1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
|
# -*- coding: utf-8 -*-
from __future__ import division, print_function, absolute_import
from petl.compat import next, string_types
from petl.util.base import iterpeek, ValuesView, Table
from petl.util.materialise import columns
def infer_dtype(table):
import numpy as np
# get numpy to infer dtype
it = iter(table)
hdr = next(it)
flds = list(map(str, hdr))
rows = tuple(it)
dtype = np.rec.array(rows).dtype
dtype.names = flds
return dtype
def construct_dtype(flds, peek, dtype):
import numpy as np
if dtype is None:
dtype = infer_dtype(peek)
elif isinstance(dtype, string_types):
# insert field names from source table
typestrings = [s.strip() for s in dtype.split(',')]
dtype = [(f, t) for f, t in zip(flds, typestrings)]
elif (isinstance(dtype, dict) and
('names' not in dtype or 'formats' not in dtype)):
# allow for partial specification of dtype
cols = columns(peek)
newdtype = {'names': [], 'formats': []}
for f in flds:
newdtype['names'].append(f)
if f in dtype and isinstance(dtype[f], tuple):
# assume fully specified
newdtype['formats'].append(dtype[f][0])
elif f not in dtype:
# not specified at all
a = np.array(cols[f])
newdtype['formats'].append(a.dtype)
else:
# assume directly specified, just need to add offset
newdtype['formats'].append(dtype[f])
dtype = newdtype
return dtype
def toarray(table, dtype=None, count=-1, sample=1000):
"""
Load data from the given `table` into a
`numpy <http://www.numpy.org/>`_ structured array. E.g.::
>>> import petl as etl
>>> table = [('foo', 'bar', 'baz'),
... ('apples', 1, 2.5),
... ('oranges', 3, 4.4),
... ('pears', 7, .1)]
>>> a = etl.toarray(table)
>>> a
array([('apples', 1, 2.5), ('oranges', 3, 4.4), ('pears', 7, 0.1)],
dtype=(numpy.record, [('foo', '<U7'), ('bar', '<i8'), ('baz', '<f8')]))
>>> # the dtype can be specified as a string
... a = etl.toarray(table, dtype='S4, i2, f4')
>>> a
array([(b'appl', 1, 2.5), (b'oran', 3, 4.4), (b'pear', 7, 0.1)],
dtype=[('foo', 'S4'), ('bar', '<i2'), ('baz', '<f4')])
>>> # the dtype can also be partially specified
... a = etl.toarray(table, dtype={'foo': 'S4'})
>>> a
array([(b'appl', 1, 2.5), (b'oran', 3, 4.4), (b'pear', 7, 0.1)],
dtype=[('foo', 'S4'), ('bar', '<i8'), ('baz', '<f8')])
If the dtype is not completely specified, `sample` rows will be
examined to infer an appropriate dtype.
"""
import numpy as np
it = iter(table)
peek, it = iterpeek(it, sample)
hdr = next(it)
flds = list(map(str, hdr))
dtype = construct_dtype(flds, peek, dtype)
# numpy is fussy about having tuples, need to make sure
it = (tuple(row) for row in it)
sa = np.fromiter(it, dtype=dtype, count=count)
return sa
Table.toarray = toarray
def torecarray(*args, **kwargs):
"""
Convenient shorthand for ``toarray(*args, **kwargs).view(np.recarray)``.
"""
import numpy as np
return toarray(*args, **kwargs).view(np.recarray)
Table.torecarray = torecarray
def fromarray(a):
"""
Extract a table from a `numpy <http://www.numpy.org/>`_ structured array,
e.g.::
>>> import petl as etl
>>> import numpy as np
>>> a = np.array([('apples', 1, 2.5),
... ('oranges', 3, 4.4),
... ('pears', 7, 0.1)],
... dtype='S8, i4, f4')
>>> table = etl.fromarray(a)
>>> table # doctest: +SKIP
+-----------+----+-----+
| f0 | f1 | f2 |
+===========+====+=====+
| 'apples' | 1 | 2.5 |
+-----------+----+-----+
| 'oranges' | 3 | 4.4 |
+-----------+----+-----+
| 'pears' | 7 | 0.1 |
+-----------+----+-----+
"""
return ArrayView(a)
class ArrayView(Table):
def __init__(self, a):
self.a = a
def __iter__(self):
yield tuple(self.a.dtype.names)
for row in self.a:
yield tuple(row)
def valuestoarray(vals, dtype=None, count=-1, sample=1000):
"""
Load values from a table column into a `numpy <http://www.numpy.org/>`_
array, e.g.::
>>> import petl as etl
>>> table = [('foo', 'bar', 'baz'),
... ('apples', 1, 2.5),
... ('oranges', 3, 4.4),
... ('pears', 7, .1)]
>>> table = etl.wrap(table)
>>> table.values('bar').array()
array([1, 3, 7])
>>> # specify dtype
... table.values('bar').array(dtype='i4')
array([1, 3, 7], dtype=int32)
"""
import numpy as np
it = iter(vals)
if dtype is None:
peek, it = iterpeek(it, sample)
dtype = np.array(peek).dtype
a = np.fromiter(it, dtype=dtype, count=count)
return a
ValuesView.toarray = valuestoarray
ValuesView.array = valuestoarray
|