1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
|
from math import sqrt, pi
import numpy as np
import periodictable
from periodictable import elements, formula, nsf
from periodictable.nsf import neutron_scattering, neutron_sld
from periodictable.constants import avogadro_number as N_A, neutron_mass
def test():
H,He,D,O = elements.H,elements.He,elements.D,elements.O
assert H.neutron.absorption == 0.3326
assert H.neutron.total == 82.02
assert H.neutron.incoherent == 80.26
assert H.neutron.coherent == 1.7568
assert elements.Ru[101].neutron.bp == None
assert H[1].nuclear_spin == '1/2'
assert H[2].nuclear_spin == '1'
assert not H[6].neutron.has_sld()
assert He[3].neutron.b_c_i == -1.48
assert He[3].neutron.bm_i == -5.925
Nb = elements.Nb
assert Nb.neutron.absorption == Nb[93].neutron.absorption
# Check that b_c values match abundance-weighted values
# Note: Currently they do not for match within 5% for Ar,V,Sm or Gd
for el in elements:
if not hasattr(el,'neutron'): continue
b_c = 0
complete = True
for iso in el:
if iso.neutron != None:
if iso.neutron.b_c == None:
complete = False
else:
b_c += iso.neutron.b_c*iso.neutron.abundance/100.
if complete and b_c != 0 and abs((b_c-el.neutron.b_c)/b_c) > 0.05:
err = abs((b_c-el.neutron.b_c)/b_c)
## Printing suppressed for the release version
#print("%2s %.3f % 7.3f % 7.3f"%(el.symbol,err,b_c,el.neutron.b_c))
# Isotopic formula.
M = formula('Si[30]O[18]2',density=2.2)
sld,xs,depth = neutron_scattering(M,wavelength=4.75)
sld2 = neutron_sld(M,wavelength=4.75)
assert all(abs(v-w)<1e-10 for v,w in zip(sld,sld2))
#_summarize(M)
#_summarize(formula('O2',density=1.14))
assert abs(sld[0] - 3.33) < 0.01
assert abs(sld[1] - 0) < 0.01
#assert abs(xs[2] - 0.00292) < 0.00001 # TODO fix test
assert abs(xs[1] - 0.00569) < 0.00001
#assert abs(depth - 4.329) < 0.001 # TODO fix test
# Cu/Mo K-alpha = 1.89e-5 + 2.45e-7i / 1.87e-5 + 5.16e-8i
Ni,Si = elements.Ni, elements.Si
# Make sure molecular calculation corresponds to direct calculation
sld = neutron_sld('Si',density=Si.density,wavelength=4.75)
sld2 = Si.neutron.sld(wavelength=4.75)
assert all(abs(v-w)<1e-10 for v,w in zip(sld,sld2))
sld,_,_ = Si.neutron.scattering(wavelength=4.75)
sld2 = Si.neutron.sld(wavelength=4.75)
assert all(abs(v-w)<1e-10 for v,w in zip(sld,sld2))
sld,xs,depth = neutron_scattering('Si',density=Si.density,wavelength=4.75)
sld2,xs2,depth2 = Si.neutron.scattering(wavelength=4.75)
assert all(abs(v-w)<1e-10 for v,w in zip(sld,sld2))
assert all(abs(v-w)<1e-10 for v,w in zip(xs,xs2))
assert abs(depth-depth2) < 1e-14
# incoherent cross sections for Ni[62] used to be negative
sld,xs,depth = neutron_scattering('Ni[62]',density=Ni[62].density,
wavelength=4.75)
assert sld[2] == 0 and xs[2] == 0
sld,xs,depth = Ni[62].neutron.scattering(wavelength=4.75)
assert sld[2] == 0 and xs[2] == 0
assert Ni[62].neutron.sld()[2] == 0
# Test call from periodictable
sld,xs,depth = periodictable.neutron_scattering('H2O',density=1,wavelength=4.75)
sld2,xs2,depth2 = neutron_scattering('H2O',density=1,wavelength=4.75)
assert all(abs(v-w)<1e-10 for v,w in zip(sld,sld2))
assert all(abs(v-w)<1e-10 for v,w in zip(xs,xs2))
assert depth==depth2
sld = periodictable.neutron_sld('H2O',density=1,wavelength=4.75)
assert all(abs(v-w)<1e-10 for v,w in zip(sld,sld2))
# Check empty formula
sld,xs,depth = neutron_scattering('',density=0,wavelength=4.75)
assert all(v == 0 for v in sld)
assert all(v == 0 for v in xs)
assert np.isinf(depth)
# Check density == 0 works
sld,xs,depth = neutron_scattering('Si',density=0,wavelength=4.75)
assert all(v == 0 for v in sld)
assert all(v == 0 for v in xs)
assert np.isinf(depth)
# Test natural density
D2O_density = (2*D.mass + O.mass)/(2*H.mass + O.mass)
sld,xs,depth = neutron_scattering('D2O',natural_density=1,wavelength=4.75)
sld2,xs2,depth2 = neutron_scattering('D2O',density=D2O_density,wavelength=4.75)
assert all(abs(v-w)<1e-14 for v,w in zip(sld,sld2))
assert all(abs(v-w)<1e-14 for v,w in zip(xs,xs2))
assert abs(depth-depth2)<1e-14
# Test that sld depends on density not on the size of the unit cell
D2O_density = (2*D.mass + O.mass)/(2*H.mass + O.mass)
sld,xs,depth = neutron_scattering('D2O',natural_density=1,wavelength=4.75)
sld2,xs2,depth2 = neutron_scattering('2D2O',natural_density=1,wavelength=4.75)
assert all(abs(v-w)<1e-14 for v,w in zip(sld,sld2))
assert all(abs(v-w)<1e-14 for v,w in zip(xs,xs2))
assert abs(depth-depth2)<1e-14
# Test energy <=> velocity <=> wavelength
# PAK: value changes with updated neutron and atomic mass constants [2024-10]
assert abs(nsf.neutron_wavelength_from_velocity(2200) - 1.7981972755018132) < 1e-14
assert abs(nsf.neutron_wavelength(25) - 1.8) < 0.1
assert abs(nsf.neutron_energy(nsf.neutron_wavelength(25)) - 25) < 1e-14
# Confirm scattering functions accept energy and wavelength
sld,xs,depth = neutron_scattering('H2O',density=1,wavelength=4.75)
sld2,xs2,depth2 = neutron_scattering('H2O',density=1,energy=nsf.neutron_energy(4.75))
assert all(abs(v-w)<1e-14 for v,w in zip(sld,sld2))
assert all(abs(v-w)<1e-14 for v,w in zip(xs,xs2))
assert abs(depth-depth2)<1e-14
def test_bare_neutron():
n = elements.n
assert n == elements[0]
assert n == periodictable.neutron
n_iso = elements[0][1]
assert n.mass == neutron_mass
assert n_iso.mass == neutron_mass
assert n.neutron.b_c == -37.0
assert n.density is None
assert n.number_density is None
assert n.neutron.scattering()[0] is None
def test_formula():
density = 2.52
M = formula('B4C', density=density)
sld,xs,depth = neutron_scattering(M,wavelength=4.75)
# Compare to Alan Munter's numbers:
# SLD=7.65e-6 - 2.34e-7i /A^2
# inc,abs XS = 0.193, 222.4 / cm
# 1/e = 0.004483 cm
# Cu/Mo K-alpha = 2.02e-5 + 1.93e-8i / 2.01e-5 + 4.64e-9i
# Using lambda=1.798 rather than 1.8
# abs XS => 222.6
# 1/e => 0.004478
assert abs(sld[0]-7.649)<0.001
assert abs(sld[1]-0.234)<0.001
assert abs(xs[1]-222.6)<0.1
#assert abs(xs[2]-0.193)<0.001 # TODO: fix test
#assert abs(depth-0.004478)<0.000001 # TODO: fix test
# Check that sld_inc and coh_xs are consistent
# cell_volume = (molar_mass/density) / N_A * 1e24
# number_density = num_atoms/cell_volume
# sigma_i = inc_xs/number_density
# sld_inc = 10*number_density * sqrt ( 100/(4*pi) * sigma_i )
# sld_re = 10*number_density * b_c.real
# sigma_c = 4*pi/100*((sld_re - 1j*sld_im)/(10*number_density))**2
# coh_xs = sigma_c * number_density
molar_mass = 4*elements.B.mass + elements.C.mass
cell_volume = (molar_mass/density) / N_A * 1e24
Nb = 5 / cell_volume
sld_inc = Nb*sqrt(100/(4*pi)*xs[2]/Nb)*10
coh_xs = Nb*4*pi/100*(abs(sld[0] - 1j*sld[1])/(10*Nb))**2
assert abs(sld[2] - sld_inc) < 1e-14
assert abs(xs[0] - coh_xs) < 1e-14
def test_contrast_matching():
from periodictable import fasta
# Test constrast match holds for varying volume fractions (no labile)
SiO2 = formula("SiO2@2.4")
match, sld_real = nsf.D2O_match(SiO2)
sld_0p0 = nsf.D2O_sld(SiO2, volume_fraction=0.0, D2O_fraction=match)
sld_0p7 = nsf.D2O_sld(SiO2, volume_fraction=0.7, D2O_fraction=match)
sld_1p0 = nsf.D2O_sld(SiO2, volume_fraction=1.0, D2O_fraction=match)
assert np.isclose(sld_0p0[0], sld_real, 1e-14)
assert np.isclose(sld_0p7[0], sld_real, 1e-14)
assert np.isclose(sld_1p0[0], sld_real, 1e-14)
assert not np.isclose(sld_1p0[0], sld_1p0[1], 1e-14)
mol = fasta.LIPIDS["cholesteral"].labile_formula
match, sld_real = nsf.D2O_match(mol)
sld_0p7 = nsf.D2O_sld(mol, volume_fraction=0.7, D2O_fraction=match)
assert np.isclose(sld_0p7[0], sld_real, 1e-14)
# Test that labile hydrogens are being subsituted in contrast match
# Note that D2O mixture is formed from pure D2O and pure water with
# natural H:D ratios.
mol = formula("C3H4H[1]NO@1.29n") # alanine
sld_0p7 = nsf.D2O_sld(mol, volume_fraction=1., D2O_fraction=0.7)
sld_0p7_direct = nsf.neutron_sld("C3H4H0.3D0.7NO@1.29n")
#print(sld_0p7)
#print(sld_0p7_direct)
assert np.isclose(sld_0p7[0], sld_0p7_direct[0], 1e-14)
assert np.isclose(sld_0p7[1], sld_0p7_direct[1], 1e-14)
# Not testing incoherent since it will differ
#assert np.isclose(sld_0p7[2], sld_0p7_direct[2], 1e-14)
def test_composite():
from periodictable.nsf import neutron_composite_sld
molecule = '3HSO4+1H2O+2CCl4'
material = [formula(s) for s in ('HSO4','H2O','CCl4')]
weight = np.array([3, 1, 2])
calc = neutron_composite_sld(material, wavelength=4.75)
sld1 = calc(weight, density=1.2)
sld2 = neutron_sld(molecule, density=1.2, wavelength=4.75)
#print(material, sld1)
#print(molecule, sld2)
assert all(np.isscalar(v) for v in sld1 + sld2)
assert all(abs(v-w)<1e-14 for v, w in zip(sld1, sld2))
# with wavelength array
calc = neutron_composite_sld(material, wavelength=[4.75, 5, 6])
sld3 = calc(weight, density=1.2)
assert all(len(v) == 3 for v in sld3)
assert all(v == w[0] for v, w in zip(sld1, sld3))
# with length one wavelength array
calc = neutron_composite_sld(material, wavelength=[4.75])
sld4 = calc(weight, density=1.2)
assert all(len(v) == 1 for v in sld4)
assert all(v == w for v, w in zip(sld1, sld4))
def test_wavelength_array():
from periodictable.nsf import neutron_scattering, neutron_sld
material = formula('CCl4@1.5867')
# scalar
sld, xs, penetration = neutron_scattering(material, wavelength=4.75)
assert all(np.isscalar(v) for v in sld + xs + (penetration,))
# length 1
sld, xs, penetration = neutron_scattering(material, wavelength=[4.75])
assert all(len(v) == 1 for v in sld + xs + (penetration,))
# length 3
sld, xs, penetration = neutron_scattering(material, wavelength=[3, 4, 5])
assert all(len(v) == 3 for v in sld + xs + (penetration,))
# scalar
sld, xs, penetration = elements.Cl.neutron.scattering(wavelength=4.75)
assert all(np.isscalar(v) for v in sld + xs + (penetration,))
# length 1
sld, xs, penetration = elements.Cl.neutron.scattering(wavelength=[4.75])
assert all(len(v) == 1 for v in sld + xs + (penetration,))
# length 3
sld, xs, penetration = elements.Cl.neutron.scattering(wavelength=[3, 4, 5])
assert all(len(v) == 3 for v in sld + xs + (penetration,))
def test_energy_dependent():
from periodictable.nsf import neutron_composite_sld, neutron_wavelength
from periodictable.constants import avogadro_number as NA
# Use Lu natural to test composite since xs are derived from composite
# Use abundance from mass.py: 97.41% Lu[175] + 2.59% Lu[176]
# Note: abundance uses mole fraction. DOI:10.1351/PAC-REP-10-06-02
Lu = elements.Lu
Lu_175_abundance, Lu_176_abundance = 97.401, 2.599
Lu_equiv = f"Lu[175]{Lu_175_abundance:g}+Lu[176]{Lu_176_abundance:g}"
# Note: skipping incoherent xs in returned value
# Multiple wavelength energy dependent
wavelength = [1, 2, 3, 6] # pair of wavelengths
sld1 = neutron_sld(Lu_equiv, wavelength=wavelength, natural_density=Lu.density)
sld2 = Lu.neutron.sld(wavelength=wavelength)
# sld elements are arrays of length 4
assert all(len(v) == 4 for v in sld1 + sld2)
assert (abs((sld1[0]-sld2[0])/sld1[0]) < 1e-14).all()
assert (abs((sld1[1]-sld2[1])/sld1[1]) < 1e-14).all()
# Length 1 wavelength energy dependent
sld1 = neutron_sld(Lu_equiv, wavelength=wavelength[:1], natural_density=Lu.density)
sld2 = Lu.neutron.sld(wavelength=wavelength[:1])
# sld elements are arrays of length 1
#print("length 1", sld1, sld2)
assert all(len(v) == 1 for v in sld1 + sld2)
assert (abs((sld1[0]-sld2[0])/sld1[0]) < 1e-14).all()
assert (abs((sld1[1]-sld2[1])/sld1[1]) < 1e-14).all()
# Scalar wavelength energy dependent
sld1 = neutron_sld(Lu_equiv, wavelength=wavelength[0], natural_density=Lu.density)
sld2 = Lu.neutron.sld(wavelength=wavelength[0])
# sld elements are scalars; note no .all() on the comparison
#print("scalar", sld1, sld2)
assert all(np.isscalar(v) for v in sld1 + sld2)
assert (abs((sld1[0]-sld2[0])/sld1[0]) < 1e-14).all()
assert (abs((sld1[1]-sld2[1])/sld1[1]) < 1e-14).all()
# Check that composite sld calculator works with energy dependence and
# various wavelength vectors.
materials = formula('Lu[175]'), formula('Lu[176]')
weights = np.array((Lu_175_abundance, Lu_176_abundance))
# Multiple wavelength
sld1 = neutron_sld(Lu_equiv, wavelength=wavelength, density=Lu.density)
calc = neutron_composite_sld(materials, wavelength=wavelength)
sld2 = calc(weights, density=Lu.density)
assert all(len(v) == 4 for v in sld1 + sld2)
assert (abs((sld1[0]-sld2[0])/sld1[0]) < 1e-14).all()
assert (abs((sld1[1]-sld2[1])/sld1[1]) < 1e-14).all()
# Length 1 wavelength
sld1 = neutron_sld(Lu_equiv, wavelength=wavelength[:1], density=Lu.density)
calc = neutron_composite_sld(materials, wavelength=wavelength[:1])
sld2 = calc(weights, density=Lu.density)
assert all(len(v) == 1 for v in sld1 + sld2)
assert (abs((sld1[0]-sld2[0])/sld1[0]) < 1e-14).all()
assert (abs((sld1[1]-sld2[1])/sld1[1]) < 1e-14).all()
# scalar wavelength
sld1 = neutron_sld(Lu_equiv, wavelength=wavelength[0], density=Lu.density)
calc = neutron_composite_sld(materials, wavelength=wavelength[0])
sld2 = calc(weights, density=Lu.density)
assert all(np.isscalar(v) for v in sld1 + sld2)
assert (abs((sld1[0]-sld2[0])/sld1[0]) < 1e-14).all()
assert (abs((sld1[1]-sld2[1])/sld1[1]) < 1e-14).all()
# Check against Alex Grutter spreadsheet values computed from Lynn&Seeger
wavelength = neutron_wavelength(80) # look at 80 meV in the table
number_density = 30.254
sld1 = 4.1508488, 2.2448468, 0.
# reconstruct density from the given number density
density = elements.Gd.mass*number_density*1e21/NA
sld2 = neutron_sld("Gd", wavelength=wavelength, density=density)
assert (abs((sld1[0]-sld2[0])/sld1[0]) < 1e-14).all()
assert (abs((sld1[1]-sld2[1])/sld1[1]) < 1e-14).all()
def time_composite():
from periodictable.nsf import neutron_composite_sld
import time
calc = neutron_composite_sld([formula(s) for s in ('HSO4','H2O','CCl4')],
wavelength=4.75)
q = np.array([3,1,2])
N = 1000
bits = [formula(s) for s in ('HSO4','H2O','CCl4')]
tic = time.time()
for i in range(N):
sld = calc(q,density=1.2)
toc = time.time()-tic
print("composite %.1f us"%(toc/N*1e6))
tic = time.time()
for i in range(N):
sld = neutron_sld(q[0]*bits[0]+q[1]*bits[1]+q[2]*bits[2],
density=1.2,wavelength=4.75)
toc = time.time()-tic
print("direct %.1f us"%(toc/N*1e6))
def test_abundance():
# Check abundance totals to 0% or 100%
for el in elements:
if not hasattr(el,'neutron'): continue
abundance=0
for iso in el:
if iso.neutron == None: continue
if not hasattr(iso.neutron,'abundance'):
print("abundance missing for %s"%iso)
if iso.neutron.abundance == None:
print("%s abundance=None"%iso)
else:
abundance += iso.neutron.abundance
# TODO: abundance tables are not very good
assert abs(abundance-100) < 1.1 or abundance==0,\
"total abundance for %s is %.15g%%"%(el.symbol,abundance)
def _summarize(M):
from periodictable.nsf import neutron_sld, neutron_xs
sld = neutron_sld(M,wavelength=4.75)
xs = neutron_xs(M,wavelength=4.75)
print("%s sld %s"%(M,sld))
print("%s xs %s 1/e %s"%(M,xs,1/sum(xs)))
#return
for el in list(M.atoms.keys()):
print("%s density %s"%(el,el.density))
print("%s sld %s"%(el,el.neutron.sld(wavelength=4.75)))
print("%s xs"%el + " %.15g %.15g %.15g"%el.neutron.xs(wavelength=4.75))
print("%s 1/e %s"%(el,1./sum(el.neutron.xs(wavelength=4.75))))
def molecule_table():
# Table of scattering length densities for various molecules
print("SLDS for some molecules")
for molecule,density in [('SiO2',2.2),('B4C',2.52)]:
atoms = formula(molecule).atoms
rho,mu,inc = neutron_sld(atoms,density,wavelength=4.75)
print("%s(%g g/cm**3) rho=%.4g mu=%.4g inc=%.4g"
%(molecule,density,rho,mu,inc))
def show_tables():
molecule_table()
periodictable.nsf.sld_table(4.75)
periodictable.nsf.energy_dependent_table()
periodictable.nsf.total_comparison_table()
periodictable.nsf.coherent_comparison_table()
periodictable.nsf.incoherent_comparison_table()
print("""\
Specific elements with b_c values different from Neutron News 1992.
This is not a complete list.""")
for sym in ['Sc','Te','Xe','Sm','Eu','Gd','W','Au','Hg']:
el = getattr(elements,sym)
print("%s %s %s %s %s"%(el.symbol,el.neutron.b_c,el.neutron.coherent,
el.neutron.incoherent,el.neutron.absorption))
if __name__ == "__main__":
#time_composite()
#test_contrast_matching()
test_composite()
test_energy_dependent()
|