1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898
|
'''
Graph
======
The :class:`Graph` widget is a widget for displaying plots. It supports
drawing multiple plot with different colors on the Graph. It also supports
a title, ticks, labeled ticks, grids and a log or linear representation on
both the x and y axis, independently.
To display a plot. First create a graph which will function as a "canvas" for
the plots. Then create plot objects e.g. MeshLinePlot and add them to the
graph.
To create a graph with x-axis between 0-100, y-axis between -1 to 1, x and y
labels of and X and Y, respectively, x major and minor ticks every 25, 5 units,
respectively, y major ticks every 1 units, full x and y grids and with
a red line plot containing a sin wave on this range::
from kivy.garden.graph import Graph, MeshLinePlot
graph = Graph(xlabel='X', ylabel='Y', x_ticks_minor=5,
x_ticks_major=25, y_ticks_major=1,
y_grid_label=True, x_grid_label=True, padding=5,
x_grid=True, y_grid=True, xmin=-0, xmax=100, ymin=-1, ymax=1)
plot = MeshLinePlot(color=[1, 0, 0, 1])
plot.points = [(x, sin(x / 10.)) for x in range(0, 101)]
graph.add_plot(plot)
The MeshLinePlot plot is a particular plot which draws a set of points using
a mesh object. The points are given as a list of tuples, with each tuple
being a (x, y) coordinate in the graph's units.
You can create different types of plots other than MeshLinePlot by inheriting
from the Plot class and implementing the required functions. The Graph object
provides a "canvas" to which a Plot's instructions are added. The plot object
is responsible for updating these instructions to show within the bounding
box of the graph the proper plot. The Graph notifies the Plot when it needs
to be redrawn due to changes. See the MeshLinePlot class for how it is done.
.. note::
The graph uses a stencil view to clip the plots to the graph display area.
As with the stencil graphics instructions, you cannot stack more than 8
stencil-aware widgets.
'''
__all__ = ('Graph', 'Plot', 'MeshLinePlot', 'MeshStemPlot')
from math import radians
from kivy.uix.widget import Widget
from kivy.uix.label import Label
from kivy.uix.stencilview import StencilView
from kivy.properties import NumericProperty, BooleanProperty,\
BoundedNumericProperty, StringProperty, ListProperty, ObjectProperty,\
DictProperty, AliasProperty
from kivy.clock import Clock
from kivy.graphics import Mesh, Color
from kivy.graphics.transformation import Matrix
from kivy.event import EventDispatcher
from kivy.lang import Builder
from kivy import metrics
from math import log10, floor, ceil
from decimal import Decimal
Builder.load_string('''
#:kivy 1.1.0
<RotateLabel>:
canvas.before:
PushMatrix
MatrixInstruction:
matrix: self.transform
canvas.after:
PopMatrix
''')
class RotateLabel(Label):
transform = ObjectProperty(Matrix())
class Graph(Widget):
'''Graph class, see module documentation for more information.
'''
# triggers a full reload of graphics
_trigger = ObjectProperty(None)
# triggers only a repositioning of objects due to size/pos updates
_trigger_size = ObjectProperty(None)
# holds widget with the x-axis label
_xlabel = ObjectProperty(None)
# holds widget with the y-axis label
_ylabel = ObjectProperty(None)
# holds all the x-axis tick mark labels
_x_grid_label = ListProperty([])
# holds all the y-axis tick mark labels
_y_grid_label = ListProperty([])
# holds the stencil view that clipse the plots to graph area
_plot_area = ObjectProperty(None)
# the mesh drawing all the ticks/grids
_mesh = ObjectProperty(None)
# the mesh which draws the surrounding rectangle
_mesh_rect = ObjectProperty(None)
# a list of locations of major and minor ticks. The values are not
# but is in the axis min - max range
_ticks_majorx = ListProperty([])
_ticks_minorx = ListProperty([])
_ticks_majory = ListProperty([])
_ticks_minory = ListProperty([])
def __init__(self, **kwargs):
super().__init__(**kwargs)
self._mesh = Mesh(mode='lines')
self._mesh_rect = Mesh(mode='line_strip')
val = 0.25
self.canvas.add(Color(1 * val, 1 * val, 1 * val))
self.canvas.add(self._mesh)
self.canvas.add(Color(1, 1, 1))
self.canvas.add(self._mesh_rect)
mesh = self._mesh_rect
mesh.vertices = [0] * (5 * 4)
mesh.indices = [k for k in range(5)]
self._plot_area = StencilView()
self.add_widget(self._plot_area)
self._trigger = Clock.create_trigger(self._redraw_all)
self._trigger_size = Clock.create_trigger(self._redraw_size)
self.bind(center=self._trigger_size, padding=self._trigger_size,
font_size=self._trigger_size, plots=self._trigger_size,
x_grid=self._trigger_size, y_grid=self._trigger_size,
draw_border=self._trigger_size)
self.bind(xmin=self._trigger, xmax=self._trigger,
xlog=self._trigger, x_ticks_major=self._trigger,
x_ticks_minor=self._trigger,
xlabel=self._trigger, x_grid_label=self._trigger,
ymin=self._trigger, ymax=self._trigger,
ylog=self._trigger, y_ticks_major=self._trigger,
y_ticks_minor=self._trigger,
ylabel=self._trigger, y_grid_label=self._trigger)
self._trigger()
def _get_ticks(self, major, minor, log, s_min, s_max):
if major and s_max > s_min:
if log:
s_min = log10(s_min)
s_max = log10(s_max)
# count the decades in min - max. This is in actual decades,
# not logs.
n_decades = floor(s_max - s_min)
# for the fractional part of the last decade, we need to
# convert the log value, x, to 10**x but need to handle
# differently if the last incomplete decade has a decade
# boundary in it
if floor(s_min + n_decades) != floor(s_max):
n_decades += 1 - (10 ** (s_min + n_decades + 1) - 10
** s_max) / 10 ** floor(s_max + 1)
else:
n_decades += ((10 ** s_max - 10 ** (s_min + n_decades))
/ 10 ** floor(s_max + 1))
# this might be larger than what is needed, but we delete
# excess later
n_ticks_major = n_decades / float(major)
n_ticks = int(floor(n_ticks_major * (minor if minor
>= 1. else 1.0))) + 2
# in decade multiples, e.g. 0.1 of the decade, the distance
# between ticks
decade_dist = major / float(minor if minor else 1.0)
points_minor = [0] * n_ticks
points_major = [0] * n_ticks
k = 0 # position in points major
k2 = 0 # position in points minor
# because each decade is missing 0.1 of the decade, if a tick
# falls in < min_pos skip it
min_pos = 0.1 - 0.00001 * decade_dist
s_min_low = floor(s_min)
# first real tick location. value is in fractions of decades
# from the start we have to use decimals here, otherwise
# floating point inaccuracies results in bad values
start_dec = ceil((10 ** Decimal(s_min - s_min_low - 1))
/ Decimal(decade_dist)) * decade_dist
count_min = (0 if not minor else
floor(start_dec / decade_dist) % minor)
start_dec += s_min_low
count = 0 # number of ticks we currently have passed start
while True:
# this is the current position in decade that we are.
# e.g. -0.9 means that we're at 0.1 of the 10**ceil(-0.9)
# decade
pos_dec = start_dec + decade_dist * count
pos_dec_low = floor(pos_dec)
diff = pos_dec - pos_dec_low
zero = abs(diff) < 0.001 * decade_dist
if zero:
# the same value as pos_dec but in log scale
pos_log = pos_dec_low
else:
pos_log = log10((pos_dec - pos_dec_low
) * 10 ** ceil(pos_dec))
if pos_log > s_max:
break
count += 1
if zero or diff >= min_pos:
if minor and not count_min % minor:
points_major[k] = pos_log
k += 1
else:
points_minor[k2] = pos_log
k2 += 1
count_min += 1
# n_ticks = len(points)
else:
# distance between each tick
tick_dist = major / float(minor if minor else 1.0)
n_ticks = int(floor((s_max - s_min) / tick_dist) + 1)
points_major = [0] * int(
floor((s_max - s_min) / float(major)) + 1
)
points_minor = [0] * (n_ticks - len(points_major) + 1)
k = 0 # position in points major
k2 = 0 # position in points minor
for m in range(0, n_ticks):
if minor and m % minor:
points_minor[k2] = m * tick_dist + s_min
k2 += 1
else:
points_major[k] = m * tick_dist + s_min
k += 1
del points_major[k:]
del points_minor[k2:]
else:
points_major = []
points_minor = []
return points_major, points_minor
def _update_labels(self):
xlabel = self._xlabel
ylabel = self._ylabel
x = self.x
y = self.y
width = self.width
height = self.height
padding = self.padding
x_next = padding + x
y_next = padding + y
xextent = x + width
yextent = y + height
ymin = self.ymin
ymax = self.ymax
xmin = self.xmin
precision = self.precision
x_overlap = False
y_overlap = False
# set up x and y axis labels
if xlabel:
xlabel.text = self.xlabel
xlabel.texture_update()
xlabel.size = xlabel.texture_size
xlabel.pos = (x + width / 2. - xlabel.width / 2., padding + y)
y_next += padding + xlabel.height
if ylabel:
ylabel.text = self.ylabel
ylabel.texture_update()
ylabel.size = ylabel.texture_size
ylabel.x = padding + x - (ylabel.width / 2. - ylabel.height / 2.)
x_next += padding + ylabel.height
xpoints = self._ticks_majorx
xlabels = self._x_grid_label
xlabel_grid = self.x_grid_label
ylabel_grid = self.y_grid_label
ypoints = self._ticks_majory
ylabels = self._y_grid_label
# now x and y tick mark labels
if len(ylabels) and ylabel_grid:
# horizontal size of the largest tick label, to have enough room
ylabels[0].text = precision % ypoints[0]
ylabels[0].texture_update()
y1 = ylabels[0].texture_size
y_start = y_next + (
padding + y1[1]
if len(xlabels) and xlabel_grid else 0
) + (padding + y1[1] if not y_next else 0)
yextent = y + height - padding - y1[1] / 2.
if self.ylog:
ymax = log10(ymax)
ymin = log10(ymin)
ratio = (yextent - y_start) / float(ymax - ymin)
y_start -= y1[1] / 2.
func = (lambda x: 10 ** x) if self.ylog else lambda x: x
y1 = y1[0]
for k in range(len(ylabels)):
ylabels[k].text = precision % func(ypoints[k])
ylabels[k].texture_update()
ylabels[k].size = ylabels[k].texture_size
y1 = max(y1, ylabels[k].texture_size[0])
ylabels[k].pos = (x_next, y_start + (ypoints[k] - ymin)
* ratio)
if len(ylabels) > 1 and ylabels[0].top > ylabels[1].y:
y_overlap = True
else:
x_next += y1 + padding
if len(xlabels) and xlabel_grid:
func = log10 if self.xlog else lambda x: x
# find the distance from the end that'll fit the last tick label
xlabels[0].text = precision % func(xpoints[-1])
xlabels[0].texture_update()
xextent = x + width - xlabels[0].texture_size[0] / 2. - padding
# find the distance from the start that'll fit the first tick label
if not x_next:
xlabels[0].text = precision % func(xpoints[0])
xlabels[0].texture_update()
x_next = padding + xlabels[0].texture_size[0] / 2.
xmin = func(xmin)
ratio = (xextent - x_next) / float(func(self.xmax) - xmin)
func = (lambda x: 10 ** x) if self.xlog else lambda x: x
right = -1
for k in range(len(xlabels)):
xlabels[k].text = precision % func(xpoints[k])
# update the size so we can center the labels on ticks
xlabels[k].texture_update()
xlabels[k].size = xlabels[k].texture_size
xlabels[k].pos = (x_next + (xpoints[k] - xmin) * ratio
- xlabels[k].texture_size[0] / 2., y_next)
if xlabels[k].x < right:
x_overlap = True
break
right = xlabels[k].right
if not x_overlap:
y_next += padding + xlabels[0].texture_size[1]
# now re-center the x and y axis labels
if xlabel:
xlabel.x = x_next + (xextent - x_next) / 2. - xlabel.width / 2.
if ylabel:
ylabel.y = y_next + (yextent - y_next) / 2. - ylabel.height / 2.
t = Matrix().translate(ylabel.center[0], ylabel.center[1], 0)
t = t.multiply(Matrix().rotate(-radians(270), 0, 0, 1))
ylabel.transform = t.multiply(Matrix().translate(-ylabel.center[0],
-ylabel.center[1],
0))
if x_overlap:
for k in range(len(xlabels)):
xlabels[k].text = ''
if y_overlap:
for k in range(len(ylabels)):
ylabels[k].text = ''
return x_next, y_next, xextent, yextent
def _update_ticks(self, size):
# re-compute the positions of the bounding rectangle
mesh = self._mesh_rect
vert = mesh.vertices
if self.draw_border:
vert[0] = size[0]
vert[1] = size[1]
vert[4] = size[2]
vert[5] = size[1]
vert[8] = size[2]
vert[9] = size[3]
vert[12] = size[0]
vert[13] = size[3]
vert[16] = size[0]
vert[17] = size[1]
else:
vert[0:18] = [0 for k in range(18)]
mesh.vertices = vert
# re-compute the positions of the x/y axis ticks
mesh = self._mesh
vert = mesh.vertices
start = 0
xpoints = self._ticks_majorx
ypoints = self._ticks_majory
ylog = self.ylog
xlog = self.xlog
xmin = self.xmin
xmax = self.xmax
if xlog:
xmin = log10(xmin)
xmax = log10(xmax)
ymin = self.ymin
ymax = self.ymax
if ylog:
xmin = log10(ymin)
ymax = log10(ymax)
if len(xpoints):
top = size[3] if self.x_grid else metrics.dp(12) + size[1]
ratio = (size[2] - size[0]) / float(xmax - xmin)
for k in range(start, len(xpoints) + start):
vert[k * 8] = size[0] + (xpoints[k - start] - xmin) * ratio
vert[k * 8 + 1] = size[1]
vert[k * 8 + 4] = vert[k * 8]
vert[k * 8 + 5] = top
start += len(xpoints)
if len(ypoints):
top = size[2] if self.y_grid else metrics.dp(12) + size[0]
ratio = (size[3] - size[1]) / float(ymax - ymin)
for k in range(start, len(ypoints) + start):
vert[k * 8 + 1] = size[1] + (ypoints[k - start] - ymin) * ratio
vert[k * 8 + 5] = vert[k * 8 + 1]
vert[k * 8] = size[0]
vert[k * 8 + 4] = top
mesh.vertices = vert
def _update_plots(self, size):
ylog = self.ylog
xlog = self.xlog
xmin = self.xmin
xmax = self.xmax
ymin = self.ymin
ymax = self.ymax
for plot in self.plots:
plot._update(xlog, xmin, xmax, ylog, ymin, ymax, size)
def _redraw_all(self, *args):
# add/remove all the required labels
font_size = self.font_size
if self.xlabel:
if not self._xlabel:
xlabel = Label(font_size=font_size)
self.add_widget(xlabel)
self._xlabel = xlabel
else:
xlabel = self._xlabel
if xlabel:
self.remove_widget(xlabel)
self._xlabel = None
grids = self._x_grid_label
xpoints_major, xpoints_minor = self._get_ticks(self.x_ticks_major,
self.x_ticks_minor,
self.xlog, self.xmin,
self.xmax)
self._ticks_majorx = xpoints_major
self._ticks_minorx = xpoints_minor
if not self.x_grid_label:
n_labels = 0
else:
n_labels = len(xpoints_major)
for k in range(n_labels, len(grids)):
self.remove_widget(grids[k])
del grids[n_labels:]
grid_len = len(grids)
grids.extend([None] * (n_labels - len(grids)))
for k in range(grid_len, n_labels):
grids[k] = Label(font_size=font_size)
self.add_widget(grids[k])
if self.ylabel:
if not self._ylabel:
ylabel = RotateLabel(font_size=font_size)
self.add_widget(ylabel)
self._ylabel = ylabel
else:
ylabel = self._ylabel
if ylabel:
self.remove_widget(ylabel)
self._ylabel = None
grids = self._y_grid_label
ypoints_major, ypoints_minor = self._get_ticks(self.y_ticks_major,
self.y_ticks_minor,
self.ylog, self.ymin,
self.ymax)
self._ticks_majory = ypoints_major
self._ticks_minory = ypoints_minor
if not self.y_grid_label:
n_labels = 0
else:
n_labels = len(ypoints_major)
for k in range(n_labels, len(grids)):
self.remove_widget(grids[k])
del grids[n_labels:]
grid_len = len(grids)
grids.extend([None] * (n_labels - len(grids)))
for k in range(grid_len, n_labels):
grids[k] = Label(font_size=font_size)
self.add_widget(grids[k])
mesh = self._mesh
n_points = (len(xpoints_major) + len(xpoints_minor)
+ len(ypoints_major) + len(ypoints_minor))
mesh.vertices = [0] * (n_points * 8)
mesh.indices = [k for k in range(n_points * 2)]
self._redraw_size()
def _redraw_size(self, *args):
# size a 4-tuple describing the bounding box in which we can draw
# graphs, it's (x0, y0, x1, y1), which correspond with the bottom left
# and top right corner locations, respectively
size = self._update_labels()
self._plot_area.pos = (size[0], size[1])
self._plot_area.size = (size[2] - size[0], size[3] - size[1])
self._update_ticks(size)
self._update_plots(size)
def add_plot(self, plot):
'''Add a new plot to this graph.
:Parameters:
`plot`:
Plot to add to this graph.
>>> graph = Graph()
>>> plot = MeshLinePlot(mode='line_strip', color=[1, 0, 0, 1])
>>> plot.points = [(x / 10., sin(x / 50.)) for x in range(-0, 101)]
>>> graph.add_plot(plot)
'''
area = self._plot_area
for group in plot._get_drawings():
area.canvas.add(group)
self.plots = self.plots + [plot]
def remove_plot(self, plot):
'''Remove a plot from this graph.
:Parameters:
`plot`:
Plot to remove from this graph.
>>> graph = Graph()
>>> plot = MeshLinePlot(mode='line_strip', color=[1, 0, 0, 1])
>>> plot.points = [(x / 10., sin(x / 50.)) for x in range(-0, 101)]
>>> graph.add_plot(plot)
>>> graph.remove_plot(plot)
'''
self._plot_area.canvas.remove_group(plot._get_group())
self.plots.remove(plot)
xmin = NumericProperty(0.)
'''The x-axis minimum value.
If :data:`xlog` is True, xmin must be larger than zero.
:data:`xmin` is a :class:`~kivy.properties.NumericProperty`, defaults to 0.
'''
xmax = NumericProperty(100.)
'''The x-axis maximum value, larger than xmin.
:data:`xmax` is a :class:`~kivy.properties.NumericProperty`, defaults to 0.
'''
xlog = BooleanProperty(False)
'''Determines whether the x-axis should be displayed logarithmically (True)
or linearly (False).
:data:`xlog` is a :class:`~kivy.properties.BooleanProperty`, defaults
to False.
'''
x_ticks_major = BoundedNumericProperty(0, min=0)
'''Distance between major tick marks on the x-axis.
Determines the distance between the major tick marks. Major tick marks
start from min and re-occur at every ticks_major until :data:`xmax`.
If :data:`xmax` doesn't overlap with a integer multiple of ticks_major,
no tick will occur at :data:`xmax`. Zero indicates no tick marks.
If :data:`xlog` is true, then this indicates the distance between ticks
in multiples of current decade. E.g. if :data:`xmin` is 0.1 and
ticks_major is 0.1, it means there will be a tick at every 10th of the
decade, i.e. 0.1 ... 0.9, 1, 2... If it is 0.3, the ticks will occur at
0.1, 0.3, 0.6, 0.9, 2, 5, 8, 10. You'll notice that it went from 8 to 10
instead of to 20, that's so that we can say 0.5 and have ticks at every
half decade, e.g. 0.1, 0.5, 1, 5, 10, 50... Similarly, if ticks_major is
1.5, there will be ticks at 0.1, 5, 100, 5,000... Also notice, that there's
always a major tick at the start. Finally, if e.g. :data:`xmin` is 0.6
and this 0.5 there will be ticks at 0.6, 1, 5...
:data:`x_ticks_major` is a
:class:`~kivy.properties.BoundedNumericProperty`, defaults to 0.
'''
x_ticks_minor = BoundedNumericProperty(0, min=0)
'''The number of sub-intervals that divide x_ticks_major.
Determines the number of sub-intervals into which ticks_major is divided,
if non-zero. The actual number of minor ticks between the major ticks is
ticks_minor - 1. Only used if ticks_major is non-zero. If there's no major
tick at xmax then the number of minor ticks after the last major
tick will be however many ticks fit until xmax.
If self.xlog is true, then this indicates the number of intervals the
distance between major ticks is divided. The result is the number of
multiples of decades between ticks. I.e. if ticks_minor is 10, then if
ticks_major is 1, there will be ticks at 0.1, 0.2...0.9, 1, 2, 3... If
ticks_major is 0.3, ticks will occur at 0.1, 0.12, 0.15, 0.18... Finally,
as is common, if ticks major is 1, and ticks minor is 5, there will be
ticks at 0.1, 0.2, 0.4... 0.8, 1, 2...
:data:`x_ticks_minor` is a
:class:`~kivy.properties.BoundedNumericProperty`, defaults to 0.
'''
x_grid = BooleanProperty(False)
'''Determines whether the x-axis has tick marks or a full grid.
If :data:`x_ticks_major` is non-zero, then if x_grid is False tick marks
will be displayed at every major tick. If x_grid is True, instead of ticks,
a vertical line will be displayed at every major tick.
:data:`x_grid` is a :class:`~kivy.properties.BooleanProperty`, defaults
to False.
'''
x_grid_label = BooleanProperty(False)
'''Whether labels should be displayed beneath each major tick. If true,
each major tick will have a label containing the axis value.
:data:`x_grid_label` is a :class:`~kivy.properties.BooleanProperty`,
defaults to False.
'''
xlabel = StringProperty('')
'''The label for the x-axis. If not empty it is displayed in the center of
the axis.
:data:`xlabel` is a :class:`~kivy.properties.StringProperty`,
defaults to ''.
'''
ymin = NumericProperty(0.)
'''The y-axis minimum value.
If :data:`ylog` is True, ymin must be larger than zero.
:data:`ymin` is a :class:`~kivy.properties.NumericProperty`, defaults to 0.
'''
ymax = NumericProperty(100.)
'''The y-axis maximum value, larger than ymin.
:data:`ymax` is a :class:`~kivy.properties.NumericProperty`, defaults to 0.
'''
ylog = BooleanProperty(False)
'''Determines whether the y-axis should be displayed logarithmically (True)
or linearly (False).
:data:`ylog` is a :class:`~kivy.properties.BooleanProperty`, defaults
to False.
'''
y_ticks_major = BoundedNumericProperty(0, min=0)
'''Distance between major tick marks. See :data:`x_ticks_major`.
:data:`y_ticks_major` is a
:class:`~kivy.properties.BoundedNumericProperty`, defaults to 0.
'''
y_ticks_minor = BoundedNumericProperty(0, min=0)
'''The number of sub-intervals that divide ticks_major.
See :data:`x_ticks_minor`.
:data:`y_ticks_minor` is a
:class:`~kivy.properties.BoundedNumericProperty`, defaults to 0.
'''
y_grid = BooleanProperty(False)
'''Determines whether the y-axis has tick marks or a full grid. See
:data:`x_grid`.
:data:`y_grid` is a :class:`~kivy.properties.BooleanProperty`, defaults
to False.
'''
y_grid_label = BooleanProperty(False)
'''Whether labels should be displayed beneath each major tick. If true,
each major tick will have a label containing the axis value.
:data:`y_grid_label` is a :class:`~kivy.properties.BooleanProperty`,
defaults to False.
'''
ylabel = StringProperty('')
'''The label for the y-axis. If not empty it is displayed in the center of
the axis.
:data:`ylabel` is a :class:`~kivy.properties.StringProperty`,
defaults to ''.
'''
padding = NumericProperty('5dp')
'''Padding distances between the labels, titles and graph, as well between
the widget and the objects near the boundaries.
:data:`padding` is a :class:`~kivy.properties.NumericProperty`, defaults
to 5dp.
'''
font_size = NumericProperty('15sp')
'''Font size of the labels.
:data:`font_size` is a :class:`~kivy.properties.NumericProperty`, defaults
to 15sp.
'''
precision = StringProperty('%g')
'''Determines the numerical precision of the tick mark labels. This value
governs how the numbers are converted into string representation. Accepted
values are those listed in Python's manual in the
"String Formatting Operations" section.
:data:`precision` is a :class:`~kivy.properties.StringProperty`, defaults
to '%g'.
'''
draw_border = BooleanProperty(True)
'''Whether a border is drawn around the canvas of the graph where the
plots are displayed.
:data:`draw_border` is a :class:`~kivy.properties.BooleanProperty`,
defaults to True.
'''
plots = ListProperty([])
'''Holds a list of all the plots in the graph. To add and remove plots
from the graph use :data:`add_plot` and :data:`add_plot`. Do not add
directly edit this list.
:data:`plots` is a :class:`~kivy.properties.ListProperty`,
defaults to [].
'''
class Plot(EventDispatcher):
'''Plot class, see module documentation for more information.
'''
# this function is called by graph whenever any of the parameters
# change. The plot should be recalculated then.
# log, min, max indicate the axis settings.
# size a 4-tuple describing the bounding box in which we can draw
# graphs, it's (x0, y0, x1, y1), which correspond with the bottom left
# and top right corner locations, respectively.
def _update(self, xlog, xmin, xmax, ylog, ymin, ymax, size):
pass
# returns a string which is unique and is the group name given to all the
# instructions returned by _get_drawings. Graph uses this to remove
# these instructions when needed.
def _get_group(self):
return ''
# returns a list of canvas instructions that will be added to the graph's
# canvas. These instructions must belong to a group as described
# in _get_group.
def _get_drawings(self):
return []
class MeshLinePlot(Plot):
'''MeshLinePlot class which displays a set of points similar to a mesh.
'''
# mesh which forms the plot
_mesh = ObjectProperty(None)
# color of the plot
_color = ObjectProperty(None)
_trigger = ObjectProperty(None)
# most recent values of the params used to draw the plot
_params = DictProperty({'xlog': False, 'xmin': 0, 'xmax': 100,
'ylog': False, 'ymin': 0, 'ymax': 100,
'size': (0, 0, 0, 0)})
def __init__(self, **kwargs):
self._color = Color(1, 1, 1, group='LinePlot%d' % id(self))
self._mesh = Mesh(mode='line_strip', group='LinePlot%d' % id(self))
super().__init__(**kwargs)
self._trigger = Clock.create_trigger(self._redraw)
self.bind(_params=self._trigger, points=self._trigger)
def _update(self, xlog, xmin, xmax, ylog, ymin, ymax, size):
self._params = {'xlog': xlog, 'xmin': xmin, 'xmax': xmax, 'ylog': ylog,
'ymin': ymin, 'ymax': ymax, 'size': size}
def _redraw(self, *args):
points = self.points
mesh = self._mesh
vert = mesh.vertices
ind = mesh.indices
params = self._params
funcx = log10 if params['xlog'] else lambda x: x
funcy = log10 if params['ylog'] else lambda x: x
xmin = funcx(params['xmin'])
ymin = funcy(params['ymin'])
diff = len(points) - len(vert) / 4
size = params['size']
ratiox = (size[2] - size[0]) / float(funcx(params['xmax']) - xmin)
ratioy = (size[3] - size[1]) / float(funcy(params['ymax']) - ymin)
if diff < 0:
del vert[4 * len(points):]
del ind[len(points):]
elif diff > 0:
ind.extend(range(len(ind), len(ind) + diff))
vert.extend([0] * (diff * 4))
for k in range(len(points)):
vert[k * 4] = (funcx(points[k][0]) - xmin) * ratiox + size[0]
vert[k * 4 + 1] = (funcy(points[k][1]) - ymin) * ratioy + size[1]
mesh.vertices = vert
def _get_group(self):
return 'LinePlot%d' % id(self)
def _get_drawings(self):
return [self._color, self._mesh]
def _set_mode(self, value):
self._mesh.mode = value
mode = AliasProperty(lambda self: self._mesh.mode, _set_mode)
'''VBO Mode used for drawing the points. Can be one of: 'points',
'line_strip', 'line_loop', 'lines', 'triangle_strip', 'triangle_fan'.
See :class:`~kivy.graphics.Mesh` for more details.
Defaults to 'line_strip'.
'''
def _set_color(self, value):
self._color.rgba = value
color = AliasProperty(lambda self: self._color.rgba, _set_color)
'''Plot color, in the format [r, g, b, a] with values between 0-1.
Defaults to [1, 1, 1, 1].
'''
points = ListProperty([])
'''List of x, y points to be displayed in the plot.
The elements of points are 2-tuples, (x, y). The points are displayed
based on the mode setting.
:data:`points` is a :class:`~kivy.properties.ListProperty`, defaults to
[].
'''
class MeshStemPlot(MeshLinePlot):
'''MeshStemPlot uses the MeshLinePlot class to draw a stem plot. The data
provided is graphed from origin to the data point.
'''
def _redraw(self, *args):
points = self.points
mesh = self._mesh
self._mesh.mode = 'lines'
vert = mesh.vertices
ind = mesh.indices
params = self._params
funcx = log10 if params['xlog'] else lambda x: x
funcy = log10 if params['ylog'] else lambda x: x
xmin = funcx(params['xmin'])
ymin = funcy(params['ymin'])
diff = len(points) * 2 - len(vert) / 4
size = params['size']
ratiox = (size[2] - size[0]) / float(funcx(params['xmax']) - xmin)
ratioy = (size[3] - size[1]) / float(funcy(params['ymax']) - ymin)
if diff < 0:
del vert[4 * len(points):]
del ind[len(points):]
elif diff > 0:
ind.extend(range(len(ind), len(ind) + diff))
vert.extend([0] * (diff * 4))
for k in range(len(points)):
vert[k * 8] = (funcx(points[k][0]) - xmin) * ratiox + size[0]
vert[k * 8 + 1] = (0 - ymin) * ratioy + size[1]
vert[k * 8 + 4] = (funcx(points[k][0]) - xmin) * ratiox + size[0]
vert[k * 8 + 5] = (funcy(points[k][1]) - ymin) * ratioy + size[1]
mesh.vertices = vert
if __name__ == '__main__':
from math import sin, cos
from kivy.app import App
class TestApp(App):
def build(self):
graph = Graph(xlabel='Cheese', ylabel='Apples', x_ticks_minor=5,
x_ticks_major=25, y_ticks_major=1,
y_grid_label=True, x_grid_label=True, padding=5,
xlog=False, ylog=False, x_grid=True, y_grid=True,
xmin=-50, xmax=50, ymin=-1, ymax=1)
plot = MeshLinePlot(color=[1, 0, 0, 1])
plot.points = [(x / 10., sin(x / 50.)) for x in range(-500, 501)]
graph.add_plot(plot)
plot = MeshLinePlot(color=[0, 1, 0, 1])
plot.points = [(x / 10., cos(x / 50.)) for x in range(-600, 501)]
graph.add_plot(plot)
plot = MeshLinePlot(color=[0, 0, 1, 1])
graph.add_plot(plot)
plot.points = [(x, x / 50.) for x in range(-50, 51)]
return graph
TestApp().run()
|