1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
|
from __future__ import division
from copy import deepcopy
from pickle import loads, dumps
from periodictable import Ca, C, O, H, Fe, Ni, Si, D, Na, Cl, Co, Ti, S
from periodictable import formula, mix_by_weight, mix_by_volume
from periodictable.formulas import count_elements, pretty
def check_parse_fails(s):
try:
formula(s)
except Exception as exc:
return True
raise Exception(f'formula("{s}") should fail to parse')
def test():
ikaite = formula()
# Note: this should be a tuple of tuples
ikaite.structure = ((1, Ca), (1, C), (3, O), (6, ((2, H), (1, O))))
# Test print
assert str(ikaite) == "CaCO3(H2O)6"
# Test constructors
assert ikaite == formula([(1, Ca), (1, C), (3, O), (6, [(2, H), (1, O)])])
assert ikaite == formula(ikaite)
assert ikaite is not formula(ikaite)
assert ikaite.structure is formula(ikaite).structure
# Test parsers
assert formula("Ca") == formula([(1, Ca)])
assert formula("Ca") == formula(Ca)
assert formula("CaCO3") == formula([(1, Ca), (1, C), (3, O)])
assert ikaite == formula("CaCO3+6H2O")
assert ikaite == formula("(CaCO3+6H2O)1")
assert ikaite == formula("CaCO3 6H2O")
assert ikaite == formula("CaCO3(H2O)6")
assert ikaite == formula("(CaCO3(H2O)6)1")
assert ikaite.hill == formula("CCaO3(H2O)6").hill
assert str(ikaite.hill) == "CH12CaO9"
assert formula([(0.75, Fe), (0.25, Ni)]) == formula("Fe0.75Ni0.25")
# Unicode, latex and html subscripts
assert formula([(0.75, Fe), (0.25, Ni)]) == formula("Fe₀.₇₅Ni₀.₂₅")
assert ikaite == formula("CaCO₃(H₂O)₆")
assert ikaite == formula("CaCO₃6H₂O") # with subscripts we know it isn't O36
assert pretty(ikaite, 'unicode') == "CaCO₃(H₂O)₆"
assert pretty(ikaite, 'html') == "CaCO<sub>3</sub>(H<sub>2</sub>O)<sub>6</sub>"
assert pretty(ikaite, 'latex') == "CaCO$_{3}$(H$_{2}$O)$_{6}$"
# Only allow subscripts in the post position
assert check_parse_fails("₃H₂O")
assert check_parse_fails("H₂O@₁")
assert check_parse_fails("₁wt% NaCl@2.3 // H₂O@1n")
# Test composition
#print formula("CaCO3") + 6*formula("H2O")
assert ikaite == formula("CaCO3") + 6*formula("H2O")
f = formula('')
assert not (3*f).structure
f = formula('H2O')
assert id((1*f).structure) == id(f.structure)
# Check atom count
assert formula("Fe2O4+3H2O").atoms == {Fe: 2, O: 7, H: 6}
# Check element count. The formula includes element, charged element,
# isotope and charged isotope. The "3" in front forces recursion into a
# formula tree.
f = formula("3HDS{6+}O{2-}3O[16]{2-}")
assert count_elements(f) == {S: 3, O: 12, H: 6}
assert str(formula(count_elements(f)).hill) == "H6O12S3"
assert count_elements(f, by_isotope=True) == {S: 3, O: 9, O[16]:3, H: 3, D: 3}
# Check charge
assert formula("P{5+}O{2-}4").charge == -3
try:
formula("P{18-}")
raise Exception("No exception raised for invalid charge")
except ValueError:
pass
assert formula("Na{+}Cl{-}").charge == 0
Na_frac = Na.ion[1].mass/(Na.ion[1].mass+Cl.ion[-1].mass)
assert abs(formula("Na{+}Cl{-}").mass_fraction[Na.ion[1]] - Na_frac) < 1e-14
# Check the mass calculator
assert formula('H2O').mass == 2*H.mass+O.mass
assert formula("Fe2O4+3H2O").mass == 2*Fe.mass+7*O.mass+6*H.mass
assert (formula("Fe2O[18]4+3H2O").mass
== 2*Fe.mass+4*O[18].mass+3*O.mass+6*H.mass)
# Check natural density support
assert (formula('D2O', natural_density=1).density
== (2*D.mass + O.mass)/(2*H.mass + O.mass))
D2O = formula('D2O', natural_density=1)
D2Os = formula('D2O')
D2Os.natural_density = 1
assert abs(D2O.density - D2Os.density) < 1e-14
assert abs(D2O.natural_density - 1) < 1e-14
assert abs(D2Os.natural_density - 1) < 1e-14
# Test isotopes; make sure this is last since it changes ikaite!
assert ikaite != formula("CaCO[18]3+6H2O")
assert formula("O[18]").mass == O[18].mass
# Check x-ray and neutron sld
rho, mu, inc = formula('Si', Si.density).neutron_sld(wavelength=4.5)
rhoSi, muSi, incSi = Si.neutron.sld(wavelength=4.5)
assert abs(rho - rhoSi) < 1e-14
assert abs(mu - muSi) < 1e-14
assert abs(inc - incSi) < 1e-14
rho, mu = formula('Si', Si.density).xray_sld(wavelength=1.54)
rhoSi, muSi = Si.xray.sld(wavelength=1.54)
assert abs(rho - rhoSi) < 1e-14
assert abs(mu - muSi) < 1e-14
# Check that names work
permalloy = formula('Ni8Fe2', 8.692, name='permalloy')
assert str(permalloy) == 'permalloy'
# Check that get/restore state works
assert deepcopy(permalloy).__dict__ == permalloy.__dict__
# Check that copy constructor works
#print permalloy.__dict__
#print formula(permalloy).__dict__
assert formula(permalloy).__dict__ == permalloy.__dict__
assert formula('Si', name='Silicon').__dict__ != formula('Si').__dict__
H2O = formula('H2O', natural_density=1)
D2O = formula('D2O', natural_density=1)
fm = mix_by_weight(H2O, 3, D2O, 2)
fv = mix_by_volume(H2O, 3, D2O, 2)
# quantity of H+D should stay in 2:1 ratio with O
assert abs(fv.atoms[H]+fv.atoms[D] - 2*fv.atoms[O]) < 1e-14
assert abs(fm.atoms[H]+fm.atoms[D] - 2*fm.atoms[O]) < 1e-14
# H:D ratio should match H2O:D2O ratio when mixing by volume, but should
# be skewed toward the lighter H when mixing by mass.
assert abs(fv.atoms[H]/fv.atoms[D] - 1.5) < 1e-14
assert abs(fm.atoms[H]/fm.atoms[D] - 1.5*D2O.density/H2O.density) < 1e-14
# Mass densities should average according to H2O:D2O ratio when
# mixing by volume but be skewed toward toward the more plentiful
# H2O when mixing by mass
H2O_fraction = 0.6
assert abs(fv.density - (H2O.density*H2O_fraction + D2O.density*(1-H2O_fraction))) < 1e-14
H2O_fraction = (3/H2O.density) / (3/H2O.density + 2/D2O.density)
assert abs(fm.density - (H2O.density*H2O_fraction + D2O.density*(1-H2O_fraction))) < 1e-14
# Make sure we are independent of unit cell size
H2O = formula('3.2H2O', natural_density=1)
D2O = formula('4.1D2O', natural_density=1)
fm = mix_by_weight(H2O, 3, D2O, 2)
fv = mix_by_volume(H2O, 3, D2O, 2)
# quantity of H+D should stay in 2:1 ratio with O
assert abs(fv.atoms[H]+fv.atoms[D] - 2*fv.atoms[O]) < 1e-14
assert abs(fm.atoms[H]+fm.atoms[D] - 2*fm.atoms[O]) < 1e-14
# H:D ratio should match H2O:D2O ratio when mixing by volume, but should
# be skewed toward the lighter H when mixing by mass.
assert abs(fv.atoms[H]/fv.atoms[D] - 1.5) < 1e-14
assert abs(fm.atoms[H]/fm.atoms[D] - 1.5*D2O.density/H2O.density) < 1e-14
# Mass densities should average according to H2O:D2O ratio when
# mixing by volume but be skewed toward toward the more plentiful
# H2O when mixing by mass
H2O_fraction = 0.6
assert abs(fv.density - (H2O.density*H2O_fraction + D2O.density*(1-H2O_fraction))) < 1e-14
H2O_fraction = (3/H2O.density) / (3/H2O.density + 2/D2O.density)
assert abs(fm.density - (H2O.density*H2O_fraction + D2O.density*(1-H2O_fraction))) < 1e-14
# Pickle test
assert loads(dumps(fm)) == fm
ion = Fe[56].ion[2]
assert id(loads(dumps(ion))) == id(ion)
# zero quantities tests in mixtures
f = mix_by_weight(H2O, 0, D2O, 2)
assert f == D2O
f = mix_by_weight(H2O, 2, D2O, 0)
assert f == H2O
f = mix_by_weight(H2O, 0, D2O, 0)
assert f == formula()
f = mix_by_volume(H2O, 0, D2O, 2)
assert f == D2O
f = mix_by_volume(H2O, 2, D2O, 0)
assert f == H2O
f = mix_by_volume(H2O, 0, D2O, 0)
assert f == formula()
# mix by weight with unknown component density
# can't do mix by volume without component densities
glass = mix_by_weight('SiO2', 75, 'Na2O', 15, 'CaO', 10, density=2.52)
# layers and mixtures
check_formula(formula('1mm Fe // 1mm Ni'), formula('50%vol Fe // Ni'))
# The relative quantities change whenenver the mass is updated.
#print(formula('2mL Co // 2mL Ti').structure)
#print(formula('2g Co // 2g Ti').structure)
#print(formula('5g NaCl // 50mL H2O@1').structure)
check_formula(formula('50vol% Co // Ti'), formula('2mL Co // 2mL Ti'))
check_formula(formula('50wt% Co // Ti'), formula('2g Co // 2g Ti'))
check_formula(formula('2mL Co // 2mL Ti'), formula(((1.5922467977437773, Co), (1, Ti))))
check_formula(formula('2g Co // 2g Ti'), formula(((1, Co), (1.2311862870035726, Ti))))
check_formula(formula('5g NaCl // 50mL H2O@1'), formula('5g NaCl // 50g H2O'))
check_formula(
formula('5g NaCl // 50mL H2O@1'),
formula(((1, Na), (1, Cl), (32.43950556758257, ((2, H), (1, O))))), tol=1e-5)
assert abs(formula('1mm Fe // 1mm Ni').thickness - 0.002) < 0.002*1e014
assert abs(formula('2g Co // 2g Ti').total_mass - 4) < 4*1e-14
check_mass(formula('2mL Co // 2mL Ti'), mass=2*(Co.density+Ti.density))
check_mass(
formula("50 g (49 mL H2O@1 // 1 g NaCl) // 20 mL D2O@1n"),
mass=50 + 20*D2O.density)
check_mass(
formula("50 mL (45 mL H2O@1 // 5 g NaCl)@1.0707 // 20 mL D2O@1n"),
mass=50*1.0707 + 20*D2O.density)
# fasta
check_formula(formula('aa:A'), formula('C3H4H[1]3NO2'))
check_formula(formula('aa:RELEEL'), formula('C33H42H[1]13N9O13'))
check_formula(formula('aa:RELEEL'), formula('aa:RE-LEE L *UNUSED'))
check_formula(
formula('30%vol CCl4@1.2 //10% aa:RE-LE EL @1.8 // H2O@1'),
formula('30%vol CCl4@1.2 //10% C33H42H[1]13N9O13 @1.8 // H2O@1'))
def check_mass(f1, mass, tol=1e-14):
"""Check that the total mass of f1 is as expected."""
assert abs(f1.total_mass - mass) < mass*tol
def check_formula(f1, f2, tol=1e-14):
"""Check that the number of atoms in f1 and f2 are about equal."""
f2_atoms = f2.atoms
for atom, count in f1.atoms.items():
if atom not in f2_atoms or abs(f2_atoms[atom] - count) > tol*count:
raise RuntimeError("Formulas differ: %s and %s"%(f1, f2))
if __name__ == "__main__":
test()
|