1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
|
from __future__ import absolute_import, print_function, division
import operator
from collections import OrderedDict
from petl.compat import next, string_types, text_type
import petl.config as config
from petl.errors import ArgumentError
from petl.util.base import Table, expr, rowgroupby, Record
from petl.transform.sorts import sort
def fieldmap(table, mappings=None, failonerror=None, errorvalue=None, trusted=True):
"""
Transform a table, mapping fields arbitrarily between input and output.
E.g.::
>>> import petl as etl
>>> from collections import OrderedDict
>>> table1 = [['id', 'sex', 'age', 'height', 'weight'],
... [1, 'male', 16, 1.45, 62.0],
... [2, 'female', 19, 1.34, 55.4],
... [3, 'female', 17, 1.78, 74.4],
... [4, 'male', 21, 1.33, 45.2],
... [5, '-', 25, 1.65, 51.9]]
>>> mappings = OrderedDict()
>>> # rename a field
... mappings['subject_id'] = 'id'
>>> # translate a field
... mappings['gender'] = 'sex', {'male': 'M', 'female': 'F'}
>>> # apply a calculation to a field
... mappings['age_months'] = 'age', lambda v: v * 12
>>> # apply a calculation to a combination of fields
... mappings['bmi'] = lambda rec: rec['weight'] / rec['height']**2
>>> # transform and inspect the output
... table2 = etl.fieldmap(table1, mappings)
>>> table2
+------------+--------+------------+--------------------+
| subject_id | gender | age_months | bmi |
+============+========+============+====================+
| 1 | 'M' | 192 | 29.48870392390012 |
+------------+--------+------------+--------------------+
| 2 | 'F' | 228 | 30.8531967030519 |
+------------+--------+------------+--------------------+
| 3 | 'F' | 204 | 23.481883600555488 |
+------------+--------+------------+--------------------+
| 4 | 'M' | 252 | 25.55260331279326 |
+------------+--------+------------+--------------------+
| 5 | '-' | 300 | 19.0633608815427 |
+------------+--------+------------+--------------------+
Note also that the mapping value can be an expression string, which will be
converted to a lambda function via :func:`petl.util.base.expr`.
The ``trusted`` keyword argument can be used to specify whether the
expression is trusted. See `:func:`petl.util.base.expr` for details.
The `failonerror` and `errorvalue` keyword arguments are documented
under :func:`petl.config.failonerror`
"""
return FieldMapView(table, mappings=mappings, failonerror=failonerror,
errorvalue=errorvalue, trusted=trusted)
Table.fieldmap = fieldmap
class FieldMapView(Table):
def __init__(self, source, mappings=None, failonerror=None,
errorvalue=None, trusted=True):
self.source = source
if mappings is None:
self.mappings = OrderedDict()
else:
self.mappings = mappings
self.failonerror = (config.failonerror if failonerror is None
else failonerror)
self.errorvalue = errorvalue
self.trusted = trusted
def __setitem__(self, key, value):
self.mappings[key] = value
def __iter__(self):
return iterfieldmap(self.source, self.mappings, self.failonerror,
self.errorvalue, self.trusted)
def iterfieldmap(source, mappings, failonerror, errorvalue, trusted):
it = iter(source)
try:
hdr = next(it)
except StopIteration:
return
flds = list(map(text_type, hdr))
outhdr = mappings.keys()
yield tuple(outhdr)
mapfuns = dict()
for outfld, m in mappings.items():
if m in hdr:
mapfuns[outfld] = operator.itemgetter(m)
elif isinstance(m, int) and m < len(hdr):
mapfuns[outfld] = operator.itemgetter(m)
elif isinstance(m, string_types):
mapfuns[outfld] = expr(m, trusted=trusted)
elif callable(m):
mapfuns[outfld] = m
elif isinstance(m, (tuple, list)) and len(m) == 2:
srcfld = m[0]
fm = m[1]
if callable(fm):
mapfuns[outfld] = composefun(fm, srcfld)
elif isinstance(fm, dict):
mapfuns[outfld] = composedict(fm, srcfld)
else:
raise ArgumentError('expected callable or dict')
else:
raise ArgumentError('invalid mapping %r: %r' % (outfld, m))
# wrap rows as records
it = (Record(row, flds) for row in it)
for row in it:
outrow = list()
for outfld in outhdr:
try:
val = mapfuns[outfld](row)
except Exception as e:
if failonerror == 'inline':
val = e
elif failonerror:
raise e
else:
val = errorvalue
outrow.append(val)
yield tuple(outrow)
def composefun(f, srcfld):
def g(rec):
return f(rec[srcfld])
return g
def composedict(d, srcfld):
def g(rec):
k = rec[srcfld]
if k in d:
return d[k]
else:
return k
return g
def rowmap(table, rowmapper, header, failonerror=None):
"""
Transform rows via an arbitrary function. E.g.::
>>> import petl as etl
>>> table1 = [['id', 'sex', 'age', 'height', 'weight'],
... [1, 'male', 16, 1.45, 62.0],
... [2, 'female', 19, 1.34, 55.4],
... [3, 'female', 17, 1.78, 74.4],
... [4, 'male', 21, 1.33, 45.2],
... [5, '-', 25, 1.65, 51.9]]
>>> def rowmapper(row):
... transmf = {'male': 'M', 'female': 'F'}
... return [row[0],
... transmf[row['sex']] if row['sex'] in transmf else None,
... row.age * 12,
... row.height / row.weight ** 2]
...
>>> table2 = etl.rowmap(table1, rowmapper,
... header=['subject_id', 'gender', 'age_months',
... 'bmi'])
>>> table2
+------------+--------+------------+-----------------------+
| subject_id | gender | age_months | bmi |
+============+========+============+=======================+
| 1 | 'M' | 192 | 0.0003772112382934443 |
+------------+--------+------------+-----------------------+
| 2 | 'F' | 228 | 0.0004366015456998006 |
+------------+--------+------------+-----------------------+
| 3 | 'F' | 204 | 0.0003215689675106949 |
+------------+--------+------------+-----------------------+
| 4 | 'M' | 252 | 0.0006509906805544679 |
+------------+--------+------------+-----------------------+
| 5 | None | 300 | 0.0006125608384287258 |
+------------+--------+------------+-----------------------+
The `rowmapper` function should accept a single row and return a single
row (list or tuple).
The `failonerror` keyword argument is documented under
:func:`petl.config.failonerror`
"""
return RowMapView(table, rowmapper, header, failonerror=failonerror)
Table.rowmap = rowmap
class RowMapView(Table):
def __init__(self, source, rowmapper, header, failonerror=None):
self.source = source
self.rowmapper = rowmapper
self.header = header
self.failonerror = (config.failonerror if failonerror is None
else failonerror)
def __iter__(self):
return iterrowmap(self.source, self.rowmapper, self.header,
self.failonerror)
def iterrowmap(source, rowmapper, header, failonerror):
it = iter(source)
try:
hdr = next(it)
except StopIteration:
return
flds = list(map(text_type, hdr))
yield tuple(header)
it = (Record(row, flds) for row in it)
for row in it:
try:
outrow = rowmapper(row)
yield tuple(outrow)
except Exception as e:
if failonerror == 'inline':
yield tuple([e])
elif failonerror:
raise e
def rowmapmany(table, rowgenerator, header, failonerror=None):
"""
Map each input row to any number of output rows via an arbitrary
function. E.g.::
>>> import petl as etl
>>> table1 = [['id', 'sex', 'age', 'height', 'weight'],
... [1, 'male', 16, 1.45, 62.0],
... [2, 'female', 19, 1.34, 55.4],
... [3, '-', 17, 1.78, 74.4],
... [4, 'male', 21, 1.33]]
>>> def rowgenerator(row):
... transmf = {'male': 'M', 'female': 'F'}
... yield [row[0], 'gender',
... transmf[row['sex']] if row['sex'] in transmf else None]
... yield [row[0], 'age_months', row.age * 12]
... yield [row[0], 'bmi', row.height / row.weight ** 2]
...
>>> table2 = etl.rowmapmany(table1, rowgenerator,
... header=['subject_id', 'variable', 'value'])
>>> table2.lookall()
+------------+--------------+-----------------------+
| subject_id | variable | value |
+============+==============+=======================+
| 1 | 'gender' | 'M' |
+------------+--------------+-----------------------+
| 1 | 'age_months' | 192 |
+------------+--------------+-----------------------+
| 1 | 'bmi' | 0.0003772112382934443 |
+------------+--------------+-----------------------+
| 2 | 'gender' | 'F' |
+------------+--------------+-----------------------+
| 2 | 'age_months' | 228 |
+------------+--------------+-----------------------+
| 2 | 'bmi' | 0.0004366015456998006 |
+------------+--------------+-----------------------+
| 3 | 'gender' | None |
+------------+--------------+-----------------------+
| 3 | 'age_months' | 204 |
+------------+--------------+-----------------------+
| 3 | 'bmi' | 0.0003215689675106949 |
+------------+--------------+-----------------------+
| 4 | 'gender' | 'M' |
+------------+--------------+-----------------------+
| 4 | 'age_months' | 252 |
+------------+--------------+-----------------------+
The `rowgenerator` function should accept a single row and yield zero or
more rows (lists or tuples).
The `failonerror` keyword argument is documented under
:func:`petl.config.failonerror`
See also the :func:`petl.transform.reshape.melt` function.
"""
return RowMapManyView(table, rowgenerator, header, failonerror=failonerror)
Table.rowmapmany = rowmapmany
class RowMapManyView(Table):
def __init__(self, source, rowgenerator, header, failonerror=None):
self.source = source
self.rowgenerator = rowgenerator
self.header = header
self.failonerror = (config.failonerror if failonerror is None
else failonerror)
def __iter__(self):
return iterrowmapmany(self.source, self.rowgenerator, self.header,
self.failonerror)
def iterrowmapmany(source, rowgenerator, header, failonerror):
it = iter(source)
try:
hdr = next(it)
except StopIteration:
return
flds = list(map(text_type, hdr))
yield tuple(header)
it = (Record(row, flds) for row in it)
for row in it:
try:
for outrow in rowgenerator(row):
yield tuple(outrow)
except Exception as e:
if failonerror == 'inline':
yield tuple([e])
elif failonerror:
raise e
else:
pass
def rowgroupmap(table, key, mapper, header=None, presorted=False,
buffersize=None, tempdir=None, cache=True):
"""
Group rows under the given key then apply `mapper` to yield zero or more
output rows for each input group of rows.
"""
return RowGroupMapView(table, key, mapper, header=header,
presorted=presorted,
buffersize=buffersize, tempdir=tempdir, cache=cache)
Table.rowgroupmap = rowgroupmap
class RowGroupMapView(Table):
def __init__(self, source, key, mapper, header=None,
presorted=False, buffersize=None, tempdir=None, cache=True):
if presorted:
self.source = source
else:
self.source = sort(source, key, buffersize=buffersize,
tempdir=tempdir, cache=cache)
self.key = key
self.header = header
self.mapper = mapper
def __iter__(self):
return iterrowgroupmap(self.source, self.key, self.mapper, self.header)
def iterrowgroupmap(source, key, mapper, header):
yield tuple(header)
for key, rows in rowgroupby(source, key):
for row in mapper(key, rows):
yield row
|