1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
|
from __future__ import absolute_import, print_function, division
# fieldmap()
############
import petl as etl
from collections import OrderedDict
table1 = [['id', 'sex', 'age', 'height', 'weight'],
[1, 'male', 16, 1.45, 62.0],
[2, 'female', 19, 1.34, 55.4],
[3, 'female', 17, 1.78, 74.4],
[4, 'male', 21, 1.33, 45.2],
[5, '-', 25, 1.65, 51.9]]
mappings = OrderedDict()
# rename a field
mappings['subject_id'] = 'id'
# translate a field
mappings['gender'] = 'sex', {'male': 'M', 'female': 'F'}
# apply a calculation to a field
mappings['age_months'] = 'age', lambda v: v * 12
# apply a calculation to a combination of fields
mappings['bmi'] = lambda rec: rec['weight'] / rec['height']**2
# transform and inspect the output
table2 = etl.fieldmap(table1, mappings)
table2
# rowmap()
##########
import petl as etl
table1 = [['id', 'sex', 'age', 'height', 'weight'],
[1, 'male', 16, 1.45, 62.0],
[2, 'female', 19, 1.34, 55.4],
[3, 'female', 17, 1.78, 74.4],
[4, 'male', 21, 1.33, 45.2],
[5, '-', 25, 1.65, 51.9]]
def rowmapper(row):
transmf = {'male': 'M', 'female': 'F'}
return [row[0],
transmf[row['sex']] if row['sex'] in transmf else None,
row.age * 12,
row.height / row.weight ** 2]
table2 = etl.rowmap(table1, rowmapper,
fields=['subject_id', 'gender', 'age_months', 'bmi'])
table2
# rowmapmany()
##############
import petl as etl
table1 = [['id', 'sex', 'age', 'height', 'weight'],
[1, 'male', 16, 1.45, 62.0],
[2, 'female', 19, 1.34, 55.4],
[3, '-', 17, 1.78, 74.4],
[4, 'male', 21, 1.33]]
def rowgenerator(row):
transmf = {'male': 'M', 'female': 'F'}
yield [row[0], 'gender',
transmf[row['sex']] if row['sex'] in transmf else None]
yield [row[0], 'age_months', row.age * 12]
yield [row[0], 'bmi', row.height / row.weight ** 2]
table2 = etl.rowmapmany(table1, rowgenerator,
fields=['subject_id', 'variable', 'value'])
table2.lookall()
|