1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
|
Applied PKCS #11
================
`PKCS <https://en.wikipedia.org/wiki/PKCS>`_ #11 is the name given to a
standard defining an API for cryptographic hardware. While it was developed by
RSA, as part of a suite of standards, the standard is not exclusive to RSA
ciphers and is meant to cover a wide range of cryptographic possibilities.
PKCS #11 is most closely related to Java's JCE and Microsoft's CAPI.
.. contents:: Section Contents
:depth: 2
:local:
Concepts in PKCS #11
--------------------
Slots and Tokens
~~~~~~~~~~~~~~~~
A `slot` originally referred to a single card slot on a smartcard device that
could accept a `token`. A token was a smartcard that contained secure,
encrypted keys and certificates. You would insert your smartcard (token) into
the slot, and use its contents to do cryptographic operations.
Nowadays the distinction is more blurry. Many USB-key HSMs appear as a single
slot containing a hardwired single token (their internal storage). Server
devices often make use of software tokens (`softcards`), which appear as
slots within PKCS #11, but no physical device exists. These devices can
also feature physical slots and `accelerator slots`.
.. seealso::
Slots have :attr:`pkcs11.Slot.flags` which can tell you something about
what kind of slot this is.
Tokens are secured with a passphrase (PIN). Not all implementations use
pins in their underlying implementation, but these are required for PKCS#11.
Some implementations let you control the behaviour of their PKCS #11 module
in ways not specified by the specification through environment variables
(e.g. default token pins).
.. note::
The PKCS #11 library is running within your process, using your memory,
etc. It may talk to a daemon to access the underlying hardware, or it
may be talking directly.
Environment variables set on your process can be used to configure
the behaviour of the library, check the documentation for your device.
Finding Tokens
^^^^^^^^^^^^^^
Tokens are identified by a label or serial number.
You can retrieve all tokens matching search parameters:
::
for slot in lib.get_slots():
token = slot.get_token()
# Check the parameters
if token.label == '...':
break
::
for token in lib.get_tokens(token_label='smartcard'):
print(token)
Retrieving a single token has a shortcut function:
::
try:
lib.get_token(token_label='smartcard')
except NoSuchToken:
pass
except MultipleTokensReturned:
pass
Mechanisms and Capabilities
~~~~~~~~~~~~~~~~~~~~~~~~~~~
Different devices support different cryptographic operations. In PKCS #11
mechanisms refer to the combination of cipher (e.g. AES), hash function
(e.g. SHA512) and block mode (e.g. CBC). Mechanisms also exist for generating
keys, and deriving keys and parameters.
The capabilities of a mechanism indicate what types of operations can be
carried out with the mechanism, e.g. encryption, signing, key generation.
Not all devices support all mechanisms. Some may support non-standard
mechanisms. Not all devices support the same capabilities for mechanisms
or same key lengths. This information can be retrieved via
:meth:`pkcs11.Slot.get_mechanisms` and :meth:`pkcs11.Slot.get_mechanism_info`
or from your device documentation.
Some mechanisms require `mechanism parameters`. These are used to provide
additional context to the mechanism that does not form part of the key.
Examples of mechanism parameters are initialisation vectors for block
modes, salts, key derivation functions, and other party's shared secrets (for
Diffie-Hellman).
.. seealso::
The :class:`pkcs11.mechanisms.Mechanism` type includes information
on the required parameters for common mechanisms.
A complete list of `current mechanisms
<http://docs.oasis-open.org/pkcs11/pkcs11-curr/v2.40/errata01/os/pkcs11-curr-v2.40-errata01-os-complete.html>`_
and `historical mechanisms
<http://docs.oasis-open.org/pkcs11/pkcs11-hist/v2.40/errata01/os/pkcs11-hist-v2.40-errata01-os-complete.html>`_
includes the mechanism parameters and input requirements for each
mechanism.
Objects and Attributes
~~~~~~~~~~~~~~~~~~~~~~
An object is a piece of cryptographic information stored on a `token`.
Objects have a `class` (e.g. private key) which is exposed in `python-pkcs11`
as a Python class. They also have a number of other attributes depending on
their class.
There are three main classes of object:
* keys (symmetric secret keys and asymmetric public and private keys);
* domain parameters (storing the parameters used to generate keys); and
* certificates (e.g. `X.509 <https://en.wikipedia.org/wiki/X.509>`_
certificates).
.. note::
Irregardless of the PKCS #11 specification, not all devices reliably
handle all object attributes. They can also have different defaults.
`python-pkcs11` tries to abstract that as much as possible to enable
writing portable code.
.. seealso::
:class:`pkcs11.constants.Attribute` describes the available attributes
and their Python types.
**biginteger**
One type is handled specially: `biginteger`, an arbitrarily long integer
in network byte order. Although Python can handle arbitrarily long
integers, many other systems cannot and pass these types around as
byte arrays, and more often than not, that is an easier form to
handle them in.
`biginteger` attributes can be specified as :class:`bytes`,
:class:`bytearray` or an iterable of byte-sized integers.
If you do have integers, you can convert them to :class:`bytes` using
:func:`pkcs11.util.biginteger`.
Finding Objects
^^^^^^^^^^^^^^^
Objects can be found on a `token` using their attributes. Usually an `ID`
or `LABEL`.
::
for obj in session.get_objects({
Attribute.CLASS: ObjectClass.SECRET_KEY,
Attribute.LABEL: 'aes256',
}):
print(obj)
Finding a specific key is so common there's a shortcut function:
::
try:
key = session.get_key(label='aes256')
except NoSuchKey:
pass
except MultipleObjectsReturned:
pass
Keys
~~~~
There are three classes of key objects:
* symmetric secret keys;
* asymmetric public keys; and
* asymmetric private keys.
The following attributes can be set for keys:
.. glossary::
PRIVATE
Private objects can only be accessed by logged in sessions.
LOCAL
This key was generated on the device.
EXTRACTABLE
The key can be extracted from the HSM.
SENSITIVE
The key is sensitive and cannot be removed from the device in
clear text.
ALWAYS_SENSITIVE
The key has never not been `SENSITIVE`.
NEVER_EXTRACTABLE
The key has never been `EXTRACTABLE`.
ALWAYS_AUTHENTICATE
The key requires authentication every time it's used.
.. note::
Keys should be generated on the HSM rather than imported.
Generally only public keys should not be `PRIVATE` and `SENSITIVE`.
Allowing private keys to be accessed defeats the purpose of securing your
keys in a HSM. `python-pkcs11` sets meaningful defaults.
Domain Parameters
~~~~~~~~~~~~~~~~~
Domain parameters are the parameters used to generate cryptographic keys (e.g.
the name of the elliptic curve being used). They are public information.
Obscuring the domain parameters does not increase the security of a
cryptosystem. Typically the domain parameters form part of a protocol
specification, and RFCs exist giving pre-agreed, named domain parameters for
cryptosystems.
In `python-pkcs11` domain parameters can either be stored as an object in your
HSM, or loaded via some other mechanism (e.g. in your code) and used
directly without creating a HSM object.
.. seealso::
OpenSSL can be used to generate unique or named domain parameters for
`Diffie-Hellman <https://wiki.openssl.org/index.php/Manual:Dhparam(1)>`_,
`DSA <https://wiki.openssl.org/index.php/Manual:Dsaparam(1)>`_ and
`EC <https://wiki.openssl.org/index.php/Manual:Ecparam(1)>`_.
:mod:`pkcs11.util` includes modules for creating and decoding
domain parameters.
Sessions
~~~~~~~~
Accessing a token is done by opening a session. Sessions can be public or
logged in. Only a logged in session can access objects marked as `private`.
Depending on your device, some functions may also be unavailable.
.. warning::
It is important to close sessions when you are finished with them.
Some devices will leak resources if sessions aren't closed.
Where possible you should use sessions via a context manager.
Concepts related to PKCS #11
----------------------------
Binary Formats and Padding
~~~~~~~~~~~~~~~~~~~~~~~~~~
PKCS #11 is `protocol agnostic` and does not define or implement any codecs for
the storing of enciphered data, keys, initialisation vectors, etc. outside the
HSM. [#]_ For example, CBC mechanisms will not include the initialization
vector. You must choose a storage/transmission format that suits your
requirements.
Some mechanisms require input data to be `padded` to a certain block size.
Standardized `PAD` variants of many mechanisms exist based on upstream
specifications. For other mechanisms PKCS #11 does not define any specific
algorithms, and you must choose one that suits your requirements.
.. seealso::
Lots of standards exist for the storing and transmission of cryptographic
data. If you're not implementing a specific protocol, there may still be
an RFC standard with a Python implementation to ensure people can
understand your binary data in the future.
See also:
* `RFC 5652 (Cryptographic Message Standard) (supercedes PKCS #7)
<https://tools.ietf.org/html/rfc5652>`_
.. [#] It does define types for data `inside` the HSM, e.g. attribute
data types and binary formats (e.g. EC parameters, X.509 certificates).
PKCS #15
~~~~~~~~
PKCS #15 defines a standard for storing cryptographic objects within the
HSM device to enable interoperability between devices and tokens. PKCS #15
is often referenced in conjunction with PKCS #11 as the storage format
used on the `tokens`.
ASN.1, DER, BER
~~~~~~~~~~~~~~~
ASN.1 is a data model for storing structured information. DER and BER
are binary representations of that data model which are used extensively in
cryptography, e.g. for storing RSA key objects, X.509 certificates and
elliptic curve information.
Accessing ASN.1 encoded objects is mostly left to packages other than
`python-pkcs11`, however :mod:`pkcs11.util` does include some utilities to
encode and decode objects where required for working with PKCS #11 itself
(e.g. converting PKCS #1 encoded RSA keys into PKCS #11 objects and
generating parameters for elliptic curves).
PEM
~~~
`PEM <https://en.wikipedia.org/wiki/Privacy-enhanced_Electronic_Mail>`_ is
a standard for handling cryptographic objects. It is a base64 encoded version
of the binary DER object. The label indicates the type of object, and thus
what ASN.1 model to use. `python-pkcs11` does not include PEM parsing,
you should include another package if required. :mod:`asn1crypto.pem` is a
dependency of `python-pkcs11`.
Getting a Session
-----------------
Given a PKCS #11 library (`.so`) that is stored in the environment as
`PKCS11_MODULE`.
To open a read-only session on a token named `smartcard`:
::
import pkcs11
lib = pkcs11.lib(os.environ['PKCS11_MODULE'])
token = lib.get_token(token_label='smartcard')
with token.open() as session:
print(session)
To open a user session with the passphrase/pin `secret`:
::
with token.open(user_pin='secret') as session:
print(session)
To open a read/write session:
::
with token.open(rw=True, user_pin='secret') as session:
print(session)
.. seealso::
:meth:`pkcs11.Token.open` has more options for opening the session.
Generating Keys
---------------
Keys can either live for the lifetime of the `session` or be stored on the
token. Storing keys requires a read only session.
To store keys pass `store=True`. When storing keys it is recommended to set
a `label` or `id`, so you can find the key again.
Symmetric Keys
~~~~~~~~~~~~~~
AES
^^^
AES keys can be generated by specifying the key length:
::
from pkcs11 import KeyType
key = session.generate_key(KeyType.AES, 256)
Generally AES keys are considered secret. However if you're using your HSM
to generate keys for use with local AES (e.g. in hybrid encryption systems).
You can do the following:
::
from pkcs11 import KeyType, Attribute
key = session.generate_key(KeyType.AES, 256, template={
Attribute.SENSITIVE: False,
Attribute.EXTRACTABLE: True,
})
# This is the secret key
print(key[Attribute.VALUE])
.. glossary::
VALUE
Secret key (as `biginteger`).
DES2/3
^^^^^^
.. warning::
DES2 and DES3 are considered insecure because their short key lengths
are brute forcable with modern hardware.
DES2/3 keys are fixed length.
::
from pkcs11 import KeyType
des2 = session.generate_key(KeyType.DES2)
des3 = session.generate_key(KeyType.DES3)
These secret key objects have the same parameters as for AES.
Asymmetric Keypairs
~~~~~~~~~~~~~~~~~~~
RSA
^^^
RSA keypairs can be generated by specifying the length of the modulus:
::
from pkcs11 import KeyType
public, private = session.generate_keypair(KeyType.RSA, 2048)
The default public exponent is `65537`. You can specify an alternative:
::
from pkcs11 import KeyType, Attribute
public, private = session.generate_keypair(KeyType.RSA, 2048,
public_template={Attribute.PUBLIC_EXPONENT: ...})
# This is the public key
print(public[Attribute.MODULUS])
print(public[Attribute.PUBLIC_EXPONENT])
The public key has two parameters:
.. glossary::
MODULUS
Key modulus (as `biginteger`).
PUBLIC_EXPONENT
Public exponent (as `biginteger`).
These can be exported as RFC 2437 (PKCS #1) DER-encoded binary using
:func:`pkcs11.util.rsa.encode_rsa_public_key`.
DSA
^^^
DSA keypairs can be generated by specifying the length of the prime in bits.
::
from pkcs11 import KeyType
public, private = session.generate_keypair(KeyType.RSA, 2048)
This will generate unique domain parameters for a key. If you want to create
a key for given domain parameters, see `DSA from Domain Parameters`_.
The public key has a single important attribute:
.. glossary::
VALUE
Public key (as biginteger).
This can be encoded in RFC 3279 format with
:func:`pkcs11.util.dsa.encode_dsa_public_key`.
From Domain Parameters
~~~~~~~~~~~~~~~~~~~~~~
.. note::
Choosing domain parameters is not covered in this document. Domain
parameters are often either specified by the requirements you are
implementing for, or have a standard implementation to derive quality
parameters. Some domain parameters (e.g. choice of elliptic curve)
can drastically weaken the cryptosystem.
.. _`DSA from Domain Parameters`:
DSA
^^^
Diffie-Hellman key pairs require three domain parameters, specified as
`bigintegers`.
.. glossary::
BASE
The prime base (g) (as `biginteger`).
PRIME
The prime modulus (p) (as `biginteger`).
SUBPRIME
The subprime (q) (as `biginteger`).
::
from pkcs11 import Attribute
parameters = session.create_domain_parameters(KeyType.DSA, {
Attribute.PRIME: b'prime...',
Attribute.BASE: b'base...',
Attribute.SUBPRIME: b'subprime...',
}, local=True)
public, private = parameters.generate_keypair()
`RFC 3279 <https://tools.ietf.org/html/rfc3279#section-2.3.3>`_ defines a
standard ASN.1 encoding for DSA parameters, which can be loaded with
:func:`pkcs11.util.dsa.decode_dsa_domain_parameters`:
::
params = session.create_domain_parameters(
KeyType.DSA,
decode_dsa_domain_parameters(b'DER-encoded parameters'),
local=True)
If supported, unique domain parameters can also be generated for a given
`PRIME` length (e.g. 1024 bits) with
:meth:`pkcs11.Session.generate_domain_parameters`:
::
params = session.generate_domain_parameters(KeyType.DSA, 1024)
These can be encoded into the standard ASN.1 DER encoding using
:func:`pkcs11.util.dsa.encode_dsa_domain_parameters`.
.. note::
You can create a DSA key directly from freshly generated domain parameters
with :meth:`Session.generate_keypair`.
Diffie-Hellman
^^^^^^^^^^^^^^
Diffie-Hellman key pairs require several domain parameters, specified as
`bigintegers`. There are two forms of Diffie-Hellman domain parameters: PKCS
#3 and X9.42.
.. glossary::
BASE
The prime base (g) (as `biginteger`).
PRIME
The prime modulus (p) (as `biginteger`).
SUBPRIME
(X9.42 only) The subprime (q) (as `biginteger`).
::
from pkcs11 import Attribute
parameters = session.create_domain_parameters(KeyType.DH, {
Attribute.PRIME: b'prime...',
Attribute.BASE: b'base...',
}, local=True)
public, private = parameters.generate_keypair()
`RFC 3279 <https://tools.ietf.org/html/rfc3279#section-2.3.3>`_ defines a
standard ASN.1 encoding for DH parameters, which can be loaded with
:func:`pkcs11.util.dh.decode_x9_42_dh_domain_parameters`:
::
params = session.create_domain_parameters(
KeyType.X9_42_DH,
decode_x9_42_dh_domain_parameters(b'DER-encoded parameters'),
local=True)
If supported, unique domain parameters can also be generated for a given
`PRIME` length (e.g. 512 bits) with
:meth:`pkcs11.Session.generate_domain_parameters`:
::
params = session.generate_domain_parameters(KeyType.DH, 512)
X9.42 format domain parameters can be encoded back to their RFC 3279 format
with :func:`pkcs11.util.dh.encode_x9_42_dh_domain_parameters`.
Key pairs can be generated from the domain parameters:
::
public, private = parameters.generate_keypair()
# This is the public key
print(public[Attribute.VALUE])
The public key has a single important attribute:
.. glossary::
VALUE
Public key (as biginteger).
This can be encoded in RFC 3279 format with
:func:`pkcs11.util.dh.encode_dh_public_key`.
Elliptic Curve
^^^^^^^^^^^^^^
Elliptic curves require a domain parameter describing the curve. Curves can
be described in two ways:
* As named curves; or
* As a complete set of parameters.
Not all devices support both specifications.
You can determine what curve parameters your device supports by checking
:meth:`pkcs11.Slot.get_mechanism_info` :class:`pkcs11.constants.MechanismFlag`.
Both specifications are specified using the same `attribute`:
.. glossary::
EC_PARAMS
Curve parameters (as DER-encoded X9.62 bytes).
::
from pkcs11 import Attribute
parameters = session.create_domain_parameters(KeyType.EC,
Attribute.EC_PARAMS: b'DER-encoded X9.62 parameters ...',
}, local=True)
public, private = parameters.generate_keypair()
Named curves (e.g. `secp256r1`) can be specified like this:
::
from pkcs11 import Attribute
from pkcs11.util.ec import encode_named_curve_parameters
parameters = session.create_domain_parameters(KeyType.EC, {
Attribute.EC_PARAMS: encode_named_curve_parameters('secp256r1')
}, local=True)
Key pairs can be generated from the domain parameters:
::
public, private = parameters.generate_keypair()
# This is the public key
print(public[Attribute.EC_POINT])
The public key as a single important attribute:
.. glossary::
EC_POINT
Public key (as X9.62 DER-encoded bytes).
.. _importing-keys:
Importing/Exporting Keys
------------------------
.. warning::
It is best to only import/export public keys. You should, whenever
possible, generate and store secret and private keys within the boundary of
your HSM.
The following utility methods will convert keys encoded in their canonical
DER-encoded into attributes that can be used with
:meth:`pkcs11.Session.create_object`.
.. note::
PEM certificates are base64-encoded versions of the canonical DER-encoded
forms used in `python-pkcs11`. Conversion between PEM and DER can be
achieved using `asn1crypto.pem
<https://github.com/wbond/asn1crypto/blob/master/docs/pem.md>`_.
AES/DES
~~~~~~~
.. warning::
Whenever possible, generate and store secret keys within the boundary of
your HSM.
AES and DES keys are stored as binary bytes in
:attr:`pkcs11.constants.Attribute.VALUE`.
Keys must be marked as `EXTRACTABLE` and not `SENSITIVE` to export.
RSA
~~~
To import a PKCS #1 DER-encoded RSA key, the following utility methods are
provided:
* :func:`pkcs11.util.rsa.decode_rsa_public_key`, and
* :func:`pkcs11.util.rsa.decode_rsa_private_key`.
To export an RSA public key in PKCS #1 DER-encoded format, use
:func:`pkcs11.util.rsa.encode_rsa_public_key`.
DSA
~~~
To import an RFC 3279 DER-encoded DSA key, the following utility methods are
provided:
* :func:`pkcs11.util.dsa.decode_dsa_domain_parameters`, and
* :func:`pkcs11.util.dsa.decode_dsa_public_key`.
To export a DSA public key, use:
* :func:`pkcs11.util.dsa.encode_dsa_domain_parameters`, and
* :func:`pkcs11.util.dsa.encode_dsa_public_key`.
Elliptic Curve
~~~~~~~~~~~~~~
The :attr:`pkcs11.constants.Attribute.EC_PARAMS` and
:attr:`pkcs11.constants.Attribute.EC_POINT` attributes for elliptic curves
are already in DER-encoded X9.62 format.
You can import keys from OpenSSL using:
* :func:`pkcs11.util.ec.decode_ec_public_key`, and
* :func:`pkcs11.util.ec.decode_ec_private_key`.
To export an EC public key in OpenSSL format,
use :func:`pkcs11.util.ec.encode_ec_public_key`.
X.509
~~~~~
The function :func:`pkcs11.util.x509.decode_x509_public_key` is provided to
extract public keys from X.509 DER-encoded certificates, which is capable of
handling RSA, DSA and ECDSA keys.
Encryption/Decryption
---------------------
Ciphers can generally be considered in two categories:
* Symmetric ciphers (e.g. AES), which use a single key to encrypt and decrypt,
and are good at encrypting large amounts of data; and
* Asymmetric ciphers (e.g. RSA), which use separate public and private keys,
and are good for securing small amounts of data.
Symmetric ciphers operate on blocks of data, and thus are used along with
a `block mode <https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation>`_.
`python-pkcs11` can consume block mode ciphers via a generator.
Asymmetric ciphers are used for public-key cryptography. They cannot encrypt
large amounts of data. Typically these ciphers are used to encrypt a
symmetric session key, which does the bulk of the work, in a so-called hybrid
cryptosystem.
+----------+-------------+---------------------+------------------+
| Cipher | Block modes | Block Size (IV len) | Mechanism Param |
+==========+=============+=====================+==================+
| AES | Yes | 128 bits | IV (except EBC) |
+----------+-------------+---------------------+------------------+
| DES2/3 | Yes | 64 bits | IV (except EBC) |
+----------+-------------+---------------------+------------------+
| RSA | No | N/A | Optional |
+----------+-------------+---------------------+------------------+
AES
~~~
The `AES <https://en.wikipedia.org/wiki/Advanced_Encryption_Standard>`_ cipher
requires you to specify a block mode as part of the `mechanism`.
The default block mode is `CBC with PKCS padding
<http://docs.oasis-open.org/pkcs11/pkcs11-curr/v2.40/errata01/os/pkcs11-curr-v2.40-errata01-os-complete.html#_Toc441850490>`_,
which can handle data not padded to the block size and requires you to
supply an initialisation vector of 128-bits of good random.
A number of other mechanisms are available:
+-------------+-----+----------------+---------------------------------+
| Mechanism | IV | Input Size | Notes |
+=============+=====+================+=================================+
| AES_ECB | No | 128-bit blocks | Only suitable for key-wrapping. |
| | | | Identical blocks encrypt |
| | | | identically! |
+-------------+-----+----------------+---------------------------------+
| AES_CBC | Yes | 128-bit blocks | |
+-------------+-----+----------------+---------------------------------+
| AES_CBC_PAD | Yes | Any | Default mechanism |
+-------------+-----+----------------+---------------------------------+
| AES_OFB | Yes | Any | |
+-------------+-----+----------------+---------------------------------+
| AES_CFB_* | Yes | Any | 3 modes: AES_CFB8, AES_CFB64, |
| | | | and AES_CFB128. |
+-------------+-----+----------------+---------------------------------+
| AES_CTS | Yes | >= 128-bit | |
+-------------+-----+----------------+---------------------------------+
| AES_CTR | Not currently supported [#]_ |
+-------------+ |
| AES_GCM | |
+-------------+ |
| AES_CGM | |
+-------------+--------------------------------------------------------+
.. [#] AES encryption with multiple mechanism parameters not currently
implemented due to lack of hardware supporting these mechanisms.
.. warning:: **Initialisation vectors**
An initialization vector (IV) or starting variable (SV) is data that is
used by several modes to randomize the encryption and hence to produce
distinct ciphertexts even if the same plaintext is encrypted multiple
times.
An initialization vector has different security requirements than a key, so
the IV usually does not need to be secret. However, in most cases, it is
important that an initialization vector is never reused under the same key.
For CBC and CFB, reusing an IV leaks some information about the first block
of plaintext, and about any common prefix shared by the two messages. For
OFB and CTR, reusing an IV completely destroys security.
In CBC mode, the IV must, in addition, be unpredictable at encryption time;
in particular, the (previously) common practice of re-using the last
ciphertext block of a message as the IV for the next message is insecure.
We recommend using :meth:`pkcs11.Session.generate_random` to create a
quality IV.
A simple example:
::
# Given an AES key `key`
iv = session.generate_random(128)
ciphertext = key.encrypt(plaintext, mechanism_param=iv)
plaintext = key.decrypt(ciphertext, mechanism_param=iv)
Or using an alternative mechanism:
::
from pkcs11 import Mechanism
iv = session.generate_random(128)
ciphertext = key.encrypt(plaintext,
mechanism=Mechanism.AES_OFB,
mechanism_param=iv)
Large amounts of data can be passed as a generator:
::
buffer_size = 8192
with \\
open(file_in, 'rb') as input, \\
open(file_out, 'wb') as output:
# A generator yielding chunks of the file
chunks = iter(lambda: input.read(buffer_size), '')
for chunk in key.encrypt(chunks,
mechanism_param=iv,
buffer_size=buffer_size):
output.write(chunk)
.. note::
These mechanisms do not store the IV. You must store the IV yourself,
e.g. on the front of the ciphertext. It is safe to store an IV in the
clear.
DES2/3
~~~~~~
.. warning::
DES2 and DES3 are considered insecure because their short key lengths
are brute forcable with modern hardware.
DES2/3 have the same block mode options as AES. The block size is 64 bits,
which is the size of the initialization vector.
::
# Given an DES3 key `key`
iv = session.generate_random(64)
ciphertext = key.encrypt(plaintext, mechanism_param=iv)
plaintext = key.decrypt(ciphertext, mechanism_param=iv)
RSA
~~~
The default RSA cipher is `PKCS #1 OAEP
<http://docs.oasis-open.org/pkcs11/pkcs11-curr/v2.40/errata01/os/pkcs11-curr-v2.40-errata01-os-complete.html#_Toc441850412>`_
A number of other mechanisms are available:
+-----------------------+------------+-------------------------+-----------------------+
| Mechanism | Parameters | Input Length | Notes |
+=======================+============+=========================+=======================+
| RSA_PKCS | None | <= key length - 11 | RSA v1.5. Don't use |
| | | | for new applications. |
+-----------------------+------------+-------------------------+-----------------------+
| RSA_PKCS_OAEP | See below | <= k - 2 - 2hLen | Default mechanism. |
+-----------------------+------------+-------------------------+-----------------------+
| RSA_X_509 | None | key length | Raw mode. No padding. |
+-----------------------+------------+-------------------------+-----------------------+
| RSA_PKCS_TPM_1_1 | None | <= key length - 11 - 5 | See TCPA TPM |
| | | | Specification Version |
| | | | 1.1b |
+-----------------------+------------+-------------------------+-----------------------+
| RSA_PKCS_OAEP_TPM_1_1 | See below | <= k - 2 - 2hLen | |
+-----------------------+------------+-------------------------+-----------------------+
A simple example using the default parameters:
::
# Given an RSA key pair `public, private`
ciphertext = public.encrypt(plaintext)
plaintext = private.decrypt(ciphertext)
RSA OAEP can optionally take a tuple of `(hash algorithm, mask
generating function and source data)` as the mechanism parameter:
::
ciphertext = public.encrypt(plaintext,
mechanism=Mechanism.RSA_PKCS_OAEP,
mechanism_param=(Mechanism.SHA_1,
MGF.SHA1,
None))
Signing/Verifying
-----------------
Signing and verification mechanisms require two components:
* the cipher; and
* the hashing function.
Raw versions for some mechanisms also exist. These require you to do your
own hashing outside of PKCS #11.
Signing functions typically work on a finite length of data, so the signing
of large amounts of data requires hashing with a secure one-way hash function.
AES
~~~
A `MAC` is required for signing with AES. The default mechanism is
`AES_MAC`.
::
# Given a secret key, `key`
signature = key.sign(data)
assert key.verify(data, signature)
DES2/3
~~~~~~
A `MAC` is required for signing with DES. The default mechanism is
`SHA512_HMAC` (aka HMAC-SHA512).
Operation is the same as for `AES`.
RSA
~~~
The default signing and verification mechanism for RSA is `RSA_SHA512_PKCS`.
Other mechanisms are available:
+-------------------+-------------------------------------------+
| Mechanism | Notes |
+===================+===========================================+
| RSA_PKCS | No hashing. Supply your own. |
+-------------------+-------------------------------------------+
| SHA*_RSA_PKCS | SHAx message digesting. |
+-------------------+-------------------------------------------+
| RSA_PKCS_PSS | Optionally takes a tuple of parameters. |
+-------------------+ |
| SHA*_RSA_PKCS_PSS | |
+-------------------+-------------------------------------------+
| RSA_9796 | ISO/IES 9796 RSA signing. |
| | Use `PSS` instead. |
+-------------------+-------------------------------------------+
| RSA_X_509 | X.509 (raw) RSA signing. |
| | You must supply your own padding. |
+-------------------+-------------------------------------------+
| RSA_X9_31 | X9.31 RSA signing. |
+-------------------+-------------------------------------------+
Simple example using the default mechanism:
::
# Given a private key `private`
signature = private.sign(data)
# Given a public key `public`
assert public.verify(data, signature)
RSA PSS optionally takes a tuple of `(hash algorithm, mask
generating function and salt length)` as the mechanism parameter:
::
signature = private.sign(data,
mechanism=Mechanism.RSA_PKCS_PSS,
mechanism_param=(Mechanism.SHA_1,
MGF.SHA1,
20))
DSA
~~~
The default signing and verification mechanism for RSA is `DSA_SHA512`.
Other mechanisms are available:
+------------+-------------------------------------------+
| Mechanism | Notes |
+============+===========================================+
| DSA | No hashing. 20, 28, 32, 48 or 64 bits. |
+------------+-------------------------------------------+
| DSA_SHA* | DSA with SHAx message digesting. |
+------------+-------------------------------------------+
::
# Given a private key `private`
signature = private.sign(data)
# Given a public key `public`
assert public.verify(data, signature)
The parameters `r` and `s` are concatenated together as a single byte string
(each value is 20 bytes long for a total of 40 bytes).
To convert to the ASN.1 encoding (e.g. as used by X.509) use
:func:`pkcs11.util.dsa.encode_dsa_signature`.
To convert from the ASN.1 encoding into PKCS #11 encoding use
:func:`pkcs11.util.ec.decode_dsa_signature`.
ECDSA
~~~~~
The default signing and verification mechanism for ECDSA is `ECDSA_SHA512`.
Other mechanisms are available:
+------------+-------------------------------------------+
| Mechanism | Notes |
+============+===========================================+
| ECDSA | No hashing. Input truncated to 1024 bits. |
+------------+-------------------------------------------+
| ECDSA_SHA* | ECDSA with SHAx message digesting. |
+------------+-------------------------------------------+
::
# Given a private key `private`
signature = private.sign(data)
# Given a public key `public`
assert public.verify(data, signature)
The parameters `r` and `s` are concatenated together as a single byte string
(both values are the same length).
To convert to the ASN.1 encoding (e.g. as used by X.509) use
:func:`pkcs11.util.ec.encode_ecdsa_signature`.
To convert from the ASN.1 encoding into PKCS #11 encoding use
:func:`pkcs11.util.ec.decode_ecdsa_signature`.
Wrapping/Unwrapping
-------------------
The expectation when using HSMs is that secret and private keys never leave
the secure boundary of the HSM. However, there is a use case for transmitting
secret and private keys over insecure mediums. We can do this using key
wrapping.
Key wrapping is similar to encryption and decryption except instead of turning
plaintext into crypttext it turns key objects into crypttext and vice versa.
Keys must be marked as `EXTRACTABLE` to remove them from the HSM, even wrapped.
Key wrapping mechanisms usually mirror encryption mechanisms.
AES
~~~
Default key wrapping mode is `AES_ECB`. ECB is considered safe for key wrapping
due to the lack of repeating blocks. Other mechanisms, such as the new
`AES_KEY_WRAP` (if available), are also possible..
The key we're wrapping can be any sensitive key, either a secret key or
a private key. In this example we're extracting an AES secret key:
::
# Given two secret keys, `key1` and `key2`, we can extract an encrypted
# version of `key2`
crypttext = key1.wrap_key(key2)
Wrapping doesn't store any parameters about the keys. We must supply those
to import the key.
::
key = key1.unwrap_key(ObjectClass.SECRET_KEY, KeyType.AES, crypttext)
DES2/3
~~~~~~
Default key wrapping mode is `DES3_ECB`. ECB is considered safe for key
wrapping due to the lack of repeating blocks. Other mechanisms are available.
Operation is the same as for `AES`.
RSA
~~~
The key we're wrapping can be any sensitive key, either a secret key or
a private key. In this example we're extracting an AES secret key:
::
# Given a public key, `public`, and a secret key `key`, we can extract an
encrypted version of `key`
crypttext = public.wrap_key(key)
Wrapping doesn't store any parameters about the keys. We must supply those
to import the key.
::
# Given a private key, `private`, matching `public` above we can decrypt
# and import `key`.
key = private.unwrap_key(ObjectClass.SECRET_KEY, KeyType.AES, crypttext)
Deriving Shared Keys
--------------------
.. warning::
Key derivation mechanisms do not verify the authenticity of the other
party. Your application should include a mechanism to verify the other
user's public key is really from that user to avoid man-in-the-middle
attacks.
Where possible use an existing protocol.
Diffie-Hellman
~~~~~~~~~~~~~~
DH lets us derive a shared key using shared domain parameters, our private
key and the other party's public key, which is passed as a mechanism parameter.
The default DH derivation mechanism is `DH_PKCS_DERIVE`, which uses the
algorithm described in PKCS #3.
.. note::
Other DH derivation mechanisms including X9.42 derivation are not currently
supported.
::
# Given our DH private key `private` and the other party's public key
# `other_public`
key = private.derive_key(
KeyType.AES, 128,
mechanism_param=other_public)
If the other user's public key was encoded using RFC 3279, we can decode this
with :func:`pkcs11.util.dh.decode_dh_public_key`:
::
from pkcs11.util.dh import decode_dh_public_key
key = private.derive_key(
KeyType.AES, 128,
mechanism_param=decode_dh_public_key(encoded_public_key))
And we can encode our public key for them using
:func:`pkcs11.util.dh.encode_dh_public_key`:
::
from pkcs11.util.dh import encode_dh_public_key
# Given our DH public key `public`
encoded_public_key = encode_dh_public_key(public)
The shared derived key can now be used for any appropriate mechanism.
If you want to extract the shared key from the HSM, you can mark the key
as `EXTRACTABLE`:
::
key = private.derive_key(
KeyType.AES, 128,
mechanism_param=other_public,
template={
Attribute.SENSITIVE: False,
Attribute.EXTRACTABLE: True,
})
# This is our shared secret key
print(key[Attribute.VALUE])
EC Diffie-Hellman
~~~~~~~~~~~~~~~~~
ECDH is supported using the `ECDH1_DERIVE` mechanism,
similar to plain DH, except that the mechanism parameter
is a tuple consisting of 3 parameters:
* a key derivation function (KDF);
* a shared value; and
* the other user's public key.
The supported KDFs vary from device to device, check your HSM documentation.
For :attr:`pkcs11.mechanisms.KDF.NULL` (the most widely supported KDF), the
shared value must be `None`.
.. note::
Other ECDH derivation mechanisms including co-factor derivation and MQV
derivation are not currently supported.
::
from pkcs11 import KeyType, KDF
# Given our DH private key `private` and the other party's public key
# `other_public`
key = private.derive_key(
KeyType.AES, 128,
mechanism_param=(KDF.NULL, None, other_public))
The value of the other user's public key should usually be a raw byte string
however some implementations require a DER-encoded byte string (i.e. the same
format as `EC_POINT`) [#]_. Use the `encode_ec_point` parameter to
:func:`pkcs11.util.ec.decode_ec_public_key`.
+-----------------+----------------------------------+
| Implementation | Other user's `EC_POINT` encoding |
+=================+==================================+
| SoftHSM v2 | DER-encoded |
+-----------------+----------------------------------+
| Nitrokey HSM | Raw |
+-----------------+----------------------------------+
| Thales nCipher | ? |
+-----------------+----------------------------------+
If you want to extract the shared key from the HSM, you can mark the key
as `EXTRACTABLE`:
::
key = private.derive_key(
KeyType.AES, 128,
mechanism_param=(KDF.NULL, None, other_public),
template={
Attribute.SENSITIVE: False,
Attribute.EXTRACTABLE: True,
})
# This is our shared secret key
print(key[Attribute.VALUE])
.. [#] The incompatibility comes from this being unspecified in earlier
versions of PKCS #11, although why they made it a different format to
`EC_POINT` is unclear.
Digesting and Hashing
---------------------
PKCS #11 exposes the ability to hash or digest data via a number of mechanisms.
For performance reasons, this is rarely done in the HSM, and is usually done
in your process. The only advantage of using this function over :mod:`hashlib`
is the ability to digest :class:`pkcs11.Key` objects.
To digest a message (e.g. with SHA-256):
::
from pkcs11 import Mechanism
digest = session.digest(data, mechanism=Mechanism.SHA_256)
You can also pass an iterable of data:
::
with open(file_in, 'rb') as input:
# A generator yielding chunks of the file
chunks = iter(lambda: input.read(buffer_size), '')
digest = session.digest(chunks, mechanism=Mechanism.SHA_512)
Or a key (if supported):
::
digest = session.digest(public_key, mechanism=Mechanism.SHA_1)
Or even a combination of keys and data:
::
digest = session.digest((b'HEADER', key), mechanism=Mechanism.SHA_1)
Certificates
------------
Certificates can be stored in the HSM as objects. PKCS#11 is limited in its
handling of certificates, and does not provide features like parsing of X.509
etc. These should be handled in an external library (e.g. `asn1crypto`. PKCS#11
will not set attributes on the certificate based on the `VALUE` and these must
be specified when creating the object.
X.509
~~~~~
The following attributes are defined:
.. glossary::
VALUE
The complete X.509 certificate (BER-encoded)
SUBJECT
The certificate subject (DER-encoded X.509 distinguished name)
ISSUER
The certificate issuer (DER-encoded X.509 distinguished name)
SERIAL
The certificate serial (DER-encoded integer)
Additionally an extended set of attributes can be stored if your HSM supports
it:
.. glossary::
START_DATE
The certificate start date (notBefore)
END_DATE
The certificate end date (notAfter)
HASH_OF_SUBJECT_PUBLIC_KEY
The identifier of the subject's public key (bytes)
HASH_OF_ISSUER_PUBLIC_KEY
The identifier of the issuer's public key (bytes)
Importing Certificates
^^^^^^^^^^^^^^^^^^^^^^
:func:`pkcs11.util.x509.decode_x509_certificate` can be used to decode
X.509 certificates for storage in the HSM:
::
from pkcs11.util.x509 import decode_x509_certificate
cert = self.session.create_object(decode_x509_certificate(b'DER encoded X.509 cert...'))
Exporting Certificates
^^^^^^^^^^^^^^^^^^^^^^
The full certificate is stored as `VALUE`. Any X.509 capable library can use
this data, e.g. `asn1crypto` or `PyOpenSSL`.
OpenSSL:
::
import OpenSSL
from pkcs11 import Attribute, ObjectClass
for cert in session.get_objects({
Attribute.CLASS: ObjectClass.CERTIFICATE,
}):
# Convert from DER-encoded value to OpenSSL object
cert = OpenSSL.crypto.load_certificate(
OpenSSL.crypto.FILETYPE_ASN1,
cert[Attribute.VALUE],
)
# Retrieve values from the certificate
subject = cert.get_subject()
# Convert to PEM format
cert = OpenSSL.crypto.dump_certificate(
OpenSSL.crypto.FILETYPE_PEM,
cert
)
asn1crypto:
::
from asn1crypto import pem, x509
der_bytes = cert[Attribute.VALUE]
# Load a certificate object from the DER-encoded value
cert = x509.Certificate.load(der_bytes)
# Write out a PEM encoded value
pem_bytes = pem.armor('CERTIFICATE', der_bytes)
|