1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
|
persist-queue - A thread-safe, disk-based queue for Python
==========================================================
.. image:: https://img.shields.io/circleci/project/github/peter-wangxu/persist-queue/master.svg?label=Linux%20%26%20Mac
:target: https://circleci.com/gh/peter-wangxu/persist-queue
.. image:: https://img.shields.io/appveyor/ci/peter-wangxu/persist-queue/master.svg?label=Windows
:target: https://ci.appveyor.com/project/peter-wangxu/persist-queue
.. image:: https://img.shields.io/codecov/c/github/peter-wangxu/persist-queue/master.svg
:target: https://codecov.io/gh/peter-wangxu/persist-queue
.. image:: https://img.shields.io/pypi/v/persist-queue.svg
:target: https://pypi.python.org/pypi/persist-queue
.. image:: https://img.shields.io/pypi/pyversions/persist-queue
:alt: PyPI - Python Version
``persist-queue`` implements a file-based queue and a serial of sqlite3-based queues. The goals is to achieve following requirements:
* Disk-based: each queued item should be stored in disk in case of any crash.
* Thread-safe: can be used by multi-threaded producers and multi-threaded consumers.
* Recoverable: Items can be read after process restart.
* Green-compatible: can be used in ``greenlet`` or ``eventlet`` environment.
While *queuelib* and *python-pqueue* cannot fulfil all of above. After some try, I found it's hard to achieve based on their current
implementation without huge code change. this is the motivation to start this project.
By default, *persist-queue* use *pickle* object serialization module to support object instances.
Most built-in type, like `int`, `dict`, `list` are able to be persisted by `persist-queue` directly, to support customized objects,
please refer to `Pickling and unpickling extension types(Python2) <https://docs.python.org/2/library/pickle.html#pickling-and-unpickling-normal-class-instances>`_
and `Pickling Class Instances(Python3) <https://docs.python.org/3/library/pickle.html#pickling-class-instances>`_
This project is based on the achievements of `python-pqueue <https://github.com/balena/python-pqueue>`_
and `queuelib <https://github.com/scrapy/queuelib>`_
Slack channels
^^^^^^^^^^^^^^
Join `persist-queue <https://join.slack
.com/t/persist-queue/shared_invite
/enQtOTM0MDgzNTQ0MDg3LTNmN2IzYjQ1MDc0MDYzMjI4OGJmNmVkNWE3ZDBjYzg5MDc0OWUzZDJkYTkwODdkZmYwODdjNjUzMTk3MWExNDE>`_ channel
Requirements
------------
* Python 3.5 or newer versions (refer to `Deprecation`_ for older Python versions)
* Full support for Linux and MacOS.
* Windows support (with `Caution`_ if ``persistqueue.Queue`` is used).
Features
--------
- Multiple platforms support: Linux, macOS, Windows
- Pure python
- Both filed based queues and sqlite3 based queues are supported
- Filed based queue: multiple serialization protocol support: pickle(default), msgpack, cbor, json
Deprecation
-----------
- `persist-queue` drops Python 2 support since version `1.0.0`, no new feature will be developed under Python 2 as `Python 2 was sunset on January 1, 2020 <https://www.python.org/doc/sunset-python-2/>`_.
- `Python 3.4 release has reached end of life <https://www.python.org/downloads/release/python-3410/>`_ and
`DBUtils <https://webwareforpython.github.io/DBUtils/changelog.html>`_ ceased support for `Python 3.4`, `persist queue` drops MySQL based queue for python 3.4 since version 0.8.0.
other queue implementations such as file based queue and sqlite3 based queue are still workable.
Installation
------------
from pypi
^^^^^^^^^
.. code-block:: console
pip install persist-queue
# for msgpack, cbor and mysql support, use following command
pip install "persist-queue[extra]"
from source code
^^^^^^^^^^^^^^^^
.. code-block:: console
git clone https://github.com/peter-wangxu/persist-queue
cd persist-queue
# for msgpack and cbor support, run 'pip install -r extra-requirements.txt' first
python setup.py install
Benchmark
---------
Here are the time spent(in seconds) for writing/reading **1000** items to the
disk comparing the sqlite3 and file queue.
- Windows
- OS: Windows 10
- Disk: SATA3 SSD
- RAM: 16 GiB
+---------------+---------+-------------------------+----------------------------+
| | Write | Write/Read(1 task_done) | Write/Read(many task_done) |
+---------------+---------+-------------------------+----------------------------+
| SQLite3 Queue | 1.8880 | 2.0290 | 3.5940 |
+---------------+---------+-------------------------+----------------------------+
| File Queue | 4.9520 | 5.0560 | 8.4900 |
+---------------+---------+-------------------------+----------------------------+
**windows note**
Performance of Windows File Queue has dramatic improvement since `v0.4.1` due to the
atomic renaming support(3-4X faster)
- Linux
- OS: Ubuntu 16.04 (VM)
- Disk: SATA3 SSD
- RAM: 4 GiB
+---------------+--------+-------------------------+----------------------------+
| | Write | Write/Read(1 task_done) | Write/Read(many task_done) |
+---------------+--------+-------------------------+----------------------------+
| SQLite3 Queue | 1.8282 | 1.8075 | 2.8639 |
+---------------+--------+-------------------------+----------------------------+
| File Queue | 0.9123 | 1.0411 | 2.5104 |
+---------------+--------+-------------------------+----------------------------+
- Mac OS
- OS: 10.14 (macOS Mojave)
- Disk: PCIe SSD
- RAM: 16 GiB
+---------------+--------+-------------------------+----------------------------+
| | Write | Write/Read(1 task_done) | Write/Read(many task_done) |
+---------------+--------+-------------------------+----------------------------+
| SQLite3 Queue | 0.1879 | 0.2115 | 0.3147 |
+---------------+--------+-------------------------+----------------------------+
| File Queue | 0.5158 | 0.5357 | 1.0446 |
+---------------+--------+-------------------------+----------------------------+
**note**
- The value above is in seconds for reading/writing *1000* items, the less
the better
- Above result was got from:
.. code-block:: console
python benchmark/run_benchmark.py 1000
To see the real performance on your host, run the script under ``benchmark/run_benchmark.py``:
.. code-block:: console
python benchmark/run_benchmark.py <COUNT, default to 100>
Examples
--------
Example usage with a SQLite3 based queue
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. code-block:: python
>>> import persistqueue
>>> q = persistqueue.SQLiteQueue('mypath', auto_commit=True)
>>> q.put('str1')
>>> q.put('str2')
>>> q.put('str3')
>>> q.get()
'str1'
>>> del q
Close the console, and then recreate the queue:
.. code-block:: python
>>> import persistqueue
>>> q = persistqueue.SQLiteQueue('mypath', auto_commit=True)
>>> q.get()
'str2'
>>>
New functions:
*Available since v0.8.0*
- ``shrink_disk_usage`` perform a ``VACUUM`` against the sqlite, and rebuild the database file, this usually takes long time and frees a lot of disk space after ``get()``
Example usage of SQLite3 based ``UniqueQ``
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
This queue does not allow duplicate items.
.. code-block:: python
>>> import persistqueue
>>> q = persistqueue.UniqueQ('mypath')
>>> q.put('str1')
>>> q.put('str1')
>>> q.size
1
>>> q.put('str2')
>>> q.size
2
>>>
Example usage of SQLite3 based ``SQLiteAckQueue``/``UniqueAckQ``
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The core functions:
- ``put``: add item to the queue. Returns ``id``
- ``get``: get item from queue and mark as unack. Returns ``item``, Optional paramaters (``block``, ``timeout``, ``id``, ``next_in_order``, ``raw``)
- ``update``: update an item. Returns ``id``, Paramaters (``item``), Optional parameter if item not in raw format (``id``)
- ``ack``: mark item as acked. Returns ``id``, Parameters (``item`` or ``id``)
- ``nack``: there might be something wrong with current consumer, so mark item as ready and new consumer will get it. Returns ``id``, Parameters (``item`` or ``id``)
- ``ack_failed``: there might be something wrong during process, so just mark item as failed. Returns ``id``, Parameters (``item`` or ``id``)
- ``clear_acked_data``: perform a sql delete agaist sqlite. It removes 1000 items, while keeping 1000 of the most recent, whose status is ``AckStatus.acked`` (note: this does not shrink the file size on disk) Optional paramters (``max_delete``, ``keep_latest``, ``clear_ack_failed``)
- ``shrink_disk_usage`` perform a ``VACUUM`` against the sqlite, and rebuild the database file, this usually takes long time and frees a lot of disk space after ``clear_acked_data``
- ``queue``: returns the database contents as a Python List[Dict]
- ``active_size``: The active size changes when an item is added (put) and completed (ack/ack_failed) unlike ``qsize`` which changes when an item is pulled (get) or returned (nack).
.. code-block:: python
>>> import persistqueue
>>> ackq = persistqueue.SQLiteAckQueue('path')
>>> ackq.put('str1')
>>> item = ackq.get()
>>> # Do something with the item
>>> ackq.ack(item) # If done with the item
>>> ackq.nack(item) # Else mark item as `nack` so that it can be proceeded again by any worker
>>> ackq.ack_failed(item) # Or else mark item as `ack_failed` to discard this item
Parameters:
- ``clear_acked_data``
- ``max_delete`` (defaults to 1000): This is the LIMIT. How many items to delete.
- ``keep_latest`` (defaults to 1000): This is the OFFSET. How many recent items to keep.
- ``clear_ack_failed`` (defaults to False): Clears the ``AckStatus.ack_failed`` in addition to the ``AckStatus.ack``.
- ``get``
- ``raw`` (defaults to False): Returns the metadata along with the record, which includes the id (``pqid``) and timestamp. On the SQLiteAckQueue, the raw results can be ack, nack, ack_failed similar to the normal return.
- ``id`` (defaults to None): Accepts an `id` or a raw item containing ``pqid``. Will select the item based on the row id.
- ``next_in_order`` (defaults to False): Requires the ``id`` attribute. This option tells the SQLiteAckQueue/UniqueAckQ to get the next item based on ``id``, not the first available. This allows the user to get, nack, get, nack and progress down the queue, instead of continuing to get the same nack'd item over again.
``raw`` example:
.. code-block:: python
>>> q.put('val1')
>>> d = q.get(raw=True)
>>> print(d)
>>> {'pqid': 1, 'data': 'val1', 'timestamp': 1616719225.012912}
>>> q.ack(d)
``next_in_order`` example:
.. code-block:: python
>>> q.put("val1")
>>> q.put("val2")
>>> q.put("val3")
>>> item = q.get()
>>> id = q.nack(item)
>>> item = q.get(id=id, next_in_order=True)
>>> print(item)
>>> val2
Note:
1. The SQLiteAckQueue always uses "auto_commit=True".
2. The Queue could be set in non-block style, e.g. "SQLiteAckQueue.get(block=False, timeout=5)".
3. ``UniqueAckQ`` only allows for unique items
Example usage with a file based queue
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Parameters:
- ``path``: specifies the directory wher enqueued data persisted.
- ``maxsize``: indicates the maximum size stored in the queue, if maxsize<=0 the queue is unlimited.
- ``chunksize``: indicates how many entries should exist in each chunk file on disk. When a all entries in a chunk file was dequeued by get(), the file would be removed from filesystem.
- ``tempdir``: indicates where temporary files should be stored. The tempdir has to be located on the same disk as the enqueued data in order to obtain atomic operations.
- ``serializer``: controls how enqueued data is serialized.
- ``auto_save``: `True` or `False`. By default, the change is only persisted when task_done() is called. If autosave is enabled, info data is persisted immediately when get() is called. Adding data to the queue with put() will always persist immediately regardless of this setting.
.. code-block:: python
>>> from persistqueue import Queue
>>> q = Queue("mypath")
>>> q.put('a')
>>> q.put('b')
>>> q.put('c')
>>> q.get()
'a'
>>> q.task_done()
Close the python console, and then we restart the queue from the same path,
.. code-block:: python
>>> from persistqueue import Queue
>>> q = Queue('mypath')
>>> q.get()
'b'
>>> q.task_done()
Example usage with an auto-saving file based queue
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
*Available since: v0.5.0*
By default, items added to the queue are persisted during the ``put()`` call,
and items removed from a queue are only persisted when ``task_done()`` is
called.
.. code-block:: python
>>> from persistqueue import Queue
>>> q = Queue("mypath")
>>> q.put('a')
>>> q.put('b')
>>> q.get()
'a'
>>> q.get()
'b'
After exiting and restarting the queue from the same path, we see the items
remain in the queue, because ``task_done()`` wasn't called before.
.. code-block:: python
>>> from persistqueue import Queue
>>> q = Queue('mypath')
>>> q.get()
'a'
>>> q.get()
'b'
This can be advantageous. For example, if your program crashes before finishing
processing an item, it will remain in the queue after restarting. You can also
spread out the ``task_done()`` calls for performance reasons to avoid lots of
individual writes.
Using ``autosave=True`` on a file based queue will automatically save on every
call to ``get()``. Calling ``task_done()`` is not necessary, but may still be
used to ``join()`` against the queue.
.. code-block:: python
>>> from persistqueue import Queue
>>> q = Queue("mypath", autosave=True)
>>> q.put('a')
>>> q.put('b')
>>> q.get()
'a'
After exiting and restarting the queue from the same path, only the second item
remains:
.. code-block:: python
>>> from persistqueue import Queue
>>> q = Queue('mypath', autosave=True)
>>> q.get()
'b'
Example usage with a SQLite3 based dict
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. code-block:: python
>>> from persisitqueue import PDict
>>> q = PDict("testpath", "testname")
>>> q['key1'] = 123
>>> q['key2'] = 321
>>> q['key1']
123
>>> len(q)
2
>>> del q['key1']
>>> q['key1']
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "persistqueue\pdict.py", line 58, in __getitem__
raise KeyError('Key: {} not exists.'.format(item))
KeyError: 'Key: key1 not exists.'
Close the console and restart the PDict
.. code-block:: python
>>> from persisitqueue import PDict
>>> q = PDict("testpath", "testname")
>>> q['key2']
321
Multi-thread usage for **SQLite3** based queue
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. code-block:: python
from persistqueue import FIFOSQLiteQueue
q = FIFOSQLiteQueue(path="./test", multithreading=True)
def worker():
while True:
item = q.get()
do_work(item)
for i in range(num_worker_threads):
t = Thread(target=worker)
t.daemon = True
t.start()
for item in source():
q.put(item)
multi-thread usage for **Queue**
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. code-block:: python
from persistqueue import Queue
q = Queue()
def worker():
while True:
item = q.get()
do_work(item)
q.task_done()
for i in range(num_worker_threads):
t = Thread(target=worker)
t.daemon = True
t.start()
for item in source():
q.put(item)
q.join() # block until all tasks are done
Example usage with a MySQL based queue
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
*Available since: v0.8.0*
.. code-block:: python
>>> import persistqueue
>>> db_conf = {
>>> "host": "127.0.0.1",
>>> "user": "user",
>>> "passwd": "passw0rd",
>>> "db_name": "testqueue",
>>> # "name": "",
>>> "port": 3306
>>> }
>>> q = persistqueue.MySQLQueue(name="testtable", **db_conf)
>>> q.put('str1')
>>> q.put('str2')
>>> q.put('str3')
>>> q.get()
'str1'
>>> del q
Close the console, and then recreate the queue:
.. code-block:: python
>>> import persistqueue
>>> q = persistqueue.MySQLQueue(name="testtable", **db_conf)
>>> q.get()
'str2'
>>>
**note**
Due to the limitation of file queue described in issue `#89 <https://github.com/peter-wangxu/persist-queue/issues/89>`_,
`task_done` in one thread may acknowledge items in other threads which should not be. Considering the `SQLiteAckQueue` if you have such requirement.
Serialization via msgpack/cbor/json
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- v0.4.1: Currently only available for file based Queue
- v0.4.2: Also available for SQLite3 based Queues
.. code-block:: python
>>> from persistqueue
>>> q = persistqueue.Queue('mypath', serializer=persistqueue.serializers.msgpack)
>>> # via cbor2
>>> # q = persistqueue.Queue('mypath', serializer=persistqueue.serializers.cbor2)
>>> # via json
>>> # q = Queue('mypath', serializer=persistqueue.serializers.json)
>>> q.get()
'b'
>>> q.task_done()
Explicit resource reclaim
^^^^^^^^^^^^^^^^^^^^^^^^^
For some reasons, an application may require explicit reclamation for file
handles or sql connections before end of execution. In these cases, user can
simply call:
.. code-block:: python
q = Queue() # or q = persistqueue.SQLiteQueue('mypath', auto_commit=True)
del q
to reclaim related file handles or sql connections.
Tips
----
``task_done`` is required both for file based queue and SQLite3 based queue (when ``auto_commit=False``)
to persist the cursor of next ``get`` to the disk.
Performance impact
------------------
- **WAL**
Starting on v0.3.2, the ``persistqueue`` is leveraging the sqlite3 builtin feature
`WAL <https://www.sqlite.org/wal.html>`_ which can improve the performance
significantly, a general testing indicates that ``persistqueue`` is 2-4 times
faster than previous version.
- **auto_commit=False**
Since persistqueue v0.3.0, a new parameter ``auto_commit`` is introduced to tweak
the performance for sqlite3 based queues as needed. When specify ``auto_commit=False``, user
needs to perform ``queue.task_done()`` to persist the changes made to the disk since
last ``task_done`` invocation.
- **pickle protocol selection**
From v0.3.6, the ``persistqueue`` will select ``Protocol version 2`` for python2 and ``Protocol version 4`` for python3
respectively. This selection only happens when the directory is not present when initializing the queue.
Tests
-----
*persist-queue* use ``tox`` to trigger tests.
- Unit test
.. code-block:: console
tox -e <PYTHON_VERSION>
Available ``<PYTHON_VERSION>``: ``py27``, ``py34``, ``py35``, ``py36``, ``py37``
- PEP8 check
.. code-block:: console
tox -e pep8
`pyenv <https://github.com/pyenv/pyenv>`_ is usually a helpful tool to manage multiple versions of Python.
Caution
-------
Currently, the atomic operation is supported on Windows while still in experimental,
That's saying, the data in ``persistqueue.Queue`` could be in unreadable state when an incidental failure occurs during ``Queue.task_done``.
**DO NOT put any critical data on persistqueue.queue on Windows**.
Contribution
------------
Simply fork this repo and send PR for your code change(also tests to cover your change), remember to give a title and description of your PR. I am willing to
enhance this project with you :).
License
-------
`BSD <LICENSE>`_
Contributors
------------
`Contributors <https://github.com/peter-wangxu/persist-queue/graphs/contributors>`_
FAQ
---
* ``sqlite3.OperationalError: database is locked`` is raised.
persistqueue open 2 connections for the db if ``multithreading=True``, the
SQLite database is locked until that transaction is committed. The ``timeout``
parameter specifies how long the connection should wait for the lock to go away
until raising an exception. Default time is **10**, increase ``timeout``
when creating the queue if above error occurs.
* sqlite3 based queues are not thread-safe.
The sqlite3 queues are heavily tested under multi-threading environment, if you find it's not thread-safe, please
make sure you set the ``multithreading=True`` when initializing the queue before submitting new issue:).
|