1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
|
from __future__ import annotations
import importlib
import pathlib
import pytest
from pint import UnitRegistry
# Conditionally import NumPy, Dask, and Distributed
np = pytest.importorskip("numpy", reason="NumPy is not available")
dask = pytest.importorskip("dask", reason="Dask is not available")
distributed = pytest.importorskip("distributed", reason="Distributed is not available")
from dask.distributed import Client
from distributed.client import futures_of
from distributed.utils_test import ( # noqa: F401
cleanup,
cluster,
gen_cluster,
loop,
loop_in_thread,
)
loop = loop # flake8
units_ = "kilogram"
@pytest.fixture(scope="module")
def local_registry():
# Set up unit registry and sample
return UnitRegistry(force_ndarray_like=True)
def add_five(local_registry, q):
return q + 5 * local_registry(units_)
@pytest.fixture
def dask_array():
return dask.array.arange(0, 25, chunks=5, dtype=float).reshape((5, 5))
@pytest.fixture
def numpy_array():
return np.arange(0, 25, dtype=float).reshape((5, 5)) + 5
def test_is_dask_collection(local_registry, dask_array):
"""Test that a pint.Quantity wrapped Dask array is a Dask collection."""
q = local_registry.Quantity(dask_array, units_)
assert dask.is_dask_collection(q)
def test_is_not_dask_collection(local_registry, numpy_array):
"""Test that other pint.Quantity wrapped objects are not Dask collections."""
q = local_registry.Quantity(numpy_array, units_)
assert not dask.is_dask_collection(q)
def test_dask_scheduler(local_registry, dask_array):
"""Test that a pint.Quantity wrapped Dask array has the correct default scheduler."""
q = local_registry.Quantity(dask_array, units_)
scheduler = q.__dask_scheduler__
scheduler_name = f"{scheduler.__module__}.{scheduler.__name__}"
true_name = "dask.threaded.get"
assert scheduler == dask.array.Array.__dask_scheduler__
assert scheduler_name == true_name
@pytest.mark.parametrize(
"item",
(
pytest.param(1, id="int"),
pytest.param(1.3, id="float"),
pytest.param(np.array([1, 2]), id="numpy"),
pytest.param(
dask.array.arange(0, 25, chunks=5, dtype=float).reshape((5, 5)), id="dask"
),
),
)
def test_dask_tokenize(local_registry, item):
"""Test that a pint.Quantity wrapping something has a unique token."""
dask_token = dask.base.tokenize(item)
q = local_registry.Quantity(item, units_)
assert dask.base.tokenize(item) != dask.base.tokenize(q)
assert dask.base.tokenize(item) == dask_token
def test_dask_optimize(local_registry, dask_array):
"""Test that a pint.Quantity wrapped Dask array can be optimized."""
q = local_registry.Quantity(dask_array, units_)
assert q.__dask_optimize__ == dask.array.Array.__dask_optimize__
def test_compute(local_registry, dask_array, numpy_array):
"""Test the compute() method on a pint.Quantity wrapped Dask array."""
q = local_registry.Quantity(dask_array, units_)
comps = add_five(local_registry, q)
res = comps.compute()
assert np.all(res.m == numpy_array)
assert not dask.is_dask_collection(res)
assert res.units == units_
assert q.magnitude is dask_array
def test_persist(local_registry, dask_array, numpy_array):
"""Test the persist() method on a pint.Quantity wrapped Dask array."""
q = local_registry.Quantity(dask_array, units_)
comps = add_five(local_registry, q)
res = comps.persist()
assert np.all(res.m == numpy_array)
assert dask.is_dask_collection(res)
assert res.units == units_
assert q.magnitude is dask_array
@pytest.mark.skipif(
importlib.util.find_spec("graphviz") is None, reason="GraphViz is not available"
)
def test_visualize(local_registry, dask_array):
"""Test the visualize() method on a pint.Quantity wrapped Dask array."""
q = local_registry.Quantity(dask_array, units_)
comps = add_five(local_registry, q)
res = comps.visualize()
assert res is None
# These commands only work on Unix and Windows
assert pathlib.Path("mydask.png").exists()
pathlib.Path("mydask.png").unlink()
def test_compute_persist_equivalent(local_registry, dask_array, numpy_array):
"""Test that compute() and persist() return the same numeric results."""
q = local_registry.Quantity(dask_array, units_)
comps = add_five(local_registry, q)
res_compute = comps.compute()
res_persist = comps.persist()
assert np.all(res_compute == res_persist)
assert res_compute.units == res_persist.units == units_
assert type(res_compute) == local_registry.Quantity
assert type(res_persist) == local_registry.Quantity
@pytest.mark.parametrize("method", ["compute", "persist", "visualize"])
def test_exception_method_not_implemented(local_registry, numpy_array, method):
"""Test exception handling for convenience methods on a pint.Quantity wrapped
object that is not a dask.array.Array object.
"""
q = local_registry.Quantity(numpy_array, units_)
exctruth = (
f"Method {method} only implemented for objects of"
" <class 'dask.array.core.Array'>, not"
" <class 'numpy.ndarray'>"
)
with pytest.raises(AttributeError, match=exctruth):
obj_method = getattr(q, method)
obj_method()
def test_distributed_compute(local_registry, loop, dask_array, numpy_array):
"""Test compute() for distributed machines."""
q = local_registry.Quantity(dask_array, units_)
with cluster() as (s, [a, b]):
with Client(s["address"], loop=loop):
comps = add_five(local_registry, q)
res = comps.compute()
assert np.all(res.m == numpy_array)
assert not dask.is_dask_collection(res)
assert res.units == units_
assert q.magnitude is dask_array
def test_distributed_persist(local_registry, loop, dask_array):
"""Test persist() for distributed machines."""
q = local_registry.Quantity(dask_array, units_)
with cluster() as (s, [a, b]):
with Client(s["address"], loop=loop):
comps = add_five(local_registry, q)
persisted_q = comps.persist()
comps_truth = dask_array + 5
persisted_truth = comps_truth.persist()
assert np.all(persisted_q.m == persisted_truth)
assert dask.is_dask_collection(persisted_q)
assert persisted_q.units == units_
assert q.magnitude is dask_array
@gen_cluster(client=True)
async def test_async(c, s, a, b):
"""Test asynchronous operations."""
# TODO: use a fixture for this.
local_registry = UnitRegistry(force_ndarray_like=True)
da = dask.array.arange(0, 25, chunks=5, dtype=float).reshape((5, 5))
q = local_registry.Quantity(da, units_)
x = q + local_registry.Quantity(5, units_)
y = x.persist()
assert str(y)
assert dask.is_dask_collection(y)
assert len(x.__dask_graph__()) > len(y.__dask_graph__())
assert not futures_of(x)
assert futures_of(y)
future = c.compute(y)
w = await future
assert not dask.is_dask_collection(w)
truth = np.arange(0, 25, dtype=float).reshape((5, 5)) + 5
assert np.all(truth == w.m)
|