File: applied.rst

package info (click to toggle)
python-pkcs11 0.7.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 804 kB
  • sloc: python: 3,844; ansic: 1,981; sh: 33; makefile: 24
file content (1455 lines) | stat: -rw-r--r-- 45,107 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
Applied PKCS #11
================

`PKCS <https://en.wikipedia.org/wiki/PKCS>`_ #11 is the name given to a
standard defining an API for cryptographic hardware. While it was developed by
RSA, as part of a suite of standards, the standard is not exclusive to RSA
ciphers and is meant to cover a wide range of cryptographic possibilities.
PKCS #11 is most closely related to Java's JCE and Microsoft's CAPI.

.. contents:: Section Contents
    :depth: 2
    :local:

Concepts in PKCS #11
--------------------

Slots and Tokens
~~~~~~~~~~~~~~~~

A `slot` originally referred to a single card slot on a smartcard device that
could accept a `token`. A token was a smartcard that contained secure,
encrypted keys and certificates. You would insert your smartcard (token) into
the slot, and use its contents to do cryptographic operations.

Nowadays the distinction is more blurry. Many USB-key HSMs appear as a single
slot containing a hardwired single token (their internal storage). Server
devices often make use of software tokens (`softcards`), which appear as
slots within PKCS #11, but no physical device exists. These devices can
also feature physical slots and `accelerator slots`.

.. seealso::

    Slots have :attr:`pkcs11.Slot.flags` which can tell you something about
    what kind of slot this is.

Tokens are secured with a passphrase (PIN). Not all implementations use
pins in their underlying implementation, but these are required for PKCS#11.
Some implementations let you control the behaviour of their PKCS #11 module
in ways not specified by the specification through environment variables
(e.g. default token pins).

.. note::

    The PKCS #11 library is running within your process, using your memory,
    etc. It may talk to a daemon to access the underlying hardware, or it
    may be talking directly.

    Environment variables set on your process can be used to configure
    the behaviour of the library, check the documentation for your device.

Finding Tokens
^^^^^^^^^^^^^^

Tokens are identified by a label or serial number.

You can retrieve all tokens matching search parameters:

::

    for slot in lib.get_slots():
        token = slot.get_token()
        # Check the parameters
        if token.label == '...':
            break

::

    for token in lib.get_tokens(token_label='smartcard'):
        print(token)

Retrieving a single token has a shortcut function:

::

    try:
        lib.get_token(token_label='smartcard')
    except NoSuchToken:
        pass
    except MultipleTokensReturned:
        pass


Mechanisms and Capabilities
~~~~~~~~~~~~~~~~~~~~~~~~~~~

Different devices support different cryptographic operations. In PKCS #11
mechanisms refer to the combination of cipher (e.g. AES), hash function
(e.g. SHA512) and block mode (e.g. CBC). Mechanisms also exist for generating
keys, and deriving keys and parameters.

The capabilities of a mechanism indicate what types of operations can be
carried out with the mechanism, e.g. encryption, signing, key generation.

Not all devices support all mechanisms. Some may support non-standard
mechanisms. Not all devices support the same capabilities for mechanisms
or same key lengths. This information can be retrieved via
:meth:`pkcs11.Slot.get_mechanisms` and :meth:`pkcs11.Slot.get_mechanism_info`
or from your device documentation.

Some mechanisms require `mechanism parameters`. These are used to provide
additional context to the mechanism that does not form part of the key.
Examples of mechanism parameters are initialisation vectors for block
modes, salts, key derivation functions, and other party's shared secrets (for
Diffie-Hellman).

.. seealso::

    The :class:`pkcs11.mechanisms.Mechanism` type includes information
    on the required parameters for common mechanisms.
    A complete list of `current mechanisms
    <http://docs.oasis-open.org/pkcs11/pkcs11-curr/v2.40/errata01/os/pkcs11-curr-v2.40-errata01-os-complete.html>`_
    and `historical mechanisms
    <http://docs.oasis-open.org/pkcs11/pkcs11-hist/v2.40/errata01/os/pkcs11-hist-v2.40-errata01-os-complete.html>`_
    includes the mechanism parameters and input requirements for each
    mechanism.

Objects and Attributes
~~~~~~~~~~~~~~~~~~~~~~

An object is a piece of cryptographic information stored on a `token`.
Objects have a `class` (e.g. private key) which is exposed in `python-pkcs11`
as a Python class. They also have a number of other attributes depending on
their class.

There are three main classes of object:

* keys (symmetric secret keys and asymmetric public and private keys);
* domain parameters (storing the parameters used to generate keys); and
* certificates (e.g. `X.509 <https://en.wikipedia.org/wiki/X.509>`_
  certificates).

.. note::

    Irregardless of the PKCS #11 specification, not all devices reliably
    handle all object attributes. They can also have different defaults.
    `python-pkcs11` tries to abstract that as much as possible to enable
    writing portable code.

.. seealso::

    :class:`pkcs11.constants.Attribute` describes the available attributes
    and their Python types.

    **biginteger**

    One type is handled specially: `biginteger`, an arbitrarily long integer
    in network byte order. Although Python can handle arbitrarily long
    integers, many other systems cannot and pass these types around as
    byte arrays, and more often than not, that is an easier form to
    handle them in.

    `biginteger` attributes can be specified as :class:`bytes`,
    :class:`bytearray` or an iterable of byte-sized integers.

    If you do have integers, you can convert them to :class:`bytes` using
    :func:`pkcs11.util.biginteger`.

Finding Objects
^^^^^^^^^^^^^^^

Objects can be found on a `token` using their attributes. Usually an `ID`
or `LABEL`.

::

    for obj in session.get_objects({
        Attribute.CLASS: ObjectClass.SECRET_KEY,
        Attribute.LABEL: 'aes256',
    }):
        print(obj)

Finding a specific key is so common there's a shortcut function:

::

    try:
        key = session.get_key(label='aes256')
    except NoSuchKey:
        pass
    except MultipleObjectsReturned:
        pass

Keys
~~~~

There are three classes of key objects:

* symmetric secret keys;
* asymmetric public keys; and
* asymmetric private keys.

The following attributes can be set for keys:

.. glossary::

    PRIVATE
        Private objects can only be accessed by logged in sessions.

    LOCAL
        This key was generated on the device.

    EXTRACTABLE
        The key can be extracted from the HSM.

    SENSITIVE
        The key is sensitive and cannot be removed from the device in
        clear text.

    ALWAYS_SENSITIVE
        The key has never not been `SENSITIVE`.

    NEVER_EXTRACTABLE
        The key has never been `EXTRACTABLE`.

    ALWAYS_AUTHENTICATE
        The key requires authentication every time it's used.

.. note::

    Keys should be generated on the HSM rather than imported.
    Generally only public keys should not be `PRIVATE` and `SENSITIVE`.
    Allowing private keys to be accessed defeats the purpose of securing your
    keys in a HSM. `python-pkcs11` sets meaningful defaults.

Domain Parameters
~~~~~~~~~~~~~~~~~

Domain parameters are the parameters used to generate cryptographic keys (e.g.
the name of the elliptic curve being used). They are public information.
Obscuring the domain parameters does not increase the security of a
cryptosystem. Typically the domain parameters form part of a protocol
specification, and RFCs exist giving pre-agreed, named domain parameters for
cryptosystems.

In `python-pkcs11` domain parameters can either be stored as an object in your
HSM, or loaded via some other mechanism (e.g. in your code) and used
directly without creating a HSM object.

.. seealso::

    OpenSSL can be used to generate unique or named domain parameters for
    `Diffie-Hellman <https://wiki.openssl.org/index.php/Manual:Dhparam(1)>`_,
    `DSA <https://wiki.openssl.org/index.php/Manual:Dsaparam(1)>`_ and
    `EC <https://wiki.openssl.org/index.php/Manual:Ecparam(1)>`_.

    :mod:`pkcs11.util` includes modules for creating and decoding
    domain parameters.

Sessions
~~~~~~~~

Accessing a token is done by opening a session. Sessions can be public or
logged in. Only a logged in session can access objects marked as `private`.
Depending on your device, some functions may also be unavailable.

.. warning::

    It is important to close sessions when you are finished with them.
    Some devices will leak resources if sessions aren't closed.

    Where possible you should use sessions via a context manager.

Concepts related to PKCS #11
----------------------------

Binary Formats and Padding
~~~~~~~~~~~~~~~~~~~~~~~~~~

PKCS #11 is `protocol agnostic` and does not define or implement any codecs for
the storing of enciphered data, keys, initialisation vectors, etc. outside the
HSM. [#]_ For example, CBC mechanisms will not include the initialization
vector. You must choose a storage/transmission format that suits your
requirements.

Some mechanisms require input data to be `padded` to a certain block size.
Standardized `PAD` variants of many mechanisms exist based on upstream
specifications. For other mechanisms PKCS #11 does not define any specific
algorithms, and you must choose one that suits your requirements.

.. seealso::

    Lots of standards exist for the storing and transmission of cryptographic
    data. If you're not implementing a specific protocol, there may still be
    an RFC standard with a Python implementation to ensure people can
    understand your binary data in the future.

    See also:

    * `RFC 5652 (Cryptographic Message Standard) (supercedes PKCS #7)
      <https://tools.ietf.org/html/rfc5652>`_

.. [#] It does define types for data `inside` the HSM, e.g. attribute
       data types and binary formats (e.g. EC parameters, X.509 certificates).

PKCS #15
~~~~~~~~

PKCS #15 defines a standard for storing cryptographic objects within the
HSM device to enable interoperability between devices and tokens. PKCS #15
is often referenced in conjunction with PKCS #11 as the storage format
used on the `tokens`.

ASN.1, DER, BER
~~~~~~~~~~~~~~~

ASN.1 is a data model for storing structured information. DER and BER
are binary representations of that data model which are used extensively in
cryptography, e.g. for storing RSA key objects, X.509 certificates and
elliptic curve information.

Accessing ASN.1 encoded objects is mostly left to packages other than
`python-pkcs11`, however :mod:`pkcs11.util` does include some utilities to
encode and decode objects where required for working with PKCS #11 itself
(e.g. converting PKCS #1 encoded RSA keys into PKCS #11 objects and
generating parameters for elliptic curves).

PEM
~~~

`PEM <https://en.wikipedia.org/wiki/Privacy-enhanced_Electronic_Mail>`_ is
a standard for handling cryptographic objects. It is a base64 encoded version
of the binary DER object. The label indicates the type of object, and thus
what ASN.1 model to use. `python-pkcs11` does not include PEM parsing,
you should include another package if required. :mod:`asn1crypto.pem` is a
dependency of `python-pkcs11`.

Getting a Session
-----------------

Given a PKCS #11 library (`.so`) that is stored in the environment as
`PKCS11_MODULE`.

To open a read-only session on a token named `smartcard`:

::

    import pkcs11

    lib = pkcs11.lib(os.environ['PKCS11_MODULE'])
    token = lib.get_token(token_label='smartcard')

    with token.open() as session:
        print(session)

To open a user session with the passphrase/pin `secret`:

::

    with token.open(user_pin='secret') as session:
        print(session)

To open a read/write session:

::

    with token.open(rw=True, user_pin='secret') as session:
        print(session)

.. seealso::

    :meth:`pkcs11.Token.open` has more options for opening the session.

Generating Keys
---------------

Keys can either live for the lifetime of the `session` or be stored on the
token. Storing keys requires a read only session.

To store keys pass `store=True`. When storing keys it is recommended to set
a `label` or `id`, so you can find the key again.

Symmetric Keys
~~~~~~~~~~~~~~

AES
^^^

AES keys can be generated by specifying the key length:

::

    from pkcs11 import KeyType

    key = session.generate_key(KeyType.AES, 256)

Generally AES keys are considered secret. However if you're using your HSM
to generate keys for use with local AES (e.g. in hybrid encryption systems).
You can do the following:

::

    from pkcs11 import KeyType, Attribute

    key = session.generate_key(KeyType.AES, 256, template={
        Attribute.SENSITIVE: False,
        Attribute.EXTRACTABLE: True,
    })
    # This is the secret key
    print(key[Attribute.VALUE])

.. glossary::

    VALUE
        Secret key (as `biginteger`).

DES2/3
^^^^^^

.. warning::

    DES2 and DES3 are considered insecure because their short key lengths
    are brute forcable with modern hardware.

DES2/3 keys are fixed length.

::

    from pkcs11 import KeyType

    des2 = session.generate_key(KeyType.DES2)
    des3 = session.generate_key(KeyType.DES3)

These secret key objects have the same parameters as for AES.

Asymmetric Keypairs
~~~~~~~~~~~~~~~~~~~

RSA
^^^

RSA keypairs can be generated by specifying the length of the modulus:

::

    from pkcs11 import KeyType

    public, private = session.generate_keypair(KeyType.RSA, 2048)

The default public exponent is `65537`. You can specify an alternative:

::

    from pkcs11 import KeyType, Attribute

    public, private = session.generate_keypair(KeyType.RSA, 2048,
                                               public_template={Attribute.PUBLIC_EXPONENT: ...})
    # This is the public key
    print(public[Attribute.MODULUS])
    print(public[Attribute.PUBLIC_EXPONENT])

The public key has two parameters:

.. glossary::

    MODULUS
        Key modulus (as `biginteger`).

    PUBLIC_EXPONENT
        Public exponent (as `biginteger`).

These can be exported as RFC 2437 (PKCS #1) DER-encoded binary using
:func:`pkcs11.util.rsa.encode_rsa_public_key`.

DSA
^^^

DSA keypairs can be generated by specifying the length of the prime in bits.

::

    from pkcs11 import KeyType

    public, private = session.generate_keypair(KeyType.RSA, 2048)

This will generate unique domain parameters for a key. If you want to create
a key for given domain parameters, see `DSA from Domain Parameters`_.

The public key has a single important attribute:

.. glossary::

    VALUE
        Public key (as biginteger).

This can be encoded in RFC 3279 format with
:func:`pkcs11.util.dsa.encode_dsa_public_key`.

From Domain Parameters
~~~~~~~~~~~~~~~~~~~~~~

.. note::

    Choosing domain parameters is not covered in this document. Domain
    parameters are often either specified by the requirements you are
    implementing for, or have a standard implementation to derive quality
    parameters. Some domain parameters (e.g. choice of elliptic curve)
    can drastically weaken the cryptosystem.

.. _`DSA from Domain Parameters`:

DSA
^^^

Diffie-Hellman key pairs require three domain parameters, specified as
`bigintegers`.

.. glossary::

    BASE
        The prime base (g) (as `biginteger`).

    PRIME
        The prime modulus (p) (as `biginteger`).

    SUBPRIME
        The subprime (q) (as `biginteger`).

::

    from pkcs11 import Attribute

    parameters = session.create_domain_parameters(KeyType.DSA, {
        Attribute.PRIME: b'prime...',
        Attribute.BASE: b'base...',
        Attribute.SUBPRIME: b'subprime...',
    }, local=True)

    public, private = parameters.generate_keypair()

`RFC 3279 <https://tools.ietf.org/html/rfc3279#section-2.3.3>`_ defines a
standard ASN.1 encoding for DSA parameters, which can be loaded with
:func:`pkcs11.util.dsa.decode_dsa_domain_parameters`:

::

    params = session.create_domain_parameters(
        KeyType.DSA,
        decode_dsa_domain_parameters(b'DER-encoded parameters'),
        local=True)


If supported, unique domain parameters can also be generated for a given
`PRIME` length (e.g. 1024 bits) with
:meth:`pkcs11.Session.generate_domain_parameters`:

::

    params = session.generate_domain_parameters(KeyType.DSA, 1024)

These can be encoded into the standard ASN.1 DER encoding using
:func:`pkcs11.util.dsa.encode_dsa_domain_parameters`.

.. note::

    You can create a DSA key directly from freshly generated domain parameters
    with :meth:`Session.generate_keypair`.

Diffie-Hellman
^^^^^^^^^^^^^^

Diffie-Hellman key pairs require several domain parameters, specified as
`bigintegers`.  There are two forms of Diffie-Hellman domain parameters: PKCS
#3 and X9.42.

.. glossary::

    BASE
        The prime base (g) (as `biginteger`).

    PRIME
        The prime modulus (p) (as `biginteger`).

    SUBPRIME
        (X9.42 only) The subprime (q) (as `biginteger`).

::

    from pkcs11 import Attribute

    parameters = session.create_domain_parameters(KeyType.DH, {
        Attribute.PRIME: b'prime...',
        Attribute.BASE: b'base...',
    }, local=True)

    public, private = parameters.generate_keypair()

`RFC 3279 <https://tools.ietf.org/html/rfc3279#section-2.3.3>`_ defines a
standard ASN.1 encoding for DH parameters, which can be loaded with
:func:`pkcs11.util.dh.decode_x9_42_dh_domain_parameters`:

::

    params = session.create_domain_parameters(
        KeyType.X9_42_DH,
        decode_x9_42_dh_domain_parameters(b'DER-encoded parameters'),
        local=True)


If supported, unique domain parameters can also be generated for a given
`PRIME` length (e.g. 512 bits) with
:meth:`pkcs11.Session.generate_domain_parameters`:

::

    params = session.generate_domain_parameters(KeyType.DH, 512)

X9.42 format domain parameters can be encoded back to their RFC 3279 format
with :func:`pkcs11.util.dh.encode_x9_42_dh_domain_parameters`.

Key pairs can be generated from the domain parameters:

::

    public, private = parameters.generate_keypair()
    # This is the public key
    print(public[Attribute.VALUE])

The public key has a single important attribute:

.. glossary::

    VALUE
        Public key (as biginteger).

This can be encoded in RFC 3279 format with
:func:`pkcs11.util.dh.encode_dh_public_key`.

Elliptic Curve
^^^^^^^^^^^^^^

Elliptic curves require a domain parameter describing the curve. Curves can
be described in two ways:

* As named curves; or
* As a complete set of parameters.

Not all devices support both specifications.
You can determine what curve parameters your device supports by checking
:meth:`pkcs11.Slot.get_mechanism_info` :class:`pkcs11.constants.MechanismFlag`.

Both specifications are specified using the same `attribute`:

.. glossary::

    EC_PARAMS
        Curve parameters (as DER-encoded X9.62 bytes).

::

    from pkcs11 import Attribute


    parameters = session.create_domain_parameters(KeyType.EC,
        Attribute.EC_PARAMS: b'DER-encoded X9.62 parameters ...',
    }, local=True)

    public, private = parameters.generate_keypair()


Named curves (e.g. `secp256r1`) can be specified like this:

::

    from pkcs11 import Attribute
    from pkcs11.util.ec import encode_named_curve_parameters


    parameters = session.create_domain_parameters(KeyType.EC, {
        Attribute.EC_PARAMS: encode_named_curve_parameters('secp256r1')
    }, local=True)

Key pairs can be generated from the domain parameters:

::

    public, private = parameters.generate_keypair()
    # This is the public key
    print(public[Attribute.EC_POINT])

The public key as a single important attribute:

.. glossary::

    EC_POINT
        Public key (as X9.62 DER-encoded bytes).

.. _importing-keys:

Importing/Exporting Keys
------------------------

.. warning::

    It is best to only import/export public keys. You should, whenever
    possible, generate and store secret and private keys within the boundary of
    your HSM.

The following utility methods will convert keys encoded in their canonical
DER-encoded into attributes that can be used with
:meth:`pkcs11.Session.create_object`.

.. note::

    PEM certificates are base64-encoded versions of the canonical DER-encoded
    forms used in `python-pkcs11`. Conversion between PEM and DER can be
    achieved using `asn1crypto.pem
    <https://github.com/wbond/asn1crypto/blob/master/docs/pem.md>`_.


AES/DES
~~~~~~~

.. warning::

    Whenever possible, generate and store secret keys within the boundary of
    your HSM.

AES and DES keys are stored as binary bytes in
:attr:`pkcs11.constants.Attribute.VALUE`.

Keys must be marked as `EXTRACTABLE` and not `SENSITIVE` to export.

RSA
~~~

To import a PKCS #1 DER-encoded RSA key, the following utility methods are
provided:

* :func:`pkcs11.util.rsa.decode_rsa_public_key`, and
* :func:`pkcs11.util.rsa.decode_rsa_private_key`.

To export an RSA public key in PKCS #1 DER-encoded format, use
:func:`pkcs11.util.rsa.encode_rsa_public_key`.

DSA
~~~

To import an RFC 3279 DER-encoded DSA key, the following utility methods are
provided:

* :func:`pkcs11.util.dsa.decode_dsa_domain_parameters`, and
* :func:`pkcs11.util.dsa.decode_dsa_public_key`.

To export a DSA public key, use:

* :func:`pkcs11.util.dsa.encode_dsa_domain_parameters`, and
* :func:`pkcs11.util.dsa.encode_dsa_public_key`.

Elliptic Curve
~~~~~~~~~~~~~~

The :attr:`pkcs11.constants.Attribute.EC_PARAMS` and
:attr:`pkcs11.constants.Attribute.EC_POINT` attributes for elliptic curves
are already in DER-encoded X9.62 format.

You can import keys from OpenSSL using:

* :func:`pkcs11.util.ec.decode_ec_public_key`, and
* :func:`pkcs11.util.ec.decode_ec_private_key`.

To export an EC public key in OpenSSL format,
use :func:`pkcs11.util.ec.encode_ec_public_key`.

X.509
~~~~~

The function :func:`pkcs11.util.x509.decode_x509_public_key` is provided to
extract public keys from X.509 DER-encoded certificates, which is capable of
handling RSA, DSA and ECDSA keys.

Encryption/Decryption
---------------------

Ciphers can generally be considered in two categories:

* Symmetric ciphers (e.g. AES), which use a single key to encrypt and decrypt,
  and are good at encrypting large amounts of data; and
* Asymmetric ciphers (e.g. RSA), which use separate public and private keys,
  and are good for securing small amounts of data.

Symmetric ciphers operate on blocks of data, and thus are used along with
a `block mode <https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation>`_.
`python-pkcs11` can consume block mode ciphers via a generator.

Asymmetric ciphers are used for public-key cryptography. They cannot encrypt
large amounts of data. Typically these ciphers are used to encrypt a
symmetric session key, which does the bulk of the work, in a so-called hybrid
cryptosystem.

+----------+-------------+---------------------+------------------+
| Cipher   | Block modes | Block Size (IV len) | Mechanism Param  |
+==========+=============+=====================+==================+
| AES      | Yes         | 128 bits            | IV (except EBC)  |
+----------+-------------+---------------------+------------------+
| DES2/3   | Yes         | 64 bits             | IV (except EBC)  |
+----------+-------------+---------------------+------------------+
| RSA      | No          | N/A                 | Optional         |
+----------+-------------+---------------------+------------------+

AES
~~~

The `AES <https://en.wikipedia.org/wiki/Advanced_Encryption_Standard>`_ cipher
requires you to specify a block mode as part of the `mechanism`.

The default block mode is `CBC with PKCS padding
<http://docs.oasis-open.org/pkcs11/pkcs11-curr/v2.40/errata01/os/pkcs11-curr-v2.40-errata01-os-complete.html#_Toc441850490>`_,
which can handle data not padded to the block size and requires you to
supply an initialisation vector of 128-bits of good random.

A number of other mechanisms are available:

+-------------+-----+----------------+---------------------------------+
| Mechanism   | IV  | Input Size     | Notes                           |
+=============+=====+================+=================================+
| AES_ECB     | No  | 128-bit blocks | Only suitable for key-wrapping. |
|             |     |                | Identical blocks encrypt        |
|             |     |                | identically!                    |
+-------------+-----+----------------+---------------------------------+
| AES_CBC     | Yes | 128-bit blocks |                                 |
+-------------+-----+----------------+---------------------------------+
| AES_CBC_PAD | Yes | Any            | Default mechanism               |
+-------------+-----+----------------+---------------------------------+
| AES_OFB     | Yes | Any            |                                 |
+-------------+-----+----------------+---------------------------------+
| AES_CFB_*   | Yes | Any            | 3 modes: AES_CFB8, AES_CFB64,   |
|             |     |                | and AES_CFB128.                 |
+-------------+-----+----------------+---------------------------------+
| AES_CTS     | Yes | >= 128-bit     |                                 |
+-------------+-----+----------------+---------------------------------+
| AES_CTR     | Not currently supported [#]_                           |
+-------------+                                                        |
| AES_GCM     |                                                        |
+-------------+                                                        |
| AES_CGM     |                                                        |
+-------------+--------------------------------------------------------+

.. [#] AES encryption with multiple mechanism parameters not currently
       implemented due to lack of hardware supporting these mechanisms.

.. warning:: **Initialisation vectors**

    An initialization vector (IV) or starting variable (SV) is data that is
    used by several modes to randomize the encryption and hence to produce
    distinct ciphertexts even if the same plaintext is encrypted multiple
    times.

    An initialization vector has different security requirements than a key, so
    the IV usually does not need to be secret. However, in most cases, it is
    important that an initialization vector is never reused under the same key.
    For CBC and CFB, reusing an IV leaks some information about the first block
    of plaintext, and about any common prefix shared by the two messages. For
    OFB and CTR, reusing an IV completely destroys security.

    In CBC mode, the IV must, in addition, be unpredictable at encryption time;
    in particular, the (previously) common practice of re-using the last
    ciphertext block of a message as the IV for the next message is insecure.

    We recommend using :meth:`pkcs11.Session.generate_random` to create a
    quality IV.

A simple example:

::

    # Given an AES key `key`
    iv = session.generate_random(128)
    ciphertext = key.encrypt(plaintext, mechanism_param=iv)

    plaintext = key.decrypt(ciphertext, mechanism_param=iv)

Or using an alternative mechanism:

::

    from pkcs11 import Mechanism

    iv = session.generate_random(128)
    ciphertext = key.encrypt(plaintext,
                             mechanism=Mechanism.AES_OFB,
                             mechanism_param=iv)

Large amounts of data can be passed as a generator:

::

    buffer_size = 8192
    with \\
            open(file_in, 'rb') as input, \\
            open(file_out, 'wb') as output:

        # A generator yielding chunks of the file
        chunks = iter(lambda: input.read(buffer_size), '')

        for chunk in key.encrypt(chunks,
                                 mechanism_param=iv,
                                 buffer_size=buffer_size):
            output.write(chunk)

.. note::

    These mechanisms do not store the IV. You must store the IV yourself,
    e.g. on the front of the ciphertext. It is safe to store an IV in the
    clear.

DES2/3
~~~~~~

.. warning::

    DES2 and DES3 are considered insecure because their short key lengths
    are brute forcable with modern hardware.

DES2/3 have the same block mode options as AES. The block size is 64 bits,
which is the size of the initialization vector.

::

    # Given an DES3 key `key`
    iv = session.generate_random(64)
    ciphertext = key.encrypt(plaintext, mechanism_param=iv)

    plaintext = key.decrypt(ciphertext, mechanism_param=iv)

RSA
~~~

The default RSA cipher is `PKCS #1 OAEP
<http://docs.oasis-open.org/pkcs11/pkcs11-curr/v2.40/errata01/os/pkcs11-curr-v2.40-errata01-os-complete.html#_Toc441850412>`_

A number of other mechanisms are available:

+-----------------------+------------+-------------------------+-----------------------+
| Mechanism             | Parameters | Input Length            | Notes                 |
+=======================+============+=========================+=======================+
| RSA_PKCS              | None       | <= key length - 11      | RSA v1.5. Don't use   |
|                       |            |                         | for new applications. |
+-----------------------+------------+-------------------------+-----------------------+
| RSA_PKCS_OAEP         | See below  | <= k - 2 - 2hLen        | Default mechanism.    |
+-----------------------+------------+-------------------------+-----------------------+
| RSA_X_509             | None       | key length              | Raw mode. No padding. |
+-----------------------+------------+-------------------------+-----------------------+
| RSA_PKCS_TPM_1_1      | None       | <= key length - 11 - 5  | See TCPA TPM          |
|                       |            |                         | Specification Version |
|                       |            |                         | 1.1b                  |
+-----------------------+------------+-------------------------+-----------------------+
| RSA_PKCS_OAEP_TPM_1_1 | See below  | <= k - 2 - 2hLen        |                       |
+-----------------------+------------+-------------------------+-----------------------+

A simple example using the default parameters:

::

    # Given an RSA key pair `public, private`
    ciphertext = public.encrypt(plaintext)

    plaintext = private.decrypt(ciphertext)

RSA OAEP can optionally take a tuple of `(hash algorithm, mask
generating function and source data)` as the mechanism parameter:

::

    ciphertext = public.encrypt(plaintext,
                                mechanism=Mechanism.RSA_PKCS_OAEP,
                                mechanism_param=(Mechanism.SHA_1,
                                                 MGF.SHA1,
                                                 None))

Signing/Verifying
-----------------

Signing and verification mechanisms require two components:

* the cipher; and
* the hashing function.

Raw versions for some mechanisms also exist. These require you to do your
own hashing outside of PKCS #11.

Signing functions typically work on a finite length of data, so the signing
of large amounts of data requires hashing with a secure one-way hash function.

AES
~~~

A `MAC` is required for signing with AES. The default mechanism is
`AES_MAC`.

::

    # Given a secret key, `key`
    signature = key.sign(data)

    assert key.verify(data, signature)

DES2/3
~~~~~~

A `MAC` is required for signing with DES. The default mechanism is
`SHA512_HMAC` (aka HMAC-SHA512).

Operation is the same as for `AES`.

RSA
~~~

The default signing and verification mechanism for RSA is `RSA_SHA512_PKCS`.

Other mechanisms are available:

+-------------------+-------------------------------------------+
| Mechanism         | Notes                                     |
+===================+===========================================+
| RSA_PKCS          | No hashing. Supply your own.              |
+-------------------+-------------------------------------------+
| SHA*_RSA_PKCS     | SHAx message digesting.                   |
+-------------------+-------------------------------------------+
| RSA_PKCS_PSS      | Optionally takes a tuple of parameters.   |
+-------------------+                                           |
| SHA*_RSA_PKCS_PSS |                                           |
+-------------------+-------------------------------------------+
| RSA_9796          | ISO/IES 9796 RSA signing.                 |
|                   | Use `PSS` instead.                        |
+-------------------+-------------------------------------------+
| RSA_X_509         | X.509 (raw) RSA signing.                  |
|                   | You must supply your own padding.         |
+-------------------+-------------------------------------------+
| RSA_X9_31         | X9.31 RSA signing.                        |
+-------------------+-------------------------------------------+

Simple example using the default mechanism:

::

    # Given a private key `private`
    signature = private.sign(data)

    # Given a public key `public`
    assert public.verify(data, signature)

RSA PSS optionally takes a tuple of `(hash algorithm, mask
generating function and salt length)` as the mechanism parameter:

::

    signature = private.sign(data,
                               mechanism=Mechanism.RSA_PKCS_PSS,
                               mechanism_param=(Mechanism.SHA_1,
                                               MGF.SHA1,
                                               20))

DSA
~~~

The default signing and verification mechanism for RSA is `DSA_SHA512`.

Other mechanisms are available:

+------------+-------------------------------------------+
| Mechanism  | Notes                                     |
+============+===========================================+
| DSA        | No hashing. 20, 28, 32, 48 or 64 bits.    |
+------------+-------------------------------------------+
| DSA_SHA*   | DSA with SHAx message digesting.          |
+------------+-------------------------------------------+

::

    # Given a private key `private`
    signature = private.sign(data)

    # Given a public key `public`
    assert public.verify(data, signature)

The parameters `r` and `s` are concatenated together as a single byte string
(each value is 20 bytes long for a total of 40 bytes).
To convert to the ASN.1 encoding (e.g. as used by X.509) use
:func:`pkcs11.util.dsa.encode_dsa_signature`.
To convert from the ASN.1 encoding into PKCS #11 encoding use
:func:`pkcs11.util.ec.decode_dsa_signature`.

ECDSA
~~~~~

The default signing and verification mechanism for ECDSA is `ECDSA_SHA512`.

Other mechanisms are available:

+------------+-------------------------------------------+
| Mechanism  | Notes                                     |
+============+===========================================+
| ECDSA      | No hashing. Input truncated to 1024 bits. |
+------------+-------------------------------------------+
| ECDSA_SHA* | ECDSA with SHAx message digesting.        |
+------------+-------------------------------------------+

::

    # Given a private key `private`
    signature = private.sign(data)

    # Given a public key `public`
    assert public.verify(data, signature)

The parameters `r` and `s` are concatenated together as a single byte string
(both values are the same length).
To convert to the ASN.1 encoding (e.g. as used by X.509) use
:func:`pkcs11.util.ec.encode_ecdsa_signature`.
To convert from the ASN.1 encoding into PKCS #11 encoding use
:func:`pkcs11.util.ec.decode_ecdsa_signature`.

Wrapping/Unwrapping
-------------------

The expectation when using HSMs is that secret and private keys never leave
the secure boundary of the HSM. However, there is a use case for transmitting
secret and private keys over insecure mediums. We can do this using key
wrapping.

Key wrapping is similar to encryption and decryption except instead of turning
plaintext into crypttext it turns key objects into crypttext and vice versa.

Keys must be marked as `EXTRACTABLE` to remove them from the HSM, even wrapped.

Key wrapping mechanisms usually mirror encryption mechanisms.

AES
~~~

Default key wrapping mode is `AES_ECB`. ECB is considered safe for key wrapping
due to the lack of repeating blocks. Other mechanisms, such as the new
`AES_KEY_WRAP` (if available), are also possible..

The key we're wrapping can be any sensitive key, either a secret key or
a private key. In this example we're extracting an AES secret key:

::

    # Given two secret keys, `key1` and `key2`, we can extract an encrypted
    # version of `key2`
    crypttext = key1.wrap_key(key2)

Wrapping doesn't store any parameters about the keys. We must supply those
to import the key.

::

    key = key1.unwrap_key(ObjectClass.SECRET_KEY, KeyType.AES, crypttext)

DES2/3
~~~~~~

Default key wrapping mode is `DES3_ECB`. ECB is considered safe for key
wrapping due to the lack of repeating blocks. Other mechanisms are available.

Operation is the same as for `AES`.

RSA
~~~

The key we're wrapping can be any sensitive key, either a secret key or
a private key. In this example we're extracting an AES secret key:

::

    # Given a public key, `public`, and a secret key `key`, we can extract an
    encrypted version of `key`
    crypttext = public.wrap_key(key)

Wrapping doesn't store any parameters about the keys. We must supply those
to import the key.

::

    # Given a private key, `private`, matching `public` above we can decrypt
    # and import `key`.
    key = private.unwrap_key(ObjectClass.SECRET_KEY, KeyType.AES, crypttext)

Deriving Shared Keys
--------------------

.. warning::

    Key derivation mechanisms do not verify the authenticity of the other
    party. Your application should include a mechanism to verify the other
    user's public key is really from that user to avoid man-in-the-middle
    attacks.

    Where possible use an existing protocol.

Diffie-Hellman
~~~~~~~~~~~~~~

DH lets us derive a shared key using shared domain parameters, our private
key and the other party's public key, which is passed as a mechanism parameter.

The default DH derivation mechanism is `DH_PKCS_DERIVE`, which uses the
algorithm described in PKCS #3.

.. note::

    Other DH derivation mechanisms including X9.42 derivation are not currently
    supported.

::

    # Given our DH private key `private` and the other party's public key
    # `other_public`
    key = private.derive_key(
        KeyType.AES, 128,
        mechanism_param=other_public)

If the other user's public key was encoded using RFC 3279, we can decode this
with :func:`pkcs11.util.dh.decode_dh_public_key`:

::

    from pkcs11.util.dh import decode_dh_public_key

    key = private.derive_key(
        KeyType.AES, 128,
        mechanism_param=decode_dh_public_key(encoded_public_key))

And we can encode our public key for them using
:func:`pkcs11.util.dh.encode_dh_public_key`:

::

    from pkcs11.util.dh import encode_dh_public_key

    # Given our DH public key `public`
    encoded_public_key = encode_dh_public_key(public)

The shared derived key can now be used for any appropriate mechanism.

If you want to extract the shared key from the HSM, you can mark the key
as `EXTRACTABLE`:

::

    key = private.derive_key(
        KeyType.AES, 128,
        mechanism_param=other_public,
        template={
            Attribute.SENSITIVE: False,
            Attribute.EXTRACTABLE: True,
        })
    # This is our shared secret key
    print(key[Attribute.VALUE])


EC Diffie-Hellman
~~~~~~~~~~~~~~~~~

ECDH is supported using the `ECDH1_DERIVE` mechanism,
similar to plain DH, except that the mechanism parameter
is a tuple consisting of 3 parameters:

* a key derivation function (KDF);
* a shared value; and
* the other user's public key.

The supported KDFs vary from device to device, check your HSM documentation.
For :attr:`pkcs11.mechanisms.KDF.NULL` (the most widely supported KDF), the
shared value must be `None`.

.. note::

    Other ECDH derivation mechanisms including co-factor derivation and MQV
    derivation are not currently supported.

::

    from pkcs11 import KeyType, KDF

    # Given our DH private key `private` and the other party's public key
    # `other_public`
    key = private.derive_key(
        KeyType.AES, 128,
        mechanism_param=(KDF.NULL, None, other_public))

The value of the other user's public key should usually be a raw byte string
however some implementations require a DER-encoded byte string (i.e. the same
format as `EC_POINT`) [#]_. Use the `encode_ec_point` parameter to
:func:`pkcs11.util.ec.decode_ec_public_key`.

+-----------------+----------------------------------+
| Implementation  | Other user's `EC_POINT` encoding |
+=================+==================================+
| SoftHSM v2      | DER-encoded                      |
+-----------------+----------------------------------+
| Nitrokey HSM    | Raw                              |
+-----------------+----------------------------------+
| Thales nCipher  | ?                                |
+-----------------+----------------------------------+

If you want to extract the shared key from the HSM, you can mark the key
as `EXTRACTABLE`:

::

    key = private.derive_key(
        KeyType.AES, 128,
        mechanism_param=(KDF.NULL, None, other_public),
        template={
            Attribute.SENSITIVE: False,
            Attribute.EXTRACTABLE: True,
        })
    # This is our shared secret key
    print(key[Attribute.VALUE])

.. [#] The incompatibility comes from this being unspecified in earlier
    versions of PKCS #11, although why they made it a different format to
    `EC_POINT` is unclear.

Digesting and Hashing
---------------------

PKCS #11 exposes the ability to hash or digest data via a number of mechanisms.
For performance reasons, this is rarely done in the HSM, and is usually done
in your process. The only advantage of using this function over :mod:`hashlib`
is the ability to digest :class:`pkcs11.Key` objects.

To digest a message (e.g. with SHA-256):

::

    from pkcs11 import Mechanism

    digest = session.digest(data, mechanism=Mechanism.SHA_256)

You can also pass an iterable of data:

::

    with open(file_in, 'rb') as input:
        # A generator yielding chunks of the file
        chunks = iter(lambda: input.read(buffer_size), '')
        digest = session.digest(chunks, mechanism=Mechanism.SHA_512)

Or a key (if supported):

::

    digest = session.digest(public_key, mechanism=Mechanism.SHA_1)

Or even a combination of keys and data:

::

    digest = session.digest((b'HEADER', key), mechanism=Mechanism.SHA_1)

Certificates
------------

Certificates can be stored in the HSM as objects.  PKCS#11 is limited in its
handling of certificates, and does not provide features like parsing of X.509
etc. These should be handled in an external library (e.g. `asn1crypto`. PKCS#11
will not set attributes on the certificate based on the `VALUE` and these must
be specified when creating the object.

X.509
~~~~~

The following attributes are defined:

.. glossary::

    VALUE
        The complete X.509 certificate (BER-encoded)

    SUBJECT
        The certificate subject (DER-encoded X.509 distinguished name)

    ISSUER
        The certificate issuer (DER-encoded X.509 distinguished name)

    SERIAL
        The certificate serial (DER-encoded integer)

Additionally an extended set of attributes can be stored if your HSM supports
it:

.. glossary::

    START_DATE
        The certificate start date (notBefore)

    END_DATE
        The certificate end date (notAfter)

    HASH_OF_SUBJECT_PUBLIC_KEY
        The identifier of the subject's public key (bytes)

    HASH_OF_ISSUER_PUBLIC_KEY
        The identifier of the issuer's public key (bytes)


Importing Certificates
^^^^^^^^^^^^^^^^^^^^^^

:func:`pkcs11.util.x509.decode_x509_certificate` can be used to decode
X.509 certificates for storage in the HSM:

::

    from pkcs11.util.x509 import decode_x509_certificate

    cert = self.session.create_object(decode_x509_certificate(b'DER encoded X.509 cert...'))

Exporting Certificates
^^^^^^^^^^^^^^^^^^^^^^

The full certificate is stored as `VALUE`. Any X.509 capable library can use
this data, e.g. `asn1crypto` or `PyOpenSSL`.

OpenSSL:

::

    import OpenSSL
    from pkcs11 import Attribute, ObjectClass

    for cert in session.get_objects({
        Attribute.CLASS: ObjectClass.CERTIFICATE,
    }):
        # Convert from DER-encoded value to OpenSSL object
        cert = OpenSSL.crypto.load_certificate(
            OpenSSL.crypto.FILETYPE_ASN1,
            cert[Attribute.VALUE],
        )

        # Retrieve values from the certificate
        subject = cert.get_subject()

        # Convert to PEM format
        cert = OpenSSL.crypto.dump_certificate(
            OpenSSL.crypto.FILETYPE_PEM,
            cert
        )

asn1crypto:

::

    from asn1crypto import pem, x509

    der_bytes = cert[Attribute.VALUE]

    # Load a certificate object from the DER-encoded value
    cert = x509.Certificate.load(der_bytes)

    # Write out a PEM encoded value
    pem_bytes = pem.armor('CERTIFICATE', der_bytes)