1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
|
"""
pint.facets.numpy.quantity
~~~~~~~~~~~~~~~~~~~~~~~~~~
:copyright: 2022 by Pint Authors, see AUTHORS for more details.
:license: BSD, see LICENSE for more details.
"""
from __future__ import annotations
import functools
import math
import warnings
from typing import Any, Generic
from ..._typing import Shape
from ...compat import HAS_NUMPY, _to_magnitude, np
from ...errors import DimensionalityError, PintTypeError, UnitStrippedWarning
from ..plain import MagnitudeT, PlainQuantity
from .numpy_func import (
HANDLED_UFUNCS,
copy_units_output_ufuncs,
get_op_output_unit,
matching_input_copy_units_output_ufuncs,
matching_input_set_units_output_ufuncs,
numpy_wrap,
op_units_output_ufuncs,
set_units_ufuncs,
)
try:
import uncertainties.unumpy as unp
from uncertainties import UFloat, ufloat
HAS_UNCERTAINTIES = True
except ImportError:
unp = np
ufloat = Ufloat = None
HAS_UNCERTAINTIES = False
def method_wraps(numpy_func):
if isinstance(numpy_func, str):
numpy_func = getattr(np, numpy_func, None)
def wrapper(func):
func.__wrapped__ = numpy_func
return func
return wrapper
class NumpyQuantity(Generic[MagnitudeT], PlainQuantity[MagnitudeT]):
""" """
# NumPy function/ufunc support
__array_priority__ = 17
def __array_ufunc__(self, ufunc, method, *inputs, **kwargs):
if method != "__call__":
# Only handle ufuncs as callables
return NotImplemented
# Replicate types from __array_function__
types = {
type(arg)
for arg in list(inputs) + list(kwargs.values())
if hasattr(arg, "__array_ufunc__")
}
return numpy_wrap("ufunc", ufunc, inputs, kwargs, types)
def __array_function__(self, func, types, args, kwargs):
return numpy_wrap("function", func, args, kwargs, types)
_wrapped_numpy_methods = ["flatten", "astype", "item"]
def _numpy_method_wrap(self, func, *args, **kwargs):
"""Convenience method to wrap on the fly NumPy ndarray methods taking
care of the units.
"""
# Set input units if needed
if func.__name__ in set_units_ufuncs:
self.__ito_if_needed(set_units_ufuncs[func.__name__][0])
value = func(*args, **kwargs)
# Set output units as needed
if func.__name__ in (
matching_input_copy_units_output_ufuncs
+ copy_units_output_ufuncs
+ self._wrapped_numpy_methods
):
output_unit = self._units
elif func.__name__ in set_units_ufuncs:
output_unit = set_units_ufuncs[func.__name__][1]
elif func.__name__ in matching_input_set_units_output_ufuncs:
output_unit = matching_input_set_units_output_ufuncs[func.__name__]
elif func.__name__ in op_units_output_ufuncs:
output_unit = get_op_output_unit(
op_units_output_ufuncs[func.__name__],
self.units,
list(args) + list(kwargs.values()),
self._magnitude.size,
)
else:
output_unit = None
if output_unit is not None:
return self.__class__(value, output_unit)
return value
def __array__(self, t=None) -> np.ndarray:
if HAS_NUMPY and isinstance(self._magnitude, np.ndarray):
warnings.warn(
"The unit of the quantity is stripped when downcasting to ndarray.",
UnitStrippedWarning,
stacklevel=2,
)
return _to_magnitude(self._magnitude, force_ndarray=True)
def clip(self, min=None, max=None, out=None, **kwargs):
if min is not None:
if isinstance(min, self.__class__):
min = min.to(self).magnitude
elif self.dimensionless:
pass
else:
raise DimensionalityError("dimensionless", self._units)
if max is not None:
if isinstance(max, self.__class__):
max = max.to(self).magnitude
elif self.dimensionless:
pass
else:
raise DimensionalityError("dimensionless", self._units)
return self.__class__(self.magnitude.clip(min, max, out, **kwargs), self._units)
def fill(self: NumpyQuantity, value) -> None:
self._units = value._units
return self.magnitude.fill(value.magnitude)
def put(self: NumpyQuantity, indices, values, mode="raise") -> None:
if isinstance(values, self.__class__):
values = values.to(self).magnitude
elif self.dimensionless:
values = self.__class__(values, "").to(self)
else:
raise DimensionalityError("dimensionless", self._units)
self.magnitude.put(indices, values, mode)
@property
def real(self) -> NumpyQuantity:
return self.__class__(self._magnitude.real, self._units)
@property
def imag(self) -> NumpyQuantity:
return self.__class__(self._magnitude.imag, self._units)
@property
def T(self):
return self.__class__(self._magnitude.T, self._units)
@property
def flat(self):
for v in self._magnitude.flat:
yield self.__class__(v, self._units)
@property
def shape(self) -> Shape:
return self._magnitude.shape
@property
def dtype(self):
return self._magnitude.dtype
@shape.setter
def shape(self, value):
self._magnitude.shape = value
def searchsorted(self, v, side="left", sorter=None):
if isinstance(v, self.__class__):
v = v.to(self).magnitude
elif self.dimensionless:
v = self.__class__(v, "").to(self)
else:
raise DimensionalityError("dimensionless", self._units)
return self.magnitude.searchsorted(v, side)
def dot(self, b):
"""Dot product of two arrays.
Wraps np.dot().
"""
return np.dot(self, b)
@method_wraps("prod")
def prod(self, *args, **kwargs):
"""Return the product of quantity elements over a given axis
Wraps np.prod().
"""
return np.prod(self, *args, **kwargs)
def __ito_if_needed(self, to_units):
if self.unitless and to_units == "radian":
return
self.ito(to_units)
def __len__(self) -> int:
return len(self._magnitude)
def __getattr__(self, item) -> Any:
if item.startswith("__array_"):
# Handle array protocol attributes other than `__array__`
raise AttributeError(f"Array protocol attribute {item} not available.")
elif item in HANDLED_UFUNCS or item in self._wrapped_numpy_methods:
magnitude_as_duck_array = _to_magnitude(
self._magnitude, force_ndarray_like=True
)
try:
attr = getattr(magnitude_as_duck_array, item)
return functools.partial(self._numpy_method_wrap, attr)
except AttributeError:
raise AttributeError(
f"NumPy method {item} not available on {type(magnitude_as_duck_array)}"
)
except TypeError as exc:
if "not callable" in str(exc):
raise AttributeError(
f"NumPy method {item} not callable on {type(magnitude_as_duck_array)}"
)
else:
raise exc
elif (
HAS_UNCERTAINTIES and item == "ndim" and isinstance(self._magnitude, UFloat)
):
# Dimensionality of a single UFloat is 0, like any other scalar
return 0
try:
return getattr(self._magnitude, item)
except AttributeError:
raise AttributeError(
"Neither Quantity object nor its magnitude ({}) "
"has attribute '{}'".format(self._magnitude, item)
)
def __getitem__(self, key):
try:
return type(self)(self._magnitude[key], self._units)
except PintTypeError:
raise
except TypeError:
raise TypeError(
"Neither Quantity object nor its magnitude ({})"
"supports indexing".format(self._magnitude)
)
def __setitem__(self, key, value):
try:
# If we're dealing with a masked single value or a nan, set it
if (
isinstance(self._magnitude, np.ma.MaskedArray)
and np.ma.is_masked(value)
and getattr(value, "size", 0) == 1
) or (getattr(value, "ndim", 0) == 0 and math.isnan(value)):
self._magnitude[key] = value
return
except TypeError:
pass
try:
if isinstance(value, self.__class__):
factor = self.__class__(
value.magnitude, value._units / self._units
).to_root_units()
else:
factor = self.__class__(value, self._units ** (-1)).to_root_units()
if isinstance(factor, self.__class__):
if not factor.dimensionless:
raise DimensionalityError(
value,
self.units,
extra_msg=". Assign a quantity with the same dimensionality "
"or access the magnitude directly as "
f"`obj.magnitude[{key}] = {value}`.",
)
self._magnitude[key] = factor.magnitude
else:
self._magnitude[key] = factor
except PintTypeError:
raise
except TypeError as exc:
raise TypeError(
f"Neither Quantity object nor its magnitude ({self._magnitude}) "
"supports indexing"
) from exc
|