1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038
|
# -*- coding: utf-8 -*-
# This program is public domain
# Author: Paul Kienzle
r"""
Neutron scattering factors for the elements and isotopes.
For details of neutron scattering factor values, see :class:`Neutron`.
The property is set to *None* if there is no neutron scattering information
for the element. Individual isotopes may have their own scattering
information.
Example
=======
Print a table of coherent scattering length densities for isotopes
of a particular element:
.. doctest::
>>> import periodictable
>>> for iso in periodictable.Ni:
... if iso.neutron.has_sld():
... print("%s %7.4f"%(iso,iso.neutron.sld()[0]))
58-Ni 13.1526
60-Ni 2.5575
61-Ni 6.9417
62-Ni -7.9464
64-Ni -0.3379
Details
=======
There are a number of functions available in periodictable.nsf
:func:`neutron_energy`
Return neutron energy given wavelength.
:func:`neutron_wavelength`
Return wavelength given neutron energy.
:func:`neutron_wavelength_from_velocity`
Return wavelength given neutron velocity.
:func:`neutron_scattering`
Computes scattering length density, cross sections and
penetration depth for a compound.
:func:`neutron_sld`
Computes scattering length density for a compound.
:func:`neutron_composite_sld`
Returns a scattering length density for a compound whose composition
is variable.
:func:`energy_dependent_table`
Lists isotopes with energy dependence.
:func:`sld_table`
Lists scattering length densitys for all elements in natural abundance.
:func:`absorption_comparison_table`
Compares the imaginary bound coherent scattering length to the
absorption cross section.
:func:`coherent_comparison_table`
Compares the bound coherent scattering length to the
coherent scattering cross section.
:func:`total_comparison_table`
Compares the total scattering cross section to the sum of the
coherent and incoherent scattering cross sections.
For private tables use :func:`init` to set the data.
The neutron scattering information table is reproduced from the Atomic
Institute for Austrian Universities\ [#Rauch2003]_,\ [#Rauch2000]_:
`<http://www.ati.ac.at/~neutropt/scattering/table.html>`_
The above site has references to the published values for every entry in
the table. We have included these in the documentation directory
within the periodictable source package. Some typographical errors have
been fixed. In particular, Zn-70 has b_c listed as 6.9 in the table,
but 6.0 in the source materials for the table.
Note that enteries in the table have been measured independently, so the values
for the scattering length of an element or isotope may be inconsistent with
the values measured for the corresponding cross section. The comparison table
functions highlight these differences.
Tables from Sears\ [#Sears1992]_\ [#Sears2006]_, Rauch\ [#Rauch2003]_ and
Dawidowski\ [#Dawidowski2013]_ make different choices for the recommended
values. These are noted in periodictable issue #59
`<https://github.com/python-periodictable/periodictable/issues/59>`_
with changes from Sears to Rauch
`(a) <https://github.com/python-periodictable/periodictable/issues/59#issuecomment-1693686953>`__
and from Rauch to Dawidowski
`(b) <https://github.com/python-periodictable/periodictable/issues/59#issuecomment-1690212205>`__.
The following newer measurements from the literature are included:
1H b_c -3.7423(12) => -3.7395(11) [1]
2H b_c 6.674(6) => 6.6681(27) [1]
4He b_c 3.26(3) => 3.0982(21) [3] (see also [5], which gives 3.075(6))
4He coherent = total cross sections computed from 4 pi b_c^2/100
natHe computed from isotopic weighting of 3He and 4He
natC b_c 6.6484(13) => 6.6472(9) [1]
natO b_c 5.805(4) => 5.8037(29) [1]
17O b_c 5.6(5) => 5.867(4) [2]
18O b_c 5.84(7) => 6.009(5) [2]
natSn b_c 6.225(2) => 6.2239(13) [1]
154Sm b_c 8.0(1.0) => 8.97(6) [4]
153Eu b_c 8.22(12) => 8.85(3) [4]
191Ir b_c => 12.1(9) [6]
193Ir b_c => 9.71(18) [6]
natPb b_c 9.401(2) => 9.4024(13) [1]
natBi b_c 8.532(2) => 8.5242(18) [1]
He total 1.34(2) => 1.188(5) [5] (ignored; using 4 pi b_c^2/100)
Ar total 0.683(4) => 0.683(5) [5] (ignored; existing value is more precise)
Kr total 7.68(13) => 7.685(26) [5]
Xe total --- => 4.344(17) [5]
[1] Snow (2020) 10.1103/PhysRevD.101.062004 [average of values in Table 1]
[2] Fischer (2012) 10.1088/0953-8984/24/50/505105
[3] Haun (2020) 10.1103/PhysRevLett.124.012501
[4] Kohlmann (2016) 10.1515/zkri-2016-1984
[5] Haddock (2019) 10.1103/PhysRevC.100.064002
[6] Hannon (2018) 10.1107/S1600576718006064
.. [#Rauch2003] Rauch, H. and Waschkowski, W. (2003)
Neutron Scattering Lengths in ILL
Neutron Data Booklet (second edition), A.-J. Dianoux, G. Lander, Eds.
Old City Publishing, Philidelphia, PA. pp 1.1-1 to 1.1-17.
(https://www.ill.eu/fileadmin/user_upload/ILL/1_About_ILL/Documentation/NeutronDataBooklet.pdf
Retrieved March 2008)
.. [#Rauch2000] Rauch, H. and Waschkowski, W. (2000)
Neutron scattering lengths. Schopper, H. (ed.). SpringerMaterials -
The Landolt-Börnstein Database (http://www.springermaterials.com).
doi:10.1007/10499706_6
.. [#Lynn1990] Lynn, J.E. and Seeger, P.A. (1990)
Resonance effects in neutron scattering lengths of rare-earth nuclides.
Atomic Data and Nuclear Data Tables 44, 191-207.
doi:10.1016/0092-640X(90)90013-A
.. [#Sears2006] Sears, V. F. (2006)
4.4.4 Scattering lengths for neutrons.
In Prince, E. ed. Intl. Tables for Crystallography C.
Kluwer Academic Publishers. pp 444-454.
(https://it.iucr.org/Cb/ch4o4v0001/sec4o4o4/)
doi:10.1107/97809553602060000103
.. [#Sears1992] Sears, V.F. (1992)
Neutron scattering lengths and cross sections.
Neutron News 3, No. 3, 26-37.
.. [#May1982] May, R.P., Ibel, K. and Haas, J. (1982)
The forward scattering of cold neutrons by mixtures of light and heavy water.
J. Appl. Cryst. 15, 15-19. doi:10.1107/S0021889882011285
.. [#Mildner1998] Mildner, D.F.R., Lamaze, G.P. (1998)
Neutron Transmission of Single-Crystal Sapphire.
J Appl Crystallogr 31, 835–840. doi:10.1107/S0021889898005846
.. [#Glinka2011] Glinka, C.J. (2011)
Incoherent Neutron Scattering from Multi-element Materials.
J. Appl. Cryst. 44, 618-624. doi:10.1107/S0021889811008223
.. [#Dawidowski2013] Dawidowski, J., Granada, J. R., Santisteban,
J. R., Cantargi, F., & Palomino, L. A. R. (2013).
Appendix—Neutron Scattering Lengths and Cross Sections.
In F. Fernandez-Alonso & D. L. Price (Eds.),
Experimental Methods in the Physical Sciences (Vol. 44, pp. 471–528).
Academic Press. doi:10.1016/B978-0-12-398374-9.09989-7
"""
#.. [#Koester1991] Koester, L., Rauch, H., Seymann. E. (1991)
# Atomic Data Nuclear Data Tables 49, 65. doi:10.1016/0092-640X(91)90012-S
#.. [#Smith2006] Smith, G.S. and Majkrzak, C.M. (2006)
# 2.9 Neutron reflectometry.
# In E. Prince ed. Intl. Tables for Crystallography C.
# Wiley InterScience. pp 126-146. doi:10.1107/97809553602060000584
#
import numpy as np
from numpy import sqrt, pi, asarray, inf
from .core import Element, Isotope, default_table
from .constants import (avogadro_number, planck_constant, electron_volt,
neutron_mass, atomic_mass_constant)
from .util import parse_uncertainty
__all__ = ['init', 'Neutron',
'neutron_energy', 'neutron_wavelength',
'neutron_wavelength_from_velocity',
'neutron_scattering', 'neutron_sld', 'neutron_composite_sld',
'sld_plot',
'absorption_comparison_table', 'coherent_comparison_table',
'incoherent_comparison_table', 'total_comparison_table',
'energy_dependent_table', 'sld_table',
'neutron_sld_from_atoms',
#'scattering_potential',
]
#: Wavelength [Å] for which neutron scattering cross sections are tabulated.
ABSORPTION_WAVELENGTH = 1.798 # [Å]
#: Energy [eV] <=> wavelength [Å]:
#: E = 1/2 m v² = h² / (2 m λ²)
#: E[meV s] = h[J s]²/(2 m_n[u] m_u[kg/u] λ[Å]²/10^20[Å/m])
#: * 1000[meV/eV] / electron_volt[J/eV]
ENERGY_FACTOR = (
1e23 * planck_constant**2/electron_volt
/ (2 * neutron_mass * atomic_mass_constant))
#: Velocity[m/s] <=> wavelength[Å]:
#: h = p λ = m v λ
#: λ[Å] = h[J s] / ( m_n[kg] v[m/s] ) 10^10[Å/m]
VELOCITY_FACTOR = (
1e10 * planck_constant / (neutron_mass * atomic_mass_constant))
def neutron_wavelength(energy):
r"""
Convert neutron energy to wavelength.
:Parameters:
*energy* \: float or vector | meV
:Returns:
*wavelength* \: float or vector | |Ang|
Energy is converted to wavelength using
.. math::
E = 1/2 m_n v^2 = h^2 / (2 m_n \lambda^2)
\Rightarrow \lambda = \sqrt{h^2 / (2 m_n E)}
where
$h$ = Planck constant in |Js|
$m_n$ = neutron mass in kg
"""
return sqrt(ENERGY_FACTOR / asarray(energy))
def neutron_wavelength_from_velocity(velocity):
r"""
Convert neutron velocity to wavelength.
:Parameters:
*velocity* \: float or vector | m/s
:Returns:
*wavelength* \: float or vector | |Ang|
Velocity is converted to wavelength using
.. math::
\lambda = h/p = h/(m_n v)
where
$h$ = Planck constant in |Js|
$m_n$ = neutron mass in kg
"""
return VELOCITY_FACTOR / velocity
def neutron_energy(wavelength):
r"""
Convert neutron wavelength to energy.
:Parameters:
*wavelength* \: float or vector | |Ang|
:Returns:
*energy* \: float or vector | meV
Wavelength is converted to energy using
.. math::
E = 1/2 m_n v^2 = h^2 / (2 m_n \lambda^2)
where:
$h$ = Planck constant in |Js|
$m_n$ = neutron mass in kg
"""
return ENERGY_FACTOR / asarray(wavelength)**2
def _CHECK_scattering_potential(sld):
r"""
Convert neutron scattering length density to energy potential.
:Parameters:
*sld* \: float or vector | |1e-6/Ang^2|
Scattering length density.
:Returns:
*energy* \: float or vector | $10^{-6}$ eV
Scattering potential.
Computes:[#Smith2006]_
.. math::
V = 2 \pi \hbar^2 N_b / m_n
where:
$\hbar = h / (2 \pi)$
$h$ = Planck constant in |Js|
$N_b = \sum{ n_i b_i } / V$
$m_n$ = neutron mass in kg
"""
return (ENERGY_FACTOR/pi) * asarray(sld)
_4PI_100 = 4*np.pi/100
class Neutron:
r"""
Neutron scattering factors are attached to each element in the periodic
table for which values are available. If no information is available,
then the neutron field of the element will be *None*. Even when neutron
information is available, it may not be complete, so individual fields
may be *None*.
The following fields are defined:
* b_c (fm)
Bounds coherent scattering length.
* total (barn)
Total scattering cross section $\sigma_s$. This does not include the
absorption cross section. To compute the total collision cross
section use $\sigma_t = \sigma_s + \sigma_a$
* absorption (barn)
Absorption cross section $\sigma_a$ at 1.798 |Ang|. Scale to your beam
by dividing by periodictable.nsf.ABSORPTION_WAVELENGTH and multiplying
by your wavelength. This wavelength corresponds to a neutron velocity
of 2200 m/s and neutron energy of 25.3 meV.
* b_c_complex (fm)
Complex coherent scattering length derived from the tabulated
values using $b_c - i \sigma_a / (1000 \cdot 2 \lambda)$.
Additional columns not used for calculation include:
* b_c_i (fm)
Imaginary bound coherent scattering length. This is related to
absorption cross section by $\sigma_a = 4 \pi \mathrm{Im}(b_c)/k$ where
$k = 2 \pi/\lambda$ and an additional factor of 1000 for converting
between |Ang|\ |cdot|\ fm and barns. b_c_i is not available for
all isotopes for which absorption cross sections have been measured.
* bp, bm (fm)
Spin-dependent scattering for I+1/2 and I-1/2 (not always available).
Incoherent scattering arises from the spin-dependent scattering b+
and b-. The Neutron Data Booklet\ [#Rauch2003]_ gives formulas for
calculating coherent and incoherent scattering from b+ and b- alone.
* bp_i, bm_i (fm)
Imaginary portion of bp and bm.
* is_energy_dependent (boolean)
Do not use this data if scattering is energy dependent.
* coherent (barn)
Coherent scattering cross section. This is tabulated but not used.
In theory coherent scattering is related to bound coherent scattering
by $\sigma_c = 4 \pi |\mathrm{Re}(b_c) + i \mathrm{Im}(b_c)|^2/100$.
In practice, these values are different, with the following table
showing the largest relative difference:
======== ======== ======== ======== ========
Sc 3% Ti 4% V 34% Mn 1% Cd 2%
Te 4% Xe 9% Sm 19% Eu 44% Tb 1%
Ho 11% W 4% Au 7% Hg 2% Ra 3%
======== ======== ======== ======== ========
* incoherent (barn)
Incoherent scattering cross section $\sigma_i$. This is tabulated but
not used. Instead, the incoherent cross section is computed from the
total cross section minus the coherent cross section even for single
atoms so that results from compounds are consistent with results from
single atoms.
For elements, the scattering cross-sections are based on the natural
abundance of the individual isotopes. Individual isotopes may have
the following additional fields
* abundance (%)
Isotope abundance used to compute the properties of the element in
natural abundance.
* nuclear_spin (string)
Spin on the nucleus: '0', '1/2', '3/2', etc.
Each field ``T`` above has a corresponding ``T_units`` attribute with
the name of the units.
For scattering calculations the scattering length density is the value
of interest. This is computed from the *number_density* of the individual
elements, as derived from the element density and atomic mass.
.. Note:: 1 barn = 100 |fm^2|
"""
b_c = None
b_c_units = "fm"
b_c_i = None
b_c_i_units = "fm"
b_c_complex = None
b_c_complex_units = "fm"
bp = None
bp_i = None
bp_units = "fm"
bm = None
bm_i = None
bm_units = "fm"
coherent = None
coherent_units = "barn"
incoherent = None
incoherent_units = "barn"
total = None
total_units = "barn"
absorption = None
absorption_units = "barn"
abundance = 0.
abundance_units = "%"
is_energy_dependent = False
nsf_table = None
def __init__(self):
self._number_density = None
def __str__(self):
return ("b_c=%.3g coh=%.3g inc=%.3g abs=%.3g"
% (self.b_c, self.coherent, self.incoherent, self.absorption))
def has_sld(self):
"""Returns *True* if sld is defined for this element/isotope."""
# TODO: use NaN for missing information
#return np.isnan(self.b_c * self._number_density)
return self.b_c is not None and self._number_density is not None
# PAK 2021-04-05: allow energy dependent b_c
def scattering_by_wavelength(self, wavelength):
r"""
Return scattering length and total cross section for each wavelength.
For rare earth isotopes this returns the energy-dependent
$\mathrm{Re}(b_c)$ and $\mathrm{Im}(b_c)$ interpolated into the
scattering length tables. Values are extrapolated with constant
values at the ends of the table. Total scattering is returned as
$4\pi/100 |b_c|^2$ with no contribution for bound incoherent
scattering.
:Parameters:
*wavelength* \: float(s) | |Ang|
:Returns:
*b_c* \: complex(s) | fm
*sigma_s* \: float(s) | barn
"""
# TODO: do vector conversion at the end rather than the beginning.
if self.nsf_table is None:
ones = 1 if np.isscalar(wavelength) else np.ones_like(wavelength)
return ones*self.b_c_complex, ones*self.total
#energy = neutron_energy(wavelength)
#b_c = np.interp(energy, self.nsf_table[0], self.nsf_table[1])
b_c = np.interp(wavelength, self.nsf_table[0], self.nsf_table[1])
# TODO: sigma_s should include an incoherent contribution
sigma_s = _4PI_100*abs(b_c)**2 # 1 barn = 1 fm^2 1e-2 barn/fm^2
return b_c, sigma_s
def sld(self, *, wavelength=ABSORPTION_WAVELENGTH):
r"""
Returns scattering length density for the element at natural
abundance and density.
:Parameters:
*wavelength* \: float(s) | |Ang|
:Returns:
*sld* \: float(s), float(s), float(s) | |1e-6/Ang^2|
(*real*, -*imaginary*, *incoherent*) scattering length density.
Returns (None, None, None) if sld is not known for this element.
See :func:`neutron_scattering` for details.
"""
# TODO: deprecate in favour of neutron_scattering(el)
if not self.has_sld():
return None, None, None
return self.scattering(wavelength=wavelength)[0]
def scattering(self, *, wavelength=ABSORPTION_WAVELENGTH):
r"""
Returns neutron scattering information for the element at natural
abundance and density.
:Parameters:
*wavelength* \: float(s) | |Ang|
:Returns:
*sld* \: float(s), float(s), float(s) | |1e-6/Ang^2|
(*real*, -*imaginary*, *incoherent*) scattering length density
*xs* \: float(s), float(s), float(s) | |1/cm|
(*coherent*, *absorption*, *incoherent*) cross sections.
:w
*penetration* \: float(s) | cm
1/e penetration length.
Returns (None, None, None) if sld is not known for this element.
See :func:`neutron_scattering` for details.
"""
# TODO: deprecate in favour of neutron_scattering(el)
# Compute number and absorption density assuming isotope has
# same structure as the bulk element
if not self.has_sld():
return None, None, None
number_density = self._number_density*1e-24 # N/A^3 = N/cm^3 (1e-8 cm/A)^3
b_c, sigma_s = self.scattering_by_wavelength(wavelength)
return _calculate_scattering(number_density, wavelength, b_c, sigma_s)
def energy_dependent_init(table):
from .nsf_tables import ENERGY_DEPENDENT_TABLES
for (el_name, iso_num), values in ENERGY_DEPENDENT_TABLES.items():
energy, re_a, im_a, _ = zip(*values) # Ignoring abs(a)
wavelength = neutron_wavelength(asarray(energy)*1000) # 1 eV = 1000 meV
el = getattr(table, el_name)
atom = el if iso_num is None else el[iso_num]
xs = asarray(re_a) + 1j*asarray(im_a)
#atom.neutron.nsf_table = asarray(energy)*1000, xs
atom.neutron.nsf_table = wavelength[::-1], xs[::-1]
#print(f"adding {atom}")
# Lu nat missing from Lynn and Seeger, so mix Lu[175] and Lu[176]
Lu175 = table.Lu[175]
Lu176 = table.Lu[176]
bc_175 = Lu175.neutron.b_c_complex
wavelength, bc_176 = Lu176.neutron.nsf_table
bc_nat = (bc_175*Lu175.abundance + bc_176*Lu176.abundance)/100.0 # 1 fm = 1fm * %/100
table.Lu.neutron.nsf_table = wavelength, bc_nat
#table.Lu.neutron.total = 0. # zap total cross section
def init(table, reload=False):
"""
Loads the Rauch table from the neutron data book.
"""
if 'neutron' in table.properties and not reload:
return
table.properties.append('neutron')
assert ('density' in table.properties and 'mass' in table.properties), \
"Neutron table requires mass and density properties"
# Defaults for missing neutron information
missing = Neutron()
Isotope.neutron = missing
Element.neutron = missing
for line in nsftable.split('\n'):
columns = line.split(',')
nsf = Neutron()
p = columns[1]
spin = columns[2]
nsf.b_c, nsf.bp, nsf.bm = [fix_number(a) for a in columns[3:6]]
nsf.is_energy_dependent = (columns[6] == 'E')
nsf.coherent, nsf.incoherent, nsf.total, nsf.absorption \
= [fix_number(a) for a in columns[7:]]
# 1 fm = (1 barn)(100 fm^2/barn)/(1 A) (1e-5 A/fm)
# Note: Sears (1992) uses b = b' - i b'', so negate sigma_a for b''.
# Warning: -b_c.imag may be -0, which can mess with your calculations.
#if nsf.b_c is None: print(f"b_c unavailable for {columns[0]}")
b_c = nsf.b_c if nsf.b_c is not None else np.nan
b_c_i = -nsf.absorption/(2000*ABSORPTION_WAVELENGTH)
nsf.b_c_complex = b_c + 1j*b_c_i
if not np.isnan(b_c):
# Ir-191 and Ir-193 don't list scattering cross sections so deduce
# them from the bound coherent cross section. Since these are both
# odd isotopes there ought to be some incoherent scattering, but
# zero is well within the uncertainty measured in bulk Ir.
if nsf.coherent is None:
nsf.coherent = 4*pi/100*abs(nsf.b_c_complex)**2
if nsf.incoherent is None:
nsf.incoherent = 0
if nsf.total is None:
nsf.total = nsf.coherent + nsf.incoherent
parts = columns[0].split('-')
Z = int(parts[0])
symbol = parts[1]
isotope_number = int(parts[2]) if len(parts) == 3 else 0
# Fetch element from the table and check that the symbol matches
element = table[Z]
assert element.symbol == symbol, \
"Symbol %s does not match %s" % (symbol, element.symbol)
# Plug the default number density for the element into the nsf so
# it can calculate sld.
nsf._number_density = element.number_density # N/cm^3 = N/cm^3
if isotope_number == 0:
# Value for element using laboratory abundances of isotopes
element.neutron = nsf
else:
# Values for the individual isotope
isotope = element.add_isotope(isotope_number)
isotope.neutron = nsf
isotope.nuclear_spin = spin
# p column contains either abundance(uncertainty) or "half-life Y"
isotope.neutron.abundance = fix_number(p) if ' ' not in p else 0
# If the element is not yet initialized, copy info into the atom.
# This serves to set the element info for elements with only
# one isotope.
if element.neutron is missing:
element.neutron = nsf
for line in nsftableI.split('\n'):
columns = line.split(',')
# Fetch the nsf record
parts = columns[0].split('-')
Z = int(parts[0])
symbol = parts[1]
isotope_number = int(parts[2]) if len(parts) == 3 else 0
element = table[Z]
if isotope_number == 0:
nsf = element.neutron
else:
nsf = element[isotope_number].neutron
# Read imaginary values
nsf.b_c_i, nsf.bp_i, nsf.bm_i = [
fix_number(a) for a in columns[1:]]
# Add energy-dependent tables
energy_dependent_init(table)
# TODO: split incoherent into spin and isotope incoherence (eq 17-19 of Sears)
# TODO: require parsed compound rather than including formula() keywords in api
# Note: docs and function prototype are reproduced in __init__
def neutron_scattering(compound, *, density=None,
wavelength=None, energy=None,
natural_density=None, table=None):
r"""
Computes neutron scattering cross sections for molecules.
:Parameters:
*compound* \: Formula initializer
Chemical formula
*density* \: float | |g/cm^3|
Mass density
*natural_density* \: float | |g/cm^3|
Mass density of formula with naturally occuring abundances
*wavelength* 1.798 \: float(s) | |Ang|
Neutron wavelength (default=1.798 |Ang|).
*energy* \: float(s) | meV
Neutron energy. If energy is specified then wavelength is ignored.
*table* \: PeriodicTable
Alternate table to use when parsing *compound*.
:Returns:
*sld* \: float(s), float(s), float(s) | |1e-6/Ang^2|
(*real*, -*imaginary*, *incoherent*) scattering length density.
*xs* \: float(s), float(s), float(s) | |1/cm|
(*coherent*, *absorption*, *incoherent*) cross sections.
*penetration* \: float(s) | cm
1/e penetration depth of the beam
Returns (None, None, None) if sld is unknown for any component.
:Raises:
*AssertionError* \: density is missing.
.. Note:
The returned values will be vectors if *wavelength* is a vector.
Neutron scattering cross sections for materials are calculated from
tabulated values for the different nuclei. The result is only an
approximation. Actual scattering depends on details of sample composition,
as well as the incoming neutron energy and sample temperature, especially
for light elements. For low energy neutrons the tabulated
cross sections are generally a lower limit. The measured incoherent
scattering from hydrogen, for example, can be considerably larger
(by more than 20%) than its bound value, leading to an estimate of 5.621/cm
for H2O as computed compared to ~7.0/cm as measured with 5 meV neutrons
at 290K.\ [#May1982]_ The alignment of the neutron spin with the nuclei
spin also matters, as demonstrated by $^3\mathrm{He}$ polarizers.
The tables themselves are not self-consistent. Because the different
quantities are measured indirectly with a variety of techniques, there
are discrepencies when converting values from one column to another. These
differences can be seen with the following:
:func:`absorption_comparison_table`
:func:`coherent_comparison_table`
:func:`total_comparison_table`
For our calculations we use the real part of the bound coherent scattering
length $\mathrm{Re}(b_c)$ (labelled b_c in the tables) and the absorption
cross section $\sigma_a$ from which we derive the imaginary scattering
length, $\mathrm{Im}(b_c)$. See Sears (1992) for details.\ [#Sears1992]_
We first need to average quantities for the unit cell of the molecule.
Molar mass *m* (g/mol) is the sum of the masses of each component:
.. math::
m = \sum{n_k m_k}\ {\rm for\ each\ atom}\ k=1,2,\ldots
Cell volume $V$ (|Ang^3|/molecule) is molar mass $m$ over density
$\rho$, with a correction based on Avogadro's number $N_A$ (atoms/mol)
and the length conversion $10^8$ |Ang|/cm:
.. math::
V = m/\rho \cdot 1/N_A \cdot (10^8)^3
Number density $N$ is the number of scatterers per unit volume:
.. math::
N = \left.\sum{n_k} \right/ V
The coherent scattering length of the molecule is computed from the
average scattering length $b_c = \mathrm{Re}(b_c) + i \mathrm{Im}(b_c)$
weighted by frequency:
.. math::
\mathrm{Re}(b_c) &= \left.\sum n_k \mathrm{Re}(b_{ck}) \right/ \sum n_k \\
\mathrm{Im}(b_c) &= \left.\sum n_k \mathrm{Im}(b_{ck}) \right/ \sum n_k
The individual $\mathrm{Im}(b_{ck})$ values are derived from the absorption
cross sections $\sigma_a$, tabulated at wavelength $\lambda = 1.798$ |Ang|
and scaled to fm (with 1000 fm = 1 barn/|Ang|):
.. math::
\mathrm{Im}(b_{ck}) = -\left. \sigma_{ak} \right/ (1000 \cdot 2 \lambda)
Note the sign change relative to $b''$ in Sears (1992), with Eq 2
defining $b = b' - i b''$. Since we are not considering polarized
nuclei, the imaginary incoherent contribution is zero and
$b'' = -\mathrm{Im}(b_c)$.
Some rare earth isotopes are energy-dependent with complex bound coherent
scattering length $b_c$ tabulated by energy.\ [#Lynn1990]_ For the given
input wavelength $\lambda$, $b_c$ is interpolated from the table values,
with the end points used for values outside the tabulated range.
The average scattering length is converted to scattering cross
sections, with $\sigma_c$ scaled to barn (with 1 barn= 100 |fm^2|)
and $\sigma_a$ scaled to barn (with 1000 barn = 1 fm |Ang|):
.. math::
\sigma_c &= \left. 4 \pi |\mathrm{Re}(b_c) + i \mathrm{Im}(b_c)|^2 \right/ 100 \\
\sigma_a &= -\left. 1000 \cdot 4 \pi \left< \mathrm{Im}(b_c) \right> \right/k
\ {\rm for} \ k=2\pi / \lambda
For most elements the scattering length is independent of energy in
the thermal neutron energy range so the coherent scattering length
$\sigma_c$ is unchanged. The absorption cross section $\sigma_a$ for
these elements scales linearly with wavelength and can be adjusted
with a simple multiplication:
.. math::
\sigma_a' = \sigma_a \lambda' / \lambda_o = \sigma_a \lambda' / 1.798
The incoherent scattering length is more complicated, including
contributions from spin incoherence for different possible spin states
as well as isotope incoherence from diffuse coherent
scattering.\ [#Glinka2011]_ Using the total cross section $\sigma_s$ from
the table, the incoherent scattering length is estimated as:
.. math::
\sigma_s &= \left.\sum n_k \sigma_{sk} \right/ \sum n_k \\
\sigma_i &= \sigma_s - \sigma_c \\
b_i &= \sqrt{ 100 \sigma_i / (4 \pi) }
For the energy dependent rare earth isotopes the total scattering is
estimated from $b = \mathrm{Re}(b_c) + i \mathrm{Im}(b_c)$, ignoring
any spin incoherence effects. As a result, incoherent scattering for
materials with energy-dependent rare earth isotopes with non-zero
nuclear spin will be underestimated.
The scattering potential can be expressed as a scattering length
density (SLD). This is the number density of the scatterers
(per |Ang^3|) times their scattering lengths, scaled to
|1e-6/Ang^2| (with |1/Ang^2| = $10^{5}$ fm/|Ang^3|).
Following the convention of Sears (1992), we define sld as
$\rho = \rho_{\rm re} - i \rho_{\rm im}$.
.. math::
\rho_{\rm re} (10^6 / Å^2) &= 10 N \mathrm{Re}(b_c) \\
\rho_{\rm im} (10^6 / Å^2) &= -10 N \mathrm{Im}(b_c) \\
\rho_{\rm inc} (10^6 / Å^2) &= 10 N b_i
Similarly, the macroscopic scattering cross section for the sample includes
number density:
.. math::
\Sigma_{\rm coh} (1/{\rm cm}) &= N \sigma_c \\
\Sigma_{\rm inc} (1/{\rm cm}) &= N \sigma_i \\
\Sigma_{\rm abs} (1/{\rm cm}) &= N \sigma_a \\
\Sigma_{\rm s} (1/{\rm cm}) &= N \sigma_s
The 1/e penetration depth $t_u$ represents the the depth into the sample
at which the unscattered intensity is reduced by a factor of $e$:
.. math::
t_u (cm) = \left. 1 \right/ (\Sigma_{\rm s} + \Sigma_{\rm abs})
The calculated penetration depth includes the effects of both
absorption and incoherent scattering (which spreads the beam over the
full $4\pi$ spherical surface, and so it looks like absorption with
respect to the beam), as well as the coherent scattering from the sample.
If you instead want to calculate the effective shielding of the sample,
you should recalculate penetration depth with absorption only.
Transmission rate can be computed from $e^{-d/t_u}$ for penetration
depth $t_u$ and sample thickness $d$. This does not include many
real world effects, such as single phonon scattering\ [#Mildner1998]_
and forward scattering\ [#May1982]_, which result in measured
transmission significantly different from the values predicted from
nuclear properties alone.
There is also a wavelength dependence for single phonon interactions which
gives rise to significant inelastic scattering for lighter isotopes (H, D)
and/or longer wavelengths (above 5 |Ang|). This factor is both
temperature and material dependent and will not be included
in the scattering calculations. In particular, penetration length and
transmitted flux are going to be significantly overestimated.
Including unit conversion with $\mu=10^{-6}$ the full scattering equations
are:
.. math::
\rho_{\rm re}\,(\mu/Å^2) &= (N/Å^3)
\, (\mathrm{Re}(b_c)\,{\rm fm})
\, (10^{-5} Å/{\rm\,fm})
\, (10^6\,\mu) \\
\rho_{\rm im}\,(\mu/Å^2) &= (N/Å^3)
\, (\sigma_a\,{\rm barn})
\, (10^{-8}\,Å^2/{\rm barn}) / (2 \lambda\, Å)
\, (10^6\,\mu) \\
&= (N/Å^3)
\, (-\mathrm{Im}(b_c)\,{\rm fm})
\, (10^{-5} Å/{\rm\,fm})
\, (10^6\,\mu) \\
\rho_{\rm inc}\,(\mu/Å^2) &= (N/Å^3)
\, \sqrt{(\sigma_i\, {\rm barn})/(4 \pi)
\, (100\, {\rm fm}^2/{\rm barn})}
\, (10^{-5}\, Å/{\rm fm})
\, (10^6\, \mu) \\
\Sigma_{\rm coh}\,(1/{\rm cm}) &= (N/Å^3)
\, (\sigma_c\, {\rm barn})
\, (10^{-8}\, Å^2/{\rm barn})
\, (10^8\, Å/{\rm cm}) \\
\Sigma_{\rm inc}\,(1/{\rm cm}) &= (N/Å^3)
\,(\sigma_i\, {\rm barn})
\, (10^{-8}\, Å^2/{\rm barn})
\, (10^8\, Å/{\rm cm}) \\
\Sigma_{\rm abs}\,(1/{\rm cm}) &= (N/Å^3)
\,(\sigma_a\,{\rm barn})
\, (10^{-8}\, Å^2/{\rm barn})
\, (10^8\, Å/{\rm cm}) \\
\Sigma_{\rm s}\,(1/{\rm cm}) &= (N/Å^3)
\,(\sigma_s\,{\rm barn})
\, (10^{-8}\, Å^2/{\rm barn})
\, (10^8\, Å/{\rm cm}) \\
t_u\,({\rm cm}) &= 1/(\Sigma_{\rm s}\, 1/{\rm cm}
\,+\, \Sigma_{\rm abs}\, 1/{\rm cm})
"""
from . import formulas
compound = formulas.formula(
compound, density=density, natural_density=natural_density, table=table)
assert compound.density is not None, "scattering calculation needs density"
#print("sld", compound, compound.density)
if energy is not None:
wavelength = neutron_wavelength(energy)
# PAK: 1.5.3 wavelength now defaults to ABSORPTION_WAVELENGTH
elif wavelength is None:
wavelength = ABSORPTION_WAVELENGTH
# Sum over the quantities
molar_mass = num_atoms = 0
b_c = sigma_s = 0
is_energy_dependent = False
for element, quantity in compound.atoms.items():
# TODO: use NaN rather than None
if not element.neutron.has_sld():
return None, None, None
molar_mass += element.mass*quantity
num_atoms += quantity
# PAK 2021-04-05: allow energy dependent b_c, b''
b_ck, sigma_sk = element.neutron.scattering_by_wavelength(wavelength)
#print(f"{element=}; {b_ck=}; {sigma_sk=}")
b_c += quantity * b_ck
sigma_s += quantity * sigma_sk
is_energy_dependent |= element.neutron.is_energy_dependent
# If nothing to sum, return values for a vacuum. This might be because
# the material has no atoms or it might be because the density is zero.
if molar_mass*compound.density == 0:
return (0, 0, 0), (0, 0, 0), inf
# Turn weighted sums into scattering factors
b_c /= num_atoms
sigma_s /= num_atoms
# Compute number density (N/A^3)
# volume A^3/N = ((1 g/mole) / (1 g/cm^3)) / (N/mole) * (10^8 A/cm)^3
cell_volume = (molar_mass/compound.density)/avogadro_number*1e24
number_density = num_atoms / cell_volume # N/A^3 = N/A^3
return _calculate_scattering(number_density, wavelength, b_c, sigma_s)
def _calculate_scattering(number_density, wavelength, b_c, sigma_s):
r"""
:Parameters:
*number_density* \: float | N/|Ang^3|
Scatterers per unit volume.
*wavelength* \: float(s) | |Ang|
Neutron wavelength(s).
*b_c* \: complex(s) | fm
Complex bound coherent scattering length $b_c$.
*sigma_c* \: float(s) | barn
Total cross section.
See neutron_scattering docstring for calculation details.
Note: returns -sld_im for historical reasons.
"""
#print("in scat", number_density, wavelength, b_c, sigma_s)
# Compute SLD (1e-6/A^2). Extending Sears (1992) convention, b = b' - i b'',
# returning sld = sld_re - i sld_im.
sld = 10*number_density * b_c # 1e-6/A^2 = 1/A^3 1 fm 1e-5 A/fm 1e6 1e-6
sld_re, sld_im = sld.real, abs(sld.imag)
# PAK 2017-04-21: compute incoherent xs from total xs
# PAK 2021-04-20: include imaginary b_c in coherent cross section
# Compute coherent and incoherent cross sections (barn)
sigma_c = _4PI_100 * abs(b_c)**2 # 1 barn = 1e-2 fm^2
sigma_i = np.maximum(sigma_s - sigma_c, 0.) # 1 barn = 1 barn
# Compute incoherent scattering length from incoherent cross section (fm)
b_i = sqrt(sigma_i / _4PI_100) # 1 fm = sqrt(1 barn * 1e-2 fm^2/barn)
# Compute incoherent scattering length density (1e-6/A^2)
sld_inc = number_density * b_i * 10 # 1e-6/A^2 = 1/A^3 1 fm 1e-5 A/fm 1e6 1e-6
# Compute absorption cross section (barn)
# Note: Sears (1992) uses b = b' - i b'', so use |Im(b_c)| for sigma_a.
sigma_a = 2000 * abs(b_c.imag) * wavelength # 1 barn = 1 fm 1 A 1e5 A/fm 1e-2 barn/fm
# print(f"σ_a {sigma_c:.3f} σ_i {sigma_i:.3f} σ_s {sigma_s:.3f} σ_a {sigma_a:.3f}")
# Compute macroscopic scattering cross section per unit volume (1/cm)
total_xs = number_density * sigma_s # 1/cm = 1/A^3 1 barn 1e-8 A^2/barn 1e8 A/cm
coh_xs = number_density * sigma_c
abs_xs = number_density * sigma_a
inc_xs = number_density * sigma_i
# Compute 1/e length (cm)
penetration = 1/(abs_xs + total_xs) # 1 cm = 1 / (1/cm)
return (sld_re, sld_im, sld_inc), (coh_xs, abs_xs, inc_xs), penetration
def neutron_sld(*args, **kw):
r"""
Computes neutron scattering length densities for molecules.
:Parameters:
*compound* \: Formula initializer
Chemical formula
*density* \: float | |g/cm^3|
Mass density
*natural_density* \: float | |g/cm^3|
Mass density of formula with naturally occuring abundances
*wavelength* \: float | |Ang|
Neutron wavelength (default=1.798 |Ang|).
*energy* \: float | meV
Neutron energy. If energy is specified then wavelength is ignored.
*table* \: PeriodicTable
Alternate table to use when parsing *compound*.
:Returns:
*sld* \: (float, float, float) | |1e-6/Ang^2|
(*real*, -*imaginary*, *incoherent*) scattering length density.
:Raises:
*AssertionError* \: density is missing.
Returns the scattering length density of the compound.
See :func:`neutron_scattering` for details.
"""
return neutron_scattering(*args, **kw)[0]
def neutron_sld_from_atoms(*args, **kw):
r"""
.. deprecated:: 0.91
:func:`neutron_sld` accepts dictionaries of \{atom\: count\}.
"""
return neutron_scattering(*args, **kw)[0]
def D2O_match(compound, **kw):
"""
Find the D2O contrast match point for the compound.
*wavelength* or *energy* select neutron wavelength or energy.
Additional keyword arguments (*density*, *natural_density*, *name*, *table*)
are passed to :func:`formulas.formula` when parsing the compound.
Returns *D2O_fraction* and *SLD* at match point.
See :func:`D2O_sld` for details on the calculation.
Note that the resulting fraction is only meaningful in [0, 1]. Beyond
100% you will need an additional constrast agent in the 100% D2O
solvent to increase the SLD enough to match.
"""
H2O_sld, D2O_sld, Hsld, Dsld = _D2O_slds(compound, **kw)
# SLD(%Dsample + (1-%)Hsample) = SLD(%D2O + (1-%)H2O)
# => %SLD(Dsample) + (1-%)SLD(Hsample) = %SLD(D2O) + (1-%)SLD(H2O)
# => %(SLD(Dsample) - SLD(Hsample) + SLD(H2O) - SLD(D2O))
# = SLD(H2O) - SLD(Hsample)
# => % = 100*(SLD(H2O) - SLD(Hsample))
# / (SLD(Dsample) - SLD(Hsample) + SLD(H2O) - SLD(D2O))
D2O_fraction = (
(H2O_sld[0] - Hsld[0]) / (Dsld[0] - Hsld[0] + H2O_sld[0] - D2O_sld[0]))
match_point_sld = mix_values(Dsld, Hsld, D2O_fraction)
return D2O_fraction, match_point_sld[0]
def D2O_sld(compound, volume_fraction=1., D2O_fraction=0., **kw):
"""
Compute the neutron SLD for a D2O contrast solution.
*compound* is a string or parsed formula object. Labile hydrogen should
be marked as H[1] in the formula. These will be substituted according to
%D2O in the solvent.
The D2O contrast mixture is assumed to be made using pure H2O (with
its natural H:D ratios) and pure D2O with no H present, so H[1] will be
substituted alternately with H and D when computing mixture SLD.
Solvent SLD is calculated using the density at 20 C.
Only the coherent scattering crosssection will be matched. Incoherent
and absorption crosssections are likely to be different for the compound
and the solvent, especially due to the large incoherent crosssection for
hydrogen.
Note that incoherent scattering does not mix linearly, so the incoherent
sld for the mixture will differ slightly from incoherent scattering
computed returned from a compound with the same isotope ratios.
*volume_fraction* is the portion by volume of solute in the solution.
*D2O_fraction* is the portion by volume of D2O in the solvent.
*wavelength* or *energy* to select neutron wavelength or energy.
Additional keyword arguments (*density*, *natural_density*, *name*, *table*)
are passed to :func:`formulas.formula` when parsing the compound.
Returns (real, imag, incoh) SLD.
"""
# TODO: fix incoherent scattering so it is consistent with compound
# Need to compute sld from mixture rather than mixing parts
H2O_sld, D2O_sld, Hsld, Dsld = _D2O_slds(compound, **kw)
solvent_sld = mix_values(D2O_sld, H2O_sld, D2O_fraction)
solute_sld = mix_values(Dsld, Hsld, D2O_fraction)
solution_sld = mix_values(solute_sld, solvent_sld, volume_fraction)
#print(D2O_fraction, volume_fraction)
#print(compound, "solvent", solvent_sld)
#print(compound, "solute", solute_sld)
#print(compound, "solution", solution_sld)
return solution_sld
def _D2O_slds(compound, **kw):
from . import formulas
# Water density at 20C; neutron wavelength doesn't matter.
sld_args = dict(
wavelength=kw.pop("wavelength", None),
energy=kw.pop("energy", None),
# Note: using get() rather than pop() for table since table can be a
# parameter for formula and for neutron_sld (which calls formula)
table=kw.get('table', None),
)
# TODO: use same table for solvent as solute?
H2O_sld = neutron_sld("H2O@0.9982n", **sld_args)
D2O_sld = neutron_sld("D2O@0.9982n", **sld_args)
mol = formulas.formula(compound, **kw)
# Be sure to pull H and H[1] from the table for the compound, otherwise
# the elements may not match in the substitution.
# TODO: include table in compound so parsed
table = default_table(kw.get('table', None))
labile_H, H, D = table.H[1], table.H, table.D
Hsld = neutron_sld(mol.replace(labile_H, H), **sld_args)
Dsld = neutron_sld(mol.replace(labile_H, D), **sld_args)
return H2O_sld, D2O_sld, Hsld, Dsld
def mix_values(a, b, fraction):
"""
Mix two tuples with floating point values according to fraction of a.
"""
return tuple(aj*fraction + bj*(1-fraction) for aj, bj in zip(a, b))
def _sum_piece(wavelength, compound):
"""
Helper for neutron_composite_sld which precomputes quantities of interest
for material fragments in a composite formula.
"""
# Sum over the quantities.
molar_mass = num_atoms = 0
b_c = sigma_s = 0
for element, quantity in compound.atoms.items():
molar_mass += element.mass*quantity
num_atoms += quantity
b_ck, sigma_sk = element.neutron.scattering_by_wavelength(wavelength)
b_c += quantity * b_ck
sigma_s += quantity * sigma_sk
return num_atoms, molar_mass, b_c, sigma_s
# TODO: compute density from material densities if requested
# You ought to be able to use mixby="mass" or "volume" when creating the
# calculator, and ignore any density provided.
def neutron_composite_sld(materials, wavelength=ABSORPTION_WAVELENGTH):
r"""
Create a composite SLD calculator.
:Parameters:
*materials* \: [Formula]
List of materials
*wavelength* = 1.798: float OR [float] | |Ang|
Probe wavelength(s).
:Returns:
*calculator* \: f(w, density=1) -> (*real*, -*imaginary*, *incoherent*)
The composite calculator takes a vector of weights and returns the
scattering length density of the composite. This is useful for operations
on large molecules, such as calculating a set of contrasts or fitting
a material composition. Note that density must be provided for each set
of material weights. The density on the individual materials is ignored.
The returned slds will be vectors if the input wavelength is a vector
and if any of the elements are energy dependent.
Table lookups and partial sums and constants are precomputed so that
the calculation consists of a few simple array operations regardless
of the size of the material fragments.
"""
# Input may be a scalar or a sequence. If it is a sequence, turn it into
# an array before proceeding. If it is a scalar leave it as a scalar so
# that float input returns float output.
is_multi = not np.isscalar(wavelength)
if is_multi:
wavelength = np.asarray(wavelength)
# Query all parts of the composition
parts = [_sum_piece(wavelength, m) for m in materials]
num_atoms_parts, molar_mass_parts, bc_parts, sigma_parts = [
np.array(v) for v in zip(*parts)
]
#for name, v in zip("N mass bc b'' total".split(), V): print(name, v)
def _compute(weights, density=1):
multiweights = weights[:, None] if is_multi else weights
# Sum over the quantities
molar_mass = np.sum(weights*molar_mass_parts)
num_atoms = np.sum(weights*num_atoms_parts)
b_c = np.sum(multiweights*bc_parts, axis=0)
sigma_s = np.sum(multiweights*sigma_parts, axis=0)
# If nothing to sum, return values for a vacuum. This might be because
# the material has no atoms or it might be because the density is zero.
if molar_mass*density == 0:
return 0, 0, 0
# Compute number density (1/A^3)
cell_volume = (molar_mass/density)/avogadro_number*1e24
number_density = num_atoms / cell_volume
#print("in compute", b_c, number_density)
# Turn sums into scattering factors
b_c /= num_atoms
sigma_s /= num_atoms
# TODO: duplicated from _calculate_scattering
# Compute SLD (1e-6/A^2). Extending Sears (1992) convention, b = b' - i b'',
# returning sld = sld_re - i sld_im.
sld = 10*number_density * b_c # 1e-6/A^2 = 1/A^3 1 fm 1e-5 A/fm 1e6 1e-6
sld_re, sld_im = sld.real, abs(sld.imag)
# PAK 2017-04-21: compute incoherent xs from total xs
# PAK 2021-04-20: include imaginary b_c in coherent cross section
sigma_c = _4PI_100 * abs(b_c)**2 # 1 barn = 1e-2 fm^2
sigma_i = np.maximum(sigma_s - sigma_c, 0.) # 1 barn = 1 barn
b_i = sqrt(sigma_i / _4PI_100) # 1 fm = sqrt(1 barn * 1e-2 fm^2/barn)
sld_inc = number_density * b_i * 10 # 1e-6/A^2 = 1/A^3 1 fm 1e-5 A/fm 1e6 1e-6
return sld_re, sld_im, sld_inc
return _compute
def sld_plot(table=None):
r"""
Plots SLD as a function of element number.
:Parameters:
*table* \: PeriodicTable
The default periodictable unless a specific table has been requested.
:Returns: None
"""
from .plot import table_plot
table = default_table(table)
SLDs = dict((el, el.neutron.sld()[0])
for el in table
if el.neutron.has_sld())
SLDs[table.D] = table.D.neutron.sld()[0]
table_plot(SLDs, label='Scattering length density ($10^{-6}$ Nb)',
title='Neutron SLD for elements in natural abundance')
# We are including the complete original table here in case somebody in
# future wants to extract uncertainties or other information.
#
# Z-Symbol-A
# This is the atomic number, the symbol and the isotope.
# If Z-Symbol only, the line represents an element with scattering determined
# by the natural abundance of the isotopes in laboratory samples. If there
# is only one isotope, then there is no corresponding element definition.
# concentration/half-life
# This is the natural abundance of the isotope expressed as a percentage, or
# it is the half-life in years (number Y) or seconds (number S).
# spin I
# For isotopes, the nuclear spin.
# b_c, bp, bm
# Bound coherent scattering length in fm
# b+/b- if present are spin dependent scattering for I+1/2 and I-1/2
# respectively
# c
# 'E' if there is a strong energy dependency.
# '+/-' if separate b+/b- values are available [PAK: doesn't seem true]
# coherent, incoherent, total
# The coherent and incoherent scattering cross-sections in barns.
# absorption
# The thermal absorption cross section in barns at 1.798 A; 25.30 meV; 2200 m/s
#
# Numbers in parenthesis represents uncertainty.
# Numbers followed by '*' are estimated.
# Numbers may be given as limit, e.g., <1.0e-6
#
# [Paul Kienzle]
# * Fix typos such as 70Zn b_c 6.9(1.0) => 6.0(1.0).
# * Update bound coherent scattering length for H-1, H-2, He-4, C-12,
# O-16, O-17, O-18, Sn-119, Sm-154, Eu-153, Pb-207, Bi-209
# * Update total cross section for He, Kr, Xe
# * Usd 63-Eu-151 b_c from 84Mug1. This change is moot since this isotope
# has energy dependent isotope coeffs.
# * Use calculated values for 4He coh and total, and natHe b_c, coh and total.
nsftable = """\
0-n-1,618 S,1/2,-37.0(6),0,-37.0(6),,43.01(2),,43.01(2),0
1-H,,,-3.7409(11),,,,1.7568(10),80.26(6),82.02(6),0.3326(7)
1-H-1,99.985,1/2,-3.7395(11),10.817(5),-47.420(14),+/-,1.7583(10),80.27(6),82.03(6),0.3326(7)
1-H-2,0.0149,1,6.6681(27),9.53(3),0.975(60),,5.592(7),2.05(3),7.64(3),0.000519(7)
1-H-3,12.26 Y,1/2,4.792(27),4.18(15),6.56(37),,2.89(3),0.14(4),3.03(5),<6.0E-6
2-He,,,3.0985(21),,,,1.2065(16),0,1.2065(16),0.00747(1)
2-He-3,0.013,1/2,5.74(7),4.7(5),8.8(1.4),E,4.42(10),1.6(4),6.0(4),5333.0(7.0)
2-He-4,99.987,0,3.0982(21),,,,1.2062(16),0,1.2062(16),0
3-Li,,,-1.90(3),,,,0.454(10),0.92(3),1.37(3),70.5(3)
3-Li-6,7.5,1,2.0(1),0.67(14),4.67(17),+/-,0.51(5),0.46(5),0.97(7),940.0(4.0)
3-Li-7,92.5,3/2,-2.22(2),-4.15(6),1.00(8),+/-,0.619(11),0.78(3),1.40(3),0.0454(3)
4-Be-9,100,3/2,7.79(1),,,,7.63(2),0.0018(9),7.63(2),0.0076(8)
5-B,,,5.30(4),,,,3.54(5),1.70(12),5.24(11),767.0(8.0)
5-B-10,19.4,3,-0.2(4),-4.2(4),5.2(4),,0.144(6),3.0(4),3.1(4),3835.0(9.0)
5-B-11,80.2,3/2,6.65(4),5.6(3),8.3(3),,5.56(7),0.21(7),5.77(10),0.0055(33)
6-C,,,6.6472(9),,,,5.551(2),0.001(4),5.551(3),0.00350(7)
6-C-12,98.89,0,6.6535(14),,,,5.559(3),0,5.559(3),0.00353(7)
6-C-13,1.11,1/2,6.19(9),5.6(5),6.2(5),+/-,4.81(14),0.034(11),4.84(14),0.00137(4)
7-N,,,9.36(2),,,,11.01(5),0.50(12),11.51(11),1.90(3)
7-N-14,99.635,1,9.37(2),10.7(2),6.2(3),,11.03(5),0.50(12),11.53(11),1.91(3)
7-N-15,0.365,1/2,6.44(3),6.77(10),6.21(10),,5.21(5),0.00005(10),5.21(5),0.000024(8)
8-O,,,5.8037(29),,,,4.232(6),0.000(8),4.232(6),0.00019(2)
8-O-16,99.75,0,5.805(5),,,,4.232(6),0,4.232(6),0.00010(2)
8-O-17,0.039,5/2,5.867(4),5.52(20),5.17(20),,4.20(22),0.004(3),4.20(22),0.236(10)
8-O-18,0.208,0,6.009(5),,,,4.29(10),0,4.29(10),0.00016(1)
9-F-19,100,1/2,5.654(12),5.632(10),5.767(10),+/-,4.017(14),0.0008(2),4.018(14),0.0096(5)
10-Ne,,,4.566(6),,,,2.620(7),0.008(9),2.628(6),0.039(4)
10-Ne-20,90.5,0,4.631(6),,,,2.695(7),0,2.695(7),0.036(4)
10-Ne-21,0.27,3/2,6.66(19),,,,5.6(3),0.05(2),5.7(3),0.67(11)
10-Ne-22,9.2,0,3.87(1),,,,1.88(1),0,1.88(1),0.046(6)
11-Na-23,100,3/2,3.63(2),6.42(4),-1.00(6),+/-,1.66(2),1.62(3),3.28(4),0.530(5)
12-Mg,,,5.375(4),,,,3.631(5),0.08(6),3.71(4),0.063(3)
12-Mg-24,78.99,0,5.49(18),,,,4.03(4),0,4.03(4),0.050(5)
12-Mg-25,10,5/2,3.62(14),4.73(30),1.76(20),+/-,1.65(13),0.28(4),1.93(14),0.19(3)
12-Mg-26,11,0,4.89(15),,,,3.00(18),0,3.00(18),0.0382(8)
13-Al-27,100,5/2,3.449(5),3.67(2),3.15(2),,1.495(4),0.0082(6),1.503(4),0.231(3)
14-Si,,,4.15071(22),,,,2.1633(10),0.004(8),2.167(8),0.171(3)
14-Si-28,92.2,0,4.106(6),,,,2.120(6),0,2.120(6),0.177(3)
14-Si-29,4.7,1/2,4.7(1),4.50(15),4.7(4),+/-,2.78(12),0.001(2),2.78(12),0.101(14)
14-Si-30,3.1,0,4.58(8),,,,2.64(9),0,2.64(9),0.107(2)
15-P-31,100,1/2,5.13(1),,,+/-,3.307(13),0.005(10),3.312(16),0.172(6)
16-S,,,2.847(1),,,,1.0186(7),0.007(5),1.026(5),0.53(1)
16-S-32,95,0,2.804(2),,,,0.9880(14),0,0.9880(14),0.54(4)
16-S-33,0.74,3/2,4.74(19),,,+/-,2.8(2),0.3(6),3.1(6),0.54(4)
16-S-34,4.2,0,3.48(3),,,,1.52(3),0,1.52(3),0.227(5)
16-S-36,0.02,0,3.0(1.0)*,,,,1.1(8),0,1.1(8),0.15(3)
17-Cl,,,9.5792(8),,,,11.528(2),5.3(5),16.8(5),33.5(3)
17-Cl-35,75.77,3/2,11.70(9),16.3(2),4.0(3),+/-,17.06(6),4.7(6),21.8(6),44.1(4)
17-Cl-37,24.23,3/2,3.08(6),3.10(7),3.05(7),+/-,1.19(5),0.001(3),1.19(5),0.433(6)
18-Ar,,,1.909(6),,,,0.458(3),0.225(5),0.683(4),0.675(9)
18-Ar-36,0.34,0,24.9(7),,,,77.9(4),0,77.9(4),5.2(5)
18-Ar-38,0.07,0,3.5(3.5),,,,1.5(3.1),0,1.5(3.1),0.8(5)
18-Ar-40,99.59,0,1.7,,,,0.421(3),0,0.421(3),0.660(9)
19-K,,,3.67(2),,,,1.69(2),0.27(11),1.96(11),2.1(1)
19-K-39,93.3,3/2,3.79(2),5.15,1.51,+/-,1.76(2),0.25(11),2.01(11),2.1(1)
19-K-40,0.012,4,3.1(1.0)*,,,,1.1(6),0.5(5)*,1.6(9),35.0(8.0)
19-K-41,6.7,3/2,2.69(8),,,,0.91(5),0.3(6),1.2(6),1.46(3)
20-Ca,,,4.70(2),,,,2.78(2),0.05(3),2.83(2),0.43(2)
20-Ca-40,96.94,0,4.78(5),,,,2.90(2),0,2.90(2),0.41(2)
20-Ca-42,0.64,0,3.36(10),,,,1.42(8),0,1.42(8),0.68(7)
20-Ca-43,0.13,7/2,-1.56(9),,,,0.31(4),0.5(5),0.8(5),6.2(6)
20-Ca-44,2.13,0,1.42(6),,,,0.25(2),0,0.25(2),0.88(5)
20-Ca-46,0.003,0,3.55(21),,,,1.6(2),0,1.6(2),0.74(7)
20-Ca-48,0.18,0,0.39(9),,,,0.019(9),0,0.019(9),1.09(14)
21-Sc-45,100,7/2,12.1(1),6.91(22),18.99(28),+/-,19.0(3),4.5(3),23.5(6),27.5(2)
22-Ti,,,-3.370(13),,,,1.485(2),2.87(3),4.35(3),6.09(13)
22-Ti-46,8,0,4.72(5),,,,3.05(7),0,3.05(7),0.59(18)
22-Ti-47,7.5,5/2,3.53(7),0.46(23),7.64(13),,1.66(11),1.5(2),3.2(2),1.7(2)
22-Ti-48,73.7,0,-5.86(2),,,,4.65(3),0,4.65(3),7.84(25)
22-Ti-49,5.5,7/2,0.98(5),2.6(3),-1.2(4),,0.14(1),3.3(3),3.4(3),2.2(3)
22-Ti-50,5.3,0,5.88(10),,,,4.80(12),0,4.80(12),0.179(3)
23-V,,,-0.443(14),,,,0.01838(12),5.08(6),5.10(6),5.08(4)
23-V-50,0.25,6,7.6(6)*,,,,7.3(1.1),0.5(5)*,7.8(1.0),60.0(40.0)
23-V-51,99.75,7/2,-0.402(2),4.93(25),-7.58(28),+/-,0.0203(2),5.07(6),5.09(6),4.9(1)
24-Cr,,,3.635(7),,,,1.660(6),1.83(2),3.49(2),3.05(6)
24-Cr-50,4.35,0,-4.50(5),,,,2.54(6),0,2.54(6),15.8(2)
24-Cr-52,83.8,0,4.914(15),,,,3.042(12),0,3.042(12),0.76(6)
24-Cr-53,9.59,3/2,-4.20(3),1.16(10),-13.0(2),,2.22(3),5.93(17),8.15(17),18.1(1.5)
24-Cr-54,2.36,0,4.55(10),,,,2.60(11),0,2.60(11),0.36(4)
25-Mn-55,100,5/2,-3.750(18),-4.93(46),-1.46(33),,1.75(2),0.40(2),2.15(3),13.3(2)
26-Fe,,,9.45(2),,,,11.22(5),0.40(11),11.62(10),2.56(3)
26-Fe-54,5.8,0,4.2(1),,,,2.2(1),0,2.2(1),2.25(18)
26-Fe-56,91.7,0,10.1(2),,,,12.42(7),0,12.42(7),2.59(14)
26-Fe-57,2.19,1/2,2.3(1),,,,0.66(6),0.3(3)*,1.0(3),2.48(30)
26-Fe-58,0.28,0,15(7),,,,28.0(26.0),0,28.0(26.0),1.28(5)
27-Co-59,100,7/2,2.49(2),-9.21(10),3.58(10),+/-,0.779(13),4.8(3),5.6(3),37.18(6)
28-Ni,,,10.3(1),,,,13.3(3),5.2(4),18.5(3),4.49(16)
28-Ni-58,67.88,0,14.4(1),,,,26.1(4),0,26.1(4),4.6(3)
28-Ni-60,26.23,0,2.8(1),,,,0.99(7),0,0.99(7),2.9(2)
28-Ni-61,1.19,3/2,7.60(6),,,,7.26(11),1.9(3),9.2(3),2.5(8)
28-Ni-62,3.66,0,-8.7(2),,,,9.5(4),0,9.5(4),14.5(3)
28-Ni-64,1.08,0,-0.37(7),,,,0.017(7),0,0.017(7),1.52(3)
29-Cu,,,7.718(4),,,,7.485(8),0.55(3),8.03(3),3.78(2)
29-Cu-63,69.1,3/2,6.477(13),,,+/-,5.2(2),0.006(1),5.2(2),4.50(2)
29-Cu-65,30.9,3/2,10.204(20),,,+/-,14.1(5),0.40(4),14.5(5),2.17(3)
30-Zn,,,5.680(5),,,,4.054(7),0.077(7),4.131(10),1.11(2)
30-Zn-64,48.9,0,5.23(4),,,,3.42(5),0,3.42(5),0.93(9)
30-Zn-66,27.8,0,5.98(5),,,,4.48(8),0,4.48(8),0.62(6)
30-Zn-67,4.1,5/2,7.58(8),5.8(5),10.1(7),+/-,7.18(15),0.28(3),7.46(15),6.8(8)
30-Zn-68,18.6,0,6.04(3),,,,4.57(5),0,4.57(5),1.1(1)
30-Zn-70,0.62,0,6.0(1.0)*,,,,4.5(1.5),0,4.5(1.5),0.092(5)
31-Ga,,,7.288(2),,,,6.675(4),0.16(3),6.83(3),2.75(3)
31-Ga-69,60,3/2,8.043(16),6.3(2),10.5(4),+/-,7.80(4),0.091(11),7.89(4),2.18(5)
31-Ga-71,40,3/2,6.170(11),5.5(6),7.8(1),+/-,5.15(5),0.084(8),5.23(5),3.61(10)
32-Ge,,,8.185(20),,,,8.42(4),0.18(7),8.60(6),2.20(4)
32-Ge-70,20.7,0,10.0(1),,,,12.6(3),0,12.6(3),3.0(2)
32-Ge-72,27.5,0,8.51(10),,,,9.1(2),0,9.1(2),0.8(2)
32-Ge-73,7.7,9/2,5.02(4),8.1(4),1.2(4),,3.17(5),1.5(3),4.7(3),15.1(4)
32-Ge-74,36.4,0,7.58(10),,,,7.2(2),0,7.2(2),0.4(2)
32-Ge-76,7.7,0,8.2(1.5),,,,8.0(3.0),0,8.0(3.0),0.16(2)
33-As-75,100,3/2,6.58(1),6.04(5),7.47(8),+/-,5.44(2),0.060(10),5.50(2),4.5(1)
34-Se,,,7.970(9),,,,7.98(2),0.32(6),8.30(6),11.7(2)
34-Se-74,0.9,0,0.8(3.0),,,,0.1(6),0,0.1(6),51.8(1.2)
34-Se-76,9,0,12.2(1),,,,18.7(3),0,18.7(3),85.0(7.0)
34-Se-77,7.5,0,8.25(8),,,,8.6(2),0.05(25),8.65(16),42.0(4.0)
34-Se-78,23.5,0,8.24(9),,,,8.5(2),0,8.5(2),0.43(2)
34-Se-80,50,0,7.48(3),,,,7.03(6),0,7.03(6),0.61(5)
34-Se-82,8.84,0,6.34(8),,,,5.05(13),0,5.05(13),0.044(3)
35-Br,,,6.79(2),,,,5.80(3),0.10(9),5.90(9),6.9(2)
35-Br-79,50.49,3/2,6.79(7),,,+/-,5.81(2),0.15(6),5.96(13),11.0(7)
35-Br-81,49.31,3/2,6.78(7),,,+/-,5.79(12),0.05(2),5.84(12),2.7(2)
36-Kr,,,7.81(2),,,,7.67(4),0.01(14),7.685(26),25.0(1.0)
36-Kr-78,0.35,0,,,,,,0,,6.4(9)
36-Kr-80,2.5,0,,,,,,0,,11.8(5)
36-Kr-82,11.6,0,,,,,,0,,29.0(20.0)
36-Kr-83,11.5,9/2,,,,,,,,185.0(30.0)
36-Kr-84,57,0,,,,,,0,6.6,0.113(15)
36-Kr-86,17.3,0,8.07(26),,,,8.2(4),0,8.2(4),0.003(2)
37-Rb,,,7.08(2),,,,6.32(4),0.5(4),6.8(4),0.38(1)
37-Rb-85,72.17,5/2,7.07(10),,,,6.2(2),0.5(5)*,6.7(5),0.48(1)
37-Rb-87,27.83,3/2,7.27(12),,,,6.6(2),0.5(5)*,7.1(5),0.12(3)
38-Sr,,,7.02(2),,,,6.19(4),0.06(11),6.25(10),1.28(6)
38-Sr-84,0.56,0,5.0(2.0),,,,6.0(2.0),0,6.0(2.0),0.87(7)
38-Sr-86,9.9,0,5.68(5),,,,4.04(7),0,4.04(7),1.04(7)
38-Sr-87,7,9/2,7.41(7),,,,6.88(13),0.5(5)*,7.4(5),16.0(3.0)
38-Sr-88,82.6,0,7.16(6),,,,6.42(11),0,6.42(11),0.058(4)
39-Y-89,100,1/2,7.75(2),8.4(2),5.8(5),+/-,7.55(4),0.15(8),7.70(9),1.28(2)
40-Zr,,,7.16(3),,,,6.44(5),0.02(15),6.46(14),0.185(3)
40-Zr-90,51.48,0,6.5(1),,,,5.1(2),0,5.1(2),0.011(5)
40-Zr-91,11.23,5/2,8.8(1),7.9(2),10.1(2),+/-,9.5(2),0.15(4),9.7(2),1.17(10)
40-Zr-92,17.11,0,7.5(2),,,,6.9(4),0,6.9(4),0.22(6)
40-Zr-94,17.4,0,8.3(2),,,,8.4(4),0,8.4(4),0.0499(24)
40-Zr-96,2.8,0,5.5(1),,,,3.8(1),0,3.8(1),0.0229(10)
41-Nb-93,100,9/2,7.054(3),7.06(4),7.35(4),+/-,6.253(5),0.0024(3),6.255(5),1.15(6)
42-Mo,,,6.715(20),,,,5.67(3),0.04(5),5.71(4),2.48(4)
42-Mo-92,15.48,0,6.93(8),,,,6.00(14),0,6.00(14),0.019(2)
42-Mo-94,9.1,0,6.82(7),,,,5.81(12),0,5.81(12),0.015(2)
42-Mo-95,15.72,5/2,6.93(7),,,,6.00(10),0.5(5)*,6.5(5),13.1(3)
42-Mo-96,16.53,0,6.22(6),,,,4.83(9),0,4.83(9),0.5(2)
42-Mo-97,9.5,5/2,7.26(8),,,,6.59(15),0.5(5)*,7.1(5),2.5(2)
42-Mo-98,23.78,0,6.60(7),,,,5.44(12),0,5.44(12),0.127(6)
42-Mo-100,9.6,0,6.75(7),,,,5.69(12),0,5.69(12),0.4(2)
43-Tc-99,210000 Y,9/2,6.8(3),,,,5.8(5),0.5(5)*,6.3(7),20.0(1.0)
44-Ru,,,7.02(2),,,,6.21(5),0.4(1),6.6(1),2.56(13)
44-Ru-96,5.8,0,,,,,,0,,0.28(2)
44-Ru-98,1.9,0,,,,,,0,,<8.0
44-Ru-99,12.7,5/2,,,,,,,,6.9(1.0)
44-Ru-100,12.6,0,,,,,,0,,4.8(6)
44-Ru-101,17.07,5/2,,,,,,,,3.3(9)
44-Ru-102,31.61,0,,,,,,0,,1.17(7)
44-Ru-104,18.58,0,,,,,,0,,0.31(2)
45-Rh-103,100,1/2,5.90(4),8.15(6),6.74(6),,4.34(6),0.3(3)*,4.6(3),144.8(7)
46-Pd,,,5.91(6),,,,4.39(9),0.093(9),4.48(9),6.9(4)
46-Pd-102,1,0,7.7(7)*,,,,7.5(1.4),0,7.5(1.4),3.4(3)
46-Pd-104,11,0,7.7(7)*,,,,7.5(1.4),0,7.5(1.4),0.6(3)
46-Pd-105,22.33,5/2,5.5(3),,,+/-,3.8(4),0.8(1.0),4.6(1.1),20.0(3.0)
46-Pd-106,27.33,0,6.4(4),,,,5.1(6),0,5.1(6),0.304(29)
46-Pd-108,26.71,0,4.1(3),,,,2.1(3),0,2.1(3),8.5(5)
46-Pd-110,11.8,0,7.7(7)*,,,,7.5(1.4),0,7.5(1.4),0.226(31)
47-Ag,,,5.922(7),,,,4.407(10),0.58(3),4.99(3),63.3(4)
47-Ag-107,51.8,1/2,7.555(11),8.14(9),5.8(3),+/-,7.17(2),0.13(3),7.30(4),37.6(1.2)
47-Ag-109,48.2,1/2,4.165(11),3.24(8),6.9(2),+/-,2.18(1),0.32(5),2.50(5),91.0(1.0)
48-Cd,,,4.83(5),,,E,3.04(6),3.46(13),6.50(12),2520.0(50.0)
48-Cd-106,1.2,0,5.0(2.0)*,,,,3.1(2.5),0,3.1(2.5),1.0(2.0)
48-Cd-108,0.9,0,5.31(24),,,,3.7(1),0,3.7(1),1.1(3)
48-Cd-110,12.39,0,5.78(8),,,,4.4(1),0,4.4(1),11.0(1.0)
48-Cd-111,12.75,1/2,6.47(8),,,,5.3(2),0.3(3)*,5.6(4),24.0(5.0)
48-Cd-112,24.07,0,6.34(6),,,,5.1(2),0,5.1(2),2.2(5)
48-Cd-113,12.36,1/2,-8.0(1),,,E,12.1(4),0.3(3)*,12.4(5),20600.0(400.0)
48-Cd-114,28.86,0,7.48(5),,,,7.1(2),0,7.1(2),0.34(2)
48-Cd-116,7.58,0,6.26(9),,,,5.0(2),0,5.0(2),0.075(13)
49-In,,,4.065(20),,,,2.08(2),0.54(11),2.62(11),193.8(1.5)
49-In-113,4.28,9/2,5.39(6),,,,3.65(8),0.000037(5),3.65(8),12.0(1.1)
49-In-115,95.72,9/2,4.00(3),2.1(1),6.4(4),,2.02(2),0.55(11),2.57(11),202.0(2.0)
50-Sn,,,6.2239(13),,,,4.871(3),0.022(5),4.892(6),0.626(9)
50-Sn-112,1,0,6.0(1.0)*,,,,4.5(1.5),0,4.5(1.5),1.00(11)
50-Sn-114,0.66,0,6.0(3),,,,4.8(5),0,4.8(5),0.114(30)
50-Sn-115,0.35,1/2,6.0(1.0)*,,,,4.5(1.5),0.3(3)*,4.8(1.5),30.0(7.0)
50-Sn-116,14.3,0,6.10(1),,,,4.42(7),0,4.42(7),0.14(3)
50-Sn-117,7.61,1/2,6.59(8),0.22(10),-0.23(10),,5.28(8),0.3(3)*,5.6(3),2.3(5)
50-Sn-118,24.03,0,6.23(4),,,,4.63(8),0,4.63(8),0.22(5)
50-Sn-119,8.58,1/2,6.28(3),0.14(10),0.0(1),,4.71(8),0.3(3)*,5.0(3),2.2(5)
50-Sn-120,32.86,0,6.67(4),,,,5.29(8),0,5.29(8),0.14(3)
50-Sn-122,4.72,0,5.93(3),,,,4.14(7),0,4.14(7),0.18(2)
50-Sn-124,5.94,0,6.15(3),,,,4.48(8),0,4.48(8),0.133(5)
51-Sb,,,5.57(3),,,,3.90(4),0.00(7),3.90(6),4.91(5)
51-Sb-121,57.25,5/2,5.71(6),5.7(2),5.8(2),,4.10(9),0.0003(19),4.10(19),5.75(12)
51-Sb-123,42.75,7/2,5.38(7),5.2(2),5.4(2),,3.64(9),0.001(4),3.64(9),3.8(2)
52-Te,,,5.68(2),,,,4.23(4),0.09(6),4.32(5),4.7(1)
52-Te-120,0.09,0,5.3(5),,,,3.5(7),0,3.5(7),2.3(3)
52-Te-122,2.4,0,3.8(2),,,,1.8(2),0,1.8(2),3.4(5)
52-Te-123,0.87,1/2,-0.05(25),-1.2(2),3.5(2),,0.002(3),0.52(5),0.52(5),418.0(30.0)
52-Te-124,4.61,0,7.95(10),,,,8.0(2),0,8.0(2),6.8(1.3)
52-Te-125,6.99,1/2,5.01(8),4.9(2),5.5(2),,3.17(10),0.008(8),3.18(10),1.55(16)
52-Te-126,18.71,0,5.55(7),,,,3.88(10),0,3.88(10),1.04(15)
52-Te-128,31.79,0,5.88(8),,,,4.36(10),0,4.36(10),0.215(8)
52-Te-130,34.48,0,6.01(7),,,,4.55(11),0,4.55(11),0.29(6)
53-I-127,100,5/2,5.28(2),6.6(2),3.4(2),,3.50(3),0.31(6),3.81(7),6.15(6)
54-Xe,,,4.69(4),,,,3.04(4),0,4.344(17),23.9(1.2)
54-Xe-124,0.1,0,,,,,,0,,165.0(20.0)
54-Xe-126,0.09,0,,,,,,0,,3.5(8)
54-Xe-128,1.9,0,,,,,,0,,<8.0
54-Xe-129,26.14,1/2,,,,,,,,21.0(5.0)
54-Xe-130,3.3,0,,,,,,0,,<26.0
54-Xe-131,21.18,3/2,,,,,,,,85.0(10.0)
54-Xe-132,26.89,0,,,,,,0,,0.45(6)
54-Xe-134,10.4,0,,,,,,0,,0.265(20)
54-Xe-136,8.9,0,,,,,,0,,0.26(2)
55-Cs-133,100,7/2,5.42(2),,,+/-,3.69(15),0.21(5),3.90(6),29.0(1.5)
56-Ba,,,5.07(3),,,,3.23(4),0.15(11),3.38(10),1.1(1)
56-Ba-130,0.1,0,-3.6(6),,,,1.6(5),0,1.6(5),30.0(5.0)
56-Ba-132,0.09,0,7.8(3),,,,7.6(6),0,7.6(6),7.0(8)
56-Ba-134,2.4,0,5.7(1),,,,4.08(14),0,4.08(14),2.0(1.6)
56-Ba-135,6.59,3/2,4.66(10),,,,2.74(12),0.5(5)*,3.2(5),5.8(9)
56-Ba-136,7.81,0,4.90(8),,,,3.03(10),0,3.03(10),0.68(17)
56-Ba-137,11.32,3/2,6.82(10),,,,5.86(17),0.5(5)*,6.4(5),3.6(2)
56-Ba-138,71.66,0,4.83(8),,,,2.94(10),0,2.94(10),0.27(14)
57-La,,,8.24(4),,,,8.53(8),1.13(19),9.66(17),8.97(2)
57-La-138,0.09,5,8.0(2.0)*,,,,8.0(4.0),0.5(5)*,8.5(4.0),57.0(6.0)
57-La-139,99.91,7/2,8.24(4),11.4(3),4.5(4),+/-,8.53(8),1.13(15),9.66(17),8.93(4)
58-Ce,,,4.84(2),,,,2.94(2),0.00(10),2.94(10),0.63(4)
58-Ce-136,0.19,0,5.76(9),,,,4.23(13),0,4.23(13),7.3(1.5)
58-Ce-138,0.26,0,6.65(9),,,,5.64(15),0,5.64(15),1.1(3)
58-Ce-140,88.48,0,4.81(9),,,,2.94(11),0,2.94(11),0.57(4)
58-Ce-142,11.07,0,4.72(9),,,,2.84(11),0,2.84(11),0.95(5)
59-Pr-141,100,5/2,4.58(5),,,+/-,2.64(6),0.015(3),2.66(6),11.5(3)
60-Nd,,,7.69(5),,,,7.43(19),9.2(8),16.6(8),50.5(1.2)
60-Nd-142,27.11,0,7.7(3),,,,7.5(6),0,7.5(6),18.7(7)
60-Nd-143,12.17,7/2,14.0(2.0)*,,,,25.0(7.0),55.0(7.0),80.0(2.0),337.0(10.0)
60-Nd-144,23.85,0,2.8(3),,,,1.0(2),0,1.0(2),3.6(3)
60-Nd-145,8.5,7/2,14.0(2.0)*,,,,25.0(7.0),5.0(5.0)*,30.0(9.0),42.0(2.0)
60-Nd-146,17.22,0,8.7(2),,,,9.5(4),0,9.5(4),1.4(1)
60-Nd-148,5.7,0,5.7(3),,,,4.1(4),0,4.1(4),2.5(2)
60-Nd-150,5.6,0,5.28(20),,,,3.5(3),0,3.5(3),1.2(2)
61-Pm-147,2.62 Y,7/2,12.6(4),,,,20.0(1.3),1.3(2.0),21.3(1.5),168.4(3.5)
62-Sm,,,0.00(5),,,E,0.422(9),39.0(3.0),39.4(3.0),5922.0(56.0)
62-Sm-144,3.1,0,-3.0(4.0)*,,,,1.0(3.0),0,1.0(3.0),0.7(3)
62-Sm-147,15,7/2,14.0(3.0),,,,25.0(11.0),14.0(19.0),39.0(16.0),57.0(3.0)
62-Sm-148,11.2,0,-3.0(4.0)*,,,,1.0(3.0),0,1.0(3.0),2.4(6)
62-Sm-149,13.8,7/2,18.7(28),,,E,63.5(6),137.0(5.0),200.0(5.0),42080.0(400.0)
62-Sm-150,7.4,0,14.0(3.0),,,,25.0(11.0),0,25.0(11.0),104.0(4.0)
62-Sm-152,26.7,0,-5.0(6),,,,3.1(8),0,3.1(8),206.0(6.0)
62-Sm-154,22.8,0,8.97(6),,,,11.0(2.0),0,11.0(2.0),8.4(5)
63-Eu,,,5.3(3),,,E,6.57(4),2.5(4),9.2(4),4530.0(40.0)
63-Eu-151,47.8,5/2,6.92(15),,,E,5.5(2),3.1(4),8.6(4),9100.0(100.0)
63-Eu-153,52.8,5/2,8.85(3),,,,8.5(2),1.3(7),9.8(7),312.0(7.0)
64-Gd,,,9.5(2),,,E,29.3(8),151.0(2.0),180.0(2.0),49700.0(125.0)
64-Gd-152,0.2,0,10.0(3.0)*,,,,13.0(8.0),0,13.0(8.0),735.0(20.0)
64-Gd-154,2.2,0,10.0(3.0)*,,,,13.0(8.0),0,13.0(8.0),85.0(12.0)
64-Gd-155,14.9,3/2,13.8(3),,,E,40.8(4),25.0(6.0),66.0(6.0),61100.0(400.0)
64-Gd-156,20.6,0,6.3(4),,,,5.0(6),0,5.0(6),1.5(1.2)
64-Gd-157,15.7,3/2,4.0(2.0),,,E,650.0(4.0),394.0(7.0),1044.0(8.0),259000.0(700.0)
64-Gd-158,24.7,0,9.0(2.0),,,,10.0(5.0),0,10.0(5.0),2.2(2)
64-Gd-160,21.7,0,9.15(5),,,,10.52(11),0,10.52(11),0.77(2)
65-Tb-159,100,3/2,7.34(2),6.8(2),8.1(2),+/-,6.84(6),0.004(3),6.84(6),23.4(4)
66-Dy,,,16.9(3),,,,35.9(8),54.4(1.2),90.3(9),994.0(13.0)
66-Dy-156,0.06,0,6.1(5),,,,4.7(8),0,4.7(8),33.0(3.0)
66-Dy-158,0.1,0,6.0(4.0)*,,,,5.0(6.0),0,5.(6.),43.0(6.0)
66-Dy-160,2.3,0,6.7(4),,,,5.6(7),0,5.6(7),56.0(5.0)
66-Dy-161,18.9,5/2,10.3(4),,,,13.3(1.0),3.0(1.0),16.0(1.0),600.0(25.0)
66-Dy-162,25.5,0,-1.4(5),,,,0.25(18),0,0.25(18),194.0(10.0)
66-Dy-163,24.9,5/2,5.0(4),6.1(5),3.5(5),,3.1(5),0.21(19),3.3(5),124.0(7.0)
66-Dy-164,28.2,0,49.4(5),,,,307.0(3.0),0,307.0(3.0),2840.0(40.0)
67-Ho-165,100,7/2,8.44(3),6.9(2),10.3(2),+/-,8.06(8),0.36(3),8.42(16),64.7(1.2)
68-Er,,,7.79(2),,,,7.63(4),1.1(3),8.7(3),159.0(4.0)
68-Er-162,0.14,0,9.01(11),,,,9.7(4),0,9.7(4),19.0(2.0)
68-Er-164,1.6,0,7.95(14),,,,8.4(4),0,8.4(4),13.0(2.0)
68-Er-166,33.4,0,10.51(19),,,,14.1(5),0,14.1(5),19.6(1.5)
68-Er-167,22.9,7/2,3.06(5),5.3(3),0.0(3),,1.1(2),0.13(6),1.2(2),659.0(16.0)
68-Er-168,27,0,7.43(8),,,,6.9(7),0,6.9(7),2.74(8)
68-Er-170,15,0,9.61(6),,,,11.6(1.2),0,11.6(1.2),5.8(3)
69-Tm-169,100,1/2,7.07(3),,,+/-,6.28(5),0.10(7),6.38(9),100.0(2.0)
70-Yb,,,12.41(3),,,,19.42(9),4.0(2),23.4(2),34.8(8)
70-Yb-168,0.14,0,-4.07(2),,,E,2.13(2),0,2.13(2),2230.0(40.0)
70-Yb-170,3,0,6.8(1),,,,5.8(2),0,5.8(2),11.4(1.0)
70-Yb-171,14.3,1/2,9.7(1),6.5(2),19.4(4),,11.7(2),3.9(2),15.6(3),48.6(2.5)
70-Yb-172,21.9,0,9.5(1),,,,11.2(2),0,11.2(2),0.8(4)
70-Yb-173,16.3,5/2,9.56(10),2.5(2),13.3(3),,11.5(2),3.5,15,17.1(1.3)
70-Yb-174,31.8,0,19.2(1),,,,46.8(5),0,46.8(5),69.4(5.0)
70-Yb-176,12.7,0,8.7(1),,,,9.6(2),0,9.6(2),2.85(5)
71-Lu,,,7.21(3),,,,6.53(5),0.7(4),7.2(4),74.0(2.0)
71-Lu-175,97.4,7/2,7.28(9),,,,6.59(5),0.6(4),7.2(4),21.0(3.0)
71-Lu-176,2.6,7,6.1(2),,,,4.7(2),1.2(3),5.9,2065.(35.)
72-Hf,,,7.77(14),,,,7.6(3),2.6(5),10.2(4),104.1(5)
72-Hf-174,0.184,0,10.9(1.1),,,,15.0(3.0),0,15.0(3.0),561.0(35.0)
72-Hf-176,5.2,0,6.61(18),,,,5.5(3),0,5.5(3),23.5(3.1)
72-Hf-177,18.5,0,0.8(1.0)*,,,,0.1(2),0.1(3),0.2(2),373.0(10.0)
72-Hf-178,27.2,0,5.9(2),,,,4.4(3),0,4.4(3),84.0(4.0)
72-Hf-179,13.8,9/2,7.46(16),,,,7.0(3),0.14(2),7.1(3),41.0(3.0)
72-Hf-180,35.1,0,13.2(3),,,,21.9(1.0),0,21.9(1.0),13.04(7)
73-Ta,,,6.91(7),,,,6.00(12),0.01(17),6.01(12),20.6(5)
73-Ta-180,0.012,9,7.0(2.0)*,,,,6.2(3.5),0.5(5)*,7.0(4.0),563.0(60.0)
73-Ta-181,99.98,7/2,6.91(7),,,+/-,6.00(12),0.011(2),6.01(12),20.5(5)
74-W,,,4.755(18),,,,2.97(2),1.63(6),4.60(6),18.3(2)
74-W-180,0.13,0,5.0(3.0)*,,,,3.0(4.0),0,3.0(4.0),30.0(20.0)
74-W-182,26.3,1/2,7.04(4),,,,6.10(7),0,6.10(7),20.7(5)
74-W-183,14.3,1/2,6.59(4),6.3(4),7.0(4),,5.36(7),0.3(3)*,5.7(3),10.1(3)
74-W-184,30.7,0,7.55(6),,,,7.03(11),0,7.03(11),1.7(1)
74-W-186,28.6,0,-0.73(4),,,,0.065(7),0,0.065(7),37.9(6)
75-Re,,,9.2(2),,,,10.6(5),0.9(6),11.5(3),89.7(1.0)
75-Re-185,37.5,5/2,9.0(3),,,,10.2(7),0.5(9),10.7(6),112.0(2.0)
75-Re-187,62.5,5/2,9.3(3),,,,10.9(7),1.0(6),11.9(4),76.4(1.0)
76-Os,,,10.7(2),,,,14.4(5),0.3(8),14.7(6),16.0(4.0)
76-Os-184,0.02,0,10.0(2.0)*,,,,13.0(5.0),0,13.0(5.0),3000.0(150.0)
76-Os-186,1.6,0,12.0(1.7),,,,17.0(5.0),0,17.0(5.0),80.0(13.0)
76-Os-187,1.6,1/2,10.0(2.0)*,,,,13.0(5.0),0.3(3)*,13.0(5.0),320.0(10.0)
76-Os-188,13.3,0,7.8(3),,,,7.3(6),0,7.3(6),4.7(5)
76-Os-189,16.1,3/2,11.0(3),,,,14.4(8),0.5(5)*,14.9(9),25.0(4.0)
76-Os-190,26.4,0,11.4(3),,,,15.2(8),0,15.2(8),13.1(3)
76-Os-192,41,0,11.9(4),,,,16.6(1.2),0,16.6(1.2),2.0(1)
77-Ir,,,10.6(3),,,,14.1(8),0.0(3.0),14.0(3.0),425.0(2.0)
77-Ir-191,37.4,3/2,12.1(9),,,,,,,954.0(10.0)
77-Ir-193,62.6,3/2,9.71(18),,,,,,,111.0(5.0)
78-Pt,,,9.60(1),,,,11.58(2),0.13(11),11.71(11),10.3(3)
78-Pt-190,0.01,0,9.0(1.0),,,,10.0(2.0),0,10.0(2.0),152.0(4.0)
78-Pt-192,1.78,0,9.9(5),,,,12.3(1.2),0,12.3(1.2),10.0(2.5)
78-Pt-194,32.9,0,10.55(8),,,,14.0(2),0,14.0(2),1.44(19)
78-Pt-195,33.8,1/2,8.91(9),9.5(3),7.2(3),+/-,9.8(2),0.13(4),9.9(2),27.5(1.2)
78-Pt-196,25.3,0,9.89(8),,,,12.3(2),0,12.3(2),0.72(4)
78-Pt-198,7.2,0,7.8(1),,,,7.6(2),0,7.6(2),3.66(19)
79-Au-197,100,3/2,7.90(7),6.26(10),9.90(14),+/-,7.32(12),0.43(5),7.75(13),98.65(9)
80-Hg,,,12.595(45),,,,20.24(5),6.6(1),26.8(1),372.3(4.0)
80-Hg-196,0.15,0,30.3(1.0),,,E,115.0(8.0),0,115.0(8.0),3080.0(180.0)
80-Hg-198,10.1,0,,,,,,0,,2.0(3)
80-Hg-199,16.9,0,16.9(4),,,E,36.0(2.0),30.0(3.0),66.0(2.0),2150.0(48.0)
80-Hg-200,23.1,0,,,,,,0,,<60.0
80-Hg-201,13.2,3/2,,,,,,,,7.8(2.0)
80-Hg-202,29.7,0,11.002(43),,,,15.2108(2),0,15.2108(2),4.89(5)
80-Hg-204,6.8,0,,,,,,0,,0.43(10)
81-Tl,,,8.776(5),,,,9.678(11),0.21(15),9.89(15),3.43(6)
81-Tl-203,29.5,1/2,8.51(8),9.08(10),6.62(10),,6.14(28),0.14(4),6.28(28),11.4(2)
81-Tl-205,70.5,1/2,8.87(7),5.15(10),9.43(10),+/-,11.39(17),0.007(1),11.40(17),0.104(17)
82-Pb,,,9.4024(13),,,,11.115(7),0.0030(7),11.118(7),0.171(2)
82-Pb-204,1.4,0,10.893(78),,,,12.3(2),0,12.3(2),0.65(7)
82-Pb-206,24.1,0,9.221(78),,,,10.68(12),0,10.68(12),0.0300(8)
82-Pb-207,22.1,1/2,9.286(16),,,+/-,10.82(9),0.002(2),10.82(9),0.699(10)
82-Pb-208,52.4,0,9.494(30),,,,11.34(5),0,11.34(5),0.00048(3)
83-Bi-209,100,9/2,8.5242(18),8.26(1),8.74(1),,9.148(4),0.0084(19),9.156(4),0.0338(7)
88-Ra-226,1620 Y,0,10.0(1.0),,,,13.0(3.0),0,13.0(3.0),12.8(1.5)
90-Th-232,100,0,10.31(3),,,,13.36(8),0,13.36(8),7.37(6)
91-Pa-231,32500 Y,3/2,9.1(3),,,,10.4(7),0.1(3.3),10.5(3.2),200.6(2.3)
92-U,,,8.417(5),,,,8.903(11),0.005(16),8.908(11),7.57(2)
92-U-233,159000 Y,5/2,10.1(2),,,,12.8(5),0.1(6),12.9(3),574.7(1.0)
92-U-234,0.005,0,12.4(3),,,,19.3(9),0,19.3(9),100.1(1.3)
92-U-235,0.72,7/2,10.50(3),,,,13.78(11),0.2(2),14.0(2),680.9(1.1)
92-U-238,99.27,0,8.407(7),,,,8.871(11),0,8.871(11),2.68(2)
93-Np-237,2140000 Y,5/2,10.55(10),,,,14.0(3),0.5(5)*,14.5(6),175.9(2.9)
94-Pu-239,24400 Y,1/2,7.7(1),,,,7.5(2),0.2(6),7.7(6),1017.3(2.1)
94-Pu-240,6540 Y,0,3.5(1),,,,1.54(9),0,1.54(9),289.6(1.4)
94-Pu-242,376000 Y,0,8.1(1),,,,8.2(2),0,8.2(2),18.5(5)
95-Am-243,7370 Y,5/2,8.3(2),,,,8.7(4),0.3(2.6),9.0(2.6),75.3(1.8)
96-Cm-244,17.9 Y,0,9.5(3),,,,11.3(7),0,11.3(7),16.2(1.2)
96-Cm-246,4700 Y,0,9.3(2),,,,10.9(5),0,10.9(5),1.36(17)
96-Cm-248,340000 Y,0,7.7(2),,,,7.5(4),0,7.5(4),3.00(26)\
"""
# Imaginary values for select isotopes
# isotope, b_c_i, bp_i, bm_i
nsftableI = """\
2-He-3,-1.48,,-5.925
3-Li-6,-0.26,-0.08(1),-0.62(2)
5-B,-0.21,,
47-Ag-107,-0.01,,
47-Ag-109,-0.025,,
48-Cd,-1.2,,
48-Cd-113,-12,,
49-In,-0.054,,
49-In-115,-0.056,,
52-Te-123,-0.1,,
62-Sm,-1.5,,
62-Sm-149,-11,,
64-Gd,-13.6,,
64-Gd-155,-10.3,,
71-Lu-176,-0.57(2),,
80-Hg-196,-0.8,,\
"""
# Excluding the following because the measurements for the real parts
# were not used in nsftable table.
# 63-Eu-151,-2.46,,
# 64-Gd-157,-47,-75,
def fix_number(str):
"""
Converts strings of the form e.g., 35.24(2)* into numbers without
uncertainty. Also accepts a limited range, e.g., <1e-6, which is
converted as 1e-6. Missing values are set to 0.
"""
from .util import parse_uncertainty
return parse_uncertainty(str.replace('<','').replace('*',''))[0]
def sld_table(wavelength=1, table=None, isotopes=True):
r"""
Scattering length density table for wavelength 4.75 |Ang|.
:Parameters:
*table* \: PeriodicTable
If *table* is not specified, use the common periodic table.
*isotopes* = True \: boolean
Whether to consider isotopes or not.
:Returns: None
Example
>>> sld_table(wavelength=4.75) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE
Neutron scattering length density table
atom mass density sld imag incoh
H 1.008 0.071 -1.582 0.000 10.690
1-H 1.008 0.071 -1.582 0.000 10.691
D 2.014 0.141 2.820 0.000 1.709
T 3.016 0.212 2.027 0.000 0.453
He 4.003 0.122 0.569 0.000 0.003
3-He 3.016 0.092 1.054 0.272 0.652 *
4-He 4.003 0.122 0.569 0.000 0.000
...
248-Cm 248.072 13.569 2.536 0.000 0.207
* Energy dependent cross sections
"""
table = default_table(table)
# Table for comparison with scattering length density calculators
# b_c for Sc, Te, Xe, Sm, Eu, Gd, W, Au, Hg are different from Neutron News
# The Rauch data have cited references to back up the numbers
# (see doc directory), though it is not clear what criteria are
# used to select amongst the available measurements.
print(" Neutron scattering length density table")
print("%-7s %7s %7s %7s %7s %7s"
%('atom', 'mass', 'density', 'sld', 'imag', 'incoh'))
for el in table:
if el.neutron.has_sld():
coh, jcoh, inc = el.neutron.sld(wavelength=wavelength)
print("%-7s %7.3f %7.3f %7.3f %7.3f %7.3f%s"
%(el, el.mass, el.density, coh, jcoh, inc,
' *' if el.neutron.is_energy_dependent else ''))
if isotopes:
isos = [iso for iso in el if iso.neutron is not None and iso.neutron.has_sld()]
else:
isos = []
for iso in isos:
coh, jcoh, inc = iso.neutron.sld(wavelength=wavelength)
print("%-7s %7.3f %7.3f %7.3f %7.3f %7.3f%s"
%(iso, iso.mass, iso.density, coh, jcoh, inc,
' *' if iso.neutron.is_energy_dependent else ''))
print("* Energy dependent cross sections")
def energy_dependent_table(table=None):
r"""
Prints a table of energy dependent isotopes.
:Parameters:
*table* \: PeriodicTable
If *table* is not specified, use the common periodic table.
:Returns: None
Example
>>> energy_dependent_table()
Elements and isotopes with energy dependent absorption:
He-3
Cd Cd-113
Sm Sm-149
Eu Eu-151
Gd Gd-155 Gd-157
Yb-168
Hg-196 Hg-199
"""
table = default_table(table)
# List of energy dependent elements and isotopes
print("Elements and isotopes with energy dependent absorption:")
for el in table:
if not hasattr(el, 'neutron'):
continue
dep = []
if el.neutron.is_energy_dependent:
dep += [str(el)]
dep += [str(el)+'-'+str(iso.isotope)
for iso in el
if iso.neutron is not None and iso.neutron.is_energy_dependent]
if dep:
print(" " + " ".join(dep))
def _diff(iso, a, b, tol=0.01):
if None in (a, b):
if a is not None or b is not None:
if a is None and b > tol:
print("%10s %8s %8.2f"%(iso, "----", b))
elif b is None and a > tol:
print("%10s %8.2f %8s"%(iso, a, "----"))
# Tricky code: Using tolerance of -tol selects for items within tolerance
# rather than outside tolerance by using -|a-b| > -tol.
elif np.sign(tol)*abs(a - b) > tol:
print("%10s %8.2f %8.2f %5.1f%%"
% (iso, a, b, (100*(a-b)/b if b != 0 else inf)))
def compare(fn1, fn2, table=None, tol=0.01):
table = default_table(table)
for el in table:
try:
res1 = fn1(el)
except Exception:
res1 = None
try:
res2 = fn2(el)
except Exception:
res2 = None
_diff(el, res1, res2, tol=tol)
for iso in el:
# Don't show isotope details if the isotope defers to the natural
# natural abundance for its value.
if 'neutron' not in iso.__dict__:
#print("dict has", iso.__dict__.keys())
continue
try:
res1 = fn1(iso)
except Exception:
res1 = None
try:
res2 = fn2(iso)
except Exception:
res2 = None
_diff(iso, res1, res2, tol=tol)
def absorption_comparison_table(table=None, tol=None):
r"""
Prints a table comparing absorption to the imaginary bound coherent
scattering length b_c_i. This is used to checking the integrity
of the data and formula.
The relationship between absorption and b_c_i is:
.. math::
\sigma_a = -2 \lambda \mathrm{Im}(b_c) \cdot 1000
The wavelength $\lambda = 1.798$ |Ang| is the neutron wavelength at which
the absorption is tallied. The factor of 1000 transforms from
|Ang|\ |cdot|\ fm to barn.
:Parameters:
*table* \: PeriodicTable
The default periodictable unless a specific table has been requested.
*tol* = 0.01 \: float | barn
Show differences greater than this amount.
:Returns: None
Example
>>> absorption_comparison_table (tol=0.5) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE
Comparison of absorption and (-2000 lambda b_c_i)
3-He 5333.00 5322.08 0.2%
Li 70.50 ----
6-Li 940.00 934.96 0.5%
B 767.00 755.16 1.6%
10-B 3835.00 ----
N 1.90 ----
...
"""
print("Comparison of absorption and (-2000 lambda b_c_i)")
compare(lambda el: el.neutron.absorption,
lambda el: -2000*el.neutron.b_c_i*ABSORPTION_WAVELENGTH,
table=table, tol=tol)
def coherent_comparison_table(table=None, tol=None):
r"""
Prints a table of $4 \pi |b_c|^2/100$ and coherent for each isotope.
This is useful for checking the integrity of the data and formula.
The table only prints where b_c exists.
:Parameters:
*table* \: PeriodicTable
The default periodictable unless a specific table has been requested.
*tol* = 0.01 \: float | barn
Amount of difference to show. Use -tol to show elements within
tolerance rather than those outside tolerance.
:Returns: None
Example
>>> coherent_comparison_table (tol=0.5) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE
Comparison of (4 pi |b_c|^2/100) and coherent
Sc 18.40 19.00 -3.2%
45-Sc 18.40 19.00 -3.2%
65-Cu 13.08 14.10 -7.2%
84-Sr 3.14 6.00 -47.6%
...
"""
print("Comparison of (4 pi |b_c|^2/100) and coherent")
sigma_c = lambda el: 4*pi/100*abs(el.neutron.b_c_complex)**2
compare(sigma_c, lambda el: el.neutron.coherent, table=table, tol=tol)
def total_comparison_table(table=None, tol=None):
r"""
Prints a table of neutron.total and sum coh,inc for each
isotope where these exist. This is used to checking the integrity
of the data and formula.
:Parameters:
*table* \: PeriodicTable
The default periodictable unless a specific table has been requested.
*tol* = 0.01 \: float | barn
Amount of difference to show. Use -tol to show elements within
tolerance rather than those outside tolerance.
:Returns: None
Example
>>> total_comparison_table (tol=0.1)
Comparison of total cross section to (coherent + incoherent)
84-Kr 6.60 ----
Xe 4.34 3.04 42.9%
149-Sm 200.00 200.50 -0.2%
Eu 9.20 9.07 1.4%
Gd 180.00 180.30 -0.2%
155-Gd 66.00 65.80 0.3%
161-Dy 16.00 16.30 -1.8%
180-Ta 7.00 6.70 4.5%
187-Os 13.00 13.30 -2.3%
"""
print("Comparison of total cross section to (coherent + incoherent)")
compare(lambda el: el.neutron.total,
lambda el: el.neutron.coherent+el.neutron.incoherent,
table=table, tol=tol)
def incoherent_comparison_table(table=None, tol=None):
r"""
Prints a table of incoherent computed from total and b_c with incoherent.
:Parameters:
*table* \: PeriodicTable
The default periodictable unless a specific table has been requested.
*tol* = 0.01 \: float | barn
Amount of difference to show. Use -tol to show elements within
tolerance rather than those outside tolerance.
:Returns: None
Example
>>> incoherent_comparison_table (tol=0.5) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE
Comparison of incoherent and (total - 4 pi |b_c|^2/100)
Sc 4.50 5.10 -11.8%
45-Sc 4.50 5.10 -11.8%
65-Cu 0.40 1.42 -71.7%
84-Sr 0.00 2.86 -100.0%
...
"""
print("Comparison of incoherent and (total - 4 pi |b_c|^2/100)")
sigma_c = lambda el: 4*pi/100*abs(el.neutron.b_c_complex)**2
compare(lambda el: el.neutron.incoherent,
lambda el: el.neutron.total - sigma_c(el),
table=table, tol=tol)
def print_scattering(compound, wavelength=ABSORPTION_WAVELENGTH):
"""
Print the scattering for a single compound.
"""
from . import formulas
compound = formulas.formula(compound)
density = compound.density if compound.density is not None else 1.0
sld, xs, penetration = neutron_scattering(compound, wavelength=wavelength,
density=density)
print("%s at %g Ang (density=%g g/cm^3)"
% (str(compound), wavelength, density))
print(" sld: %g + %g j (%g incoherent) 1e-6/Ang^2"%sld)
print(" Σ_c: %g Σ_a: %g Σ_i: %g 1/cm"%xs)
print(" μ: %g 1/cm 1/e penetration: %g cm"%(1/penetration, penetration))
def main():
"""
Simple command line interface, showing the predicted neutron scattering.
Usage::
python -m periodictable.nsf [-Lwavelength] compound@density compound@density ...
For example::
$ python -m periodictable.nsf XeF6@3.56
scattering for XeF6 at 1.798 Ang (density=3.56 g/cm^3)
sld: 3.37503 + 0.000582313 j (0.402605 incoherent) 1e-6/Ang^2
sigma_c: 3.37503 sigma_i: 0.000582313 sigma_a: 0.402605 1/cm
1/e penetration: 2.23871 cm
"""
import sys
compounds = sys.argv[1:]
if compounds[0].startswith('-L'):
wavelength = float(compounds[0][2:])
compounds = compounds[1:]
else:
wavelength = ABSORPTION_WAVELENGTH
for c in compounds:
print_scattering(c, wavelength)
if __name__ == "__main__":
main()
#sld_table()
#coherent_comparison_table(tol=0.1)
#incoherent_comparison_table(tol=0.1)
#absorption_comparison_table(tol=0.1)
#total_comparison_table(tol=0.1)
|