1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
|
from __future__ import absolute_import, print_function, division
import os
import heapq
from tempfile import NamedTemporaryFile
import itertools
import logging
from collections import namedtuple
import operator
from petl.compat import pickle, next, text_type
import petl.config as config
from petl.comparison import comparable_itemgetter
from petl.util.base import Table, asindices
logger = logging.getLogger(__name__)
warning = logger.warning
info = logger.info
debug = logger.debug
def sort(table, key=None, reverse=False, buffersize=None, tempdir=None,
cache=True):
"""
Sort the table. Field names or indices (from zero) can be used to specify
the key. E.g.::
>>> import petl as etl
>>> table1 = [['foo', 'bar'],
... ['C', 2],
... ['A', 9],
... ['A', 6],
... ['F', 1],
... ['D', 10]]
>>> table2 = etl.sort(table1, 'foo')
>>> table2
+-----+-----+
| foo | bar |
+=====+=====+
| 'A' | 9 |
+-----+-----+
| 'A' | 6 |
+-----+-----+
| 'C' | 2 |
+-----+-----+
| 'D' | 10 |
+-----+-----+
| 'F' | 1 |
+-----+-----+
>>> # sorting by compound key is supported
... table3 = etl.sort(table1, key=['foo', 'bar'])
>>> table3
+-----+-----+
| foo | bar |
+=====+=====+
| 'A' | 6 |
+-----+-----+
| 'A' | 9 |
+-----+-----+
| 'C' | 2 |
+-----+-----+
| 'D' | 10 |
+-----+-----+
| 'F' | 1 |
+-----+-----+
>>> # if no key is specified, the default is a lexical sort
... table4 = etl.sort(table1)
>>> table4
+-----+-----+
| foo | bar |
+=====+=====+
| 'A' | 6 |
+-----+-----+
| 'A' | 9 |
+-----+-----+
| 'C' | 2 |
+-----+-----+
| 'D' | 10 |
+-----+-----+
| 'F' | 1 |
+-----+-----+
The `buffersize` argument should be an `int` or `None`.
If the number of rows in the table is less than `buffersize`, the table
will be sorted in memory. Otherwise, the table is sorted in chunks of
no more than `buffersize` rows, each chunk is written to a temporary file,
and then a merge sort is performed on the temporary files.
If `buffersize` is `None`, the value of
`petl.config.sort_buffersize` will be used. By default this is
set to 100000 rows, but can be changed, e.g.::
>>> import petl.config
>>> petl.config.sort_buffersize = 500000
If `petl.config.sort_buffersize` is set to `None`, this forces
all sorting to be done entirely in memory.
By default the results of the sort will be cached, and so a second pass over
the sorted table will yield rows from the cache and will not repeat the
sort operation. To turn off caching, set the `cache` argument to `False`.
"""
return SortView(table, key=key, reverse=reverse, buffersize=buffersize,
tempdir=tempdir, cache=cache)
Table.sort = sort
def _iterchunk(fn):
# reopen so iterators from file cache are independent
debug('iterchunk, opening %s' % fn)
with open(fn, 'rb') as f:
try:
while True:
yield pickle.load(f)
except EOFError:
pass
debug('end of iterchunk, closed %s' % fn)
class _Keyed(namedtuple('Keyed', ['key', 'obj'])):
# Override default behavior of namedtuple comparisons, only keys need to be compared for heapmerge
def __eq__(self, other):
return self.key == other.key
def __lt__(self, other):
return self.key < other.key
def __le__(self, other):
return self.key <= other.key
def __ne__(self, other):
return self.key != other.key
def __gt__(self, other):
return self.key > other.key
def __ge__(self, other):
return self.key >= other.key
def _heapqmergesorted(key=None, *iterables):
"""Return a single iterator over the given iterables, sorted by the
given `key` function, assuming the input iterables are already sorted by
the same function. (I.e., the merge part of a general merge sort.) Uses
:func:`heapq.merge` for the underlying implementation."""
if key is None:
keyed_iterables = iterables
for element in heapq.merge(*keyed_iterables):
yield element
else:
keyed_iterables = [(_Keyed(key(obj), obj) for obj in iterable)
for iterable in iterables]
for element in heapq.merge(*keyed_iterables):
yield element.obj
def _shortlistmergesorted(key=None, reverse=False, *iterables):
"""Return a single iterator over the given iterables, sorted by the
given `key` function, assuming the input iterables are already sorted by
the same function. (I.e., the merge part of a general merge sort.) Uses
:func:`min` (or :func:`max` if ``reverse=True``) for the underlying
implementation."""
if reverse:
op = max
else:
op = min
if key is not None:
opkwargs = {'key': key}
else:
opkwargs = dict()
# populate initial shortlist
# (remember some iterables might be empty)
iterators = list()
shortlist = list()
for iterable in iterables:
it = iter(iterable)
try:
first = next(it)
iterators.append(it)
shortlist.append(first)
except StopIteration:
pass
# do the mergesort
while iterators:
nxt = op(shortlist, **opkwargs)
yield nxt
nextidx = shortlist.index(nxt)
try:
shortlist[nextidx] = next(iterators[nextidx])
except StopIteration:
del shortlist[nextidx]
del iterators[nextidx]
def _mergesorted(key=None, reverse=False, *iterables):
# N.B., I've used heapq for normal merge sort and shortlist merge sort for
# reverse merge sort because I've assumed that heapq.merge is faster and
# so is preferable but it doesn't support reverse sorting so the shortlist
# merge sort has to be used for reverse sorting. Some casual profiling
# suggests there isn't much between the two in terms of speed, but might be
# worth profiling more carefully
if reverse:
return _shortlistmergesorted(key, True, *iterables)
else:
return _heapqmergesorted(key, *iterables)
class SortView(Table):
def __init__(self, source, key=None, reverse=False, buffersize=None,
tempdir=None, cache=True):
self.source = source
self.key = key
self.reverse = reverse
if buffersize is None:
self.buffersize = config.sort_buffersize
else:
self.buffersize = buffersize
self.tempdir = tempdir
self.cache = cache
self._hdrcache = None
self._memcache = None
self._filecache = None
self._getkey = None
def clearcache(self):
debug('clear cache')
self._hdrcache = None
self._memcache = None
self._filecache = None
self._getkey = None
def __iter__(self):
source = self.source
key = self.key
reverse = self.reverse
if self.cache and self._memcache is not None:
return self._iterfrommemcache()
elif self.cache and self._filecache is not None:
return self._iterfromfilecache()
else:
return self._iternocache(source, key, reverse)
def _iterfrommemcache(self):
debug('iterate from memory cache')
yield tuple(self._hdrcache)
for row in self._memcache:
yield tuple(row)
def _iterfromfilecache(self):
# create a reference to the filecache here, so cleanup happens in the
# correct order
filecache = self._filecache
filenames = list(map(operator.attrgetter('name'), filecache))
debug('iterate from file cache: %r', filenames)
yield tuple(self._hdrcache)
chunkiters = [_iterchunk(fn) for fn in filenames]
rows = _mergesorted(self._getkey, self.reverse, *chunkiters)
try:
for row in rows:
yield tuple(row)
finally:
debug('attempt cleanup from generator')
# N.B., need to ensure that any open files are closed **before**
# temporary files are deleted, as deletion will fail on Windows
# if file is in use (i.e., still open)
del chunkiters
del rows
del filecache
debug('exiting generator')
def _iternocache(self, source, key, reverse):
debug('iterate without cache')
self.clearcache()
it = iter(source)
try:
hdr = next(it)
except StopIteration:
if key is None:
return # nothing to do on a table without headers
hdr = []
yield tuple(hdr)
if key is not None:
# convert field selection into field indices
indices = asindices(hdr, key)
else:
indices = range(len(hdr))
# now use field indices to construct a _getkey function
getkey = comparable_itemgetter(*indices)
# TODO support native comparison
# initialise the first chunk
rows = list(itertools.islice(it, 0, self.buffersize))
rows.sort(key=getkey, reverse=reverse)
# have we exhausted the source iterator?
if self.buffersize is None or len(rows) < self.buffersize:
# yes, table fits within sort buffer
if self.cache:
debug('caching mem')
self._hdrcache = hdr
self._memcache = rows
# actually not needed to iterate from memcache
self._getkey = getkey
for row in rows:
yield tuple(row)
else:
# no, table is too big, need to sort in chunks
chunkfiles = []
while rows:
# dump the chunk
with NamedTemporaryFile(dir=self.tempdir, delete=False,
mode='wb') as f:
# N.B., we **don't** want the file to be deleted on close,
# but we **do** want the file to be deleted when self
# is garbage collected, or when the program exits. When
# all references to the wrapper are gone, the file should
# get deleted.
wrapper = _NamedTempFileDeleteOnGC(f.name)
debug('created temporary chunk file %s' % f.name)
for row in rows:
pickle.dump(row, f, protocol=-1)
f.flush()
chunkfiles.append(wrapper)
# grab the next chunk
rows = list(itertools.islice(it, 0, self.buffersize))
rows.sort(key=getkey, reverse=reverse)
if self.cache:
debug('caching files')
self._hdrcache = hdr
self._filecache = chunkfiles
self._getkey = getkey
chunkiters = [_iterchunk(f.name) for f in chunkfiles]
for row in _mergesorted(getkey, reverse, *chunkiters):
yield tuple(row)
class _NamedTempFileDeleteOnGC(object):
def __init__(self, name):
self.name = name
def delete(self, unlink=os.unlink, log=logger.debug):
name = self.name
try:
log('deleting %s' % name)
unlink(name)
except Exception as e:
log('exception deleting %s: %s' % (name, e))
raise
else:
log('deleted %s' % name)
def __del__(self):
self.delete()
def __str__(self):
return self.name
def __repr__(self):
return self.name
def mergesort(*tables, **kwargs):
"""
Combine multiple input tables into one sorted output table. E.g.::
>>> import petl as etl
>>> table1 = [['foo', 'bar'],
... ['A', 9],
... ['C', 2],
... ['D', 10],
... ['A', 6],
... ['F', 1]]
>>> table2 = [['foo', 'bar'],
... ['B', 3],
... ['D', 10],
... ['A', 10],
... ['F', 4]]
>>> table3 = etl.mergesort(table1, table2, key='foo')
>>> table3.lookall()
+-----+-----+
| foo | bar |
+=====+=====+
| 'A' | 9 |
+-----+-----+
| 'A' | 6 |
+-----+-----+
| 'A' | 10 |
+-----+-----+
| 'B' | 3 |
+-----+-----+
| 'C' | 2 |
+-----+-----+
| 'D' | 10 |
+-----+-----+
| 'D' | 10 |
+-----+-----+
| 'F' | 1 |
+-----+-----+
| 'F' | 4 |
+-----+-----+
If the input tables are already sorted by the given key, give
``presorted=True`` as a keyword argument.
This function is equivalent to concatenating the input tables using
:func:`cat` then sorting, however this function will typically be more
efficient, especially if the input tables are presorted.
Keyword arguments:
key : string or tuple of strings, optional
Field name or tuple of fields to sort by (defaults to `None` lexical
sort)
reverse : bool, optional
`True` if sort in reverse (descending) order (defaults to `False`)
presorted : bool, optional
`True` if inputs are already sorted by the given key (defaults to
`False`)
missing : object
Value to fill with when input tables have different fields (defaults to
`None`)
header : sequence of strings, optional
Specify a fixed header for the output table
buffersize : int, optional
Limit the number of rows in memory per input table when inputs are not
presorted
"""
return MergeSortView(tables, **kwargs)
Table.mergesort = mergesort
class MergeSortView(Table):
def __init__(self, tables, key=None, reverse=False, presorted=False,
missing=None, header=None, buffersize=None, tempdir=None,
cache=True):
self.key = key
if presorted:
self.tables = tables
else:
self.tables = [sort(t, key=key, reverse=reverse,
buffersize=buffersize, tempdir=tempdir,
cache=cache)
for t in tables]
self.missing = missing
self.header = header
self.reverse = reverse
def __iter__(self):
return itermergesort(self.tables, self.key, self.header, self.missing,
self.reverse)
def itermergesort(sources, key, header, missing, reverse):
# first need to standardise headers of all input tables
# borrow this from itercat - TODO remove code smells
its = [iter(t) for t in sources]
src_hdrs = []
for it in its:
try:
src_hdrs.append(next(it))
except StopIteration:
src_hdrs.append([])
if header is None:
# determine output fields by gathering all fields found in the sources
outhdr = list()
for hdr in src_hdrs:
for f in list(map(text_type, hdr)):
if f not in outhdr:
# add any new fields as we find them
outhdr.append(f)
else:
# predetermined output fields
outhdr = header
yield tuple(outhdr)
def _standardisedata(it, hdr, ofs):
flds = list(map(text_type, hdr))
# now construct and yield the data rows
for _row in it:
try:
# should be quickest to do this way
yield tuple(_row[flds.index(fo)] if fo in flds else missing
for fo in ofs)
except IndexError:
# handle short rows
outrow = [missing] * len(ofs)
for i, fi in enumerate(flds):
try:
outrow[ofs.index(fi)] = _row[i]
except IndexError:
pass # be relaxed about short rows
yield tuple(outrow)
# wrap all iterators to standardise fields
sits = [_standardisedata(it, hdr, outhdr)
for hdr, it in zip(src_hdrs, its)]
# now determine key function
getkey = None
if key is not None:
# convert field selection into field indices
indices = asindices(outhdr, key)
# now use field indices to construct a _getkey function
# N.B., this will probably raise an exception on short rows
getkey = comparable_itemgetter(*indices)
# OK, do the merge sort
for row in _shortlistmergesorted(getkey, reverse, *sits):
yield row
def issorted(table, key=None, reverse=False, strict=False):
"""
Return True if the table is ordered (i.e., sorted) by the given key. E.g.::
>>> import petl as etl
>>> table1 = [['foo', 'bar', 'baz'],
... ['a', 1, True],
... ['b', 3, True],
... ['b', 2]]
>>> etl.issorted(table1, key='foo')
True
>>> etl.issorted(table1, key='bar')
False
>>> etl.issorted(table1, key='foo', strict=True)
False
>>> etl.issorted(table1, key='foo', reverse=True)
False
"""
# determine the operator to use when comparing rows
if reverse and strict:
op = operator.lt
elif reverse and not strict:
op = operator.le
elif strict:
op = operator.gt
else:
op = operator.ge
it = iter(table)
try:
flds = [text_type(f) for f in next(it)]
except StopIteration:
flds = []
if key is None:
prev = next(it)
for curr in it:
if not op(curr, prev):
return False
prev = curr
else:
getkey = comparable_itemgetter(*asindices(flds, key))
prev = next(it)
prevkey = getkey(prev)
for curr in it:
currkey = getkey(curr)
if not op(currkey, prevkey):
return False
prevkey = currkey
return True
Table.issorted = issorted
|