1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
|
from __future__ import absolute_import, print_function, division
import itertools
import collections
import operator
from petl.compat import next, text_type
from petl.comparison import comparable_itemgetter
from petl.util.base import Table, rowgetter, values, itervalues, \
header, data, asindices
from petl.transform.sorts import sort
def melt(table, key=None, variables=None, variablefield='variable',
valuefield='value'):
"""
Reshape a table, melting fields into data. E.g.::
>>> import petl as etl
>>> table1 = [['id', 'gender', 'age'],
... [1, 'F', 12],
... [2, 'M', 17],
... [3, 'M', 16]]
>>> table2 = etl.melt(table1, 'id')
>>> table2.lookall()
+----+----------+-------+
| id | variable | value |
+====+==========+=======+
| 1 | 'gender' | 'F' |
+----+----------+-------+
| 1 | 'age' | 12 |
+----+----------+-------+
| 2 | 'gender' | 'M' |
+----+----------+-------+
| 2 | 'age' | 17 |
+----+----------+-------+
| 3 | 'gender' | 'M' |
+----+----------+-------+
| 3 | 'age' | 16 |
+----+----------+-------+
>>> # compound keys are supported
... table3 = [['id', 'time', 'height', 'weight'],
... [1, 11, 66.4, 12.2],
... [2, 16, 53.2, 17.3],
... [3, 12, 34.5, 9.4]]
>>> table4 = etl.melt(table3, key=['id', 'time'])
>>> table4.lookall()
+----+------+----------+-------+
| id | time | variable | value |
+====+======+==========+=======+
| 1 | 11 | 'height' | 66.4 |
+----+------+----------+-------+
| 1 | 11 | 'weight' | 12.2 |
+----+------+----------+-------+
| 2 | 16 | 'height' | 53.2 |
+----+------+----------+-------+
| 2 | 16 | 'weight' | 17.3 |
+----+------+----------+-------+
| 3 | 12 | 'height' | 34.5 |
+----+------+----------+-------+
| 3 | 12 | 'weight' | 9.4 |
+----+------+----------+-------+
>>> # a subset of variable fields can be selected
... table5 = etl.melt(table3, key=['id', 'time'],
... variables=['height'])
>>> table5.lookall()
+----+------+----------+-------+
| id | time | variable | value |
+====+======+==========+=======+
| 1 | 11 | 'height' | 66.4 |
+----+------+----------+-------+
| 2 | 16 | 'height' | 53.2 |
+----+------+----------+-------+
| 3 | 12 | 'height' | 34.5 |
+----+------+----------+-------+
See also :func:`petl.transform.reshape.recast`.
"""
return MeltView(table, key=key, variables=variables,
variablefield=variablefield,
valuefield=valuefield)
Table.melt = melt
class MeltView(Table):
def __init__(self, source, key=None, variables=None,
variablefield='variable', valuefield='value'):
self.source = source
self.key = key
self.variables = variables
self.variablefield = variablefield
self.valuefield = valuefield
def __iter__(self):
return itermelt(self.source, self.key, self.variables,
self.variablefield, self.valuefield)
def itermelt(source, key, variables, variablefield, valuefield):
if key is None and variables is None:
raise ValueError('either key or variables must be specified')
it = iter(source)
try:
hdr = next(it)
except StopIteration:
return
# determine key and variable field indices
key_indices = variables_indices = None
if key is not None:
key_indices = asindices(hdr, key)
if variables is not None:
if not isinstance(variables, (list, tuple)):
variables = (variables,)
variables_indices = asindices(hdr, variables)
if key is None:
# assume key is fields not in variables
key_indices = [i for i in range(len(hdr))
if i not in variables_indices]
if variables is None:
# assume variables are fields not in key
variables_indices = [i for i in range(len(hdr))
if i not in key_indices]
variables = [hdr[i] for i in variables_indices]
getkey = rowgetter(*key_indices)
# determine the output fields
outhdr = [hdr[i] for i in key_indices]
outhdr.append(variablefield)
outhdr.append(valuefield)
yield tuple(outhdr)
# construct the output data
for row in it:
k = getkey(row)
for v, i in zip(variables, variables_indices):
try:
o = list(k) # populate with key values initially
o.append(v) # add variable
o.append(row[i]) # add value
yield tuple(o)
except IndexError:
# row is missing this value, and melt() should yield no row
pass
def recast(table, key=None, variablefield='variable', valuefield='value',
samplesize=1000, reducers=None, missing=None):
"""
Recast molten data. E.g.::
>>> import petl as etl
>>> table1 = [['id', 'variable', 'value'],
... [3, 'age', 16],
... [1, 'gender', 'F'],
... [2, 'gender', 'M'],
... [2, 'age', 17],
... [1, 'age', 12],
... [3, 'gender', 'M']]
>>> table2 = etl.recast(table1)
>>> table2
+----+-----+--------+
| id | age | gender |
+====+=====+========+
| 1 | 12 | 'F' |
+----+-----+--------+
| 2 | 17 | 'M' |
+----+-----+--------+
| 3 | 16 | 'M' |
+----+-----+--------+
>>> # specifying variable and value fields
... table3 = [['id', 'vars', 'vals'],
... [3, 'age', 16],
... [1, 'gender', 'F'],
... [2, 'gender', 'M'],
... [2, 'age', 17],
... [1, 'age', 12],
... [3, 'gender', 'M']]
>>> table4 = etl.recast(table3, variablefield='vars', valuefield='vals')
>>> table4
+----+-----+--------+
| id | age | gender |
+====+=====+========+
| 1 | 12 | 'F' |
+----+-----+--------+
| 2 | 17 | 'M' |
+----+-----+--------+
| 3 | 16 | 'M' |
+----+-----+--------+
>>> # if there are multiple values for each key/variable pair, and no
... # reducers function is provided, then all values will be listed
... table6 = [['id', 'time', 'variable', 'value'],
... [1, 11, 'weight', 66.4],
... [1, 14, 'weight', 55.2],
... [2, 12, 'weight', 53.2],
... [2, 16, 'weight', 43.3],
... [3, 12, 'weight', 34.5],
... [3, 17, 'weight', 49.4]]
>>> table7 = etl.recast(table6, key='id')
>>> table7
+----+--------------+
| id | weight |
+====+==============+
| 1 | [66.4, 55.2] |
+----+--------------+
| 2 | [53.2, 43.3] |
+----+--------------+
| 3 | [34.5, 49.4] |
+----+--------------+
>>> # multiple values can be reduced via an aggregation function
... def mean(values):
... return float(sum(values)) / len(values)
...
>>> table8 = etl.recast(table6, key='id', reducers={'weight': mean})
>>> table8
+----+--------------------+
| id | weight |
+====+====================+
| 1 | 60.800000000000004 |
+----+--------------------+
| 2 | 48.25 |
+----+--------------------+
| 3 | 41.95 |
+----+--------------------+
>>> # missing values are padded with whatever is provided via the
... # missing keyword argument (None by default)
... table9 = [['id', 'variable', 'value'],
... [1, 'gender', 'F'],
... [2, 'age', 17],
... [1, 'age', 12],
... [3, 'gender', 'M']]
>>> table10 = etl.recast(table9, key='id')
>>> table10
+----+------+--------+
| id | age | gender |
+====+======+========+
| 1 | 12 | 'F' |
+----+------+--------+
| 2 | 17 | None |
+----+------+--------+
| 3 | None | 'M' |
+----+------+--------+
Note that the table is scanned once to discover variables, then a second
time to reshape the data and recast variables as fields. How many rows are
scanned in the first pass is determined by the `samplesize` argument.
See also :func:`petl.transform.reshape.melt`.
"""
return RecastView(table, key=key, variablefield=variablefield,
valuefield=valuefield, samplesize=samplesize,
reducers=reducers, missing=missing)
Table.recast = recast
class RecastView(Table):
def __init__(self, source, key=None, variablefield='variable',
valuefield='value', samplesize=1000, reducers=None,
missing=None):
self.source = source
self.key = key
self.variablefield = variablefield
self.valuefield = valuefield
self.samplesize = samplesize
if reducers is None:
self.reducers = dict()
else:
self.reducers = reducers
self.missing = missing
def __iter__(self):
return iterrecast(self.source, self.key, self.variablefield,
self.valuefield, self.samplesize, self.reducers,
self.missing)
def iterrecast(source, key, variablefield, valuefield,
samplesize, reducers, missing):
# TODO only make one pass through the data
it = iter(source)
try:
hdr = next(it)
except StopIteration:
return
flds = list(map(text_type, hdr))
# normalise some stuff
keyfields = key
variablefields = variablefield # N.B., could be more than one
# normalise key fields
if keyfields and not isinstance(keyfields, (list, tuple)):
keyfields = (keyfields,)
# normalise variable fields
if variablefields:
if isinstance(variablefields, dict):
pass # handle this later
elif not isinstance(variablefields, (list, tuple)):
variablefields = (variablefields,)
# infer key fields
if not keyfields:
# assume keyfields is fields not in variables
keyfields = [f for f in flds
if f not in variablefields and f != valuefield]
# infer key fields
if not variablefields:
# assume variables are fields not in keyfields
variablefields = [f for f in flds
if f not in keyfields and f != valuefield]
# sanity checks
assert valuefield in flds, 'invalid value field: %s' % valuefield
assert valuefield not in keyfields, 'value field cannot be keyfields'
assert valuefield not in variablefields, \
'value field cannot be variable field'
for f in keyfields:
assert f in flds, 'invalid keyfields field: %s' % f
for f in variablefields:
assert f in flds, 'invalid variable field: %s' % f
# we'll need these later
valueindex = flds.index(valuefield)
keyindices = [flds.index(f) for f in keyfields]
variableindices = [flds.index(f) for f in variablefields]
# determine the actual variable names to be cast as fields
if isinstance(variablefields, dict):
# user supplied dictionary
variables = variablefields
else:
variables = collections.defaultdict(set)
# sample the data to discover variables to be cast as fields
for row in itertools.islice(it, 0, samplesize):
for i, f in zip(variableindices, variablefields):
variables[f].add(row[i])
for f in variables:
# turn from sets to sorted lists
variables[f] = sorted(variables[f])
# finished the first pass
# determine the output fields
outhdr = list(keyfields)
for f in variablefields:
outhdr.extend(variables[f])
yield tuple(outhdr)
# output data
source = sort(source, key=keyfields)
it = itertools.islice(source, 1, None) # skip header row
getsortablekey = comparable_itemgetter(*keyindices)
getactualkey = operator.itemgetter(*keyindices)
# process sorted data in newfields
groups = itertools.groupby(it, key=getsortablekey)
for _, group in groups:
# may need to iterate over the group more than once
group = list(group)
# N.B., key returned by groupby may be wrapped as SortableItem, we want
# to output the actual key value, get it from the first row in the group
key_value = getactualkey(group[0])
if len(keyfields) > 1:
out_row = list(key_value)
else:
out_row = [key_value]
for f, i in zip(variablefields, variableindices):
for variable in variables[f]:
# collect all values for the current variable
vals = [r[valueindex] for r in group if r[i] == variable]
if len(vals) == 0:
val = missing
elif len(vals) == 1:
val = vals[0]
else:
if variable in reducers:
redu = reducers[variable]
else:
redu = list # list all values
val = redu(vals)
out_row.append(val)
yield tuple(out_row)
def transpose(table):
"""
Transpose rows into columns. E.g.::
>>> import petl as etl
>>> table1 = [['id', 'colour'],
... [1, 'blue'],
... [2, 'red'],
... [3, 'purple'],
... [5, 'yellow'],
... [7, 'orange']]
>>> table2 = etl.transpose(table1)
>>> table2
+----------+--------+-------+----------+----------+----------+
| id | 1 | 2 | 3 | 5 | 7 |
+==========+========+=======+==========+==========+==========+
| 'colour' | 'blue' | 'red' | 'purple' | 'yellow' | 'orange' |
+----------+--------+-------+----------+----------+----------+
See also :func:`petl.transform.reshape.recast`.
"""
return TransposeView(table)
Table.transpose = transpose
class TransposeView(Table):
def __init__(self, source):
self.source = source
def __iter__(self):
return itertranspose(self.source)
def itertranspose(source):
hdr = header(source)
its = [iter(source) for _ in hdr]
for i in range(len(hdr)):
yield tuple(row[i] for row in its[i])
def pivot(table, f1, f2, f3, aggfun, missing=None,
presorted=False, buffersize=None, tempdir=None, cache=True):
"""
Construct a pivot table. E.g.::
>>> import petl as etl
>>> table1 = [['region', 'gender', 'style', 'units'],
... ['east', 'boy', 'tee', 12],
... ['east', 'boy', 'golf', 14],
... ['east', 'boy', 'fancy', 7],
... ['east', 'girl', 'tee', 3],
... ['east', 'girl', 'golf', 8],
... ['east', 'girl', 'fancy', 18],
... ['west', 'boy', 'tee', 12],
... ['west', 'boy', 'golf', 15],
... ['west', 'boy', 'fancy', 8],
... ['west', 'girl', 'tee', 6],
... ['west', 'girl', 'golf', 16],
... ['west', 'girl', 'fancy', 1]]
>>> table2 = etl.pivot(table1, 'region', 'gender', 'units', sum)
>>> table2
+--------+-----+------+
| region | boy | girl |
+========+=====+======+
| 'east' | 33 | 29 |
+--------+-----+------+
| 'west' | 35 | 23 |
+--------+-----+------+
>>> table3 = etl.pivot(table1, 'region', 'style', 'units', sum)
>>> table3
+--------+-------+------+-----+
| region | fancy | golf | tee |
+========+=======+======+=====+
| 'east' | 25 | 22 | 15 |
+--------+-------+------+-----+
| 'west' | 9 | 31 | 18 |
+--------+-------+------+-----+
>>> table4 = etl.pivot(table1, 'gender', 'style', 'units', sum)
>>> table4
+--------+-------+------+-----+
| gender | fancy | golf | tee |
+========+=======+======+=====+
| 'boy' | 15 | 29 | 24 |
+--------+-------+------+-----+
| 'girl' | 19 | 24 | 9 |
+--------+-------+------+-----+
See also :func:`petl.transform.reshape.recast`.
"""
return PivotView(table, f1, f2, f3, aggfun, missing=missing,
presorted=presorted, buffersize=buffersize,
tempdir=tempdir, cache=cache)
Table.pivot = pivot
class PivotView(Table):
def __init__(self, source, f1, f2, f3, aggfun, missing=None,
presorted=False, buffersize=None, tempdir=None, cache=True):
if presorted:
self.source = source
else:
self.source = sort(source, key=(f1, f2), buffersize=buffersize,
tempdir=tempdir, cache=cache)
self.f1, self.f2, self.f3 = f1, f2, f3
self.aggfun = aggfun
self.missing = missing
def __iter__(self):
return iterpivot(self.source, self.f1, self.f2, self.f3, self.aggfun,
self.missing)
def iterpivot(source, f1, f2, f3, aggfun, missing):
# first pass - collect fields
f2vals = set(itervalues(source, f2)) # TODO only make one pass
f2vals = list(f2vals)
f2vals.sort()
outhdr = [f1]
outhdr.extend(f2vals)
yield tuple(outhdr)
# second pass - generate output
it = iter(source)
try:
hdr = next(it)
except StopIteration:
hdr = []
flds = list(map(text_type, hdr))
f1i = flds.index(f1)
f2i = flds.index(f2)
f3i = flds.index(f3)
for v1, v1rows in itertools.groupby(it, key=operator.itemgetter(f1i)):
outrow = [v1] + [missing] * len(f2vals)
for v2, v12rows in itertools.groupby(v1rows,
key=operator.itemgetter(f2i)):
aggval = aggfun([row[f3i] for row in v12rows])
outrow[1 + f2vals.index(v2)] = aggval
yield tuple(outrow)
def flatten(table):
"""
Convert a table to a sequence of values in row-major order. E.g.::
>>> import petl as etl
>>> table1 = [['foo', 'bar', 'baz'],
... ['A', 1, True],
... ['C', 7, False],
... ['B', 2, False],
... ['C', 9, True]]
>>> list(etl.flatten(table1))
['A', 1, True, 'C', 7, False, 'B', 2, False, 'C', 9, True]
See also :func:`petl.transform.reshape.unflatten`.
"""
return FlattenView(table)
Table.flatten = flatten
class FlattenView(Table):
def __init__(self, table):
self.table = table
def __iter__(self):
for row in data(self.table):
for value in row:
yield value
def unflatten(*args, **kwargs):
"""
Convert a sequence of values in row-major order into a table. E.g.::
>>> import petl as etl
>>> a = ['A', 1, True, 'C', 7, False, 'B', 2, False, 'C', 9]
>>> table1 = etl.unflatten(a, 3)
>>> table1
+-----+----+-------+
| f0 | f1 | f2 |
+=====+====+=======+
| 'A' | 1 | True |
+-----+----+-------+
| 'C' | 7 | False |
+-----+----+-------+
| 'B' | 2 | False |
+-----+----+-------+
| 'C' | 9 | None |
+-----+----+-------+
>>> # a table and field name can also be provided as arguments
... table2 = [['lines'],
... ['A'],
... [1],
... [True],
... ['C'],
... [7],
... [False],
... ['B'],
... [2],
... [False],
... ['C'],
... [9]]
>>> table3 = etl.unflatten(table2, 'lines', 3)
>>> table3
+-----+----+-------+
| f0 | f1 | f2 |
+=====+====+=======+
| 'A' | 1 | True |
+-----+----+-------+
| 'C' | 7 | False |
+-----+----+-------+
| 'B' | 2 | False |
+-----+----+-------+
| 'C' | 9 | None |
+-----+----+-------+
See also :func:`petl.transform.reshape.flatten`.
"""
return UnflattenView(*args, **kwargs)
Table.unflatten = unflatten
class UnflattenView(Table):
def __init__(self, *args, **kwargs):
if len(args) == 2:
self.input = args[0]
self.period = args[1]
elif len(args) == 3:
self.input = values(args[0], args[1])
self.period = args[2]
else:
assert False, 'invalid arguments'
self.missing = kwargs.get('missing', None)
def __iter__(self):
inpt = self.input
period = self.period
missing = self.missing
# generate header row
outhdr = tuple('f%s' % i for i in range(period))
yield outhdr
# generate data rows
row = list()
for v in inpt:
if len(row) < period:
row.append(v)
else:
yield tuple(row)
row = [v]
# deal with last row
if len(row) > 0:
if len(row) < period:
row.extend([missing] * (period - len(row)))
yield tuple(row)
|