1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
|
from __future__ import absolute_import, print_function, division
from collections import Counter
from petl.compat import string_types, maketrans
from petl.util.base import values, Table, data, wrap
def nrows(table):
"""
Count the number of data rows in a table. E.g.::
>>> import petl as etl
>>> table = [['foo', 'bar'], ['a', 1], ['b', 2]]
>>> etl.nrows(table)
2
"""
return sum(1 for _ in data(table))
Table.nrows = nrows
def valuecount(table, field, value, missing=None):
"""
Count the number of occurrences of `value` under the given field. Returns
the absolute count and relative frequency as a pair. E.g.::
>>> import petl as etl
>>> table = [['foo', 'bar'],
... ['a', 1],
... ['b', 2],
... ['b', 7]]
>>> etl.valuecount(table, 'foo', 'b')
(2, 0.6666666666666666)
The `field` argument can be a single field name or index (starting from
zero) or a tuple of field names and/or indexes.
"""
total = 0
vs = 0
for v in values(table, field, missing=missing):
total += 1
if v == value:
vs += 1
return vs, float(vs)/total
Table.valuecount = valuecount
def valuecounter(table, *field, **kwargs):
"""
Find distinct values for the given field and count the number of
occurrences. Returns a :class:`dict` mapping values to counts. E.g.::
>>> import petl as etl
>>> table = [['foo', 'bar'],
... ['a', True],
... ['b'],
... ['b', True],
... ['c', False]]
>>> etl.valuecounter(table, 'foo')
Counter({'b': 2, 'a': 1, 'c': 1})
The `field` argument can be a single field name or index (starting from
zero) or a tuple of field names and/or indexes.
"""
missing = kwargs.get('missing', None)
counter = Counter()
for v in values(table, field, missing=missing):
try:
counter[v] += 1
except IndexError:
pass # short row
return counter
Table.valuecounter = valuecounter
def valuecounts(table, *field, **kwargs):
"""
Find distinct values for the given field and count the number and relative
frequency of occurrences. Returns a table mapping values to counts, with
most common values first. E.g.::
>>> import petl as etl
>>> table = [['foo', 'bar', 'baz'],
... ['a', True, 0.12],
... ['a', True, 0.17],
... ['b', False, 0.34],
... ['b', False, 0.44],
... ['b']]
>>> etl.valuecounts(table, 'foo')
+-----+-------+-----------+
| foo | count | frequency |
+=====+=======+===========+
| 'b' | 3 | 0.6 |
+-----+-------+-----------+
| 'a' | 2 | 0.4 |
+-----+-------+-----------+
>>> etl.valuecounts(table, 'foo', 'bar')
+-----+-------+-------+-----------+
| foo | bar | count | frequency |
+=====+=======+=======+===========+
| 'a' | True | 2 | 0.4 |
+-----+-------+-------+-----------+
| 'b' | False | 2 | 0.4 |
+-----+-------+-------+-----------+
| 'b' | None | 1 | 0.2 |
+-----+-------+-------+-----------+
If rows are short, the value of the keyword argument `missing` is counted.
Multiple fields can be given as positional arguments. If multiple fields are
given, these are treated as a compound key.
"""
return ValueCountsView(table, field, **kwargs)
Table.valuecounts = valuecounts
class ValueCountsView(Table):
def __init__(self, table, field, missing=None):
self.table = table
self.field = field
self.missing = missing
def __iter__(self):
# construct output header
if isinstance(self.field, (tuple, list)):
outhdr = tuple(self.field) + ('count', 'frequency')
else:
outhdr = (self.field, 'count', 'frequency')
yield outhdr
# count values
counter = valuecounter(self.table, *self.field, missing=self.missing)
counts = counter.most_common() # sort descending
total = sum(c[1] for c in counts)
if len(self.field) > 1:
for c in counts:
yield tuple(c[0]) + (c[1], float(c[1])/total)
else:
for c in counts:
yield (c[0], c[1], float(c[1])/total)
def parsecounter(table, field, parsers=(('int', int), ('float', float))):
"""
Count the number of `str` or `unicode` values under the given fields that
can be parsed as ints, floats or via custom parser functions. Return a
pair of `Counter` objects, the first mapping parser names to the number of
strings successfully parsed, the second mapping parser names to the
number of errors. E.g.::
>>> import petl as etl
>>> table = [['foo', 'bar', 'baz'],
... ['A', 'aaa', 2],
... ['B', u'2', '3.4'],
... [u'B', u'3', u'7.8', True],
... ['D', '3.7', 9.0],
... ['E', 42]]
>>> counter, errors = etl.parsecounter(table, 'bar')
>>> counter
Counter({'float': 3, 'int': 2})
>>> errors
Counter({'int': 2, 'float': 1})
The `field` argument can be a field name or index (starting from zero).
"""
if isinstance(parsers, (list, tuple)):
parsers = dict(parsers)
counter, errors = Counter(), Counter()
# need to initialise
for n in parsers.keys():
counter[n] = 0
errors[n] = 0
for v in values(table, field):
if isinstance(v, string_types):
for name, parser in parsers.items():
try:
parser(v)
except:
errors[name] += 1
else:
counter[name] += 1
return counter, errors
Table.parsecounter = parsecounter
def parsecounts(table, field, parsers=(('int', int), ('float', float))):
"""
Count the number of `str` or `unicode` values that can be parsed as ints,
floats or via custom parser functions. Return a table mapping parser names
to the number of values successfully parsed and the number of errors. E.g.::
>>> import petl as etl
>>> table = [['foo', 'bar', 'baz'],
... ['A', 'aaa', 2],
... ['B', u'2', '3.4'],
... [u'B', u'3', u'7.8', True],
... ['D', '3.7', 9.0],
... ['E', 42]]
>>> etl.parsecounts(table, 'bar')
+---------+-------+--------+
| type | count | errors |
+=========+=======+========+
| 'float' | 3 | 1 |
+---------+-------+--------+
| 'int' | 2 | 2 |
+---------+-------+--------+
The `field` argument can be a field name or index (starting from zero).
"""
return ParseCountsView(table, field, parsers=parsers)
Table.parsecounts = parsecounts
class ParseCountsView(Table):
def __init__(self, table, field, parsers=(('int', int), ('float', float))):
self.table = table
self.field = field
if isinstance(parsers, (list, tuple)):
parsers = dict(parsers)
self.parsers = parsers
def __iter__(self):
counter, errors = parsecounter(self.table, self.field, self.parsers)
yield ('type', 'count', 'errors')
for (item, n) in counter.most_common():
yield (item, n, errors[item])
def typecounter(table, field):
"""
Count the number of values found for each Python type.
>>> import petl as etl
>>> table = [['foo', 'bar', 'baz'],
... ['A', 1, 2],
... ['B', u'2', '3.4'],
... [u'B', u'3', u'7.8', True],
... ['D', u'xyz', 9.0],
... ['E', 42]]
>>> etl.typecounter(table, 'foo')
Counter({'str': 5})
>>> etl.typecounter(table, 'bar')
Counter({'str': 3, 'int': 2})
>>> etl.typecounter(table, 'baz')
Counter({'str': 2, 'int': 1, 'float': 1, 'NoneType': 1})
The `field` argument can be a field name or index (starting from zero).
"""
counter = Counter()
for v in values(table, field):
try:
counter[v.__class__.__name__] += 1
except IndexError:
pass # ignore short rows
return counter
Table.typecounter = typecounter
def typecounts(table, field):
"""
Count the number of values found for each Python type and return a table
mapping class names to counts and frequencies. E.g.::
>>> import petl as etl
>>> table = [['foo', 'bar', 'baz'],
... [b'A', 1, 2],
... [b'B', '2', b'3.4'],
... ['B', '3', '7.8', True],
... ['D', u'xyz', 9.0],
... ['E', 42]]
>>> etl.typecounts(table, 'foo')
+---------+-------+-----------+
| type | count | frequency |
+=========+=======+===========+
| 'str' | 3 | 0.6 |
+---------+-------+-----------+
| 'bytes' | 2 | 0.4 |
+---------+-------+-----------+
>>> etl.typecounts(table, 'bar')
+-------+-------+-----------+
| type | count | frequency |
+=======+=======+===========+
| 'str' | 3 | 0.6 |
+-------+-------+-----------+
| 'int' | 2 | 0.4 |
+-------+-------+-----------+
>>> etl.typecounts(table, 'baz')
+------------+-------+-----------+
| type | count | frequency |
+============+=======+===========+
| 'int' | 1 | 0.2 |
+------------+-------+-----------+
| 'bytes' | 1 | 0.2 |
+------------+-------+-----------+
| 'str' | 1 | 0.2 |
+------------+-------+-----------+
| 'float' | 1 | 0.2 |
+------------+-------+-----------+
| 'NoneType' | 1 | 0.2 |
+------------+-------+-----------+
The `field` argument can be a field name or index (starting from zero).
"""
return TypeCountsView(table, field)
Table.typecounts = typecounts
class TypeCountsView(Table):
def __init__(self, table, field):
self.table = table
self.field = field
def __iter__(self):
counter = typecounter(self.table, self.field)
yield ('type', 'count', 'frequency')
counts = counter.most_common()
total = sum(c[1] for c in counts)
for c in counts:
yield (c[0], c[1], float(c[1])/total)
def stringpatterncounter(table, field):
"""
Profile string patterns in the given field, returning a :class:`dict`
mapping patterns to counts.
"""
trans = maketrans(
'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789',
'AAAAAAAAAAAAAAAAAAAAAAAAAAaaaaaaaaaaaaaaaaaaaaaaaaaa9999999999'
)
counter = Counter()
for v in values(table, field):
p = str(v).translate(trans)
counter[p] += 1
return counter
Table.stringpatterncounter = stringpatterncounter
def stringpatterns(table, field):
"""
Profile string patterns in the given field, returning a table of patterns,
counts and frequencies. E.g.::
>>> import petl as etl
>>> table = [['foo', 'bar'],
... ['Mr. Foo', '123-1254'],
... ['Mrs. Bar', '234-1123'],
... ['Mr. Spo', '123-1254'],
... [u'Mr. Baz', u'321 1434'],
... [u'Mrs. Baz', u'321 1434'],
... ['Mr. Quux', '123-1254-XX']]
>>> etl.stringpatterns(table, 'foo')
+------------+-------+---------------------+
| pattern | count | frequency |
+============+=======+=====================+
| 'Aa. Aaa' | 3 | 0.5 |
+------------+-------+---------------------+
| 'Aaa. Aaa' | 2 | 0.3333333333333333 |
+------------+-------+---------------------+
| 'Aa. Aaaa' | 1 | 0.16666666666666666 |
+------------+-------+---------------------+
>>> etl.stringpatterns(table, 'bar')
+---------------+-------+---------------------+
| pattern | count | frequency |
+===============+=======+=====================+
| '999-9999' | 3 | 0.5 |
+---------------+-------+---------------------+
| '999 9999' | 2 | 0.3333333333333333 |
+---------------+-------+---------------------+
| '999-9999-AA' | 1 | 0.16666666666666666 |
+---------------+-------+---------------------+
"""
counter = stringpatterncounter(table, field)
output = [('pattern', 'count', 'frequency')]
counter = counter.most_common()
total = sum(c[1] for c in counter)
cnts = [(c[0], c[1], float(c[1])/total) for c in counter]
output.extend(cnts)
return wrap(output)
Table.stringpatterns = stringpatterns
def rowlengths(table):
"""
Report on row lengths found in the table. E.g.::
>>> import petl as etl
>>> table = [['foo', 'bar', 'baz'],
... ['A', 1, 2],
... ['B', '2', '3.4'],
... [u'B', u'3', u'7.8', True],
... ['D', 'xyz', 9.0],
... ['E', None],
... ['F', 9]]
>>> etl.rowlengths(table)
+--------+-------+
| length | count |
+========+=======+
| 3 | 3 |
+--------+-------+
| 2 | 2 |
+--------+-------+
| 4 | 1 |
+--------+-------+
Useful for finding potential problems in data files.
"""
counter = Counter()
for row in data(table):
counter[len(row)] += 1
output = [('length', 'count')]
output.extend(counter.most_common())
return wrap(output)
Table.rowlengths = rowlengths
|