1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
|
# -*- coding: utf-8 -*-
from __future__ import absolute_import, print_function, division
from contextlib import contextmanager
from petl.compat import string_types
from petl.errors import ArgumentError
from petl.util.base import Table, iterpeek, data
from petl.io.numpy import infer_dtype
def fromhdf5(source, where=None, name=None, condition=None,
condvars=None, start=None, stop=None, step=None):
"""
Provides access to an HDF5 table. E.g.::
>>> import petl as etl
>>>
>>> # set up a new hdf5 table to demonstrate with
>>> class FooBar(tables.IsDescription): # doctest: +SKIP
... foo = tables.Int32Col(pos=0) # doctest: +SKIP
... bar = tables.StringCol(6, pos=2) # doctest: +SKIP
>>> #
>>> def setup_hdf5_table():
... import tables
... h5file = tables.open_file('example.h5', mode='w',
... title='Example file')
... h5file.create_group('/', 'testgroup', 'Test Group')
... h5table = h5file.create_table('/testgroup', 'testtable', FooBar,
... 'Test Table')
... # load some data into the table
... table1 = (('foo', 'bar'),
... (1, b'asdfgh'),
... (2, b'qwerty'),
... (3, b'zxcvbn'))
... for row in table1[1:]:
... for i, f in enumerate(table1[0]):
... h5table.row[f] = row[i]
... h5table.row.append()
... h5file.flush()
... h5file.close()
>>>
>>> setup_hdf5_table() # doctest: +SKIP
>>>
>>> # now demonstrate use of fromhdf5
>>> table1 = etl.fromhdf5('example.h5', '/testgroup', 'testtable') # doctest: +SKIP
>>> table1 # doctest: +SKIP
+-----+-----------+
| foo | bar |
+=====+===========+
| 1 | b'asdfgh' |
+-----+-----------+
| 2 | b'qwerty' |
+-----+-----------+
| 3 | b'zxcvbn' |
+-----+-----------+
>>> # alternatively just specify path to table node
... table1 = etl.fromhdf5('example.h5', '/testgroup/testtable') # doctest: +SKIP
>>> # ...or use an existing tables.File object
... h5file = tables.open_file('example.h5') # doctest: +SKIP
>>> table1 = etl.fromhdf5(h5file, '/testgroup/testtable') # doctest: +SKIP
>>> # ...or use an existing tables.Table object
... h5tbl = h5file.get_node('/testgroup/testtable') # doctest: +SKIP
>>> table1 = etl.fromhdf5(h5tbl) # doctest: +SKIP
>>> # use a condition to filter data
... table2 = etl.fromhdf5(h5tbl, condition='foo < 3') # doctest: +SKIP
>>> table2 # doctest: +SKIP
+-----+-----------+
| foo | bar |
+=====+===========+
| 1 | b'asdfgh' |
+-----+-----------+
| 2 | b'qwerty' |
+-----+-----------+
>>> h5file.close() # doctest: +SKIP
"""
return HDF5View(source, where=where, name=name,
condition=condition, condvars=condvars,
start=start, stop=stop, step=step)
class HDF5View(Table):
def __init__(self, source, where=None, name=None, condition=None,
condvars=None, start=None, stop=None, step=None):
self.source = source
self.where = where
self.name = name
self.condition = condition
self.condvars = condvars
self.start = start
self.stop = stop
self.step = step
def __iter__(self):
return iterhdf5(self.source, self.where, self.name, self.condition,
self.condvars, self.start, self.stop, self.step)
@contextmanager
def _get_hdf5_table(source, where, name, mode='r'):
import tables
needs_closing = False
h5file = None
# allow for polymorphic args
if isinstance(source, tables.Table):
# source is a table
h5tbl = source
elif isinstance(source, string_types):
# assume source is the name of an HDF5 file, try to open it
h5file = tables.open_file(source, mode=mode)
needs_closing = True
h5tbl = h5file.get_node(where, name=name)
elif isinstance(source, tables.File):
# source is an HDF5 file object
h5file = source
h5tbl = h5file.get_node(where, name=name)
else:
# invalid source
raise ArgumentError('invalid source argument, expected file name or '
'tables.File or tables.Table object, found: %r'
% source)
try:
yield h5tbl
finally:
# tidy up
if needs_closing:
h5file.close()
@contextmanager
def _get_hdf5_file(source, mode='r'):
import tables
needs_closing = False
# allow for polymorphic args
if isinstance(source, string_types):
# assume source is the name of an HDF5 file, try to open it
h5file = tables.open_file(source, mode=mode)
needs_closing = True
elif isinstance(source, tables.File):
# source is an HDF5 file object
h5file = source
else:
# invalid source
raise ArgumentError('invalid source argument, expected file name or '
'tables.File object, found: %r' % source)
try:
yield h5file
finally:
if needs_closing:
h5file.close()
def iterhdf5(source, where, name, condition, condvars, start, stop, step):
with _get_hdf5_table(source, where, name) as h5tbl:
# header row
hdr = tuple(h5tbl.colnames)
yield hdr
# determine how to iterate over the table
if condition is not None:
it = h5tbl.where(condition, condvars=condvars,
start=start, stop=stop, step=step)
else:
it = h5tbl.iterrows(start=start, stop=stop, step=step)
# data rows
for row in it:
yield row[:] # access row as a tuple
def fromhdf5sorted(source, where=None, name=None, sortby=None, checkCSI=False,
start=None, stop=None, step=None):
"""
Provides access to an HDF5 table, sorted by an indexed column, e.g.::
>>> import petl as etl
>>>
>>> # set up a new hdf5 table to demonstrate with
>>> class FooBar(tables.IsDescription): # doctest: +SKIP
... foo = tables.Int32Col(pos=0) # doctest: +SKIP
... bar = tables.StringCol(6, pos=2) # doctest: +SKIP
>>>
>>> def setup_hdf5_index():
... import tables
... h5file = tables.open_file('example.h5', mode='w',
... title='Example file')
... h5file.create_group('/', 'testgroup', 'Test Group')
... h5table = h5file.create_table('/testgroup', 'testtable', FooBar,
... 'Test Table')
... # load some data into the table
... table1 = (('foo', 'bar'),
... (1, b'asdfgh'),
... (2, b'qwerty'),
... (3, b'zxcvbn'))
... for row in table1[1:]:
... for i, f in enumerate(table1[0]):
... h5table.row[f] = row[i]
... h5table.row.append()
... h5table.cols.foo.create_csindex() # CS index is required
... h5file.flush()
... h5file.close()
>>>
>>> setup_hdf5_index() # doctest: +SKIP
>>>
... # access the data, sorted by the indexed column
... table2 = etl.fromhdf5sorted('example.h5', '/testgroup', 'testtable', sortby='foo') # doctest: +SKIP
>>> table2 # doctest: +SKIP
+-----+-----------+
| foo | bar |
+=====+===========+
| 1 | b'zxcvbn' |
+-----+-----------+
| 2 | b'qwerty' |
+-----+-----------+
| 3 | b'asdfgh' |
+-----+-----------+
"""
assert sortby is not None, 'no column specified to sort by'
return HDF5SortedView(source, where=where, name=name,
sortby=sortby, checkCSI=checkCSI,
start=start, stop=stop, step=step)
class HDF5SortedView(Table):
def __init__(self, source, where=None, name=None, sortby=None,
checkCSI=False, start=None, stop=None, step=None):
self.source = source
self.where = where
self.name = name
self.sortby = sortby
self.checkCSI = checkCSI
self.start = start
self.stop = stop
self.step = step
def __iter__(self):
return iterhdf5sorted(self.source, self.where, self.name, self.sortby,
self.checkCSI, self.start, self.stop, self.step)
def iterhdf5sorted(source, where, name, sortby, checkCSI, start, stop, step):
with _get_hdf5_table(source, where, name) as h5tbl:
# header row
hdr = tuple(h5tbl.colnames)
yield hdr
it = h5tbl.itersorted(sortby,
checkCSI=checkCSI,
start=start,
stop=stop,
step=step)
for row in it:
yield row[:] # access row as a tuple
def tohdf5(table, source, where=None, name=None, create=False, drop=False,
description=None, title='', filters=None, expectedrows=10000,
chunkshape=None, byteorder=None, createparents=False,
sample=1000):
"""
Write to an HDF5 table. If `create` is `False`, assumes the table
already exists, and attempts to truncate it before loading. If `create`
is `True`, a new table will be created, and if `drop` is True,
any existing table will be dropped first. If `description` is `None`,
the description will be guessed. E.g.::
>>> import petl as etl
>>> table1 = (('foo', 'bar'),
... (1, b'asdfgh'),
... (2, b'qwerty'),
... (3, b'zxcvbn'))
>>> etl.tohdf5(table1, 'example.h5', '/testgroup', 'testtable',
... drop=True, create=True, createparents=True) # doctest: +SKIP
>>> etl.fromhdf5('example.h5', '/testgroup', 'testtable') # doctest: +SKIP
+-----+-----------+
| foo | bar |
+=====+===========+
| 1 | b'asdfgh' |
+-----+-----------+
| 2 | b'qwerty' |
+-----+-----------+
| 3 | b'zxcvbn' |
+-----+-----------+
"""
import tables
it = iter(table)
if create:
with _get_hdf5_file(source, mode='a') as h5file:
if drop:
try:
h5file.get_node(where, name)
except tables.NoSuchNodeError:
pass
else:
h5file.remove_node(where, name)
# determine datatype
if description is None:
peek, it = iterpeek(it, sample)
# use a numpy dtype
description = infer_dtype(peek)
# create the table
h5file.create_table(where, name, description,
title=title,
filters=filters,
expectedrows=expectedrows,
chunkshape=chunkshape,
byteorder=byteorder,
createparents=createparents)
with _get_hdf5_table(source, where, name, mode='a') as h5table:
# truncate the existing table
h5table.truncate(0)
# load the data
_insert(it, h5table)
Table.tohdf5 = tohdf5
def appendhdf5(table, source, where=None, name=None):
"""
As :func:`petl.io.hdf5.tohdf5` but don't truncate the target table before
loading.
"""
with _get_hdf5_table(source, where, name, mode='a') as h5table:
# load the data
_insert(table, h5table)
Table.appendhdf5 = appendhdf5
def _insert(table, h5table):
it = data(table) # don't need header
for row in it:
for i, f in enumerate(h5table.colnames):
# depends on order of fields being the same in input table
# and hd5 table, but field names don't need to match
h5table.row[f] = row[i]
h5table.row.append()
h5table.flush()
|