1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
|
from __future__ import annotations
import operator
import pytest
from pint import UnitRegistry
# Conditionally import NumPy and any upcast type libraries
np = pytest.importorskip("numpy", reason="NumPy is not available")
sparse = pytest.importorskip("sparse", reason="sparse is not available")
da = pytest.importorskip("dask.array", reason="Dask is not available")
def WR(func):
"""Function to wrap another containing 1 argument.
Used to parametrize tests in which some cases depend
on the registry while avoiding to create it at the module level
"""
return lambda ureg, x: func(x)
def WR2(func):
"""Function to wrap another containing 2 argument.
Used to parametrize tests in which some cases depend
on the registry while avoiding to create it at the module level
"""
return lambda ureg, x, y: func(x, y)
@pytest.fixture(scope="module")
def local_registry():
# Set up unit registry and sample
return UnitRegistry(force_ndarray_like=True)
@pytest.fixture(scope="module")
def q_base(local_registry):
# Set up unit registry and sample
return (np.arange(25).reshape(5, 5).T + 1) * local_registry.kg
# Define identity function for use in tests
def id_matrix(ureg, x):
return x
@pytest.fixture(params=["sparse", "masked_array", "dask_array"])
def array(request):
"""Generate 5x5 arrays of given type for tests."""
if request.param == "sparse":
# Create sample sparse COO as a permutation matrix.
coords = [[0, 1, 2, 3, 4], [1, 3, 0, 2, 4]]
data = [1.0] * 5
return sparse.COO(coords, data, shape=(5, 5))
elif request.param == "masked_array":
# Create sample masked array as an upper triangular matrix.
return np.ma.masked_array(
np.arange(25, dtype=float).reshape((5, 5)),
mask=np.logical_not(np.triu(np.ones((5, 5)))),
)
elif request.param == "dask_array":
return da.arange(25, chunks=5, dtype=float).reshape((5, 5))
@pytest.mark.parametrize(
"op, magnitude_op, unit_op",
[
pytest.param(id_matrix, id_matrix, id_matrix, id="identity"),
pytest.param(
lambda ureg, x: x + 1 * ureg.m,
lambda ureg, x: x + 1,
id_matrix,
id="addition",
),
pytest.param(
lambda ureg, x: x - 20 * ureg.cm,
lambda ureg, x: x - 0.2,
id_matrix,
id="subtraction",
),
pytest.param(
lambda ureg, x: x * (2 * ureg.s),
lambda ureg, x: 2 * x,
lambda ureg, u: u * ureg.s,
id="multiplication",
),
pytest.param(
lambda ureg, x: x / (1 * ureg.s),
id_matrix,
lambda ureg, u: u / ureg.s,
id="division",
),
pytest.param(
WR(lambda x: x**2),
WR(lambda x: x**2),
WR(lambda u: u**2),
id="square",
),
pytest.param(WR(lambda x: x.T), WR(lambda x: x.T), id_matrix, id="transpose"),
pytest.param(WR(np.mean), WR(np.mean), id_matrix, id="mean ufunc"),
pytest.param(WR(np.sum), WR(np.sum), id_matrix, id="sum ufunc"),
pytest.param(WR(np.sqrt), WR(np.sqrt), WR(lambda u: u**0.5), id="sqrt ufunc"),
pytest.param(
WR(lambda x: np.reshape(x, (25,))),
WR(lambda x: np.reshape(x, (25,))),
id_matrix,
id="reshape function",
),
pytest.param(WR(np.amax), WR(np.amax), id_matrix, id="amax function"),
],
)
def test_univariate_op_consistency(
local_registry, q_base, op, magnitude_op, unit_op, array
):
q = local_registry.Quantity(array, "meter")
res = op(local_registry, q)
assert np.all(
res.magnitude == magnitude_op(local_registry, array)
) # Magnitude check
assert res.units == unit_op(local_registry, q.units) # Unit check
assert q.magnitude is array # Immutability check
@pytest.mark.parametrize(
"op, unit",
[
pytest.param(operator.mul, lambda ureg: ureg("kg m"), id="multiplication"),
pytest.param(operator.truediv, lambda ureg: ureg("m / kg"), id="division"),
pytest.param(np.multiply, lambda ureg: ureg("kg m"), id="multiply ufunc"),
],
)
def test_bivariate_op_consistency(local_registry, q_base, op, unit, array):
# This is to avoid having a ureg built at the module level.
unit = unit(local_registry)
q = local_registry.Quantity(array, "meter")
res = op(q, q_base)
assert np.all(res.magnitude == op(array, q_base.magnitude)) # Magnitude check
assert res.units == unit # Unit check
assert q.magnitude is array # Immutability check
@pytest.mark.parametrize(
"op",
[
pytest.param(
WR2(operator.mul),
id="array-first",
marks=pytest.mark.xfail(reason="upstream issue numpy/numpy#15200"),
),
pytest.param(
WR2(operator.mul),
id="unit-first",
marks=pytest.mark.xfail(reason="upstream issue numpy/numpy#15200"),
),
],
)
@pytest.mark.parametrize(
"unit",
[
pytest.param(lambda ureg: ureg.m, id="Unit"),
pytest.param(lambda ureg: ureg("meter"), id="Quantity"),
],
)
def test_array_quantity_creation_by_multiplication(
local_registry, q_base, op, unit, array
):
# This is to avoid having a ureg built at the module level.
unit = unit(local_registry)
assert type(op(local_registry, array, unit)) == local_registry.Quantity
|