1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
|
"""
pint.compat
~~~~~~~~~~~
Compatibility layer.
:copyright: 2013 by Pint Authors, see AUTHORS for more details.
:license: BSD, see LICENSE for more details.
"""
from __future__ import annotations
import math
import sys
from collections.abc import Callable, Iterable, Mapping
from decimal import Decimal
from importlib import import_module
from numbers import Number
from typing import (
Any,
# Remove once all dependent packages change their imports.
Never, # noqa
NoReturn,
Self, # noqa
TypeAlias, # noqa
Unpack, # noqa
)
if sys.version_info >= (3, 13):
from warnings import deprecated # noqa
else:
from typing_extensions import deprecated # noqa
def missing_dependency(
package: str, display_name: str | None = None
) -> Callable[..., NoReturn]:
"""Return a helper function that raises an exception when used.
It provides a way delay a missing dependency exception until it is used.
"""
display_name = display_name or package
def _inner(*args: Any, **kwargs: Any) -> NoReturn:
raise Exception(
"This feature requires %s. Please install it by running:\n"
"pip install %s" % (display_name, package)
)
return _inner
def fully_qualified_name(t: type) -> str:
"""Return the fully qualified name of a type."""
module = t.__module__
name = t.__qualname__
if module is None or module == "builtins":
return name
return f"{module}.{name}"
def check_upcast_type(obj: type) -> bool:
"""Check if the type object is an upcast type."""
# TODO: merge or unify name with is_upcast_type
fqn = fully_qualified_name(obj)
if fqn not in upcast_type_map:
return False
else:
module_name, class_name = fqn.rsplit(".", 1)
cls = getattr(import_module(module_name), class_name)
upcast_type_map[fqn] = cls
# This is to check we are importing the same thing.
# and avoid weird problems. Maybe instead of return
# we should raise an error if false.
return obj in upcast_type_map.values()
def is_upcast_type(other: type) -> bool:
"""Check if the type object is an upcast type."""
# TODO: merge or unify name with check_upcast_type
if other in upcast_type_map.values():
return True
return check_upcast_type(other)
def is_duck_array_type(cls: type) -> bool:
"""Check if the type object represents a (non-Quantity) duck array type."""
# TODO (NEP 30): replace duck array check with hasattr(other, "__duckarray__")
return issubclass(cls, ndarray) or (
not hasattr(cls, "_magnitude")
and not hasattr(cls, "_units")
and HAS_NUMPY_ARRAY_FUNCTION
and hasattr(cls, "__array_function__")
and hasattr(cls, "ndim")
and hasattr(cls, "dtype")
)
def is_duck_array(obj: type) -> bool:
"""Check if an object represents a (non-Quantity) duck array type."""
return is_duck_array_type(type(obj))
def eq(lhs: Any, rhs: Any, check_all: bool) -> bool | Iterable[bool]:
"""Comparison of scalars and arrays.
Parameters
----------
lhs
left-hand side
rhs
right-hand side
check_all
if True, reduce sequence to single bool;
return True if all the elements are equal.
Returns
-------
bool or array_like of bool
"""
out = lhs == rhs
if check_all and is_duck_array_type(type(out)):
return out.all()
return out
def isnan(obj: Any, check_all: bool) -> bool | Iterable[bool]:
"""Test for NaN or NaT.
Parameters
----------
obj
scalar or vector
check_all
if True, reduce sequence to single bool;
return True if any of the elements are NaN.
Returns
-------
bool or array_like of bool.
Always return False for non-numeric types.
"""
if is_duck_array_type(type(obj)):
if obj.dtype.kind in "ifc":
out = np.isnan(obj)
elif obj.dtype.kind in "Mm":
out = np.isnat(obj)
else:
if HAS_UNCERTAINTIES:
try:
out = unp.isnan(obj)
except TypeError:
# Not a numeric or UFloat type
out = np.full(obj.shape, False)
else:
# Not a numeric or datetime type
out = np.full(obj.shape, False)
return out.any() if check_all else out
if isinstance(obj, np_datetime64):
return np.isnat(obj)
elif HAS_UNCERTAINTIES and isinstance(obj, UFloat):
return unp.isnan(obj)
try:
return math.isnan(obj)
except TypeError:
return False
def zero_or_nan(obj: Any, check_all: bool) -> bool | Iterable[bool]:
"""Test if obj is zero, NaN, or NaT.
Parameters
----------
obj
scalar or vector
check_all
if True, reduce sequence to single bool;
return True if all the elements are zero, NaN, or NaT.
Returns
-------
bool or array_like of bool.
Always return False for non-numeric types.
"""
out = eq(obj, 0, False) + isnan(obj, False)
if check_all and is_duck_array_type(type(out)):
return out.all()
return out
# TODO: remove this warning after v0.10
class BehaviorChangeWarning(UserWarning):
pass
##############
# try imports
##############
try:
import babel # noqa: F401
from babel import units as babel_units
HAS_BABEL = hasattr(babel_units, "format_unit")
except ImportError:
HAS_BABEL = False
try:
import uncertainties # noqa: F401
HAS_UNCERTAINTIES = True
except ImportError:
HAS_UNCERTAINTIES = False
try:
import numpy # noqa: F401
HAS_NUMPY = True
except ImportError:
HAS_NUMPY = False
try:
import mip # noqa: F401
HAS_MIP = True
except ImportError:
HAS_MIP = False
try:
import dask # noqa: F401
HAS_DASK = True
except ImportError:
HAS_DASK = False
##############################
# Imports are handled here
# in order to be able to have
# them as constants
# in mypy configuration.
##############################
if HAS_BABEL:
from babel import Locale
from babel import units as babel_units
babel_parse = Locale.parse
else:
babel_parse = missing_dependency("Babel") # noqa: F811 # type:ignore
babel_units = babel_parse
Locale = missing_dependency
if HAS_UNCERTAINTIES:
from uncertainties import UFloat, ufloat
unp = None
else:
UFloat = ufloat = unp = None
if HAS_NUMPY:
import numpy as np
from numpy import datetime64 as np_datetime64
from numpy import (
exp, # noqa: F401
log, # noqa: F401
ndarray,
)
NUMPY_VER = np.__version__
if HAS_UNCERTAINTIES:
from uncertainties import unumpy as unp
NUMERIC_TYPES = (Number, Decimal, ndarray, np.number, UFloat)
else:
NUMERIC_TYPES = (Number, Decimal, ndarray, np.number)
def _to_magnitude(value, force_ndarray=False, force_ndarray_like=False):
if isinstance(value, (dict, bool)) or value is None:
raise TypeError(f"Invalid magnitude for Quantity: {value!r}")
elif isinstance(value, str) and value == "":
raise ValueError("Quantity magnitude cannot be an empty string.")
elif isinstance(value, (list, tuple)):
return np.asarray(value)
elif HAS_UNCERTAINTIES:
from pint.facets.measurement.objects import Measurement
if isinstance(value, Measurement):
return ufloat(value.value, value.error)
if force_ndarray or (
force_ndarray_like and not is_duck_array_type(type(value))
):
return np.asarray(value)
return value
def _test_array_function_protocol():
# Test if the __array_function__ protocol is enabled
try:
class FakeArray:
def __array_function__(self, *args, **kwargs):
return
np.concatenate([FakeArray()])
return True
except ValueError:
return False
HAS_NUMPY_ARRAY_FUNCTION = _test_array_function_protocol()
NP_NO_VALUE = np._NoValue
else:
np = None
class ndarray:
pass
class np_datetime64:
pass
from math import (
exp, # noqa: F401
log, # noqa: F401
)
NUMPY_VER = "0"
NUMERIC_TYPES = (Number, Decimal)
HAS_NUMPY_ARRAY_FUNCTION = False
NP_NO_VALUE = None
def _to_magnitude(value, force_ndarray=False, force_ndarray_like=False):
if force_ndarray or force_ndarray_like:
raise ValueError(
"Cannot force to ndarray or ndarray-like when NumPy is not present."
)
elif isinstance(value, (dict, bool)) or value is None:
raise TypeError(f"Invalid magnitude for Quantity: {value!r}")
elif isinstance(value, str) and value == "":
raise ValueError("Quantity magnitude cannot be an empty string.")
elif isinstance(value, (list, tuple)):
raise TypeError(
"lists and tuples are valid magnitudes for "
"Quantity only when NumPy is present."
)
elif HAS_UNCERTAINTIES:
from pint.facets.measurement.objects import Measurement
if isinstance(value, Measurement):
return ufloat(value.value, value.error)
return value
if HAS_MIP:
import mip
mip_model = mip.model
mip_Model = mip.Model
mip_INF = mip.INF
mip_INTEGER = mip.INTEGER
mip_xsum = mip.xsum
mip_OptimizationStatus = mip.OptimizationStatus
else:
mip_missing = missing_dependency("mip")
mip_model = mip_missing
mip_Model = mip_missing
mip_INF = mip_missing
mip_INTEGER = mip_missing
mip_xsum = mip_missing
mip_OptimizationStatus = mip_missing
# Define location of pint.Quantity in NEP-13 type cast hierarchy by defining upcast
# types using guarded imports
if HAS_DASK:
from dask import array as dask_array
from dask.base import compute, persist, visualize
else:
compute, persist, visualize = None, None, None
dask_array = None
# TODO: merge with upcast_type_map
#: List upcast type names
upcast_type_names = (
"pint_pandas.pint_array.PintArray",
"xarray.core.dataarray.DataArray",
"xarray.core.dataset.Dataset",
"xarray.core.variable.Variable",
"pandas.core.series.Series",
"pandas.core.frame.DataFrame",
"pandas.Series",
"pandas.DataFrame",
"xarray.core.dataarray.DataArray",
)
#: Map type name to the actual type (for upcast types).
upcast_type_map: Mapping[str, type | None] = {k: None for k in upcast_type_names}
|