1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
|
from __future__ import absolute_import, print_function, division
import operator
from collections import OrderedDict
from itertools import islice
from petl.compat import izip_longest, text_type, next
from petl.util.base import asindices, Table
def listoflists(tbl):
return [list(row) for row in tbl]
Table.listoflists = listoflists
Table.lol = listoflists
def tupleoftuples(tbl):
return tuple(tuple(row) for row in tbl)
Table.tupleoftuples = tupleoftuples
Table.tot = tupleoftuples
def listoftuples(tbl):
return [tuple(row) for row in tbl]
Table.listoftuples = listoftuples
Table.lot = listoftuples
def tupleoflists(tbl):
return tuple(list(row) for row in tbl)
Table.tupleoflists = tupleoflists
Table.tol = tupleoflists
def columns(table, missing=None):
"""
Construct a :class:`dict` mapping field names to lists of values. E.g.::
>>> import petl as etl
>>> table = [['foo', 'bar'], ['a', 1], ['b', 2], ['b', 3]]
>>> cols = etl.columns(table)
>>> cols['foo']
['a', 'b', 'b']
>>> cols['bar']
[1, 2, 3]
See also :func:`petl.util.materialise.facetcolumns`.
"""
cols = OrderedDict()
it = iter(table)
try:
hdr = next(it)
except StopIteration:
hdr = []
flds = list(map(text_type, hdr))
for f in flds:
cols[f] = list()
for row in it:
for f, v in izip_longest(flds, row, fillvalue=missing):
if f in cols:
cols[f].append(v)
return cols
Table.columns = columns
def facetcolumns(table, key, missing=None):
"""
Like :func:`petl.util.materialise.columns` but stratified by values of the
given key field. E.g.::
>>> import petl as etl
>>> table = [['foo', 'bar', 'baz'],
... ['a', 1, True],
... ['b', 2, True],
... ['b', 3]]
>>> fc = etl.facetcolumns(table, 'foo')
>>> fc['a']
{'foo': ['a'], 'bar': [1], 'baz': [True]}
>>> fc['b']
{'foo': ['b', 'b'], 'bar': [2, 3], 'baz': [True, None]}
"""
fct = dict()
it = iter(table)
try:
hdr = next(it)
except StopIteration:
hdr = []
flds = list(map(text_type, hdr))
indices = asindices(hdr, key)
assert len(indices) > 0, 'no key field selected'
getkey = operator.itemgetter(*indices)
for row in it:
kv = getkey(row)
if kv not in fct:
cols = dict()
for f in flds:
cols[f] = list()
fct[kv] = cols
else:
cols = fct[kv]
for f, v in izip_longest(flds, row, fillvalue=missing):
if f in cols:
cols[f].append(v)
return fct
Table.facetcolumns = facetcolumns
def cache(table, n=None):
"""
Wrap the table with a cache that caches up to `n` rows as they are initially
requested via iteration (cache all rows be default).
"""
return CacheView(table, n=n)
Table.cache = cache
class CacheView(Table):
def __init__(self, inner, n=None):
self.inner = inner
self.n = n
self.cache = list()
self.cachecomplete = False
def clearcache(self):
self.cache = list()
self.cachecomplete = False
def __iter__(self):
# serve whatever is in the cache first
for row in self.cache:
yield row
if not self.cachecomplete:
# serve the remainder from the inner iterator
it = iter(self.inner)
for row in islice(it, len(self.cache), None):
# maybe there's more room in the cache?
if not self.n or len(self.cache) < self.n:
self.cache.append(row)
yield row
# does the cache contain a complete copy of the inner table?
if not self.n or len(self.cache) < self.n:
self.cachecomplete = True
|