1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
|
from __future__ import absolute_import, print_function, division
import re
import operator
from petl.compat import next, text_type
from petl.errors import ArgumentError
from petl.util.base import Table, asindices
from petl.transform.basics import TransformError
from petl.transform.conversions import convert
def capture(table, field, pattern, newfields=None, include_original=False,
flags=0, fill=None):
"""
Add one or more new fields with values captured from an existing field
searched via a regular expression. E.g.::
>>> import petl as etl
>>> table1 = [['id', 'variable', 'value'],
... ['1', 'A1', '12'],
... ['2', 'A2', '15'],
... ['3', 'B1', '18'],
... ['4', 'C12', '19']]
>>> table2 = etl.capture(table1, 'variable', '([A-Z,a-z]+)([0-9]+)',
... ['treat', 'time'])
>>> table2
+-----+-------+-------+------+
| id | value | treat | time |
+=====+=======+=======+======+
| '1' | '12' | 'A' | '1' |
+-----+-------+-------+------+
| '2' | '15' | 'A' | '2' |
+-----+-------+-------+------+
| '3' | '18' | 'B' | '1' |
+-----+-------+-------+------+
| '4' | '19' | 'C' | '12' |
+-----+-------+-------+------+
>>> # using the include_original argument
... table3 = etl.capture(table1, 'variable', '([A-Z,a-z]+)([0-9]+)',
... ['treat', 'time'],
... include_original=True)
>>> table3
+-----+----------+-------+-------+------+
| id | variable | value | treat | time |
+=====+==========+=======+=======+======+
| '1' | 'A1' | '12' | 'A' | '1' |
+-----+----------+-------+-------+------+
| '2' | 'A2' | '15' | 'A' | '2' |
+-----+----------+-------+-------+------+
| '3' | 'B1' | '18' | 'B' | '1' |
+-----+----------+-------+-------+------+
| '4' | 'C12' | '19' | 'C' | '12' |
+-----+----------+-------+-------+------+
By default the field on which the capture is performed is omitted. It can
be included using the `include_original` argument.
The ``fill`` parameter can be used to provide a list or tuple of values to
use if the regular expression does not match. The ``fill`` parameter
should contain as many values as there are capturing groups in the regular
expression. If ``fill`` is ``None`` (default) then a
``petl.transform.TransformError`` will be raised on the first non-matching
value.
"""
return CaptureView(table, field, pattern,
newfields=newfields,
include_original=include_original,
flags=flags,
fill=fill)
Table.capture = capture
class CaptureView(Table):
def __init__(self, source, field, pattern, newfields=None,
include_original=False, flags=0, fill=None):
self.source = source
self.field = field
self.pattern = pattern
self.newfields = newfields
self.include_original = include_original
self.flags = flags
self.fill = fill
def __iter__(self):
return itercapture(self.source, self.field, self.pattern,
self.newfields, self.include_original, self.flags,
self.fill)
def itercapture(source, field, pattern, newfields, include_original, flags,
fill):
it = iter(source)
prog = re.compile(pattern, flags)
try:
hdr = next(it)
except StopIteration:
hdr = []
flds = list(map(text_type, hdr))
if isinstance(field, int) and field < len(hdr):
field_index = field
elif field in flds:
field_index = flds.index(field)
else:
raise ArgumentError('field invalid: must be either field name or index')
# determine output fields
outhdr = list(flds)
if not include_original:
outhdr.remove(field)
if newfields:
outhdr.extend(newfields)
yield tuple(outhdr)
# construct the output data
for row in it:
value = row[field_index]
if include_original:
out_row = list(row)
else:
out_row = [v for i, v in enumerate(row) if i != field_index]
match = prog.search(value)
if match is None:
if fill is not None:
out_row.extend(fill)
else:
raise TransformError('value %r did not match pattern %r'
% (value, pattern))
else:
out_row.extend(match.groups())
yield tuple(out_row)
def split(table, field, pattern, newfields=None, include_original=False,
maxsplit=0, flags=0):
"""
Add one or more new fields with values generated by splitting an
existing value around occurrences of a regular expression. E.g.::
>>> import petl as etl
>>> table1 = [['id', 'variable', 'value'],
... ['1', 'parad1', '12'],
... ['2', 'parad2', '15'],
... ['3', 'tempd1', '18'],
... ['4', 'tempd2', '19']]
>>> table2 = etl.split(table1, 'variable', 'd', ['variable', 'day'])
>>> table2
+-----+-------+----------+-----+
| id | value | variable | day |
+=====+=======+==========+=====+
| '1' | '12' | 'para' | '1' |
+-----+-------+----------+-----+
| '2' | '15' | 'para' | '2' |
+-----+-------+----------+-----+
| '3' | '18' | 'temp' | '1' |
+-----+-------+----------+-----+
| '4' | '19' | 'temp' | '2' |
+-----+-------+----------+-----+
By default the field on which the split is performed is omitted. It can
be included using the `include_original` argument.
"""
return SplitView(table, field, pattern, newfields, include_original,
maxsplit, flags)
Table.split = split
class SplitView(Table):
def __init__(self, source, field, pattern, newfields=None,
include_original=False, maxsplit=0, flags=0):
self.source = source
self.field = field
self.pattern = pattern
self.newfields = newfields
self.include_original = include_original
self.maxsplit = maxsplit
self.flags = flags
def __iter__(self):
return itersplit(self.source, self.field, self.pattern, self.newfields,
self.include_original, self.maxsplit, self.flags)
def itersplit(source, field, pattern, newfields, include_original, maxsplit,
flags):
it = iter(source)
prog = re.compile(pattern, flags)
try:
hdr = next(it)
except StopIteration:
hdr = []
flds = list(map(text_type, hdr))
if isinstance(field, int) and field < len(hdr):
field_index = field
field = hdr[field_index]
elif field in flds:
field_index = flds.index(field)
else:
raise ArgumentError('field invalid: must be either field name or index')
# determine output fields
outhdr = list(flds)
if not include_original:
outhdr.remove(field)
if newfields:
outhdr.extend(newfields)
yield tuple(outhdr)
# construct the output data
for row in it:
value = row[field_index]
if include_original:
out_row = list(row)
else:
out_row = [v for i, v in enumerate(row) if i != field_index]
out_row.extend(prog.split(value, maxsplit))
yield tuple(out_row)
def sub(table, field, pattern, repl, count=0, flags=0):
"""
Convenience function to convert values under the given field using a
regular expression substitution. See also :func:`re.sub`.
"""
prog = re.compile(pattern, flags)
conv = lambda v: prog.sub(repl, v, count=count)
return convert(table, field, conv)
Table.sub = sub
def search(table, *args, **kwargs):
"""
Perform a regular expression search, returning rows that match a given
pattern, either anywhere in the row or within a specific field. E.g.::
>>> import petl as etl
>>> table1 = [['foo', 'bar', 'baz'],
... ['orange', 12, 'oranges are nice fruit'],
... ['mango', 42, 'I like them'],
... ['banana', 74, 'lovely too'],
... ['cucumber', 41, 'better than mango']]
>>> # search any field
... table2 = etl.search(table1, '.g.')
>>> table2
+------------+-----+--------------------------+
| foo | bar | baz |
+============+=====+==========================+
| 'orange' | 12 | 'oranges are nice fruit' |
+------------+-----+--------------------------+
| 'mango' | 42 | 'I like them' |
+------------+-----+--------------------------+
| 'cucumber' | 41 | 'better than mango' |
+------------+-----+--------------------------+
>>> # search a specific field
... table3 = etl.search(table1, 'foo', '.g.')
>>> table3
+----------+-----+--------------------------+
| foo | bar | baz |
+==========+=====+==========================+
| 'orange' | 12 | 'oranges are nice fruit' |
+----------+-----+--------------------------+
| 'mango' | 42 | 'I like them' |
+----------+-----+--------------------------+
The complement can be found via
:func:`petl.transform.regex.searchcomplement`.
"""
if len(args) == 1:
field = None
pattern = args[0]
elif len(args) == 2:
field = args[0]
pattern = args[1]
else:
raise ArgumentError('expected 1 or 2 positional arguments')
return SearchView(table, pattern, field=field, **kwargs)
Table.search = search
class SearchView(Table):
def __init__(self, table, pattern, field=None, flags=0, complement=False):
self.table = table
self.pattern = pattern
self.field = field
self.flags = flags
self.complement = complement
def __iter__(self):
return itersearch(self.table, self.pattern, self.field, self.flags,
self.complement)
def itersearch(table, pattern, field, flags, complement):
prog = re.compile(pattern, flags)
it = iter(table)
try:
hdr = next(it)
except StopIteration:
return
flds = list(map(text_type, hdr))
yield tuple(hdr)
if field is None:
# search whole row
test = lambda r: any(prog.search(text_type(v)) for v in r)
else:
indices = asindices(hdr, field)
if len(indices) == 1:
index = indices[0]
test = lambda r: prog.search(text_type(r[index]))
else:
getvals = operator.itemgetter(*indices)
test = lambda r: any(prog.search(text_type(v)) for v in getvals(r))
# complement==False, return rows that match
if not complement:
for row in it:
if test(row):
yield tuple(row)
# complement==True, return rows that do not match
else:
for row in it:
if not test(row):
yield tuple(row)
def searchcomplement(table, *args, **kwargs):
"""
Perform a regular expression search, returning rows that **do not**
match a given pattern, either anywhere in the row or within a specific
field. E.g.::
>>> import petl as etl
>>> table1 = [['foo', 'bar', 'baz'],
... ['orange', 12, 'oranges are nice fruit'],
... ['mango', 42, 'I like them'],
... ['banana', 74, 'lovely too'],
... ['cucumber', 41, 'better than mango']]
>>> # search any field
... table2 = etl.searchcomplement(table1, '.g.')
>>> table2
+----------+-----+--------------+
| foo | bar | baz |
+==========+=====+==============+
| 'banana' | 74 | 'lovely too' |
+----------+-----+--------------+
>>> # search a specific field
... table3 = etl.searchcomplement(table1, 'foo', '.g.')
>>> table3
+------------+-----+---------------------+
| foo | bar | baz |
+============+=====+=====================+
| 'banana' | 74 | 'lovely too' |
+------------+-----+---------------------+
| 'cucumber' | 41 | 'better than mango' |
+------------+-----+---------------------+
This returns the complement of :func:`petl.transform.regex.search`.
"""
return search(table, *args, complement=True, **kwargs)
Table.searchcomplement = searchcomplement
def splitdown(table, field, pattern, maxsplit=0, flags=0):
"""
Split a field into multiple rows using a regular expression. E.g.:
>>> import petl as etl
>>> table1 = [['name', 'roles'],
... ['Jane Doe', 'president,engineer,tailor,lawyer'],
... ['John Doe', 'rocket scientist,optometrist,chef,knight,sailor']]
>>> table2 = etl.splitdown(table1, 'roles', ',')
>>> table2.lookall()
+------------+--------------------+
| name | roles |
+============+====================+
| 'Jane Doe' | 'president' |
+------------+--------------------+
| 'Jane Doe' | 'engineer' |
+------------+--------------------+
| 'Jane Doe' | 'tailor' |
+------------+--------------------+
| 'Jane Doe' | 'lawyer' |
+------------+--------------------+
| 'John Doe' | 'rocket scientist' |
+------------+--------------------+
| 'John Doe' | 'optometrist' |
+------------+--------------------+
| 'John Doe' | 'chef' |
+------------+--------------------+
| 'John Doe' | 'knight' |
+------------+--------------------+
| 'John Doe' | 'sailor' |
+------------+--------------------+
"""
return SplitDownView(table, field, pattern, maxsplit, flags)
Table.splitdown = splitdown
class SplitDownView(Table):
def __init__(self, table, field, pattern, maxsplit=0, flags=0):
self.table = table
self.field = field
self.pattern = pattern
self.maxsplit = maxsplit
self.flags = flags
def __iter__(self):
return itersplitdown(self.table, self.field, self.pattern,
self.maxsplit, self.flags)
def itersplitdown(table, field, pattern, maxsplit, flags):
prog = re.compile(pattern, flags)
it = iter(table)
try:
hdr = next(it)
except StopIteration:
return
flds = list(map(text_type, hdr))
if isinstance(field, int) and field < len(hdr):
field_index = field
field = hdr[field_index]
elif field in flds:
field_index = flds.index(field)
else:
raise ArgumentError('field invalid: must be either field name or index')
yield tuple(hdr)
for row in it:
value = row[field_index]
for v in prog.split(value, maxsplit):
yield tuple(v if i == field_index else row[i] for i in range(len(hdr)))
|