoherent scattering
    computed returned from a compound with the same isotope ratios.

    *volume_fraction* is the portion by volume of solute in the solution.

    *D2O_fraction* is the portion by volume of D2O in the solvent.

    *wavelength* or *energy* to select neutron wavelength or energy.

    Additional keyword arguments (*density*, *natural_density*, *name*, *table*)
    are passed to :func:`formulas.formula` when parsing the compound.

    Returns (real, imag, incoh) SLD.
    """
    # TODO: fix incoherent scattering so it is consistent with compound
    # Need to compute sld from mixture rather than mixing parts
    H2O_sld, D2O_sld, Hsld, Dsld = _D2O_slds(compound, **kw)
    solvent_sld = mix_values(D2O_sld, H2O_sld, D2O_fraction)
    solute_sld = mix_values(Dsld, Hsld, D2O_fraction)
    solution_sld = mix_values(solute_sld, solvent_sld, volume_fraction)
    #print(D2O_fraction, volume_fraction)
    #print(compound, "solvent", solvent_sld)
    #print(compound, "solute", solute_sld)
    #print(compound, "solution", solution_sld)
    return solution_sld


def _D2O_slds(compound, **kw):
    from . import formulas

    # Water density at 20C; neutron wavelength doesn't matter.
    sld_args = dict(
        wavelength=kw.pop("wavelength", None),
        energy=kw.pop("energy", None),
        # Note: using get() rather than pop() for table since table can be a
        # parameter for formula and for neutron_sld (which calls formula)
        table=kw.get('table', None),
    )
    # TODO: use same table for solvent as solute?
    H2O_sld = neutron_sld("H2O@0.9982n", **sld_args)
    D2O_sld = neutron_sld("D2O@0.9982n", **sld_args)
    mol = formulas.formula(compound, **kw)
    # Be sure to pull H and H[1] from the table for the compound, otherwise
    # the elements may not match in the substitution.
    # TODO: include table in compound so parsed
    table = default_table(kw.get('table', None))
    labile_H, H, D = table.H[1], table.H, table.D
    Hsld = neutron_sld(mol.replace(labile_H, H), **sld_args)
    Dsld = neutron_sld(mol.replace(labile_H, D), **sld_args)

    return H2O_sld, D2O_sld, Hsld, Dsld


def mix_values(a, b, fraction):
    """
    Mix two tuples with floating point values according to fraction of a.
    """
    return tuple(aj*fraction + bj*(1-fraction) for aj, bj in zip(a, b))


def _sum_piece(wavelength, compound):
    """
    Helper for neutron_composite_sld which precomputes quantities of interest
    for material fragments in a composite formula.
    """
    # Sum over the quantities.
    molar_mass = num_atoms = 0
    b_c = sigma_s = 0
    for element, quantity in compound.atoms.items():
        molar_mass += element.mass*quantity
        num_atoms += quantity
        b_ck, sigma_sk = element.neutron.scattering_by_wavelength(wavelength)
        b_c += quantity * b_ck
        sigma_s += quantity * sigma_sk

    return num_atoms, molar_mass, b_c, sigma_s

# TODO: compute density from material densities if requested
# You ought to be able to use mixby="mass" or "volume" when creating the
# calculator, and ignore any density provided.
def neutron_composite_sld(materials, wavelength=ABSORPTION_WAVELENGTH):
    r"""
    Create a composite SLD calculator.

    :Parameters:
        *materials* \: [Formula]
            List of materials
        *wavelength* = 1.798: float OR [float] | |Ang|
            Probe wavelength(s).

    :Returns:
        *calculator* \: f(w, density=1) -> (*real*, -*imaginary*, *incoherent*)

    The composite calculator takes a vector of weights and returns the
    scattering length density of the composite.  This is useful for operations
    on large molecules, such as calculating a set of contrasts or fitting
    a material composition. Note that density must be provided for each set
    of material weights. The density on the individual materials is ignored.

    The returned slds will be vectors if the input wavelength is a vector
    and if any of the elements are energy dependent.

    Table lookups and partial sums and constants are precomputed so that
    the calculation consists of a few simple array operations regardless
    of the size of the material fragments.
    """
    # Input may be a scalar or a sequence. If it is a sequence, turn it into
    # an array before proceeding. If it is a scalar leave it as a scalar so
    # that float input returns float output.
    is_multi = not np.isscalar(wavelength)
    if is_multi:
        wavelength = np.asarray(wavelength)
    # Query all parts of the composition
    parts = [_sum_piece(wavelength, m) for m in materials]
    num_atoms_parts, molar_mass_parts, bc_parts, sigma_parts = [
        np.array(v) for v in zip(*parts)
    ]

    #for name, v in zip("N mass bc b'' total".split(), V): print(name, v)
    def _compute(weights, density=1):
        multiweights = weights[:, None] if is_multi else weights
        # Sum over the quantities
        molar_mass = np.sum(weights*molar_mass_parts)
        num_atoms = np.sum(weights*num_atoms_parts)
        b_c = np.sum(multiweights*bc_parts, axis=0)
        sigma_s = np.sum(multiweights*sigma_parts, axis=0)

        # If nothing to sum, return values for a vacuum.  This might be because
        # the material has no atoms or it might be because the density is zero.
        if molar_mass*density == 0:
            return 0, 0, 0

        # Compute number density (1/A^3)
        cell_volume = (molar_mass/density)/avogadro_number*1e24
        number_density = num_atoms / cell_volume
        #print("in compute", b_c, number_density)

        # Turn sums into scattering factors
        b_c /= num_atoms
        sigma_s /= num_atoms

        # TODO: duplicated from _calculate_scattering
        # Compute SLD (1e-6/A^2). Extending Sears (1992) convention, b = b' - i b'',
        # returning sld = sld_re - i sld_im.
        sld = 10*number_density * b_c # 1e-6/A^2 = 1/A^3 1 fm 1e-5 A/fm 1e6 1e-6
        sld_re, sld_im = sld.real, abs(sld.imag)

        # PAK 2017-04-21: compute incoherent xs from total xs
        # PAK 2021-04-20: include imaginary b_c in coherent cross section
        sigma_c = _4PI_100 * abs(b_c)**2 # 1 barn = 1e-2 fm^2
        sigma_i = np.maximum(sigma_s - sigma_c, 0.) # 1 barn = 1 barn
        b_i = sqrt(sigma_i / _4PI_100) # 1 fm = sqrt(1 barn * 1e-2 fm^2/barn)
        sld_inc = number_density * b_i * 10 # 1e-6/A^2 = 1/A^3 1 fm 1e-5 A/fm 1e6 1e-6

        return sld_re, sld_im, sld_inc

    return _compute


def sld_plot(table=None):
    r"""
    Plots SLD as a function of element number.

    :Parameters:
        *table* \: PeriodicTable
            The default periodictable unless a specific table has been requested.

    :Returns: None
    """
    from .plot import table_plot

    table = default_table(table)

    SLDs = dict((el, el.neutron.sld()[0])
                for el in table
                if el.neutron.has_sld())
    SLDs[table.D] = table.D.neutron.sld()[0]

    table_plot(SLDs, label='Scattering length density ($10^{-6}$ Nb)',
               title='Neutron SLD for elements in natural abundance')


# We are including the complete original table here in case somebody in
# future wants to extract uncertainties or other information.
#
# Z-Symbol-A
#   This is the atomic number, the symbol and the isotope.
#   If Z-Symbol only, the line represents an element with scattering determined
#   by the natural abundance of the isotopes in laboratory samples.  If there
#   is only one isotope, then there is no corresponding element definition.
# concentration/half-life
#   This is the natural abundance of the isotope expressed as a percentage, or
#   it is the half-life in years (number Y) or seconds (number S).
# spin I
#   For isotopes, the nuclear spin.
# b_c, bp, bm
#   Bound coherent scattering length in fm
#   b+/b- if present are spin dependent scattering for I+1/2 and I-1/2
#   respectively
# c
#   'E' if there is a strong energy dependency.
#   '+/-' if separate b+/b- values are available [PAK: doesn't seem true]
# coherent, incoherent, total
#   The coherent and incoherent scattering cross-sections in barns.
# absorption
#   The thermal absorption cross section in barns at 1.798 A; 25.30 meV; 2200 m/s
#
# Numbers in parenthesis represents uncertainty.
# Numbers followed by '*' are estimated.
# Numbers may be given as limit, e.g., <1.0e-6
#
# [Paul Kienzle]
# * Fix typos such as 70Zn b_c 6.9(1.0) => 6.0(1.0).
# * Update bound coherent scattering length for H-1, H-2, He-4, C-12,
#   O-16, O-17, O-18, Sn-119, Sm-154, Eu-153, Pb-207, Bi-209
# * Update total cross section for He, Kr, Xe
# * Usd 63-Eu-151 b_c from 84Mug1. This change is moot since this isotope
#   has energy dependent isotope coeffs.
# * Use calculated values for 4He coh and total, and natHe b_c, coh and total.

nsftable = """\
0-n-1,618 S,1/2,-37.0(6),0,-37.0(6),,43.01(2),,43.01(2),0
1-H,,,-3.7409(11),,,,1.7568(10),80.26(6),82.02(6),0.3326(7)
1-H-1,99.985,1/2,-3.7395(11),10.817(5),-47.420(14),+/-,1.7583(10),80.27(6),82.03(6),0.3326(7)
1-H-2,0.0149,1,6.6681(27),9.53(3),0.975(60),,5.592(7),2.05(3),7.64(3),0.000519(7)
1-H-3,12.26 Y,1/2,4.792(27),4.18(15),6.56(37),,2.89(3),0.14(4),3.03(5),<6.0E-6
2-He,,,3.0985(21),,,,1.2065(16),0,1.2065(16),0.00747(1)
2-He-3,0.013,1/2,5.74(7),4.7(5),8.8(1.4),E,4.42(10),1.6(4),6.0(4),5333.0(7.0)
2-He-4,99.987,0,3.0982(21),,,,1.2062(16),0,1.2062(16),0
3-Li,,,-1.90(3),,,,0.454(10),0.92(3),1.37(3),70.5(3)
3-Li-6,7.5,1,2.0(1),0.67(14),4.67(17),+/-,0.51(5),0.46(5),0.97(7),940.0(4.0)
3-Li-7,92.5,3/2,-2.22(2),-4.15(6),1.00(8),+/-,0.619(11),0.78(3),1.40(3),0.0454(3)
4-Be-9,100,3/2,7.79(1),,,,7.63(2),0.0018(9),7.63(2),0.0076(8)
5-B,,,5.30(4),,,,3.54(5),1.70(12),5.24(11),767.0(8.0)
5-B-10,19.4,3,-0.2(4),-4.2(4),5.2(4),,0.144(6),3.0(4),3.1(4),3835.0(9.0)
5-B-11,80.2,3/2,6.65(4),5.6(3),8.3(3),,5.56(7),0.21(7),5.77(10),0.0055(33)
6-C,,,6.6472(9),,,,5.551(2),0.001(4),5.551(3),0.00350(7)
6-C-12,98.89,0,6.6535(14),,,,5.559(3),0,5.559(3),0.00353(7)
6-C-13,1.11,1/2,6.19(9),5.6(5),6.2(5),+/-,4.81(14),0.034(11),4.84(14),0.00137(4)
7-N,,,9.36(2),,,,11.01(5),0.50(12),11.51(11),1.90(3)
7-N-14,99.635,1,9.37(2),10.7(2),6.2(3),,11.03(5),0.50(12),11.53(11),1.91(3)
7-N-15,0.365,1/2,6.44(3),6.77(10),6.21(10),,5.21(5),0.00005(10),5.21(5),0.000024(8)
8-O,,,5.8037(29),,,,4.232(6),0.000(8),4.232(6),0.00019(2)
8-O-16,99.75,0,5.805(5),,,,4.232(6),0,4.232(6),0.00010(2)
8-O-17,0.039,5/2,5.867(4),5.52(20),5.17(20),,4.20(22),0.004(3),4.20(22),0.236(10)
8-O-18,0.208,0,6.009(5),,,,4.29(10),0,4.29(10),0.00016(1)
9-F-19,100,1/2,5.654(12),5.632(10),5.767(10),+/-,4.017(14),0.0008(2),4.018(14),0.0096(5)
10-Ne,,,4.566(6),,,,2.620(7),0.008(9),2.628(6),0.039(4)
10-Ne-20,90.5,0,4.631(6),,,,2.695(7),0,2.695(7),0.036(4)
10-Ne-21,0.27,3/2,6.66(19),,,,5.6(3),0.05(2),5.7(3),0.67(11)
10-Ne-22,9.2,0,3.87(1),,,,1.88(1),0,1.88(1),0.046(6)
11-Na-23,100,3/2,3.63(2),6.42(4),-1.00(6),+/-,1.66(2),1.62(3),3.28(4),0.530(5)
12-Mg,,,5.375(4),,,,3.631(5),0.08(6),3.71(4),0.063(3)
12-Mg-24,78.99,0,5.49(18),,,,4.03(4),0,4.03(4),0.050(5)
12-Mg-25,10,5/2,3.62(14),4.73(30),1.76(20),+/-,1.65(13),0.28(4),1.93(14),0.19(3)
12-Mg-26,11,0,4.89(15),,,,3.00(18),0,3.00(18),0.0382(8)
13-Al-27,100,5/2,3.449(5),3.67(2),3.15(2),,1.495(4),0.0082(6),1.503(4),0.231(3)
14-Si,,,4.15071(22),,,,2.1633(10),0.004(8),2.167(8),0.171(3)
14-Si-28,92.2,0,4.106(6),,,,2.120(6),0,2.120(6),0.177(3)
14-Si-29,4.7,1/2,4.7(1),4.50(15),4.7(4),+/-,2.78(12),0.001(2),2.78(12),0.101(14)
14-Si-30,3.1,0,4.58(8),,,,2.64(9),0,2.64(9),0.107(2)
15-P-31,100,1/2,5.13(1),,,+/-,3.307(13),0.005(10),3.312(16),0.172(6)
16-S,,,2.847(1),,,,1.0186(7),0.007(5),1.026(5),0.53(1)
16-S-32,95,0,2.804(2),,,,0.9880(14),0,0.9880(14),0.54(4)
16-S-33,0.74,3/2,4.74(19),,,+/-,2.8(2),0.3(6),3.1(6),0.54(4)
16-S-34,4.2,0,3.48(3),,,,1.52(3),0,1.52(3),0.227(5)
16-S-36,0.02,0,3.0(1.0)*,,,,1.1(8),0,1.1(8),0.15(3)
17-Cl,,,9.5792(8),,,,11.528(2),5.3(5),16.8(5),33.5(3)
17-Cl-35,75.77,3/2,11.70(9),16.3(2),4.0(3),+/-,17.06(6),4.7(6),21.8(6),44.1(4)
17-Cl-37,24.23,3/2,3.08(6),3.10(7),3.05(7),+/-,1.19(5),0.001(3),1.19(5),0.433(6)
18-Ar,,,1.909(6),,,,0.458(3),0.225(5),0.683(4),0.675(9)
18-Ar-36,0.34,0,24.9(7),,,,77.9(4),0,77.9(4),5.2(5)
18-Ar-38,0.07,0,3.5(3.5),,,,1.5(3.1),0,1.5(3.1),0.8(5)
18-Ar-40,99.59,0,1.7,,,,0.421(3),0,0.421(3),0.660(9)
19-K,,,3.67(2),,,,1.69(2),0.27(11),1.96(11),2.1(1)
19-K-39,93.3,3/2,3.79(2),5.15,1.51,+/-,1.76(2),0.25(11),2.01(11),2.1(1)
19-K-40,0.012,4,3.1(1.0)*,,,,1.1(6),0.5(5)*,1.6(9),35.0(8.0)
19-K-41,6.7,3/2,2.69(8),,,,0.91(5),0.3(6),1.2(6),1.46(3)
20-Ca,,,4.70(2),,,,2.78(2),0.05(3),2.83(2),0.43(2)
20-Ca-40,96.94,0,4.78(5),,,,2.90(2),0,2.90(2),0.41(2)
20-Ca-42,0.64,0,3.36(10),,,,1.42(8),0,1.42(8),0.68(7)
20-Ca-43,0.13,7/2,-1.56(9),,,,0.31(4),0.5(5),0.8(5),6.2(6)
20-Ca-44,2.13,0,1.42(6),,,,0.25(2),0,0.25(2),0.88(5)
20-Ca-46,0.003,0,3.55(21),,,,1.6(2),0,1.6(2),0.74(7)
20-Ca-48,0.18,0,0.39(9),,,,0.019(9),0,0.019(9),1.09(14)
21-Sc-45,100,7/2,12.1(1),6.91(22),18.99(28),+/-,19.0(3),4.5(3),23.5(6),27.5(2)
22-Ti,,,-3.370(13),,,,1.485(2),2.87(3),4.35(3),6.09(13)
22-Ti-46,8,0,4.72(5),,,,3.05(7),0,3.05(7),0.59(18)
22-Ti-47,7.5,5/2,3.53(7),0.46(23),7.64(13),,1.66(11),1.5(2),3.2(2),1.7(2)
22-Ti-48,73.7,0,-5.86(2),,,,4.65(3),0,4.65(3),7.84(25)
22-Ti-49,5.5,7/2,0.98(5),2.6(3),-1.2(4),,0.14(1),3.3(3),3.4(3),2.2(3)
22-Ti-50,5.3,0,5.88(10),,,,4.80(12),0,4.80(12),0.179(3)
23-V,,,-0.443(14),,,,0.01838(12),5.08(6),5.10(6),5.08(4)
23-V-50,0.25,6,7.6(6)*,,,,7.3(1.1),0.5(5)*,7.8(1.0),60.0(40.0)
23-V-51,99.75,7/2,-0.402(2),4.93(25),-7.58(28),+/-,0.0203(2),5.07(6),5.09(6),4.9(1)
24-Cr,,,3.635(7),,,,1.660(6),1.83(2),3.49(2),3.05(6)
24-Cr-50,4.35,0,-4.50(5),,,,2.54(6),0,2.54(6),15.8(2)
24-Cr-52,83.8,0,4.914(15),,,,3.042(12),0,3.042(12),0.76(6)
24-Cr-53,9.59,3/2,-4.20(3),1.16(10),-13.0(2),,2.22(3),5.93(17),8.15(17),18.1(1.5)
24-Cr-54,2.36,0,4.55(10),,,,2.60(11),0,2.60(11),0.36(4)
25-Mn-55,100,5/2,-3.750(18),-4.93(46),-1.46(33),,1.75(2),0.40(2),2.15(3),13.3(2)
26-Fe,,,9.45(2),,,,11.22(5),0.40(11),11.62(10),2.56(3)
26-Fe-54,5.8,0,4.2(1),,,,2.2(1),0,2.2(1),2.25(18)
26-Fe-56,91.7,0,10.1(2),,,,12.42(7),0,12.42(7),2.59(14)
26-Fe-57,2.19,1/2,2.3(1),,,,0.66(6),0.3(3)*,1.0(3),2.48(30)
26-Fe-58,0.28,0,15(7),,,,28.0(26.0),0,28.0(26.0),1.28(5)
27-Co-59,100,7/2,2.49(2),-9.21(10),3.58(10),+/-,0.779(13),4.8(3),5.6(3),37.18(6)
28-Ni,,,10.3(1),,,,13.3(3),5.2(4),18.5(3),4.49(16)
28-Ni-58,67.88,0,14.4(1),,,,26.1(4),0,26.1(4),4.6(3)
28-Ni-60,26.23,0,2.8(1),,,,0.99(7),0,0.99(7),2.9(2)
28-Ni-61,1.19,3/2,7.60(6),,,,7.26(11),1.9(3),9.2(3),2.5(8)
28-Ni-62,3.66,0,-8.7(2),,,,9.5(4),0,9.5(4),14.5(3)
28-Ni-64,1.08,0,-0.37(7),,,,0.017(7),0,0.017(7),1.52(3)
29-Cu,,,7.718(4),,,,7.485(8),0.55(3),8.03(3),3.78(2)
29-Cu-63,69.1,3/2,6.477(13),,,+/-,5.2(2),0.006(1),5.2(2),4.50(2)
29-Cu-65,30.9,3/2,10.204(20),,,+/-,14.1(5),0.40(4),14.5(5),2.17(3)
30-Zn,,,5.680(5),,,,4.054(7),0.077(7),4.131(10),1.11(2)
30-Zn-64,48.9,0,5.23(4),,,,3.42(5),0,3.42(5),0.93(9)
30-Zn-66,27.8,0,5.98(5),,,,4.48(8),0,4.48(8),0.62(6)
30-Zn-67,4.1,5/2,7.58(8),5.8(5),10.1(7),+/-,7.18(15),0.28(3),7.46(15),6.8(8)
30-Zn-68,18.6,0,6.04(3),,,,4.57(5),0,4.57(5),1.1(1)
30-Zn-70,0.62,0,6.0(1.0)*,,,,4.5(1.5),0,4.5(1.5),0.092(5)
31-Ga,,,7.288(2),,,,6.675(4),0.16(3),6.83(3),2.75(3)
31-Ga-69,60,3/2,8.043(16),6.3(2),10.5(4),+/-,7.80(4),0.091(11),7.89(4),2.18(5)
31-Ga-71,40,3/2,6.170(11),5.5(6),7.8(1),+/-,5.15(5),0.084(8),5.23(5),3.61(10)
32-Ge,,,8.185(20),,,,8.42(4),0.18(7),8.60(6),2.20(4)
32-Ge-70,20.7,0,10.0(1),,,,12.6(3),0,12.6(3),3.0(2)
32-Ge-72,27.5,0,8.51(10),,,,9.1(2),0,9.1(2),0.8(2)
32-Ge-73,7.7,9/2,5.02(4),8.1(4),1.2(4),,3.17(5),1.5(3),4.7(3),15.1(4)
32-Ge-74,36.4,0,7.58(10),,,,7.2(2),0,7.2(2),0.4(2)
32-Ge-76,7.7,0,8.2(1.5),,,,8.0(3.0),0,8.0(3.0),0.16(2)
33-As-75,100,3/2,6.58(1),6.04(5),7.47(8),+/-,5.44(2),0.060(10),5.50(2),4.5(1)
34-Se,,,7.970(9),,,,7.98(2),0.32(6),8.30(6),11.7(2)
34-Se-74,0.9,0,0.8(3.0),,,,0.1(6),0,0.1(6),51.8(1.2)
34-Se-76,9,0,12.2(1),,,,18.7(3),0,18.7(3),85.0(7.0)
34-Se-77,7.5,0,8.25(8),,,,8.6(2),0.05(25),8.65(16),42.0(4.0)
34-Se-78,23.5,0,8.24(9),,,,8.5(2),0,8.5(2),0.43(2)
34-Se-80,50,0,7.48(3),,,,7.03(6),0,7.03(6),0.61(5)
34-Se-82,8.84,0,6.34(8),,,,5.05(13),0,5.05(13),0.044(3)
35-Br,,,6.79(2),,,,5.80(3),0.10(9),5.90(9),6.9(2)
35-Br-79,50.49,3/2,6.79(7),,,+/-,5.81(2),0.15(6),5.96(13),11.0(7)
35-Br-81,49.31,3/2,6.78(7),,,+/-,5.79(12),0.05(2),5.84(12),2.7(2)
36-Kr,,,7.81(2),,,,7.67(4),0.01(14),7.685(26),25.0(1.0)
36-Kr-78,0.35,0,,,,,,0,,6.4(9)
36-Kr-80,2.5,0,,,,,,0,,11.8(5)
36-Kr-82,11.6,0,,,,,,0,,29.0(20.0)
36-Kr-83,11.5,9/2,,,,,,,,185.0(30.0)
36-Kr-84,57,0,,,,,,0,6.6,0.113(15)
36-Kr-86,17.3,0,8.07(26),,,,8.2(4),0,8.2(4),0.003(2)
37-Rb,,,7.08(2),,,,6.32(4),0.5(4),6.8(4),0.38(1)
37-Rb-85,72.17,5/2,7.07(10),,,,6.2(2),0.5(5)*,6.7(5),0.48(1)
37-Rb-87,27.83,3/2,7.27(12),,,,6.6(2),0.5(5)*,7.1(5),0.12(3)
38-Sr,,,7.02(2),,,,6.19(4),0.06(11),6.25(10),1.28(6)
38-Sr-84,0.56,0,5.0(2.0),,,,6.0(2.0),0,6.0(2.0),0.87(7)
38-Sr-86,9.9,0,5.68(5),,,,4.04(7),0,4.04(7),1.04(7)
38-Sr-87,7,9/2,7.41(7),,,,6.88(13),0.5(5)*,7.4(5),16.0(3.0)
38-Sr-88,82.6,0,7.16(6),,,,6.42(11),0,6.42(11),0.058(4)
39-Y-89,100,1/2,7.75(2),8.4(2),5.8(5),+/-,7.55(4),0.15(8),7.70(9),1.28(2)
40-Zr,,,7.16(3),,,,6.44(5),0.02(15),6.46(14),0.185(3)
40-Zr-90,51.48,0,6.5(1),,,,5.1(2),0,5.1(2),0.011(5)
40-Zr-91,11.23,5/2,8.8(1),7.9(2),10.1(2),+/-,9.5(2),0.15(4),9.7(2),1.17(10)
40-Zr-92,17.11,0,7.5(2),,,,6.9(4),0,6.9(4),0.22(6)
40-Zr-94,17.4,0,8.3(2),,,,8.4(4),0,8.4(4),0.0499(24)
40-Zr-96,2.8,0,5.5(1),,,,3.8(1),0,3.8(1),0.0229(10)
41-Nb-93,100,9/2,7.054(3),7.06(4),7.35(4),+/-,6.253(5),0.0024(3),6.255(5),1.15(6)
42-Mo,,,6.715(20),,,,5.67(3),0.04(5),5.71(4),2.48(4)
42-Mo-92,15.48,0,6.93(8),,,,6.00(14),0,6.00(14),0.019(2)
42-Mo-94,9.1,0,6.82(7),,,,5.81(12),0,5.81(12),0.015(2)
42-Mo-95,15.72,5/2,6.93(7),,,,6.00(10),0.5(5)*,6.5(5),13.1(3)
42-Mo-96,16.53,0,6.22(6),,,,4.83(9),0,4.83(9),0.5(2)
42-Mo-97,9.5,5/2,7.26(8),,,,6.59(15),0.5(5)*,7.1(5),2.5(2)
42-Mo-98,23.78,0,6.60(7),,,,5.44(12),0,5.44(12),0.127(6)
42-Mo-100,9.6,0,6.75(7),,,,5.69(12),0,5.69(12),0.4(2)
43-Tc-99,210000 Y,9/2,6.8(3),,,,5.8(5),0.5(5)*,6.3(7),20.0(1.0)
44-Ru,,,7.02(2),,,,6.21(5),0.4(1),6.6(1),2.56(13)
44-Ru-96,5.8,0,,,,,,0,,0.28(2)
44-Ru-98,1.9,0,,,,,,0,,<8.0
44-Ru-99,12.7,5/2,,,,,,,,6.9(1.0)
44-Ru-100,12.6,0,,,,,,0,,4.8(6)
44-Ru-101,17.07,5/2,,,,,,,,3.3(9)
44-Ru-102,31.61,0,,,,,,0,,1.17(7)
44-Ru-104,18.58,0,,,,,,0,,0.31(2)
45-Rh-103,100,1/2,5.90(4),8.15(6),6.74(6),,4.34(6),0.3(3)*,4.6(3),144.8(7)
46-Pd,,,5.91(6),,,,4.39(9),0.093(9),4.48(9),6.9(4)
46-Pd-102,1,0,7.7(7)*,,,,7.5(1.4),0,7.5(1.4),3.4(3)
46-Pd-104,11,0,7.7(7)*,,,,7.5(1.4),0,7.5(1.4),0.6(3)
46-Pd-105,22.33,5/2,5.5(3),,,+/-,3.8(4),0.8(1.0),4.6(1.1),20.0(3.0)
46-Pd-106,27.33,0,6.4(4),,,,5.1(6),0,5.1(6),0.304(29)
46-Pd-108,26.71,0,4.1(3),,,,2.1(3),0,2.1(3),8.5(5)
46-Pd-110,11.8,0,7.7(7)*,,,,7.5(1.4),0,7.5(1.4),0.226(31)
47-Ag,,,5.922(7),,,,4.407(10),0.58(3),4.99(3),63.3(4)
47-Ag-107,51.8,1/2,7.555(11),8.14(9),5.8(3),+/-,7.17(2),0.13(3),7.30(4),37.6(1.2)
47-Ag-109,48.2,1/2,4.165(11),3.24(8),6.9(2),+/-,2.18(1),0.32(5),2.50(5),91.0(1.0)
48-Cd,,,4.83(5),,,E,3.04(6),3.46(13),6.50(12),2520.0(50.0)
48-Cd-106,1.2,0,5.0(2.0)*,,,,3.1(2.5),0,3.1(2.5),1.0(2.0)
48-Cd-108,0.9,0,5.31(24),,,,3.7(1),0,3.7(1),1.1(3)
48-Cd-110,12.39,0,5.78(8),,,,4.4(1),0,4.4(1),11.0(1.0)
48-Cd-111,12.75,1/2,6.47(8),,,,5.3(2),0.3(3)*,5.6(4),24.0(5.0)
48-Cd-112,24.07,0,6.34(6),,,,5.1(2),0,5.1(2),2.2(5)
48-Cd-113,12.36,1/2,-8.0(1),,,E,12.1(4),0.3(3)*,12.4(5),20600.0(400.0)
48-Cd-114,28.86,0,7.48(5),,,,7.1(2),0,7.1(2),0.34(2)
48-Cd-116,7.58,0,6.26(9),,,,5.0(2),0,5.0(2),0.075(13)
49-In,,,4.065(20),,,,2.08(2),0.54(11),2.62(11),193.8(1.5)
49-In-113,4.28,9/2,5.39(6),,,,3.65(8),0.000037(5),3.65(8),12.0(1.1)
49-In-115,95.72,9/2,4.00(3),2.1(1),6.4(4),,2.02(2),0.55(11),2.57(11),202.0(2.0)
50-Sn,,,6.2239(13),,,,4.871(3),0.022(5),4.892(6),0.626(9)
50-Sn-112,1,0,6.0(1.0)*,,,,4.5(1.5),0,4.5(1.5),1.00(11)
50-Sn-114,0.66,0,6.0(3),,,,4.8(5),0,4.8(5),0.114(30)
50-Sn-115,0.35,1/2,6.0(1.0)*,,,,4.5(1.5),0.3(3)*,4.8(1.5),30.0(7.0)
50-Sn-116,14.3,0,6.10(1),,,,4.42(7),0,4.42(7),0.14(3)
50-Sn-117,7.61,1/2,6.59(8),0.22(10),-0.23(10),,5.28(8),0.3(3)*,5.6(3),2.3(5)
50-Sn-118,24.03,0,6.23(4),,,,4.63(8),0,4.63(8),0.22(5)
50-Sn-119,8.58,1/2,6.28(3),0.14(10),0.0(1),,4.71(8),0.3(3)*,5.0(3),2.2(5)
50-Sn-120,32.86,0,6.67(4),,,,5.29(8),0,5.29(8),0.14(3)
50-Sn-122,4.72,0,5.93(3),,,,4.14(7),0,4.14(7),0.18(2)
50-Sn-124,5.94,0,6.15(3),,,,4.48(8),0,4.48(8),0.133(5)
51-Sb,,,5.57(3),,,,3.90(4),0.00(7),3.90(6),4.91(5)
51-Sb-121,57.25,5/2,5.71(6),5.7(2),5.8(2),,4.10(9),0.0003(19),4.10(19),5.75(12)
51-Sb-123,42.75,7/2,5.38(7),5.2(2),5.4(2),,3.64(9),0.001(4),3.64(9),3.8(2)
52-Te,,,5.68(2),,,,4.23(4),0.09(6),4.32(5),4.7(1)
52-Te-120,0.09,0,5.3(5),,,,3.5(7),0,3.5(7),2.3(3)
52-Te-122,2.4,0,3.8(2),,,,1.8(2),0,1.8(2),3.4(5)
52-Te-123,0.87,1/2,-0.05(25),-1.2(2),3.5(2),,0.002(3),0.52(5),0.52(5),418.0(30.0)
52-Te-124,4.61,0,7.95(10),,,,8.0(2),0,8.0(2),6.8(1.3)
52-Te-125,6.99,1/2,5.01(8),4.9(2),5.5(2),,3.17(10),0.008(8),3.18(10),1.55(16)
52-Te-126,18.71,0,5.55(7),,,,3.88(10),0,3.88(10),1.04(15)
52-Te-128,31.79,0,5.88(8),,,,4.36(10),0,4.36(10),0.215(8)
52-Te-130,34.48,0,6.01(7),,,,4.55(11),0,4.55(11),0.29(6)
53-I-127,100,5/2,5.28(2),6.6(2),3.4(2),,3.50(3),0.31(6),3.81(7),6.15(6)
54-Xe,,,4.69(4),,,,3.04(4),0,4.344(17),23.9(1.2)
54-Xe-124,0.1,0,,,,,,0,,165.0(20.0)
54-Xe-126,0.09,0,,,,,,0,,3.5(8)
54-Xe-128,1.9,0,,,,,,0,,<8.0
54-Xe-129,26.14,1/2,,,,,,,,21.0(5.0)
54-Xe-130,3.3,0,,,,,,0,,<26.0
54-Xe-131,21.18,3/2,,,,,,,,85.0(10.0)
54-Xe-132,26.89,0,,,,,,0,,0.45(6)
54-Xe-134,10.4,0,,,,,,0,,0.265(20)
54-Xe-136,8.9,0,,,,,,0,,0.26(2)
55-Cs-133,100,7/2,5.42(2),,,+/-,3.69(15),0.21(5),3.90(6),29.0(1.5)
56-Ba,,,5.07(3),,,,3.23(4),0.15(11),3.38(10),1.1(1)
56-Ba-130,0.1,0,-3.6(6),,,,1.6(5),0,1.6(5),30.0(5.0)
56-Ba-132,0.09,0,7.8(3),,,,7.6(6),0,7.6(6),7.0(8)
56-Ba-134,2.4,0,5.7(1),,,,4.08(14),0,4.08(14),2.0(1.6)
56-Ba-135,6.59,3/2,4.66(10),,,,2.74(12),0.5(5)*,3.2(5),5.8(9)
56-Ba-136,7.81,0,4.90(8),,,,3.03(10),0,3.03(10),0.68(17)
56-Ba-137,11.32,3/2,6.82(10),,,,5.86(17),0.5(5)*,6.4(5),3.6(2)
56-Ba-138,71.66,0,4.83(8),,,,2.94(10),0,2.94(10),0.27(14)
57-La,,,8.24(4),,,,8.53(8),1.13(19),9.66(17),8.97(2)
57-La-138,0.09,5,8.0(2.0)*,,,,8.0(4.0),0.5(5)*,8.5(4.0),57.0(6.0)
57-La-139,99.91,7/2,8.24(4),11.4(3),4.5(4),+/-,8.53(8),1.13(15),9.66(17),8.93(4)
58-Ce,,,4.84(2),,,,2.94(2),0.00(10),2.94(10),0.63(4)
58-Ce-136,0.19,0,5.76(9),,,,4.23(13),0,4.23(13),7.3(1.5)
58-Ce-138,0.26,0,6.65(9),,,,5.64(15),0,5.64(15),1.1(3)
58-Ce-140,88.48,0,4.81(9),,,,2.94(11),0,2.94(11),0.57(4)
58-Ce-142,11.07,0,4.72(9),,,,2.84(11),0,2.84(11),0.95(5)
59-Pr-141,100,5/2,4.58(5),,,+/-,2.64(6),0.015(3),2.66(6),11.5(3)
60-Nd,,,7.69(5),,,,7.43(19),9.2(8),16.6(8),50.5(1.2)
60-Nd-142,27.11,0,7.7(3),,,,7.5(6),0,7.5(6),18.7(7)
60-Nd-143,12.17,7/2,14.0(2.0)*,,,,25.0(7.0),55.0(7.0),80.0(2.0),337.0(10.0)
60-Nd-144,23.85,0,2.8(3),,,,1.0(2),0,1.0(2),3.6(3)
60-Nd-145,8.5,7/2,14.0(2.0)*,,,,25.0(7.0),5.0(5.0)*,30.0(9.0),42.0(2.0)
60-Nd-146,17.22,0,8.7(2),,,,9.5(4),0,9.5(4),1.4(1)
60-Nd-148,5.7,0,5.7(3),,,,4.1(4),0,4.1(4),2.5(2)
60-Nd-150,5.6,0,5.28(20),,,,3.5(3),0,3.5(3),1.2(2)
61-Pm-147,2.62 Y,7/2,12.6(4),,,,20.0(1.3),1.3(2.0),21.3(1.5),168.4(3.5)
62-Sm,,,0.00(5),,,E,0.422(9),39.0(3.0),39.4(3.0),5922.0(56.0)
62-Sm-144,3.1,0,-3.0(4.0)*,,,,1.0(3.0),0,1.0(3.0),0.7(3)
62-Sm-147,15,7/2,14.0(3.0),,,,25.0(11.0),14.0(19.0),39.0(16.0),57.0(3.0)
62-Sm-148,11.2,0,-3.0(4.0)*,,,,1.0(3.0),0,1.0(3.0),2.4(6)
62-Sm-149,13.8,7/2,18.7(28),,,E,63.5(6),137.0(5.0),200.0(5.0),42080.0(400.0)
62-Sm-150,7.4,0,14.0(3.0),,,,25.0(11.0),0,25.0(11.0),104.0(4.0)
62-Sm-152,26.7,0,-5.0(6),,,,3.1(8),0,3.1(8),206.0(6.0)
62-Sm-154,22.8,0,8.97(6),,,,11.0(2.0),0,11.0(2.0),8.4(5)
63-Eu,,,5.3(3),,,E,6.57(4),2.5(4),9.2(4),4530.0(40.0)
63-Eu-151,47.8,5/2,6.92(15),,,E,5.5(2),3.1(4),8.6(4),9100.0(100.0)
63-Eu-153,52.8,5/2,8.85(3),,,,8.5(2),1.3(7),9.8(7),312.0(7.0)
64-Gd,,,9.5(2),,,E,29.3(8),151.0(2.0),180.0(2.0),49700.0(125.0)
64-Gd-152,0.2,0,10.0(3.0)*,,,,13.0(8.0),0,13.0(8.0),735.0(20.0)
64-Gd-154,2.2,0,10.0(3.0)*,,,,13.0(8.0),0,13.0(8.0),85.0(12.0)
64-Gd-155,14.9,3/2,13.8(3),,,E,40.8(4),25.0(6.0),66.0(6.0),61100.0(400.0)
64-Gd-156,20.6,0,6.3(4),,,,5.0(6),0,5.0(6),1.5(1.2)
64-Gd-157,15.7,3/2,4.0(2.0),,,E,650.0(4.0),394.0(7.0),1044.0(8.0),259000.0(700.0)
64-Gd-158,24.7,0,9.0(2.0),,,,10.0(5.0),0,10.0(5.0),2.2(2)
64-Gd-160,21.7,0,9.15(5),,,,10.52(11),0,10.52(11),0.77(2)
65-Tb-159,100,3/2,7.34(2),6.8(2),8.1(2),+/-,6.84(6),0.004(3),6.84(6),23.4(4)
66-Dy,,,16.9(3),,,,35.9(8),54.4(1.2),90.3(9),994.0(13.0)
66-Dy-156,0.06,0,6.1(5),,,,4.7(8),0,4.7(8),33.0(3.0)
66-Dy-158,0.1,0,6.0(4.0)*,,,,5.0(6.0),0,5.(6.),43.0(6.0)
66-Dy-160,2.3,0,6.7(4),,,,5.6(7),0,5.6(7),56.0(5.0)
66-Dy-161,18.9,5/2,10.3(4),,,,13.3(1.0),3.0(1.0),16.0(1.0),600.0(25.0)
66-Dy-162,25.5,0,-1.4(5),,,,0.25(18),0,0.25(18),194.0(10.0)
66-Dy-163,24.9,5/2,5.0(4),6.1(5),3.5(5),,3.1(5),0.21(19),3.3(5),124.0(7.0)
66-Dy-164,28.2,0,49.4(5),,,,307.0(3.0),0,307.0(3.0),2840.0(40.0)
67-Ho-165,100,7/2,8.44(3),6.9(2),10.3(2),+/-,8.06(8),0.36(3),8.42(16),64.7(1.2)
68-Er,,,7.79(2),,,,7.63(4),1.1(3),8.7(3),159.0(4.0)
68-Er-162,0.14,0,9.01(11),,,,9.7(4),0,9.7(4),19.0(2.0)
68-Er-164,1.6,0,7.95(14),,,,8.4(4),0,8.4(4),13.0(2.0)
68-Er-166,33.4,0,10.51(19),,,,14.1(5),0,14.1(5),19.6(1.5)
68-Er-167,22.9,7/2,3.06(5),5.3(3),0.0(3),,1.1(2),0.13(6),1.2(2),659.0(16.0)
68-Er-168,27,0,7.43(8),,,,6.9(7),0,6.9(7),2.74(8)
68-Er-170,15,0,9.61(6),,,,11.6(1.2),0,11.6(1.2),5.8(3)
69-Tm-169,100,1/2,7.07(3),,,+/-,6.28(5),0.10(7),6.38(9),100.0(2.0)
70-Yb,,,12.41(3),,,,19.42(9),4.0(2),23.4(2),34.8(8)
70-Yb-168,0.14,0,-4.07(2),,,E,2.13(2),0,2.13(2),2230.0(40.0)
70-Yb-170,3,0,6.8(1),,,,5.8(2),0,5.8(2),11.4(1.0)
70-Yb-171,14.3,1/2,9.7(1),6.5(2),19.4(4),,11.7(2),3.9(2),15.6(3),48.6(2.5)
70-Yb-172,21.9,0,9.5(1),,,,11.2(2),0,11.2(2),0.8(4)
70-Yb-173,16.3,5/2,9.56(10),2.5(2),13.3(3),,11.5(2),3.5,15,17.1(1.3)
70-Yb-174,31.8,0,19.2(1),,,,46.8(5),0,46.8(5),69.4(5.0)
70-Yb-176,12.7,0,8.7(1),,,,9.6(2),0,9.6(2),2.85(5)
71-Lu,,,7.21(3),,,,6.53(5),0.7(4),7.2(4),74.0(2.0)
71-Lu-175,97.4,7/2,7.28(9),,,,6.59(5),0.6(4),7.2(4),21.0(3.0)
71-Lu-176,2.6,7,6.1(2),,,,4.7(2),1.2(3),5.9,2065.(35.)
72-Hf,,,7.77(14),,,,7.6(3),2.6(5),10.2(4),104.1(5)
72-Hf-174,0.184,0,10.9(1.1),,,,15.0(3.0),0,15.0(3.0),561.0(35.0)
72-Hf-176,5.2,0,6.61(18),,,,5.5(3),0,5.5(3),23.5(3.1)
72-Hf-177,18.5,0,0.8(1.0)*,,,,0.1(2),0.1(3),0.2(2),373.0(10.0)
72-Hf-178,27.2,0,5.9(2),,,,4.4(3),0,4.4(3),84.0(4.0)
72-Hf-179,13.8,9/2,7.46(16),,,,7.0(3),0.14(2),7.1(3),41.0(3.0)
72-Hf-180,35.1,0,13.2(3),,,,21.9(1.0),0,21.9(1.0),13.04(7)
73-Ta,,,6.91(7),,,,6.00(12),0.01(17),6.01(12),20.6(5)
73-Ta-180,0.012,9,7.0(2.0)*,,,,6.2(3.5),0.5(5)*,7.0(4.0),563.0(60.0)
73-Ta-181,99.98,7/2,6.91(7),,,+/-,6.00(12),0.011(2),6.01(12),20.5(5)
74-W,,,4.755(18),,,,2.97(2),1.63(6),4.60(6),18.3(2)
74-W-180,0.13,0,5.0(3.0)*,,,,3.0(4.0),0,3.0(4.0),30.0(20.0)
74-W-182,26.3,1/2,7.04(4),,,,6.10(7),0,6.10(7),20.7(5)
74-W-183,14.3,1/2,6.59(4),6.3(4),7.0(4),,5.36(7),0.3(3)*,5.7(3),10.1(3)
74-W-184,30.7,0,7.55(6),,,,7.03(11),0,7.03(11),1.7(1)
74-W-186,28.6,0,-0.73(4),,,,0.065(7),0,0.065(7),37.9(6)
75-Re,,,9.2(2),,,,10.6(5),0.9(6),11.5(3),89.7(1.0)
75-Re-185,37.5,5/2,9.0(3),,,,10.2(7),0.5(9),10.7(6),112.0(2.0)
75-Re-187,62.5,5/2,9.3(3),,,,10.9(7),1.0(6),11.9(4),76.4(1.0)
76-Os,,,10.7(2),,,,14.4(5),0.3(8),14.7(6),16.0(4.0)
76-Os-184,0.02,0,10.0(2.0)*,,,,13.0(5.0),0,13.0(5.0),3000.0(150.0)
76-Os-186,1.6,0,12.0(1.7),,,,17.0(5.0),0,17.0(5.0),80.0(13.0)
76-Os-187,1.6,1/2,10.0(2.0)*,,,,13.0(5.0),0.3(3)*,13.0(5.0),320.0(10.0)
76-Os-188,13.3,0,7.8(3),,,,7.3(6),0,7.3(6),4.7(5)
76-Os-189,16.1,3/2,11.0(3),,,,14.4(8),0.5(5)*,14.9(9),25.0(4.0)
76-Os-190,26.4,0,11.4(3),,,,15.2(8),0,15.2(8),13.1(3)
76-Os-192,41,0,11.9(4),,,,16.6(1.2),0,16.6(1.2),2.0(1)
77-Ir,,,10.6(3),,,,14.1(8),0.0(3.0),14.0(3.0),425.0(2.0)
77-Ir-191,37.4,3/2,12.1(9),,,,,,,954.0(10.0)
77-Ir-193,62.6,3/2,9.71(18),,,,,,,111.0(5.0)
78-Pt,,,9.60(1),,,,11.58(2),0.13(11),11.71(11),10.3(3)
78-Pt-190,0.01,0,9.0(1.0),,,,10.0(2.0),0,10.0(2.0),152.0(4.0)
78-Pt-192,1.78,0,9.9(5),,,,12.3(1.2),0,12.3(1.2),10.0(2.5)
78-Pt-194,32.9,0,10.55(8),,,,14.0(2),0,14.0(2),1.44(19)
78-Pt-195,33.8,1/2,8.91(9),9.5(3),7.2(3),+/-,9.8(2),0.13(4),9.9(2),27.5(1.2)
78-Pt-196,25.3,0,9.89(8),,,,12.3(2),0,12.3(2),0.72(4)
78-Pt-198,7.2,0,7.8(1),,,,7.6(2),0,7.6(2),3.66(19)
79-Au-197,100,3/2,7.90(7),6.26(10),9.90(14),+/-,7.32(12),0.43(5),7.75(13),98.65(9)
80-Hg,,,12.595(45),,,,20.24(5),6.6(1),26.8(1),372.3(4.0)
80-Hg-196,0.15,0,30.3(1.0),,,E,115.0(8.0),0,115.0(8.0),3080.0(180.0)
80-Hg-198,10.1,0,,,,,,0,,2.0(3)
80-Hg-199,16.9,0,16.9(4),,,E,36.0(2.0),30.0(3.0),66.0(2.0),2150.0(48.0)
80-Hg-200,23.1,0,,,,,,0,,<60.0
80-Hg-201,13.2,3/2,,,,,,,,7.8(2.0)
80-Hg-202,29.7,0,11.002(43),,,,15.2108(2),0,15.2108(2),4.89(5)
80-Hg-204,6.8,0,,,,,,0,,0.43(10)
81-Tl,,,8.776(5),,,,9.678(11),0.21(15),9.89(15),3.43(6)
81-Tl-203,29.5,1/2,8.51(8),9.08(10),6.62(10),,6.14(28),0.14(4),6.28(28),11.4(2)
81-Tl-205,70.5,1/2,8.87(7),5.15(10),9.43(10),+/-,11.39(17),0.007(1),11.40(17),0.104(17)
82-Pb,,,9.4024(13),,,,11.115(7),0.0030(7),11.118(7),0.171(2)
82-Pb-204,1.4,0,10.893(78),,,,12.3(2),0,12.3(2),0.65(7)
82-Pb-206,24.1,0,9.221(78),,,,10.68(12),0,10.68(12),0.0300(8)
82-Pb-207,22.1,1/2,9.286(16),,,+/-,10.82(9),0.002(2),10.82(9),0.699(10)
82-Pb-208,52.4,0,9.494(30),,,,11.34(5),0,11.34(5),0.00048(3)
83-Bi-209,100,9/2,8.5242(18),8.26(1),8.74(1),,9.148(4),0.0084(19),9.156(4),0.0338(7)
88-Ra-226,1620 Y,0,10.0(1.0),,,,13.0(3.0),0,13.0(3.0),12.8(1.5)
90-Th-232,100,0,10.31(3),,,,13.36(8),0,13.36(8),7.37(6)
91-Pa-231,32500 Y,3/2,9.1(3),,,,10.4(7),0.1(3.3),10.5(3.2),200.6(2.3)
92-U,,,8.417(5),,,,8.903(11),0.005(16),8.908(11),7.57(2)
92-U-233,159000 Y,5/2,10.1(2),,,,12.8(5),0.1(6),12.9(3),574.7(1.0)
92-U-234,0.005,0,12.4(3),,,,19.3(9),0,19.3(9),100.1(1.3)
92-U-235,0.72,7/2,10.50(3),,,,13.78(11),0.2(2),14.0(2),680.9(1.1)
92-U-238,99.27,0,8.407(7),,,,8.871(11),0,8.871(11),2.68(2)
93-Np-237,2140000 Y,5/2,10.55(10),,,,14.0(3),0.5(5)*,14.5(6),175.9(2.9)
94-Pu-239,24400 Y,1/2,7.7(1),,,,7.5(2),0.2(6),7.7(6),1017.3(2.1)
94-Pu-240,6540 Y,0,3.5(1),,,,1.54(9),0,1.54(9),289.6(1.4)
94-Pu-242,376000 Y,0,8.1(1),,,,8.2(2),0,8.2(2),18.5(5)
95-Am-243,7370 Y,5/2,8.3(2),,,,8.7(4),0.3(2.6),9.0(2.6),75.3(1.8)
96-Cm-244,17.9 Y,0,9.5(3),,,,11.3(7),0,11.3(7),16.2(1.2)
96-Cm-246,4700 Y,0,9.3(2),,,,10.9(5),0,10.9(5),1.36(17)
96-Cm-248,340000 Y,0,7.7(2),,,,7.5(4),0,7.5(4),3.00(26)\
"""

# Imaginary values for select isotopes
# isotope, b_c_i, bp_i, bm_i
nsftableI = """\
2-He-3,-1.48,,-5.925
3-Li-6,-0.26,-0.08(1),-0.62(2)
5-B,-0.21,,
47-Ag-107,-0.01,,
47-Ag-109,-0.025,,
48-Cd,-1.2,,
48-Cd-113,-12,,
49-In,-0.054,,
49-In-115,-0.056,,
52-Te-123,-0.1,,
62-Sm,-1.5,,
62-Sm-149,-11,,
64-Gd,-13.6,,
64-Gd-155,-10.3,,
71-Lu-176,-0.57(2),,
80-Hg-196,-0.8,,\
"""
# Excluding the following because the measurements for the real parts
# were not used in nsftable table.
# 63-Eu-151,-2.46,,
# 64-Gd-157,-47,-75,

def fix_number(str):
    """
    Converts strings of the form e.g., 35.24(2)* into numbers without
    uncertainty. Also accepts a limited range, e.g., <1e-6, which is
    converted as 1e-6.  Missing values are set to 0.
    """
    from .util import parse_uncertainty
    return parse_uncertainty(str.replace('<','').replace('*',''))[0]

def sld_table(wavelength=1, table=None, isotopes=True):
    r"""
    Scattering length density table for wavelength 4.75 |Ang|.

    :Parameters:

        *table* \: PeriodicTable
            If *table* is not specified, use the common periodic table.

        *isotopes* = True \: boolean
            Whether to consider isotopes or not.

    :Returns: None

    Example

        >>> sld_table(wavelength=4.75)  # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE
         Neutron scattering length density table
        atom       mass density     sld    imag   incoh
        H         1.008   0.071  -1.582   0.000  10.690
        1-H       1.008   0.071  -1.582   0.000  10.691
        D         2.014   0.141   2.820   0.000   1.709
        T         3.016   0.212   2.027   0.000   0.453
        He        4.003   0.122   0.569   0.000   0.003
        3-He      3.016   0.092   1.054   0.272   0.652 *
        4-He      4.003   0.122   0.569   0.000   0.000
           ...
        248-Cm  248.072  13.569   2.536   0.000   0.207
        * Energy dependent cross sections
    """
    table = default_table(table)
    # Table for comparison with scattering length density calculators
    # b_c for Sc, Te, Xe, Sm, Eu, Gd, W, Au, Hg are different from Neutron News
    # The Rauch data have cited references to back up the numbers
    # (see doc directory), though it is not clear what criteria are
    # used to select amongst the available measurements.
    print(" Neutron scattering length density table")
    print("%-7s %7s %7s %7s %7s %7s"
          %('atom', 'mass', 'density', 'sld', 'imag', 'incoh'))
    for el in table:
        if el.neutron.has_sld():
            coh, jcoh, inc = el.neutron.sld(wavelength=wavelength)
            print("%-7s %7.3f %7.3f %7.3f %7.3f %7.3f%s"
                  %(el, el.mass, el.density, coh, jcoh, inc,
                    ' *' if el.neutron.is_energy_dependent else ''))
            if isotopes:
                isos = [iso for iso in el if iso.neutron is not None and iso.neutron.has_sld()]
            else:
                isos = []
            for iso in isos:
                coh, jcoh, inc = iso.neutron.sld(wavelength=wavelength)
                print("%-7s %7.3f %7.3f %7.3f %7.3f %7.3f%s"
                      %(iso, iso.mass, iso.density, coh, jcoh, inc,
                        ' *' if iso.neutron.is_energy_dependent else ''))
    print("* Energy dependent cross sections")

def energy_dependent_table(table=None):
    r"""
    Prints a table of energy dependent isotopes.

    :Parameters:
        *table* \: PeriodicTable
            If *table* is not specified, use the common periodic table.

    :Returns: None

    Example

        >>> energy_dependent_table()
        Elements and isotopes with energy dependent absorption:
            He-3
            Cd Cd-113
            Sm Sm-149
            Eu Eu-151
            Gd Gd-155 Gd-157
            Yb-168
            Hg-196 Hg-199
    """
    table = default_table(table)
    # List of energy dependent elements and isotopes
    print("Elements and isotopes with energy dependent absorption:")
    for el in table:
        if not hasattr(el, 'neutron'):
            continue
        dep = []
        if el.neutron.is_energy_dependent:
            dep += [str(el)]
        dep += [str(el)+'-'+str(iso.isotope)
                for iso in el
                if iso.neutron is not None and iso.neutron.is_energy_dependent]
        if dep:
            print("    " + " ".join(dep))

def _diff(iso, a, b, tol=0.01):
    if None in (a, b):
        if a is not None or b is not None:
            if a is None and b > tol:
                print("%10s %8s %8.2f"%(iso, "----", b))
            elif b is None and a > tol:
                print("%10s %8.2f %8s"%(iso, a, "----"))
    # Tricky code: Using tolerance of -tol selects for items within tolerance
    # rather than outside tolerance by using -|a-b| > -tol.
    elif np.sign(tol)*abs(a - b) > tol:
        print("%10s %8.2f %8.2f %5.1f%%"
              % (iso, a, b, (100*(a-b)/b if b != 0 else inf)))

def compare(fn1, fn2, table=None, tol=0.01):
    table = default_table(table)
    for el in table:
        try:
            res1 = fn1(el)
        except Exception:
            res1 = None
        try:
            res2 = fn2(el)
        except Exception:
            res2 = None
        _diff(el, res1, res2, tol=tol)
        for iso in el:
            # Don't show isotope details if the isotope defers to the natural
            # natural abundance for its value.
            if 'neutron' not in iso.__dict__:
                #print("dict has", iso.__dict__.keys())
                continue
            try:
                res1 = fn1(iso)
            except Exception:
                res1 = None
            try:
                res2 = fn2(iso)
            except Exception:
                res2 = None
            _diff(iso, res1, res2, tol=tol)

def absorption_comparison_table(table=None, tol=None):
    r"""
    Prints a table comparing absorption to the imaginary bound coherent
    scattering length b_c_i.  This is used to checking the integrity
    of the data and formula.

    The relationship between absorption and b_c_i is:

    .. math::

        \sigma_a = -2 \lambda \mathrm{Im}(b_c) \cdot 1000

    The wavelength $\lambda = 1.798$ |Ang| is the neutron wavelength at which
    the absorption is tallied. The factor of 1000 transforms from
    |Ang|\ |cdot|\ fm to barn.

    :Parameters:
        *table* \: PeriodicTable
            The default periodictable unless a specific table has been requested.
        *tol* = 0.01 \: float | barn
            Show differences greater than this amount.

    :Returns: None

    Example

        >>> absorption_comparison_table (tol=0.5) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE
        Comparison of absorption and (-2000 lambda b_c_i)
              3-He  5333.00  5322.08   0.2%
                Li    70.50     ----
              6-Li   940.00   934.96   0.5%
                 B   767.00   755.16   1.6%
              10-B  3835.00     ----
                 N     1.90     ----
           ...

    """

    print("Comparison of absorption and (-2000 lambda b_c_i)")
    compare(lambda el: el.neutron.absorption,
            lambda el: -2000*el.neutron.b_c_i*ABSORPTION_WAVELENGTH,
            table=table, tol=tol)

def coherent_comparison_table(table=None, tol=None):
    r"""
    Prints a table of $4 \pi |b_c|^2/100$ and coherent for each isotope.
    This is useful for checking the integrity of the data and formula.

    The table only prints where b_c exists.

    :Parameters:
        *table* \: PeriodicTable
            The default periodictable unless a specific table has been requested.
        *tol* = 0.01 \: float | barn
            Amount of difference to show. Use -tol to show elements within
            tolerance rather than those outside tolerance.

    :Returns: None

    Example

        >>> coherent_comparison_table (tol=0.5) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE
        Comparison of (4 pi |b_c|^2/100) and coherent
                Sc    18.40    19.00  -3.2%
             45-Sc    18.40    19.00  -3.2%
             65-Cu    13.08    14.10  -7.2%
             84-Sr     3.14     6.00 -47.6%
           ...

    """
    print("Comparison of (4 pi |b_c|^2/100) and coherent")
    sigma_c = lambda el: 4*pi/100*abs(el.neutron.b_c_complex)**2
    compare(sigma_c, lambda el: el.neutron.coherent, table=table, tol=tol)

def total_comparison_table(table=None, tol=None):
    r"""
    Prints a table of neutron.total and sum coh,inc for each
    isotope where these exist.  This is used to checking the integrity
    of the data and formula.

    :Parameters:
        *table* \: PeriodicTable
            The default periodictable unless a specific table has been requested.
        *tol* = 0.01 \: float | barn
            Amount of difference to show. Use -tol to show elements within
            tolerance rather than those outside tolerance.

    :Returns: None

    Example

        >>> total_comparison_table (tol=0.1)
        Comparison of total cross section to (coherent + incoherent)
             84-Kr     6.60     ----
                Xe     4.34     3.04  42.9%
            149-Sm   200.00   200.50  -0.2%
                Eu     9.20     9.07   1.4%
                Gd   180.00   180.30  -0.2%
            155-Gd    66.00    65.80   0.3%
            161-Dy    16.00    16.30  -1.8%
            180-Ta     7.00     6.70   4.5%
            187-Os    13.00    13.30  -2.3%

    """
    print("Comparison of total cross section to (coherent + incoherent)")
    compare(lambda el: el.neutron.total,
            lambda el: el.neutron.coherent+el.neutron.incoherent,
            table=table, tol=tol)

def incoherent_comparison_table(table=None, tol=None):
    r"""
    Prints a table of incoherent computed from total and b_c with incoherent.

    :Parameters:
        *table* \: PeriodicTable
            The default periodictable unless a specific table has been requested.
        *tol* = 0.01 \: float | barn
            Amount of difference to show. Use -tol to show elements within
            tolerance rather than those outside tolerance.

    :Returns: None

    Example

        >>> incoherent_comparison_table (tol=0.5) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE
        Comparison of incoherent and (total - 4 pi |b_c|^2/100)
                Sc     4.50     5.10 -11.8%
             45-Sc     4.50     5.10 -11.8%
             65-Cu     0.40     1.42 -71.7%
             84-Sr     0.00     2.86 -100.0%
           ...

    """
    print("Comparison of incoherent and (total - 4 pi |b_c|^2/100)")
    sigma_c = lambda el: 4*pi/100*abs(el.neutron.b_c_complex)**2
    compare(lambda el: el.neutron.incoherent,
            lambda el: el.neutron.total - sigma_c(el),
            table=table, tol=tol)

def print_scattering(compound, wavelength=ABSORPTION_WAVELENGTH):
    """
    Print the scattering for a single compound.
    """
    from . import formulas
    compound = formulas.formula(compound)
    density = compound.density if compound.density is not None else 1.0
    sld, xs, penetration = neutron_scattering(compound, wavelength=wavelength,
                                              density=density)
    print("%s at %g Ang  (density=%g g/cm^3)"
          % (str(compound), wavelength, density))
    print("  sld: %g + %g j  (%g incoherent)  1e-6/Ang^2"%sld)
    print("  Σ_c: %g  Σ_a: %g  Σ_i: %g  1/cm"%xs)
    print("  μ: %g 1/cm  1/e penetration: %g cm"%(1/penetration, penetration))

def main():
    """
    Simple command line interface, showing the predicted neutron scattering.

    Usage::

        python -m periodictable.nsf [-Lwavelength] compound@density compound@density ...

    For example::

        $ python -m periodictable.nsf XeF6@3.56
        scattering for XeF6 at 1.798 Ang  (density=3.56 g/cm^3)
          sld: 3.37503 + 0.000582313 j  (0.402605 incoherent)  1e-6/Ang^2
          sigma_c: 3.37503  sigma_i: 0.000582313  sigma_a: 0.402605  1/cm
          1/e penetration: 2.23871 cm
    """

    import sys
    compounds = sys.argv[1:]
    if compounds[0].startswith('-L'):
        wavelength = float(compounds[0][2:])
        compounds = compounds[1:]
    else:
        wavelength = ABSORPTION_WAVELENGTH
    for c in compounds:
        print_scattering(c, wavelength)

if __name__ == "__main__":
    main()
    #sld_table()
    #coherent_comparison_table(tol=0.1)
    #incoherent_comparison_table(tol=0.1)
    #absorption_comparison_table(tol=0.1)
    #total_comparison_table(tol=0.1)