File: test_formulas.py

package info (click to toggle)
python-periodictable 2.0.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 3,068 kB
  • sloc: python: 13,338; makefile: 103; sh: 92; javascript: 7
file content (237 lines) | stat: -rw-r--r-- 10,141 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
from __future__ import division
from copy import deepcopy
from pickle import loads, dumps

from periodictable import Ca, C, O, H, Fe, Ni, Si, D, Na, Cl, Co, Ti, S
from periodictable import formula, mix_by_weight, mix_by_volume
from periodictable.formulas import count_elements, pretty

def check_parse_fails(s):
    try:
        formula(s)
    except Exception as exc:
        return True
    raise Exception(f'formula("{s}") should fail to parse')

def test():
    ikaite = formula()
    # Note: this should be a tuple of tuples
    ikaite.structure = ((1, Ca), (1, C), (3, O), (6, ((2, H), (1, O))))

    # Test print
    assert str(ikaite) == "CaCO3(H2O)6"

    # Test constructors
    assert ikaite == formula([(1, Ca), (1, C), (3, O), (6, [(2, H), (1, O)])])
    assert ikaite == formula(ikaite)
    assert ikaite is not formula(ikaite)
    assert ikaite.structure is formula(ikaite).structure

    # Test parsers
    assert formula("Ca") == formula([(1, Ca)])
    assert formula("Ca") == formula(Ca)
    assert formula("CaCO3") == formula([(1, Ca), (1, C), (3, O)])
    assert ikaite == formula("CaCO3+6H2O")
    assert ikaite == formula("(CaCO3+6H2O)1")
    assert ikaite == formula("CaCO3 6H2O")
    assert ikaite == formula("CaCO3(H2O)6")
    assert ikaite == formula("(CaCO3(H2O)6)1")
    assert ikaite.hill == formula("CCaO3(H2O)6").hill
    assert str(ikaite.hill) == "CH12CaO9"
    assert formula([(0.75, Fe), (0.25, Ni)]) == formula("Fe0.75Ni0.25")

    # Unicode, latex and html subscripts
    assert formula([(0.75, Fe), (0.25, Ni)]) == formula("Fe₀.₇₅Ni₀.₂₅")
    assert ikaite == formula("CaCO₃(H₂O)₆")
    assert ikaite == formula("CaCO₃6H₂O") # with subscripts we know it isn't O36
    assert pretty(ikaite, 'unicode') == "CaCO₃(H₂O)₆"
    assert pretty(ikaite, 'html') == "CaCO<sub>3</sub>(H<sub>2</sub>O)<sub>6</sub>"
    assert pretty(ikaite, 'latex') == "CaCO$_{3}$(H$_{2}$O)$_{6}$"
    # Only allow subscripts in the post position
    assert check_parse_fails("₃H₂O")
    assert check_parse_fails("H₂O@₁")
    assert check_parse_fails("₁wt% NaCl@2.3 // H₂O@1n")

    # Test composition
    #print formula("CaCO3") + 6*formula("H2O")
    assert ikaite == formula("CaCO3") + 6*formula("H2O")
    f = formula('')
    assert not (3*f).structure
    f = formula('H2O')
    assert id((1*f).structure) == id(f.structure)

    # Check atom count
    assert formula("Fe2O4+3H2O").atoms == {Fe: 2, O: 7, H: 6}

    # Check element count. The formula includes element, charged element,
    # isotope and charged isotope. The "3" in front forces recursion into a
    # formula tree.
    f = formula("3HDS{6+}O{2-}3O[16]{2-}")
    assert count_elements(f) == {S: 3, O: 12, H: 6}
    assert str(formula(count_elements(f)).hill) == "H6O12S3"
    assert count_elements(f, by_isotope=True) == {S: 3, O: 9, O[16]:3, H: 3, D: 3}

    # Check charge
    assert formula("P{5+}O{2-}4").charge == -3
    try:
        formula("P{18-}")
        raise Exception("No exception raised for invalid charge")
    except ValueError:
        pass
    assert formula("Na{+}Cl{-}").charge == 0
    Na_frac = Na.ion[1].mass/(Na.ion[1].mass+Cl.ion[-1].mass)
    assert abs(formula("Na{+}Cl{-}").mass_fraction[Na.ion[1]] - Na_frac) < 1e-14

    # Check the mass calculator
    assert formula('H2O').mass == 2*H.mass+O.mass
    assert formula("Fe2O4+3H2O").mass == 2*Fe.mass+7*O.mass+6*H.mass
    assert (formula("Fe2O[18]4+3H2O").mass
            == 2*Fe.mass+4*O[18].mass+3*O.mass+6*H.mass)

    # Check natural density support
    assert (formula('D2O', natural_density=1).density
            == (2*D.mass + O.mass)/(2*H.mass + O.mass))
    D2O = formula('D2O', natural_density=1)
    D2Os = formula('D2O')
    D2Os.natural_density = 1
    assert abs(D2O.density - D2Os.density) < 1e-14
    assert abs(D2O.natural_density - 1) < 1e-14
    assert abs(D2Os.natural_density - 1) < 1e-14

    # Test isotopes; make sure this is last since it changes ikaite!
    assert ikaite != formula("CaCO[18]3+6H2O")
    assert formula("O[18]").mass == O[18].mass

    # Check x-ray and neutron sld
    rho, mu, inc = formula('Si', Si.density).neutron_sld(wavelength=4.5)
    rhoSi, muSi, incSi = Si.neutron.sld(wavelength=4.5)
    assert abs(rho - rhoSi) < 1e-14
    assert abs(mu - muSi) < 1e-14
    assert abs(inc - incSi) < 1e-14

    rho, mu = formula('Si', Si.density).xray_sld(wavelength=1.54)
    rhoSi, muSi = Si.xray.sld(wavelength=1.54)
    assert abs(rho - rhoSi) < 1e-14
    assert abs(mu - muSi) < 1e-14

    # Check that names work
    permalloy = formula('Ni8Fe2', 8.692, name='permalloy')
    assert str(permalloy) == 'permalloy'

    # Check that get/restore state works
    assert deepcopy(permalloy).__dict__ == permalloy.__dict__

    # Check that copy constructor works
    #print permalloy.__dict__
    #print formula(permalloy).__dict__
    assert formula(permalloy).__dict__ == permalloy.__dict__
    assert formula('Si', name='Silicon').__dict__ != formula('Si').__dict__

    H2O = formula('H2O', natural_density=1)
    D2O = formula('D2O', natural_density=1)
    fm = mix_by_weight(H2O, 3, D2O, 2)
    fv = mix_by_volume(H2O, 3, D2O, 2)
    # quantity of H+D should stay in 2:1 ratio with O
    assert abs(fv.atoms[H]+fv.atoms[D] - 2*fv.atoms[O]) < 1e-14
    assert abs(fm.atoms[H]+fm.atoms[D] - 2*fm.atoms[O]) < 1e-14
    # H:D ratio should match H2O:D2O ratio when mixing by volume, but should
    # be skewed toward the lighter H when mixing by mass.
    assert abs(fv.atoms[H]/fv.atoms[D] - 1.5) < 1e-14
    assert abs(fm.atoms[H]/fm.atoms[D] - 1.5*D2O.density/H2O.density) < 1e-14
    # Mass densities should average according to H2O:D2O ratio when
    # mixing by volume but be skewed toward toward the more plentiful
    # H2O when mixing by mass
    H2O_fraction = 0.6
    assert abs(fv.density - (H2O.density*H2O_fraction + D2O.density*(1-H2O_fraction))) < 1e-14
    H2O_fraction = (3/H2O.density) / (3/H2O.density + 2/D2O.density)
    assert abs(fm.density - (H2O.density*H2O_fraction + D2O.density*(1-H2O_fraction))) < 1e-14

    # Make sure we are independent of unit cell size
    H2O = formula('3.2H2O', natural_density=1)
    D2O = formula('4.1D2O', natural_density=1)
    fm = mix_by_weight(H2O, 3, D2O, 2)
    fv = mix_by_volume(H2O, 3, D2O, 2)
    # quantity of H+D should stay in 2:1 ratio with O
    assert abs(fv.atoms[H]+fv.atoms[D] - 2*fv.atoms[O]) < 1e-14
    assert abs(fm.atoms[H]+fm.atoms[D] - 2*fm.atoms[O]) < 1e-14
    # H:D ratio should match H2O:D2O ratio when mixing by volume, but should
    # be skewed toward the lighter H when mixing by mass.
    assert abs(fv.atoms[H]/fv.atoms[D] - 1.5) < 1e-14
    assert abs(fm.atoms[H]/fm.atoms[D] - 1.5*D2O.density/H2O.density) < 1e-14
    # Mass densities should average according to H2O:D2O ratio when
    # mixing by volume but be skewed toward toward the more plentiful
    # H2O when mixing by mass
    H2O_fraction = 0.6
    assert abs(fv.density - (H2O.density*H2O_fraction + D2O.density*(1-H2O_fraction))) < 1e-14
    H2O_fraction = (3/H2O.density) / (3/H2O.density + 2/D2O.density)
    assert abs(fm.density - (H2O.density*H2O_fraction + D2O.density*(1-H2O_fraction))) < 1e-14

    # Pickle test
    assert loads(dumps(fm)) == fm
    ion = Fe[56].ion[2]
    assert id(loads(dumps(ion))) == id(ion)

    # zero quantities tests in mixtures
    f = mix_by_weight(H2O, 0, D2O, 2)
    assert f == D2O
    f = mix_by_weight(H2O, 2, D2O, 0)
    assert f == H2O
    f = mix_by_weight(H2O, 0, D2O, 0)
    assert f == formula()
    f = mix_by_volume(H2O, 0, D2O, 2)
    assert f == D2O
    f = mix_by_volume(H2O, 2, D2O, 0)
    assert f == H2O
    f = mix_by_volume(H2O, 0, D2O, 0)
    assert f == formula()

    # mix by weight with unknown component density
    # can't do mix by volume without component densities
    glass = mix_by_weight('SiO2', 75, 'Na2O', 15, 'CaO', 10, density=2.52)

    # layers and mixtures
    check_formula(formula('1mm Fe // 1mm Ni'), formula('50%vol Fe // Ni'))
    # The relative quantities change whenenver the mass is updated.
    #print(formula('2mL Co // 2mL Ti').structure)
    #print(formula('2g Co // 2g Ti').structure)
    #print(formula('5g NaCl // 50mL H2O@1').structure)
    check_formula(formula('50vol% Co // Ti'), formula('2mL Co // 2mL Ti'))
    check_formula(formula('50wt% Co // Ti'), formula('2g Co // 2g Ti'))
    check_formula(formula('2mL Co // 2mL Ti'), formula(((1.5922467977437773, Co), (1, Ti))))
    check_formula(formula('2g Co // 2g Ti'), formula(((1, Co), (1.2311862870035726, Ti))))

    check_formula(formula('5g NaCl // 50mL H2O@1'), formula('5g NaCl // 50g H2O'))
    check_formula(
        formula('5g NaCl // 50mL H2O@1'),
        formula(((1, Na), (1, Cl), (32.43950556758257, ((2, H), (1, O))))), tol=1e-5)
    assert abs(formula('1mm Fe // 1mm Ni').thickness - 0.002) < 0.002*1e014
    assert abs(formula('2g Co // 2g Ti').total_mass - 4) < 4*1e-14
    check_mass(formula('2mL Co // 2mL Ti'), mass=2*(Co.density+Ti.density))
    check_mass(
        formula("50 g (49 mL H2O@1 // 1 g NaCl) // 20 mL D2O@1n"),
        mass=50 + 20*D2O.density)
    check_mass(
        formula("50 mL (45 mL H2O@1 // 5 g NaCl)@1.0707 // 20 mL D2O@1n"),
        mass=50*1.0707 + 20*D2O.density)

    # fasta
    check_formula(formula('aa:A'), formula('C3H4H[1]3NO2'))
    check_formula(formula('aa:RELEEL'), formula('C33H42H[1]13N9O13'))
    check_formula(formula('aa:RELEEL'), formula('aa:RE-LEE L *UNUSED'))
    check_formula(
        formula('30%vol CCl4@1.2 //10% aa:RE-LE EL @1.8 // H2O@1'),
        formula('30%vol CCl4@1.2 //10% C33H42H[1]13N9O13 @1.8 // H2O@1'))

def check_mass(f1, mass, tol=1e-14):
    """Check that the total mass of f1 is as expected."""
    assert abs(f1.total_mass - mass) < mass*tol

def check_formula(f1, f2, tol=1e-14):
    """Check that the number of atoms in f1 and f2 are about equal."""
    f2_atoms = f2.atoms
    for atom, count in f1.atoms.items():
        if atom not in f2_atoms or abs(f2_atoms[atom] - count) > tol*count:
            raise RuntimeError("Formulas differ: %s and %s"%(f1, f2))

if __name__ == "__main__":
    test()