File: basics.py

package info (click to toggle)
python-petl 1.7.17-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 2,224 kB
  • sloc: python: 22,617; makefile: 109; xml: 9
file content (1248 lines) | stat: -rw-r--r-- 33,508 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
from __future__ import absolute_import, print_function, division


# standard library dependencies
from itertools import islice, chain
from collections import deque
from itertools import count
from petl.compat import izip, izip_longest, next, string_types, text_type


# internal dependencies
from petl.util.base import asindices, rowgetter, Record, Table


import logging
logger = logging.getLogger(__name__)
warning = logger.warning
info = logger.info
debug = logger.debug


def cut(table, *args, **kwargs):
    """
    Choose and/or re-order fields. E.g.::

        >>> import petl as etl
        >>> table1 = [['foo', 'bar', 'baz'],
        ...           ['A', 1, 2.7],
        ...           ['B', 2, 3.4],
        ...           ['B', 3, 7.8],
        ...           ['D', 42, 9.0],
        ...           ['E', 12]]
        >>> table2 = etl.cut(table1, 'foo', 'baz')
        >>> table2
        +-----+------+
        | foo | baz  |
        +=====+======+
        | 'A' |  2.7 |
        +-----+------+
        | 'B' |  3.4 |
        +-----+------+
        | 'B' |  7.8 |
        +-----+------+
        | 'D' |  9.0 |
        +-----+------+
        | 'E' | None |
        +-----+------+

        >>> # fields can also be specified by index, starting from zero
        ... table3 = etl.cut(table1, 0, 2)
        >>> table3
        +-----+------+
        | foo | baz  |
        +=====+======+
        | 'A' |  2.7 |
        +-----+------+
        | 'B' |  3.4 |
        +-----+------+
        | 'B' |  7.8 |
        +-----+------+
        | 'D' |  9.0 |
        +-----+------+
        | 'E' | None |
        +-----+------+

        >>> # field names and indices can be mixed
        ... table4 = etl.cut(table1, 'bar', 0)
        >>> table4
        +-----+-----+
        | bar | foo |
        +=====+=====+
        |   1 | 'A' |
        +-----+-----+
        |   2 | 'B' |
        +-----+-----+
        |   3 | 'B' |
        +-----+-----+
        |  42 | 'D' |
        +-----+-----+
        |  12 | 'E' |
        +-----+-----+

        >>> # select a range of fields
        ... table5 = etl.cut(table1, *range(0, 2))
        >>> table5
        +-----+-----+
        | foo | bar |
        +=====+=====+
        | 'A' |   1 |
        +-----+-----+
        | 'B' |   2 |
        +-----+-----+
        | 'B' |   3 |
        +-----+-----+
        | 'D' |  42 |
        +-----+-----+
        | 'E' |  12 |
        +-----+-----+

    Note that any short rows will be padded with `None` values (or whatever is
    provided via the `missing` keyword argument).

    See also :func:`petl.transform.basics.cutout`.

    """

    # support passing a single list or tuple of fields
    if len(args) == 1 and isinstance(args[0], (list, tuple)):
        args = args[0]

    return CutView(table, args, **kwargs)


Table.cut = cut


class CutView(Table):

    def __init__(self, source, spec, missing=None):
        self.source = source
        self.spec = spec
        self.missing = missing

    def __iter__(self):
        return itercut(self.source, self.spec, self.missing)


def itercut(source, spec, missing=None):
    it = iter(source)
    spec = tuple(spec)  # make sure no-one can change midstream

    # convert field selection into field indices
    try:
        hdr = next(it)
    except StopIteration:
        hdr = []
    indices = asindices(hdr, spec)

    # define a function to transform each row in the source data
    # according to the field selection
    transform = rowgetter(*indices)

    # yield the transformed header
    yield transform(hdr)

    # construct the transformed data
    for row in it:
        try:
            yield transform(row)
        except IndexError:
            # row is short, let's be kind and fill in any missing fields
            yield tuple(row[i] if i < len(row) else missing for i in indices)


def cutout(table, *args, **kwargs):
    """
    Remove fields. E.g.::

        >>> import petl as etl
        >>> table1 = [['foo', 'bar', 'baz'],
        ...           ['A', 1, 2.7],
        ...           ['B', 2, 3.4],
        ...           ['B', 3, 7.8],
        ...           ['D', 42, 9.0],
        ...           ['E', 12]]
        >>> table2 = etl.cutout(table1, 'bar')
        >>> table2
        +-----+------+
        | foo | baz  |
        +=====+======+
        | 'A' |  2.7 |
        +-----+------+
        | 'B' |  3.4 |
        +-----+------+
        | 'B' |  7.8 |
        +-----+------+
        | 'D' |  9.0 |
        +-----+------+
        | 'E' | None |
        +-----+------+

    See also :func:`petl.transform.basics.cut`.

    """

    return CutOutView(table, args, **kwargs)


Table.cutout = cutout


class CutOutView(Table):

    def __init__(self, source, spec, missing=None):
        self.source = source
        self.spec = spec
        self.missing = missing

    def __iter__(self):
        return itercutout(self.source, self.spec, self.missing)


def itercutout(source, spec, missing=None):
    it = iter(source)
    spec = tuple(spec)  # make sure no-one can change midstream

    # convert field selection into field indices
    try:
        hdr = next(it)
    except StopIteration:
        hdr = []
    indicesout = asindices(hdr, spec)
    indices = [i for i in range(len(hdr)) if i not in indicesout]

    # define a function to transform each row in the source data
    # according to the field selection
    transform = rowgetter(*indices)

    # yield the transformed header
    yield transform(hdr)

    # construct the transformed data
    for row in it:
        try:
            yield transform(row)
        except IndexError:
            # row is short, let's be kind and fill in any missing fields
            yield tuple(row[i] if i < len(row) else missing for i in indices)


def cat(*tables, **kwargs):
    """
    Concatenate tables. E.g.::

        >>> import petl as etl
        >>> table1 = [['foo', 'bar'],
        ...           [1, 'A'],
        ...           [2, 'B']]
        >>> table2 = [['bar', 'baz'],
        ...           ['C', True],
        ...           ['D', False]]
        >>> table3 = etl.cat(table1, table2)
        >>> table3
        +------+-----+-------+
        | foo  | bar | baz   |
        +======+=====+=======+
        |    1 | 'A' | None  |
        +------+-----+-------+
        |    2 | 'B' | None  |
        +------+-----+-------+
        | None | 'C' | True  |
        +------+-----+-------+
        | None | 'D' | False |
        +------+-----+-------+

        >>> # can also be used to square up a single table with uneven rows
        ... table4 = [['foo', 'bar', 'baz'],
        ...           ['A', 1, 2],
        ...           ['B', '2', '3.4'],
        ...           [u'B', u'3', u'7.8', True],
        ...           ['D', 'xyz', 9.0],
        ...           ['E', None]]
        >>> table5 = etl.cat(table4)
        >>> table5
        +-----+-------+-------+
        | foo | bar   | baz   |
        +=====+=======+=======+
        | 'A' |     1 |     2 |
        +-----+-------+-------+
        | 'B' | '2'   | '3.4' |
        +-----+-------+-------+
        | 'B' | '3'   | '7.8' |
        +-----+-------+-------+
        | 'D' | 'xyz' |   9.0 |
        +-----+-------+-------+
        | 'E' | None  | None  |
        +-----+-------+-------+

        >>> # use the header keyword argument to specify a fixed set of fields
        ... table6 = [['bar', 'foo'],
        ...           ['A', 1],
        ...           ['B', 2]]
        >>> table7 = etl.cat(table6, header=['A', 'foo', 'B', 'bar', 'C'])
        >>> table7
        +------+-----+------+-----+------+
        | A    | foo | B    | bar | C    |
        +======+=====+======+=====+======+
        | None |   1 | None | 'A' | None |
        +------+-----+------+-----+------+
        | None |   2 | None | 'B' | None |
        +------+-----+------+-----+------+

        >>> # using the header keyword argument with two input tables
        ... table8 = [['bar', 'foo'],
        ...           ['A', 1],
        ...           ['B', 2]]
        >>> table9 = [['bar', 'baz'],
        ...           ['C', True],
        ...           ['D', False]]
        >>> table10 = etl.cat(table8, table9, header=['A', 'foo', 'B', 'bar', 'C'])
        >>> table10
        +------+------+------+-----+------+
        | A    | foo  | B    | bar | C    |
        +======+======+======+=====+======+
        | None |    1 | None | 'A' | None |
        +------+------+------+-----+------+
        | None |    2 | None | 'B' | None |
        +------+------+------+-----+------+
        | None | None | None | 'C' | None |
        +------+------+------+-----+------+
        | None | None | None | 'D' | None |
        +------+------+------+-----+------+

    Note that the tables do not need to share exactly the same fields, any
    missing fields will be padded with `None` or whatever is provided via the
    `missing` keyword argument.

    Note that this function can be used with a single table argument, in which
    case it has the effect of ensuring all data rows are the same length as
    the header row, truncating any long rows and padding any short rows with
    the value of the `missing` keyword argument.

    By default, the fields for the output table will be determined as the
    union of all fields found in the input tables. Use the `header` keyword
    argument to override this behaviour and specify a fixed set of fields for
    the output table.

    """

    return CatView(tables, **kwargs)


Table.cat = cat


class CatView(Table):

    def __init__(self, sources, missing=None, header=None):
        self.sources = sources
        self.missing = missing
        self.header = header

    def __iter__(self):
        return itercat(self.sources, self.missing, self.header)


def itercat(sources, missing, header):
    its = [iter(t) for t in sources]
    hdrs = []
    for it in its:
        try:
            hdrs.append(list(next(it)))
        except StopIteration:
            hdrs.append([])

    if header is None:
        # determine output fields by gathering all fields found in the sources
        outhdr = list(hdrs[0])
        for hdr in hdrs[1:]:
            for h in hdr:
                if h not in outhdr:
                    # add any new fields as we find them
                    outhdr.append(h)
    else:
        # predetermined output fields
        outhdr = header
    yield tuple(outhdr)

    # output data rows
    for hdr, it in zip(hdrs, its):

        # now construct and yield the data rows
        for row in it:
            outrow = list()
            for h in outhdr:
                val = missing
                try:
                    val = row[hdr.index(h)]
                except IndexError:
                    # short row
                    pass
                except ValueError:
                    # field not in table
                    pass
                outrow.append(val)
            yield tuple(outrow)


def stack(*tables, **kwargs):
    """Concatenate tables, without trying to match headers. E.g.::

        >>> import petl as etl
        >>> table1 = [['foo', 'bar'],
        ...           [1, 'A'],
        ...           [2, 'B']]
        >>> table2 = [['bar', 'baz'],
        ...           ['C', True],
        ...           ['D', False]]
        >>> table3 = etl.stack(table1, table2)
        >>> table3
        +-----+-------+
        | foo | bar   |
        +=====+=======+
        |   1 | 'A'   |
        +-----+-------+
        |   2 | 'B'   |
        +-----+-------+
        | 'C' | True  |
        +-----+-------+
        | 'D' | False |
        +-----+-------+

        >>> # can also be used to square up a single table with uneven rows
        ... table4 = [['foo', 'bar', 'baz'],
        ...           ['A', 1, 2],
        ...           ['B', '2', '3.4'],
        ...           [u'B', u'3', u'7.8', True],
        ...           ['D', 'xyz', 9.0],
        ...           ['E', None]]
        >>> table5 = etl.stack(table4)
        >>> table5
        +-----+-------+-------+
        | foo | bar   | baz   |
        +=====+=======+=======+
        | 'A' |     1 |     2 |
        +-----+-------+-------+
        | 'B' | '2'   | '3.4' |
        +-----+-------+-------+
        | 'B' | '3'   | '7.8' |
        +-----+-------+-------+
        | 'D' | 'xyz' |   9.0 |
        +-----+-------+-------+
        | 'E' | None  | None  |
        +-----+-------+-------+

    Similar to :func:`petl.transform.basics.cat` except that no attempt is
    made to align fields from different tables. Data rows are simply emitted
    in order, trimmed or padded to the length of the header row from the
    first table.

    .. versionadded:: 1.1.0

    """

    return StackView(tables, **kwargs)


Table.stack = stack


class StackView(Table):

    def __init__(self, sources, missing=None, trim=True, pad=True):
        self.sources = sources
        self.missing = missing
        self.trim = trim
        self.pad = pad

    def __iter__(self):
        return iterstack(self.sources, self.missing, self.trim, self.pad)


def iterstack(sources, missing, trim, pad):
    its = [iter(t) for t in sources]
    hdrs = []
    for it in its:
        try:
            hdrs.append(next(it))
        except StopIteration:
            hdrs.append([])
    hdr = hdrs[0]
    n = len(hdr)
    yield tuple(hdr)
    for it in its:
        for row in it:
            outrow = tuple(row)
            if trim:
                outrow = outrow[:n]
            if pad and len(outrow) < n:
                outrow += (missing,) * (n - len(outrow))
            yield outrow


def addfield(table, field, value=None, index=None, missing=None):
    """
    Add a field with a fixed or calculated value. E.g.::

        >>> import petl as etl
        >>> table1 = [['foo', 'bar'],
        ...           ['M', 12],
        ...           ['F', 34],
        ...           ['-', 56]]
        >>> # using a fixed value
        ... table2 = etl.addfield(table1, 'baz', 42)
        >>> table2
        +-----+-----+-----+
        | foo | bar | baz |
        +=====+=====+=====+
        | 'M' |  12 |  42 |
        +-----+-----+-----+
        | 'F' |  34 |  42 |
        +-----+-----+-----+
        | '-' |  56 |  42 |
        +-----+-----+-----+

        >>> # calculating the value
        ... table2 = etl.addfield(table1, 'baz', lambda rec: rec['bar'] * 2)
        >>> table2
        +-----+-----+-----+
        | foo | bar | baz |
        +=====+=====+=====+
        | 'M' |  12 |  24 |
        +-----+-----+-----+
        | 'F' |  34 |  68 |
        +-----+-----+-----+
        | '-' |  56 | 112 |
        +-----+-----+-----+

    Use the `index` parameter to control the position of the inserted field.

    """

    return AddFieldView(table, field, value=value, index=index,
                        missing=missing)


Table.addfield = addfield


class AddFieldView(Table):

    def __init__(self, source, field, value=None, index=None, missing=None):
        # ensure rows are all the same length
        self.source = stack(source, missing=missing)
        self.field = field
        self.value = value
        self.index = index

    def __iter__(self):
        return iteraddfield(self.source, self.field, self.value, self.index)


def iteraddfield(source, field, value, index):
    it = iter(source)
    try:
        hdr = next(it)
    except StopIteration:
        hdr = []
    flds = list(map(text_type, hdr))

    # determine index of new field
    if index is None:
        index = len(hdr)

    # construct output fields
    outhdr = list(hdr)
    outhdr.insert(index, field)
    yield tuple(outhdr)

    if callable(value):
        # wrap rows as records if using calculated value
        it = (Record(row, flds) for row in it)
        for row in it:
            outrow = list(row)
            v = value(row)
            outrow.insert(index, v)
            yield tuple(outrow)
    else:
        for row in it:
            outrow = list(row)
            outrow.insert(index, value)
            yield tuple(outrow)


def addfields(table, field_defs, missing=None):
    """
    Add fields with fixed or calculated values. E.g.::

        >>> import petl as etl
        >>> table1 = [['foo', 'bar'],
        ...           ['M', 12],
        ...           ['F', 34],
        ...           ['-', 56]]
        >>> # using a fixed value or a calculation
        ... table2 = etl.addfields(table1,
        ...                        [('baz', 42),
        ...                         ('luhrmann', lambda rec: rec['bar'] * 2)])
        >>> table2
        +-----+-----+-----+----------+
        | foo | bar | baz | luhrmann |
        +=====+=====+=====+==========+
        | 'M' |  12 |  42 |       24 |
        +-----+-----+-----+----------+
        | 'F' |  34 |  42 |       68 |
        +-----+-----+-----+----------+
        | '-' |  56 |  42 |      112 |
        +-----+-----+-----+----------+

        >>> # you can specify an index as a 3rd item in each tuple -- indicies
        ... # are evaluated in order.
        ... table2 = etl.addfields(table1,
        ...                        [('baz', 42, 0),
        ...                         ('luhrmann', lambda rec: rec['bar'] * 2, 0)])
        >>> table2
        +----------+-----+-----+-----+
        | luhrmann | baz | foo | bar |
        +==========+=====+=====+=====+
        |       24 |  42 | 'M' |  12 |
        +----------+-----+-----+-----+
        |       68 |  42 | 'F' |  34 |
        +----------+-----+-----+-----+
        |      112 |  42 | '-' |  56 |
        +----------+-----+-----+-----+

    """

    return AddFieldsView(table, field_defs, missing=missing)


Table.addfields = addfields


class AddFieldsView(Table):

    def __init__(self, source, field_defs, missing=None):
        # ensure rows are all the same length
        self.source = stack(source, missing=missing)
        # convert tuples to FieldDefinitions, if necessary
        self.field_defs = field_defs

    def __iter__(self):
        return iteraddfields(self.source, self.field_defs)


def iteraddfields(source, field_defs):
    it = iter(source)
    try:
        hdr = next(it)
    except StopIteration:
        hdr = []
    flds = list(map(text_type, hdr))

    # initialize output fields and indices
    outhdr = list(hdr)
    value_indexes = []

    for fdef in field_defs:
        # determine the defined field index
        if len(fdef) == 2:
            name, value = fdef
            index = len(outhdr)
        else:
            name, value, index = fdef

        # insert the name into the header at the appropriate index
        outhdr.insert(index, name)

        # remember the value/index pairs for later
        value_indexes.append((value, index))
    yield tuple(outhdr)

    for row in it:
        outrow = list(row)

        # add each defined field into the row at the appropriate index
        for value, index in value_indexes:
            if callable(value):
                # wrap row as record if using calculated value
                row = Record(row, flds)
                v = value(row)
                outrow.insert(index, v)
            else:
                outrow.insert(index, value)

        yield tuple(outrow)


def rowslice(table, *sliceargs):
    """
    Choose a subsequence of data rows. E.g.::

        >>> import petl as etl
        >>> table1 = [['foo', 'bar'],
        ...           ['a', 1],
        ...           ['b', 2],
        ...           ['c', 5],
        ...           ['d', 7],
        ...           ['f', 42]]
        >>> table2 = etl.rowslice(table1, 2)
        >>> table2
        +-----+-----+
        | foo | bar |
        +=====+=====+
        | 'a' |   1 |
        +-----+-----+
        | 'b' |   2 |
        +-----+-----+

        >>> table3 = etl.rowslice(table1, 1, 4)
        >>> table3
        +-----+-----+
        | foo | bar |
        +=====+=====+
        | 'b' |   2 |
        +-----+-----+
        | 'c' |   5 |
        +-----+-----+
        | 'd' |   7 |
        +-----+-----+

        >>> table4 = etl.rowslice(table1, 0, 5, 2)
        >>> table4
        +-----+-----+
        | foo | bar |
        +=====+=====+
        | 'a' |   1 |
        +-----+-----+
        | 'c' |   5 |
        +-----+-----+
        | 'f' |  42 |
        +-----+-----+

    Positional arguments are used to slice the data rows. The `sliceargs` are
    passed through to :func:`itertools.islice`.

    See also :func:`petl.transform.basics.head`,
    :func:`petl.transform.basics.tail`.

    """

    return RowSliceView(table, *sliceargs)


Table.rowslice = rowslice


class RowSliceView(Table):

    def __init__(self, source, *sliceargs):
        self.source = source
        if not sliceargs:
            self.sliceargs = (None,)
        else:
            self.sliceargs = sliceargs

    def __iter__(self):
        return iterrowslice(self.source, self.sliceargs)


def iterrowslice(source, sliceargs):
    it = iter(source)
    try:
        yield tuple(next(it))  # fields
    except StopIteration:
        return
    for row in islice(it, *sliceargs):
        yield tuple(row)


def head(table, n=5):
    """
    Select the first `n` data rows. E.g.::

        >>> import petl as etl
        >>> table1 = [['foo', 'bar'],
        ...           ['a', 1],
        ...           ['b', 2],
        ...           ['c', 5],
        ...           ['d', 7],
        ...           ['f', 42],
        ...           ['f', 3],
        ...           ['h', 90]]
        >>> table2 = etl.head(table1, 4)
        >>> table2
        +-----+-----+
        | foo | bar |
        +=====+=====+
        | 'a' |   1 |
        +-----+-----+
        | 'b' |   2 |
        +-----+-----+
        | 'c' |   5 |
        +-----+-----+
        | 'd' |   7 |
        +-----+-----+

    See also :func:`petl.transform.basics.tail`,
    :func:`petl.transform.basics.rowslice`.

    """

    return rowslice(table, n)


Table.head = head


def tail(table, n=5):
    """
    Select the last `n` data rows. E.g.::

        >>> import petl as etl
        >>> table1 = [['foo', 'bar'],
        ...           ['a', 1],
        ...           ['b', 2],
        ...           ['c', 5],
        ...           ['d', 7],
        ...           ['f', 42],
        ...           ['f', 3],
        ...           ['h', 90],
        ...           ['k', 12],
        ...           ['l', 77],
        ...           ['q', 2]]
        >>> table2 = etl.tail(table1, 4)
        >>> table2
        +-----+-----+
        | foo | bar |
        +=====+=====+
        | 'h' |  90 |
        +-----+-----+
        | 'k' |  12 |
        +-----+-----+
        | 'l' |  77 |
        +-----+-----+
        | 'q' |   2 |
        +-----+-----+

    See also :func:`petl.transform.basics.head`,
    :func:`petl.transform.basics.rowslice`.

    """

    return TailView(table, n)


Table.tail = tail


class TailView(Table):

    def __init__(self, source, n):
        self.source = source
        self.n = n

    def __iter__(self):
        return itertail(self.source, self.n)


def itertail(source, n):
    it = iter(source)
    try:
        yield tuple(next(it))  # fields
    except StopIteration:
        return  # stop generating
    cache = deque()
    for row in it:
        cache.append(row)
        if len(cache) > n:
            cache.popleft()
    for row in cache:
        yield tuple(row)


def skipcomments(table, prefix):
    """
    Skip any row where the first value is a string and starts with
    `prefix`. E.g.::

        >>> import petl as etl
        >>> table1 = [['##aaa', 'bbb', 'ccc'],
        ...           ['##mmm',],
        ...           ['#foo', 'bar'],
        ...           ['##nnn', 1],
        ...           ['a', 1],
        ...           ['b', 2]]
        >>> table2 = etl.skipcomments(table1, '##')
        >>> table2
        +------+-----+
        | #foo | bar |
        +======+=====+
        | 'a'  |   1 |
        +------+-----+
        | 'b'  |   2 |
        +------+-----+

    Use the `prefix` parameter to determine which string to consider as
    indicating a comment.

    """

    return SkipCommentsView(table, prefix)


Table.skipcomments = skipcomments


class SkipCommentsView(Table):

    def __init__(self, source, prefix):
        self.source = source
        self.prefix = prefix

    def __iter__(self):
        return iterskipcomments(self.source, self.prefix)


def iterskipcomments(source, prefix):
    return (row for row in source
            if (len(row) > 0
                and not(isinstance(row[0], string_types)
                and row[0].startswith(prefix))))


def movefield(table, field, index):
    """
    Move a field to a new position.

    """

    return MoveFieldView(table, field, index)


Table.movefield = movefield


class MoveFieldView(Table):

    def __init__(self, table, field, index, missing=None):
        self.table = table
        self.field = field
        self.index = index
        self.missing = missing

    def __iter__(self):
        it = iter(self.table)

        # determine output fields
        try:
            hdr = next(it)
        except StopIteration:
            hdr = []
        outhdr = [f for f in hdr if f != self.field]
        outhdr.insert(self.index, self.field)
        yield tuple(outhdr)

        # define a function to transform each row in the source data
        # according to the field selection
        outflds = list(map(str, outhdr))
        indices = asindices(hdr, outflds)
        transform = rowgetter(*indices)

        # construct the transformed data
        for row in it:
            try:
                yield transform(row)
            except IndexError:
                # row is short, let's be kind and fill in any missing fields
                yield tuple(row[i] if i < len(row) else self.missing
                            for i in indices)


def annex(*tables, **kwargs):
    """
    Join two or more tables by row order. E.g.::

        >>> import petl as etl
        >>> table1 = [['foo', 'bar'],
        ...           ['A', 9],
        ...           ['C', 2],
        ...           ['F', 1]]
        >>> table2 = [['foo', 'baz'],
        ...           ['B', 3],
        ...           ['D', 10]]
        >>> table3 = etl.annex(table1, table2)
        >>> table3
        +-----+-----+------+------+
        | foo | bar | foo  | baz  |
        +=====+=====+======+======+
        | 'A' |   9 | 'B'  |    3 |
        +-----+-----+------+------+
        | 'C' |   2 | 'D'  |   10 |
        +-----+-----+------+------+
        | 'F' |   1 | None | None |
        +-----+-----+------+------+

    See also :func:`petl.transform.joins.join`.

    """

    return AnnexView(tables, **kwargs)


Table.annex = annex


class AnnexView(Table):

    def __init__(self, tables, missing=None):
        self.tables = tables
        self.missing = missing

    def __iter__(self):
        return iterannex(self.tables, self.missing)


def iterannex(tables, missing):
    its = [iter(t) for t in tables]
    hdrs = []
    for it in its:
        try:
            hdrs.append(next(it))
        except StopIteration:
            hdrs.append([])
    outhdr = tuple(chain(*hdrs))
    yield outhdr
    for rows in izip_longest(*its):
        outrow = list()
        for i, row in enumerate(rows):
            lh = len(hdrs[i])
            if row is None:  # handle uneven length tables
                row = [missing] * len(hdrs[i])
            else:
                lr = len(row)
                if lr < lh:  # handle short rows
                    row = list(row)
                    row.extend([missing] * (lh-lr))
                elif lr > lh:  # handle long rows
                    row = row[:lh]
            outrow.extend(row)
        yield tuple(outrow)


def addrownumbers(table, start=1, step=1, field='row'):
    """
    Add a field of row numbers. E.g.::

        >>> import petl as etl
        >>> table1 = [['foo', 'bar'],
        ...           ['A', 9],
        ...           ['C', 2],
        ...           ['F', 1]]
        >>> table2 = etl.addrownumbers(table1)
        >>> table2
        +-----+-----+-----+
        | row | foo | bar |
        +=====+=====+=====+
        |   1 | 'A' |   9 |
        +-----+-----+-----+
        |   2 | 'C' |   2 |
        +-----+-----+-----+
        |   3 | 'F' |   1 |
        +-----+-----+-----+

    Parameters `start` and `step` control the numbering.

    """

    return AddRowNumbersView(table, start, step, field)


Table.addrownumbers = addrownumbers


class AddRowNumbersView(Table):

    def __init__(self, table, start=1, step=1, field='row'):
        self.table = table
        self.start = start
        self.step = step
        self.field = field

    def __iter__(self):
        return iteraddrownumbers(self.table, self.start, self.step, self.field)


def iteraddrownumbers(table, start, step, field):
    it = iter(table)
    try:
        hdr = next(it)
    except StopIteration:
        hdr = []
    outhdr = [field]
    outhdr.extend(hdr)
    yield tuple(outhdr)
    for row, n in izip(it, count(start, step)):
        outrow = [n]
        outrow.extend(row)
        yield tuple(outrow)


def addcolumn(table, field, col, index=None, missing=None):
    """
    Add a column of data to the table. E.g.::

        >>> import petl as etl
        >>> table1 = [['foo', 'bar'],
        ...           ['A', 1],
        ...           ['B', 2]]
        >>> col = [True, False]
        >>> table2 = etl.addcolumn(table1, 'baz', col)
        >>> table2
        +-----+-----+-------+
        | foo | bar | baz   |
        +=====+=====+=======+
        | 'A' |   1 | True  |
        +-----+-----+-------+
        | 'B' |   2 | False |
        +-----+-----+-------+

    Use the `index` parameter to control the position of the new column.

    """

    return AddColumnView(table, field, col, index=index, missing=missing)


Table.addcolumn = addcolumn


class AddColumnView(Table):

    def __init__(self, table, field, col, index=None, missing=None):
        self._table = table
        self._field = field
        self._col = col
        self._index = index
        self._missing = missing

    def __iter__(self):
        return iteraddcolumn(self._table, self._field, self._col,
                             self._index, self._missing)


def iteraddcolumn(table, field, col, index, missing):
    it = iter(table)
    try:
        hdr = next(it)
    except StopIteration:
        hdr = []

    # determine position of new column
    if index is None:
        index = len(hdr)

    # construct output header
    outhdr = list(hdr)
    outhdr.insert(index, field)
    yield tuple(outhdr)

    # construct output data
    for row, val in izip_longest(it, col, fillvalue=missing):
        # run out of rows?
        if row == missing:
            row = [missing] * len(hdr)
        outrow = list(row)
        outrow.insert(index, val)
        yield tuple(outrow)


class TransformError(Exception):
    pass


def addfieldusingcontext(table, field, query):
    """
    Like :func:`petl.transform.basics.addfield` but the `query` function is
    passed the previous, current and next rows, so values may be calculated
    based on data in adjacent rows. E.g.::

        >>> import petl as etl
        >>> table1 = [['foo', 'bar'],
        ...           ['A', 1],
        ...           ['B', 4],
        ...           ['C', 5],
        ...           ['D', 9]]
        >>> def upstream(prv, cur, nxt):
        ...     if prv is None:
        ...         return None
        ...     else:
        ...         return cur.bar - prv.bar
        ...
        >>> def downstream(prv, cur, nxt):
        ...     if nxt is None:
        ...         return None
        ...     else:
        ...         return nxt.bar - cur.bar
        ...
        >>> table2 = etl.addfieldusingcontext(table1, 'baz', upstream)
        >>> table3 = etl.addfieldusingcontext(table2, 'quux', downstream)
        >>> table3
        +-----+-----+------+------+
        | foo | bar | baz  | quux |
        +=====+=====+======+======+
        | 'A' |   1 | None |    3 |
        +-----+-----+------+------+
        | 'B' |   4 |    3 |    1 |
        +-----+-----+------+------+
        | 'C' |   5 |    1 |    4 |
        +-----+-----+------+------+
        | 'D' |   9 |    4 | None |
        +-----+-----+------+------+

    The `field` parameter is the name of the field to be added. The `query`
    parameter is a function operating on the current, previous and next rows
    and returning the value.

    """

    return AddFieldUsingContextView(table, field, query)


Table.addfieldusingcontext = addfieldusingcontext


class AddFieldUsingContextView(Table):

    def __init__(self, table, field, query):
        self.table = table
        self.field = field
        self.query = query

    def __iter__(self):
        return iteraddfieldusingcontext(self.table, self.field, self.query)


def iteraddfieldusingcontext(table, field, query):
    it = iter(table)
    try:
        hdr = tuple(next(it))
    except StopIteration:
        hdr = ()
    flds = list(map(text_type, hdr))
    yield hdr + (field,)
    flds.append(field)
    it = (Record(row, flds) for row in it)
    prv = None
    try:
        cur = next(it)
    except StopIteration:
        return  # no more items
    for nxt in it:
        v = query(prv, cur, nxt)
        yield tuple(cur) + (v,)
        prv = Record(tuple(cur) + (v,), flds)
        cur = nxt
    # handle last row
    v = query(prv, cur, None)
    yield tuple(cur) + (v,)