1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
|
from __future__ import absolute_import, print_function, division
# join()
########
import petl as etl
table1 = [['id', 'colour'],
[1, 'blue'],
[2, 'red'],
[3, 'purple']]
table2 = [['id', 'shape'],
[1, 'circle'],
[3, 'square'],
[4, 'ellipse']]
table3 = etl.join(table1, table2, key='id')
table3
# if no key is given, a natural join is tried
table4 = etl.join(table1, table2)
table4
# note behaviour if the key is not unique in either or both tables
table5 = [['id', 'colour'],
[1, 'blue'],
[1, 'red'],
[2, 'purple']]
table6 = [['id', 'shape'],
[1, 'circle'],
[1, 'square'],
[2, 'ellipse']]
table7 = etl.join(table5, table6, key='id')
table7
# compound keys are supported
table8 = [['id', 'time', 'height'],
[1, 1, 12.3],
[1, 2, 34.5],
[2, 1, 56.7]]
table9 = [['id', 'time', 'weight'],
[1, 2, 4.5],
[2, 1, 6.7],
[2, 2, 8.9]]
table10 = etl.join(table8, table9, key=['id', 'time'])
table10
# leftjoin()
############
import petl as etl
table1 = [['id', 'colour'],
[1, 'blue'],
[2, 'red'],
[3, 'purple']]
table2 = [['id', 'shape'],
[1, 'circle'],
[3, 'square'],
[4, 'ellipse']]
table3 = etl.leftjoin(table1, table2, key='id')
table3
# rightjoin()
#############
import petl as etl
table1 = [['id', 'colour'],
[1, 'blue'],
[2, 'red'],
[3, 'purple']]
table2 = [['id', 'shape'],
[1, 'circle'],
[3, 'square'],
[4, 'ellipse']]
table3 = etl.rightjoin(table1, table2, key='id')
table3
# outerjoin()
#############
import petl as etl
table1 = [['id', 'colour'],
[1, 'blue'],
[2, 'red'],
[3, 'purple']]
table2 = [['id', 'shape'],
[1, 'circle'],
[3, 'square'],
[4, 'ellipse']]
table3 = etl.outerjoin(table1, table2, key='id')
table3
# crossjoin()
#############
import petl as etl
table1 = [['id', 'colour'],
[1, 'blue'],
[2, 'red']]
table2 = [['id', 'shape'],
[1, 'circle'],
[3, 'square']]
table3 = etl.crossjoin(table1, table2)
table3
# antijoin()
############
import petl as etl
table1 = [['id', 'colour'],
[0, 'black'],
[1, 'blue'],
[2, 'red'],
[4, 'yellow'],
[5, 'white']]
table2 = [['id', 'shape'],
[1, 'circle'],
[3, 'square']]
table3 = etl.antijoin(table1, table2, key='id')
table3
# lookupjoin()
##############
import petl as etl
table1 = [['id', 'color', 'cost'],
[1, 'blue', 12],
[2, 'red', 8],
[3, 'purple', 4]]
table2 = [['id', 'shape', 'size'],
[1, 'circle', 'big'],
[1, 'circle', 'small'],
[2, 'square', 'tiny'],
[2, 'square', 'big'],
[3, 'ellipse', 'small'],
[3, 'ellipse', 'tiny']]
table3 = etl.lookupjoin(table1, table2, key='id')
table3
# unjoin()
##########
import petl as etl
# join key is present in the table
table1 = (('foo', 'bar', 'baz'),
('A', 1, 'apple'),
('B', 1, 'apple'),
('C', 2, 'orange'))
table2, table3 = etl.unjoin(table1, 'baz', key='bar')
table2
table3
# an integer join key can also be reconstructed
table4 = (('foo', 'bar'),
('A', 'apple'),
('B', 'apple'),
('C', 'orange'))
table5, table6 = etl.unjoin(table4, 'bar')
table5
table6
|