1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
|
# -*- coding: utf-8 -*-
from __future__ import absolute_import, print_function, division
# standard library dependencies
import io
import json
import inspect
from json.encoder import JSONEncoder
from os import unlink
from tempfile import NamedTemporaryFile
from petl.compat import PY2
from petl.compat import pickle
from petl.io.sources import read_source_from_arg, write_source_from_arg
# internal dependencies
from petl.util.base import data, Table, dicts as _dicts, iterpeek
def fromjson(source, *args, **kwargs):
"""
Extract data from a JSON file. The file must contain a JSON array as
the top level object, and each member of the array will be treated as a
row of data. E.g.::
>>> import petl as etl
>>> data = '''
... [{"foo": "a", "bar": 1},
... {"foo": "b", "bar": 2},
... {"foo": "c", "bar": 2}]
... '''
>>> with open('example.file1.json', 'w') as f:
... f.write(data)
...
74
>>> table1 = etl.fromjson('example.file1.json', header=['foo', 'bar'])
>>> table1
+-----+-----+
| foo | bar |
+=====+=====+
| 'a' | 1 |
+-----+-----+
| 'b' | 2 |
+-----+-----+
| 'c' | 2 |
+-----+-----+
Setting argument `lines` to `True` will enable to
infer the document as a JSON lines document. For more details about JSON lines
please visit https://jsonlines.org/.
>>> import petl as etl
>>> data_with_jlines = '''{"name": "Gilbert", "wins": [["straight", "7S"], ["one pair", "10H"]]}
... {"name": "Alexa", "wins": [["two pair", "4S"], ["two pair", "9S"]]}
... {"name": "May", "wins": []}
... {"name": "Deloise", "wins": [["three of a kind", "5S"]]}'''
...
>>> with open('example.file2.json', 'w') as f:
... f.write(data_with_jlines)
...
223
>>> table2 = etl.fromjson('example.file2.json', lines=True)
>>> table2
+-----------+-------------------------------------------+
| name | wins |
+===========+===========================================+
| 'Gilbert' | [['straight', '7S'], ['one pair', '10H']] |
+-----------+-------------------------------------------+
| 'Alexa' | [['two pair', '4S'], ['two pair', '9S']] |
+-----------+-------------------------------------------+
| 'May' | [] |
+-----------+-------------------------------------------+
| 'Deloise' | [['three of a kind', '5S']] |
+-----------+-------------------------------------------+
If your JSON file does not fit this structure, you will need to parse it
via :func:`json.load` and select the array to treat as the data, see also
:func:`petl.io.json.fromdicts`.
.. versionchanged:: 1.1.0
If no `header` is specified, fields will be discovered by sampling keys
from the first `sample` objects in `source`. The header will be
constructed from keys in the order discovered. Note that this
ordering may not be stable, and therefore it may be advisable to specify
an explicit `header` or to use another function like
:func:`petl.transform.headers.sortheader` on the resulting table to
guarantee stability.
"""
source = read_source_from_arg(source)
return JsonView(source, *args, **kwargs)
class JsonView(Table):
def __init__(self, source, *args, **kwargs):
self.source = source
self.missing = kwargs.pop('missing', None)
self.header = kwargs.pop('header', None)
self.sample = kwargs.pop('sample', 1000)
self.lines = kwargs.pop('lines', False)
self.args = args
self.kwargs = kwargs
def __iter__(self):
with self.source.open('rb') as f:
if not PY2:
# wrap buffer for text IO
f = io.TextIOWrapper(f, encoding='utf-8', newline='',
write_through=True)
try:
if self.lines:
for row in iterjlines(f, self.header, self.missing):
yield row
else:
dicts = json.load(f, *self.args, **self.kwargs)
for row in iterdicts(dicts, self.header, self.sample,
self.missing):
yield row
finally:
if not PY2:
f.detach()
def fromdicts(dicts, header=None, sample=1000, missing=None):
"""
View a sequence of Python :class:`dict` as a table. E.g.::
>>> import petl as etl
>>> dicts = [{"foo": "a", "bar": 1},
... {"foo": "b", "bar": 2},
... {"foo": "c", "bar": 2}]
>>> table1 = etl.fromdicts(dicts, header=['foo', 'bar'])
>>> table1
+-----+-----+
| foo | bar |
+=====+=====+
| 'a' | 1 |
+-----+-----+
| 'b' | 2 |
+-----+-----+
| 'c' | 2 |
+-----+-----+
Argument `dicts` can also be a generator, the output of generator
is iterated and cached using a temporary file to support further
transforms and multiple passes of the table:
>>> import petl as etl
>>> dicts = ({"foo": chr(ord("a")+i), "bar":i+1} for i in range(3))
>>> table1 = etl.fromdicts(dicts, header=['foo', 'bar'])
>>> table1
+-----+-----+
| foo | bar |
+=====+=====+
| 'a' | 1 |
+-----+-----+
| 'b' | 2 |
+-----+-----+
| 'c' | 3 |
+-----+-----+
If `header` is not specified, `sample` items from `dicts` will be
inspected to discovery dictionary keys. Note that the order in which
dictionary keys are discovered may not be stable,
See also :func:`petl.io.json.fromjson`.
.. versionchanged:: 1.1.0
If no `header` is specified, fields will be discovered by sampling keys
from the first `sample` dictionaries in `dicts`. The header will be
constructed from keys in the order discovered. Note that this
ordering may not be stable, and therefore it may be advisable to specify
an explicit `header` or to use another function like
:func:`petl.transform.headers.sortheader` on the resulting table to
guarantee stability.
.. versionchanged:: 1.7.5
Full support of generators passed as `dicts` has been added, leveraging
`itertools.tee`.
.. versionchanged:: 1.7.11
Generator support has been modified to use temporary file cache
instead of `itertools.tee` due to high memory usage.
"""
view = DictsGeneratorView if inspect.isgenerator(dicts) else DictsView
return view(dicts, header=header, sample=sample, missing=missing)
class DictsView(Table):
def __init__(self, dicts, header=None, sample=1000, missing=None):
self.dicts = dicts
self._header = header
self.sample = sample
self.missing = missing
def __iter__(self):
return iterdicts(self.dicts, self._header, self.sample, self.missing)
class DictsGeneratorView(DictsView):
def __init__(self, dicts, header=None, sample=1000, missing=None):
super(DictsGeneratorView, self).__init__(dicts, header, sample, missing)
self._filecache = None
self._cached = 0
def __iter__(self):
if not self._header:
self._determine_header()
yield self._header
if not self._filecache:
if PY2:
self._filecache = NamedTemporaryFile(delete=False, mode='wb+', bufsize=0)
else:
self._filecache = NamedTemporaryFile(delete=False, mode='wb+', buffering=0)
position = 0
it = iter(self.dicts)
while True:
if position < self._cached:
self._filecache.seek(position)
row = pickle.load(self._filecache)
position = self._filecache.tell()
yield row
continue
try:
o = next(it)
except StopIteration:
break
row = tuple(o.get(f, self.missing) for f in self._header)
self._filecache.seek(self._cached)
pickle.dump(row, self._filecache, protocol=-1)
self._cached = position = self._filecache.tell()
yield row
def _determine_header(self):
it = iter(self.dicts)
header = list()
peek, it = iterpeek(it, self.sample)
self.dicts = it
if isinstance(peek, dict):
peek = [peek]
for o in peek:
if hasattr(o, 'keys'):
header += [k for k in o.keys() if k not in header]
self._header = tuple(header)
return it
def __del__(self):
if self._filecache:
self._filecache.close()
unlink(self._filecache.name)
def iterjlines(f, header, missing):
it = iter(f)
if header is None:
header = list()
peek, it = iterpeek(it, 1)
json_obj = json.loads(peek)
if hasattr(json_obj, 'keys'):
header += [k for k in json_obj.keys() if k not in header]
yield tuple(header)
for o in it:
json_obj = json.loads(o)
yield tuple(json_obj[f] if f in json_obj else missing for f in header)
def iterdicts(dicts, header, sample, missing):
it = iter(dicts)
# determine header row
if header is None:
# discover fields
header = list()
peek, it = iterpeek(it, sample)
for o in peek:
if hasattr(o, 'keys'):
header += [k for k in o.keys() if k not in header]
yield tuple(header)
# generate data rows
for o in it:
yield tuple(o.get(f, missing) for f in header)
def tojson(table, source=None, prefix=None, suffix=None, *args, **kwargs):
"""
Write a table in JSON format, with rows output as JSON objects. E.g.::
>>> import petl as etl
>>> table1 = [['foo', 'bar'],
... ['a', 1],
... ['b', 2],
... ['c', 2]]
>>> etl.tojson(table1, 'example.file3.json', sort_keys=True)
>>> # check what it did
... print(open('example.file3.json').read())
[{"bar": 1, "foo": "a"}, {"bar": 2, "foo": "b"}, {"bar": 2, "foo": "c"}]
Setting argument `lines` to `True` will enable to
infer the writing format as a JSON lines . For more details about JSON lines
please visit https://jsonlines.org/.
>>> import petl as etl
>>> table1 = [['name', 'wins'],
... ['Gilbert', [['straight', '7S'], ['one pair', '10H']]],
... ['Alexa', [['two pair', '4S'], ['two pair', '9S']]],
... ['May', []],
... ['Deloise',[['three of a kind', '5S']]]]
>>> etl.tojson(table1, 'example.file3.jsonl', lines = True, sort_keys=True)
>>> # check what it did
... print(open('example.file3.jsonl').read())
{"name": "Gilbert", "wins": [["straight", "7S"], ["one pair", "10H"]]}
{"name": "Alexa", "wins": [["two pair", "4S"], ["two pair", "9S"]]}
{"name": "May", "wins": []}
{"name": "Deloise", "wins": [["three of a kind", "5S"]]}
Note that this is currently not streaming, all data is loaded into memory
before being written to the file.
"""
obj = list(_dicts(table))
_writejson(source, obj, prefix, suffix, *args, **kwargs)
Table.tojson = tojson
def tojsonarrays(table, source=None, prefix=None, suffix=None,
output_header=False, *args, **kwargs):
"""
Write a table in JSON format, with rows output as JSON arrays. E.g.::
>>> import petl as etl
>>> table1 = [['foo', 'bar'],
... ['a', 1],
... ['b', 2],
... ['c', 2]]
>>> etl.tojsonarrays(table1, 'example.file4.json')
>>> # check what it did
... print(open('example.file4.json').read())
[["a", 1], ["b", 2], ["c", 2]]
Note that this is currently not streaming, all data is loaded into memory
before being written to the file.
"""
if output_header:
obj = list(table)
else:
obj = list(data(table))
_writejson(source, obj, prefix, suffix, *args, **kwargs)
Table.tojsonarrays = tojsonarrays
def _writejson(source, obj, prefix, suffix, *args, **kwargs):
lines = kwargs.pop('lines', False)
encoder = JSONEncoder(*args, **kwargs)
source = write_source_from_arg(source)
with source.open('wb') as f:
if PY2:
# write directly to buffer
_writeobj(encoder, obj, f, prefix, suffix, lines=lines)
else:
# wrap buffer for text IO
f = io.TextIOWrapper(f, encoding='utf-8', newline='',
write_through=True)
try:
_writeobj(encoder, obj, f, prefix, suffix, lines=lines)
finally:
f.detach()
def _writeobj(encoder, obj, f, prefix, suffix, lines=False):
if prefix is not None:
f.write(prefix)
if lines:
for rec in obj:
for chunk in encoder.iterencode(rec):
f.write(chunk)
f.write('\n')
else:
for chunk in encoder.iterencode(obj):
f.write(chunk)
if suffix is not None:
f.write(suffix)
|