File: __init__.py

package info (click to toggle)
python-plyer 2.0.0-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,668 kB
  • sloc: python: 13,112; sh: 217; makefile: 177
file content (898 lines) | stat: -rw-r--r-- 35,339 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
'''
Graph
======

The :class:`Graph` widget is a widget for displaying plots. It supports
drawing multiple plot with different colors on the Graph. It also supports
a title, ticks, labeled ticks, grids and a log or linear representation on
both the x and y axis, independently.

To display a plot. First create a graph which will function as a "canvas" for
the plots. Then create plot objects e.g. MeshLinePlot and add them to the
graph.

To create a graph with x-axis between 0-100, y-axis between -1 to 1, x and y
labels of and X and Y, respectively, x major and minor ticks every 25, 5 units,
respectively, y major ticks every 1 units, full x and y grids and with
a red line plot containing a sin wave on this range::

    from kivy.garden.graph import Graph, MeshLinePlot
    graph = Graph(xlabel='X', ylabel='Y', x_ticks_minor=5,
                  x_ticks_major=25, y_ticks_major=1,
                  y_grid_label=True, x_grid_label=True, padding=5,
                  x_grid=True, y_grid=True, xmin=-0, xmax=100, ymin=-1, ymax=1)
    plot = MeshLinePlot(color=[1, 0, 0, 1])
    plot.points = [(x, sin(x / 10.)) for x in range(0, 101)]
    graph.add_plot(plot)

The MeshLinePlot plot is a particular plot which draws a set of points using
a mesh object. The points are given as a list of tuples, with each tuple
being a (x, y) coordinate in the graph's units.

You can create different types of plots other than MeshLinePlot by inheriting
from the Plot class and implementing the required functions. The Graph object
provides a "canvas" to which a Plot's instructions are added. The plot object
is responsible for updating these instructions to show within the bounding
box of the graph the proper plot. The Graph notifies the Plot when it needs
to be redrawn due to changes. See the MeshLinePlot class for how it is done.

.. note::

    The graph uses a stencil view to clip the plots to the graph display area.
    As with the stencil graphics instructions, you cannot stack more than 8
    stencil-aware widgets.

'''

__all__ = ('Graph', 'Plot', 'MeshLinePlot', 'MeshStemPlot')

from math import radians
from kivy.uix.widget import Widget
from kivy.uix.label import Label
from kivy.uix.stencilview import StencilView
from kivy.properties import NumericProperty, BooleanProperty,\
    BoundedNumericProperty, StringProperty, ListProperty, ObjectProperty,\
    DictProperty, AliasProperty
from kivy.clock import Clock
from kivy.graphics import Mesh, Color
from kivy.graphics.transformation import Matrix
from kivy.event import EventDispatcher
from kivy.lang import Builder
from kivy import metrics
from math import log10, floor, ceil
from decimal import Decimal

Builder.load_string('''
#:kivy 1.1.0

<RotateLabel>:
    canvas.before:
        PushMatrix
        MatrixInstruction:
            matrix: self.transform
    canvas.after:
        PopMatrix

''')


class RotateLabel(Label):

    transform = ObjectProperty(Matrix())


class Graph(Widget):
    '''Graph class, see module documentation for more information.
    '''

    # triggers a full reload of graphics
    _trigger = ObjectProperty(None)
    # triggers only a repositioning of objects due to size/pos updates
    _trigger_size = ObjectProperty(None)
    # holds widget with the x-axis label
    _xlabel = ObjectProperty(None)
    # holds widget with the y-axis label
    _ylabel = ObjectProperty(None)
    # holds all the x-axis tick mark labels
    _x_grid_label = ListProperty([])
    # holds all the y-axis tick mark labels
    _y_grid_label = ListProperty([])
    # holds the stencil view that clipse the plots to graph area
    _plot_area = ObjectProperty(None)
    # the mesh drawing all the ticks/grids
    _mesh = ObjectProperty(None)
    # the mesh which draws the surrounding rectangle
    _mesh_rect = ObjectProperty(None)
    # a list of locations of major and minor ticks. The values are not
    # but is in the axis min - max range
    _ticks_majorx = ListProperty([])
    _ticks_minorx = ListProperty([])
    _ticks_majory = ListProperty([])
    _ticks_minory = ListProperty([])

    def __init__(self, **kwargs):
        super().__init__(**kwargs)

        self._mesh = Mesh(mode='lines')
        self._mesh_rect = Mesh(mode='line_strip')
        val = 0.25
        self.canvas.add(Color(1 * val, 1 * val, 1 * val))
        self.canvas.add(self._mesh)
        self.canvas.add(Color(1, 1, 1))
        self.canvas.add(self._mesh_rect)
        mesh = self._mesh_rect
        mesh.vertices = [0] * (5 * 4)
        mesh.indices = [k for k in range(5)]

        self._plot_area = StencilView()
        self.add_widget(self._plot_area)

        self._trigger = Clock.create_trigger(self._redraw_all)
        self._trigger_size = Clock.create_trigger(self._redraw_size)

        self.bind(center=self._trigger_size, padding=self._trigger_size,
                  font_size=self._trigger_size, plots=self._trigger_size,
                  x_grid=self._trigger_size, y_grid=self._trigger_size,
                  draw_border=self._trigger_size)
        self.bind(xmin=self._trigger, xmax=self._trigger,
                  xlog=self._trigger, x_ticks_major=self._trigger,
                  x_ticks_minor=self._trigger,
                  xlabel=self._trigger, x_grid_label=self._trigger,
                  ymin=self._trigger, ymax=self._trigger,
                  ylog=self._trigger, y_ticks_major=self._trigger,
                  y_ticks_minor=self._trigger,
                  ylabel=self._trigger, y_grid_label=self._trigger)
        self._trigger()

    def _get_ticks(self, major, minor, log, s_min, s_max):
        if major and s_max > s_min:
            if log:
                s_min = log10(s_min)
                s_max = log10(s_max)
                # count the decades in min - max. This is in actual decades,
                # not logs.
                n_decades = floor(s_max - s_min)
                # for the fractional part of the last decade, we need to
                # convert the log value, x, to 10**x but need to handle
                # differently if the last incomplete decade has a decade
                # boundary in it
                if floor(s_min + n_decades) != floor(s_max):
                    n_decades += 1 - (10 ** (s_min + n_decades + 1) - 10
                                      ** s_max) / 10 ** floor(s_max + 1)
                else:
                    n_decades += ((10 ** s_max - 10 ** (s_min + n_decades))
                                  / 10 ** floor(s_max + 1))
                # this might be larger than what is needed, but we delete
                # excess later
                n_ticks_major = n_decades / float(major)
                n_ticks = int(floor(n_ticks_major * (minor if minor
                                                     >= 1. else 1.0))) + 2
                # in decade multiples, e.g. 0.1 of the decade, the distance
                # between ticks
                decade_dist = major / float(minor if minor else 1.0)

                points_minor = [0] * n_ticks
                points_major = [0] * n_ticks
                k = 0  # position in points major
                k2 = 0  # position in points minor
                # because each decade is missing 0.1 of the decade, if a tick
                # falls in < min_pos skip it
                min_pos = 0.1 - 0.00001 * decade_dist
                s_min_low = floor(s_min)
                # first real tick location. value is in fractions of decades
                # from the start we have to use decimals here, otherwise
                # floating point inaccuracies results in bad values
                start_dec = ceil((10 ** Decimal(s_min - s_min_low - 1))
                                 / Decimal(decade_dist)) * decade_dist
                count_min = (0 if not minor else
                             floor(start_dec / decade_dist) % minor)
                start_dec += s_min_low
                count = 0  # number of ticks we currently have passed start
                while True:
                    # this is the current position in decade that we are.
                    # e.g. -0.9 means that we're at 0.1 of the 10**ceil(-0.9)
                    # decade
                    pos_dec = start_dec + decade_dist * count
                    pos_dec_low = floor(pos_dec)
                    diff = pos_dec - pos_dec_low
                    zero = abs(diff) < 0.001 * decade_dist
                    if zero:
                        # the same value as pos_dec but in log scale
                        pos_log = pos_dec_low
                    else:
                        pos_log = log10((pos_dec - pos_dec_low
                                         ) * 10 ** ceil(pos_dec))
                    if pos_log > s_max:
                        break
                    count += 1
                    if zero or diff >= min_pos:
                        if minor and not count_min % minor:
                            points_major[k] = pos_log
                            k += 1
                        else:
                            points_minor[k2] = pos_log
                            k2 += 1
                    count_min += 1
                # n_ticks = len(points)
            else:
                # distance between each tick
                tick_dist = major / float(minor if minor else 1.0)
                n_ticks = int(floor((s_max - s_min) / tick_dist) + 1)
                points_major = [0] * int(
                    floor((s_max - s_min) / float(major)) + 1
                )
                points_minor = [0] * (n_ticks - len(points_major) + 1)
                k = 0  # position in points major
                k2 = 0  # position in points minor
                for m in range(0, n_ticks):
                    if minor and m % minor:
                        points_minor[k2] = m * tick_dist + s_min
                        k2 += 1
                    else:
                        points_major[k] = m * tick_dist + s_min
                        k += 1
            del points_major[k:]
            del points_minor[k2:]
        else:
            points_major = []
            points_minor = []
        return points_major, points_minor

    def _update_labels(self):
        xlabel = self._xlabel
        ylabel = self._ylabel
        x = self.x
        y = self.y
        width = self.width
        height = self.height
        padding = self.padding
        x_next = padding + x
        y_next = padding + y
        xextent = x + width
        yextent = y + height
        ymin = self.ymin
        ymax = self.ymax
        xmin = self.xmin
        precision = self.precision
        x_overlap = False
        y_overlap = False
        # set up x and y axis labels
        if xlabel:
            xlabel.text = self.xlabel
            xlabel.texture_update()
            xlabel.size = xlabel.texture_size
            xlabel.pos = (x + width / 2. - xlabel.width / 2., padding + y)
            y_next += padding + xlabel.height
        if ylabel:
            ylabel.text = self.ylabel
            ylabel.texture_update()
            ylabel.size = ylabel.texture_size
            ylabel.x = padding + x - (ylabel.width / 2. - ylabel.height / 2.)
            x_next += padding + ylabel.height
        xpoints = self._ticks_majorx
        xlabels = self._x_grid_label
        xlabel_grid = self.x_grid_label
        ylabel_grid = self.y_grid_label
        ypoints = self._ticks_majory
        ylabels = self._y_grid_label
        # now x and y tick mark labels
        if len(ylabels) and ylabel_grid:
            # horizontal size of the largest tick label, to have enough room
            ylabels[0].text = precision % ypoints[0]
            ylabels[0].texture_update()
            y1 = ylabels[0].texture_size
            y_start = y_next + (
                padding + y1[1]
                if len(xlabels) and xlabel_grid else 0
            ) + (padding + y1[1] if not y_next else 0)
            yextent = y + height - padding - y1[1] / 2.
            if self.ylog:
                ymax = log10(ymax)
                ymin = log10(ymin)
            ratio = (yextent - y_start) / float(ymax - ymin)
            y_start -= y1[1] / 2.
            func = (lambda x: 10 ** x) if self.ylog else lambda x: x
            y1 = y1[0]
            for k in range(len(ylabels)):
                ylabels[k].text = precision % func(ypoints[k])
                ylabels[k].texture_update()
                ylabels[k].size = ylabels[k].texture_size
                y1 = max(y1, ylabels[k].texture_size[0])
                ylabels[k].pos = (x_next, y_start + (ypoints[k] - ymin)
                                  * ratio)
            if len(ylabels) > 1 and ylabels[0].top > ylabels[1].y:
                y_overlap = True
            else:
                x_next += y1 + padding
        if len(xlabels) and xlabel_grid:
            func = log10 if self.xlog else lambda x: x
            # find the distance from the end that'll fit the last tick label
            xlabels[0].text = precision % func(xpoints[-1])
            xlabels[0].texture_update()
            xextent = x + width - xlabels[0].texture_size[0] / 2. - padding
            # find the distance from the start that'll fit the first tick label
            if not x_next:
                xlabels[0].text = precision % func(xpoints[0])
                xlabels[0].texture_update()
                x_next = padding + xlabels[0].texture_size[0] / 2.
            xmin = func(xmin)
            ratio = (xextent - x_next) / float(func(self.xmax) - xmin)
            func = (lambda x: 10 ** x) if self.xlog else lambda x: x
            right = -1
            for k in range(len(xlabels)):
                xlabels[k].text = precision % func(xpoints[k])
                # update the size so we can center the labels on ticks
                xlabels[k].texture_update()
                xlabels[k].size = xlabels[k].texture_size
                xlabels[k].pos = (x_next + (xpoints[k] - xmin) * ratio
                                  - xlabels[k].texture_size[0] / 2., y_next)
                if xlabels[k].x < right:
                    x_overlap = True
                    break
                right = xlabels[k].right
            if not x_overlap:
                y_next += padding + xlabels[0].texture_size[1]
        # now re-center the x and y axis labels
        if xlabel:
            xlabel.x = x_next + (xextent - x_next) / 2. - xlabel.width / 2.
        if ylabel:
            ylabel.y = y_next + (yextent - y_next) / 2. - ylabel.height / 2.
            t = Matrix().translate(ylabel.center[0], ylabel.center[1], 0)
            t = t.multiply(Matrix().rotate(-radians(270), 0, 0, 1))
            ylabel.transform = t.multiply(Matrix().translate(-ylabel.center[0],
                                                             -ylabel.center[1],
                                                             0))
        if x_overlap:
            for k in range(len(xlabels)):
                xlabels[k].text = ''
        if y_overlap:
            for k in range(len(ylabels)):
                ylabels[k].text = ''
        return x_next, y_next, xextent, yextent

    def _update_ticks(self, size):
        # re-compute the positions of the bounding rectangle
        mesh = self._mesh_rect
        vert = mesh.vertices
        if self.draw_border:
            vert[0] = size[0]
            vert[1] = size[1]
            vert[4] = size[2]
            vert[5] = size[1]
            vert[8] = size[2]
            vert[9] = size[3]
            vert[12] = size[0]
            vert[13] = size[3]
            vert[16] = size[0]
            vert[17] = size[1]
        else:
            vert[0:18] = [0 for k in range(18)]
        mesh.vertices = vert
        # re-compute the positions of the x/y axis ticks
        mesh = self._mesh
        vert = mesh.vertices
        start = 0
        xpoints = self._ticks_majorx
        ypoints = self._ticks_majory
        ylog = self.ylog
        xlog = self.xlog
        xmin = self.xmin
        xmax = self.xmax
        if xlog:
            xmin = log10(xmin)
            xmax = log10(xmax)
        ymin = self.ymin
        ymax = self.ymax
        if ylog:
            xmin = log10(ymin)
            ymax = log10(ymax)
        if len(xpoints):
            top = size[3] if self.x_grid else metrics.dp(12) + size[1]
            ratio = (size[2] - size[0]) / float(xmax - xmin)
            for k in range(start, len(xpoints) + start):
                vert[k * 8] = size[0] + (xpoints[k - start] - xmin) * ratio
                vert[k * 8 + 1] = size[1]
                vert[k * 8 + 4] = vert[k * 8]
                vert[k * 8 + 5] = top
            start += len(xpoints)
        if len(ypoints):
            top = size[2] if self.y_grid else metrics.dp(12) + size[0]
            ratio = (size[3] - size[1]) / float(ymax - ymin)
            for k in range(start, len(ypoints) + start):
                vert[k * 8 + 1] = size[1] + (ypoints[k - start] - ymin) * ratio
                vert[k * 8 + 5] = vert[k * 8 + 1]
                vert[k * 8] = size[0]
                vert[k * 8 + 4] = top
        mesh.vertices = vert

    def _update_plots(self, size):
        ylog = self.ylog
        xlog = self.xlog
        xmin = self.xmin
        xmax = self.xmax
        ymin = self.ymin
        ymax = self.ymax
        for plot in self.plots:
            plot._update(xlog, xmin, xmax, ylog, ymin, ymax, size)

    def _redraw_all(self, *args):
        # add/remove all the required labels
        font_size = self.font_size
        if self.xlabel:
            if not self._xlabel:
                xlabel = Label(font_size=font_size)
                self.add_widget(xlabel)
                self._xlabel = xlabel
        else:
            xlabel = self._xlabel
            if xlabel:
                self.remove_widget(xlabel)
                self._xlabel = None
        grids = self._x_grid_label
        xpoints_major, xpoints_minor = self._get_ticks(self.x_ticks_major,
                                                       self.x_ticks_minor,
                                                       self.xlog, self.xmin,
                                                       self.xmax)
        self._ticks_majorx = xpoints_major
        self._ticks_minorx = xpoints_minor
        if not self.x_grid_label:
            n_labels = 0
        else:
            n_labels = len(xpoints_major)
        for k in range(n_labels, len(grids)):
            self.remove_widget(grids[k])
        del grids[n_labels:]
        grid_len = len(grids)
        grids.extend([None] * (n_labels - len(grids)))
        for k in range(grid_len, n_labels):
            grids[k] = Label(font_size=font_size)
            self.add_widget(grids[k])

        if self.ylabel:
            if not self._ylabel:
                ylabel = RotateLabel(font_size=font_size)
                self.add_widget(ylabel)
                self._ylabel = ylabel
        else:
            ylabel = self._ylabel
            if ylabel:
                self.remove_widget(ylabel)
                self._ylabel = None
        grids = self._y_grid_label
        ypoints_major, ypoints_minor = self._get_ticks(self.y_ticks_major,
                                                       self.y_ticks_minor,
                                                       self.ylog, self.ymin,
                                                       self.ymax)
        self._ticks_majory = ypoints_major
        self._ticks_minory = ypoints_minor
        if not self.y_grid_label:
            n_labels = 0
        else:
            n_labels = len(ypoints_major)
        for k in range(n_labels, len(grids)):
            self.remove_widget(grids[k])
        del grids[n_labels:]
        grid_len = len(grids)
        grids.extend([None] * (n_labels - len(grids)))
        for k in range(grid_len, n_labels):
            grids[k] = Label(font_size=font_size)
            self.add_widget(grids[k])

        mesh = self._mesh
        n_points = (len(xpoints_major) + len(xpoints_minor)
                    + len(ypoints_major) + len(ypoints_minor))
        mesh.vertices = [0] * (n_points * 8)
        mesh.indices = [k for k in range(n_points * 2)]
        self._redraw_size()

    def _redraw_size(self, *args):
        # size a 4-tuple describing the bounding box in which we can draw
        # graphs, it's (x0, y0, x1, y1), which correspond with the bottom left
        # and top right corner locations, respectively
        size = self._update_labels()
        self._plot_area.pos = (size[0], size[1])
        self._plot_area.size = (size[2] - size[0], size[3] - size[1])
        self._update_ticks(size)
        self._update_plots(size)

    def add_plot(self, plot):
        '''Add a new plot to this graph.

        :Parameters:
            `plot`:
                Plot to add to this graph.

        >>> graph = Graph()
        >>> plot = MeshLinePlot(mode='line_strip', color=[1, 0, 0, 1])
        >>> plot.points = [(x / 10., sin(x / 50.)) for x in range(-0, 101)]
        >>> graph.add_plot(plot)
        '''
        area = self._plot_area
        for group in plot._get_drawings():
            area.canvas.add(group)
        self.plots = self.plots + [plot]

    def remove_plot(self, plot):
        '''Remove a plot from this graph.

        :Parameters:
            `plot`:
                Plot to remove from this graph.

        >>> graph = Graph()
        >>> plot = MeshLinePlot(mode='line_strip', color=[1, 0, 0, 1])
        >>> plot.points = [(x / 10., sin(x / 50.)) for x in range(-0, 101)]
        >>> graph.add_plot(plot)
        >>> graph.remove_plot(plot)
        '''
        self._plot_area.canvas.remove_group(plot._get_group())
        self.plots.remove(plot)

    xmin = NumericProperty(0.)
    '''The x-axis minimum value.

    If :data:`xlog` is True, xmin must be larger than zero.

    :data:`xmin` is a :class:`~kivy.properties.NumericProperty`, defaults to 0.
    '''

    xmax = NumericProperty(100.)
    '''The x-axis maximum value, larger than xmin.

    :data:`xmax` is a :class:`~kivy.properties.NumericProperty`, defaults to 0.
    '''

    xlog = BooleanProperty(False)
    '''Determines whether the x-axis should be displayed logarithmically (True)
    or linearly (False).

    :data:`xlog` is a :class:`~kivy.properties.BooleanProperty`, defaults
    to False.
    '''

    x_ticks_major = BoundedNumericProperty(0, min=0)
    '''Distance between major tick marks on the x-axis.

    Determines the distance between the major tick marks. Major tick marks
    start from min and re-occur at every ticks_major until :data:`xmax`.
    If :data:`xmax` doesn't overlap with a integer multiple of ticks_major,
    no tick will occur at :data:`xmax`. Zero indicates no tick marks.

    If :data:`xlog` is true, then this indicates the distance between ticks
    in multiples of current decade. E.g. if :data:`xmin` is 0.1 and
    ticks_major is 0.1, it means there will be a tick at every 10th of the
    decade, i.e. 0.1 ... 0.9, 1, 2... If it is 0.3, the ticks will occur at
    0.1, 0.3, 0.6, 0.9, 2, 5, 8, 10. You'll notice that it went from 8 to 10
    instead of to 20, that's so that we can say 0.5 and have ticks at every
    half decade, e.g. 0.1, 0.5, 1, 5, 10, 50... Similarly, if ticks_major is
    1.5, there will be ticks at 0.1, 5, 100, 5,000... Also notice, that there's
    always a major tick at the start. Finally, if e.g. :data:`xmin` is 0.6
    and this 0.5 there will be ticks at 0.6, 1, 5...

    :data:`x_ticks_major` is a
    :class:`~kivy.properties.BoundedNumericProperty`, defaults to 0.
    '''

    x_ticks_minor = BoundedNumericProperty(0, min=0)
    '''The number of sub-intervals that divide x_ticks_major.

    Determines the number of sub-intervals into which ticks_major is divided,
    if non-zero. The actual number of minor ticks between the major ticks is
    ticks_minor - 1. Only used if ticks_major is non-zero. If there's no major
    tick at xmax then the number of minor ticks after the last major
    tick will be however many ticks fit until xmax.

    If self.xlog is true, then this indicates the number of intervals the
    distance between major ticks is divided. The result is the number of
    multiples of decades between ticks. I.e. if ticks_minor is 10, then if
    ticks_major is 1, there will be ticks at 0.1, 0.2...0.9, 1, 2, 3... If
    ticks_major is 0.3, ticks will occur at 0.1, 0.12, 0.15, 0.18... Finally,
    as is common, if ticks major is 1, and ticks minor is 5, there will be
    ticks at 0.1, 0.2, 0.4... 0.8, 1, 2...

    :data:`x_ticks_minor` is a
    :class:`~kivy.properties.BoundedNumericProperty`, defaults to 0.
    '''

    x_grid = BooleanProperty(False)
    '''Determines whether the x-axis has tick marks or a full grid.

    If :data:`x_ticks_major` is non-zero, then if x_grid is False tick marks
    will be displayed at every major tick. If x_grid is True, instead of ticks,
    a vertical line will be displayed at every major tick.

    :data:`x_grid` is a :class:`~kivy.properties.BooleanProperty`, defaults
    to False.
    '''

    x_grid_label = BooleanProperty(False)
    '''Whether labels should be displayed beneath each major tick. If true,
    each major tick will have a label containing the axis value.

    :data:`x_grid_label` is a :class:`~kivy.properties.BooleanProperty`,
    defaults to False.
    '''

    xlabel = StringProperty('')
    '''The label for the x-axis. If not empty it is displayed in the center of
    the axis.

    :data:`xlabel` is a :class:`~kivy.properties.StringProperty`,
    defaults to ''.
    '''

    ymin = NumericProperty(0.)
    '''The y-axis minimum value.

    If :data:`ylog` is True, ymin must be larger than zero.

    :data:`ymin` is a :class:`~kivy.properties.NumericProperty`, defaults to 0.
    '''

    ymax = NumericProperty(100.)
    '''The y-axis maximum value, larger than ymin.

    :data:`ymax` is a :class:`~kivy.properties.NumericProperty`, defaults to 0.
    '''

    ylog = BooleanProperty(False)
    '''Determines whether the y-axis should be displayed logarithmically (True)
    or linearly (False).

    :data:`ylog` is a :class:`~kivy.properties.BooleanProperty`, defaults
    to False.
    '''

    y_ticks_major = BoundedNumericProperty(0, min=0)
    '''Distance between major tick marks. See :data:`x_ticks_major`.

    :data:`y_ticks_major` is a
    :class:`~kivy.properties.BoundedNumericProperty`, defaults to 0.
    '''

    y_ticks_minor = BoundedNumericProperty(0, min=0)
    '''The number of sub-intervals that divide ticks_major.
    See :data:`x_ticks_minor`.

    :data:`y_ticks_minor` is a
    :class:`~kivy.properties.BoundedNumericProperty`, defaults to 0.
    '''

    y_grid = BooleanProperty(False)
    '''Determines whether the y-axis has tick marks or a full grid. See
    :data:`x_grid`.

    :data:`y_grid` is a :class:`~kivy.properties.BooleanProperty`, defaults
    to False.
    '''

    y_grid_label = BooleanProperty(False)
    '''Whether labels should be displayed beneath each major tick. If true,
    each major tick will have a label containing the axis value.

    :data:`y_grid_label` is a :class:`~kivy.properties.BooleanProperty`,
    defaults to False.
    '''

    ylabel = StringProperty('')
    '''The label for the y-axis. If not empty it is displayed in the center of
    the axis.

    :data:`ylabel` is a :class:`~kivy.properties.StringProperty`,
    defaults to ''.
    '''

    padding = NumericProperty('5dp')
    '''Padding distances between the labels, titles and graph, as well between
    the widget and the objects near the boundaries.

    :data:`padding` is a :class:`~kivy.properties.NumericProperty`, defaults
    to 5dp.
    '''

    font_size = NumericProperty('15sp')
    '''Font size of the labels.

    :data:`font_size` is a :class:`~kivy.properties.NumericProperty`, defaults
    to 15sp.
    '''

    precision = StringProperty('%g')
    '''Determines the numerical precision of the tick mark labels. This value
    governs how the numbers are converted into string representation. Accepted
    values are those listed in Python's manual in the
    "String Formatting Operations" section.

    :data:`precision` is a :class:`~kivy.properties.StringProperty`, defaults
    to '%g'.
    '''

    draw_border = BooleanProperty(True)
    '''Whether a border is drawn around the canvas of the graph where the
    plots are displayed.

    :data:`draw_border` is a :class:`~kivy.properties.BooleanProperty`,
    defaults to True.
    '''

    plots = ListProperty([])
    '''Holds a list of all the plots in the graph. To add and remove plots
    from the graph use :data:`add_plot` and :data:`add_plot`. Do not add
    directly edit this list.

    :data:`plots` is a :class:`~kivy.properties.ListProperty`,
    defaults to [].
    '''


class Plot(EventDispatcher):
    '''Plot class, see module documentation for more information.
    '''

    # this function is called by graph whenever any of the parameters
    # change. The plot should be recalculated then.
    # log, min, max indicate the axis settings.
    # size a 4-tuple describing the bounding box in which we can draw
    # graphs, it's (x0, y0, x1, y1), which correspond with the bottom left
    # and top right corner locations, respectively.
    def _update(self, xlog, xmin, xmax, ylog, ymin, ymax, size):
        pass

    # returns a string which is unique and is the group name given to all the
    # instructions returned by _get_drawings. Graph uses this to remove
    # these instructions when needed.
    def _get_group(self):
        return ''

    # returns a list of canvas instructions that will be added to the graph's
    # canvas. These instructions must belong to a group as described
    # in _get_group.
    def _get_drawings(self):
        return []


class MeshLinePlot(Plot):
    '''MeshLinePlot class which displays a set of points similar to a mesh.
    '''

    # mesh which forms the plot
    _mesh = ObjectProperty(None)
    # color of the plot
    _color = ObjectProperty(None)
    _trigger = ObjectProperty(None)
    # most recent values of the params used to draw the plot
    _params = DictProperty({'xlog': False, 'xmin': 0, 'xmax': 100,
                            'ylog': False, 'ymin': 0, 'ymax': 100,
                            'size': (0, 0, 0, 0)})

    def __init__(self, **kwargs):
        self._color = Color(1, 1, 1, group='LinePlot%d' % id(self))
        self._mesh = Mesh(mode='line_strip', group='LinePlot%d' % id(self))
        super().__init__(**kwargs)

        self._trigger = Clock.create_trigger(self._redraw)
        self.bind(_params=self._trigger, points=self._trigger)

    def _update(self, xlog, xmin, xmax, ylog, ymin, ymax, size):
        self._params = {'xlog': xlog, 'xmin': xmin, 'xmax': xmax, 'ylog': ylog,
                        'ymin': ymin, 'ymax': ymax, 'size': size}

    def _redraw(self, *args):
        points = self.points
        mesh = self._mesh
        vert = mesh.vertices
        ind = mesh.indices
        params = self._params
        funcx = log10 if params['xlog'] else lambda x: x
        funcy = log10 if params['ylog'] else lambda x: x
        xmin = funcx(params['xmin'])
        ymin = funcy(params['ymin'])
        diff = len(points) - len(vert) / 4
        size = params['size']
        ratiox = (size[2] - size[0]) / float(funcx(params['xmax']) - xmin)
        ratioy = (size[3] - size[1]) / float(funcy(params['ymax']) - ymin)
        if diff < 0:
            del vert[4 * len(points):]
            del ind[len(points):]
        elif diff > 0:
            ind.extend(range(len(ind), len(ind) + diff))
            vert.extend([0] * (diff * 4))
        for k in range(len(points)):
            vert[k * 4] = (funcx(points[k][0]) - xmin) * ratiox + size[0]
            vert[k * 4 + 1] = (funcy(points[k][1]) - ymin) * ratioy + size[1]
        mesh.vertices = vert

    def _get_group(self):
        return 'LinePlot%d' % id(self)

    def _get_drawings(self):
        return [self._color, self._mesh]

    def _set_mode(self, value):
        self._mesh.mode = value
    mode = AliasProperty(lambda self: self._mesh.mode, _set_mode)
    '''VBO Mode used for drawing the points. Can be one of: 'points',
    'line_strip', 'line_loop', 'lines', 'triangle_strip', 'triangle_fan'.
    See :class:`~kivy.graphics.Mesh` for more details.

    Defaults to 'line_strip'.
    '''

    def _set_color(self, value):
        self._color.rgba = value
    color = AliasProperty(lambda self: self._color.rgba, _set_color)
    '''Plot color, in the format [r, g, b, a] with values between 0-1.

    Defaults to [1, 1, 1, 1].
    '''

    points = ListProperty([])
    '''List of x, y points to be displayed in the plot.

    The elements of points are 2-tuples, (x, y). The points are displayed
    based on the mode setting.

    :data:`points` is a :class:`~kivy.properties.ListProperty`, defaults to
    [].
    '''


class MeshStemPlot(MeshLinePlot):
    '''MeshStemPlot uses the MeshLinePlot class to draw a stem plot. The data
    provided is graphed from origin to the data point.
    '''

    def _redraw(self, *args):
        points = self.points
        mesh = self._mesh
        self._mesh.mode = 'lines'
        vert = mesh.vertices
        ind = mesh.indices
        params = self._params
        funcx = log10 if params['xlog'] else lambda x: x
        funcy = log10 if params['ylog'] else lambda x: x
        xmin = funcx(params['xmin'])
        ymin = funcy(params['ymin'])
        diff = len(points) * 2 - len(vert) / 4
        size = params['size']
        ratiox = (size[2] - size[0]) / float(funcx(params['xmax']) - xmin)
        ratioy = (size[3] - size[1]) / float(funcy(params['ymax']) - ymin)
        if diff < 0:
            del vert[4 * len(points):]
            del ind[len(points):]
        elif diff > 0:
            ind.extend(range(len(ind), len(ind) + diff))
            vert.extend([0] * (diff * 4))
        for k in range(len(points)):
            vert[k * 8] = (funcx(points[k][0]) - xmin) * ratiox + size[0]
            vert[k * 8 + 1] = (0 - ymin) * ratioy + size[1]
            vert[k * 8 + 4] = (funcx(points[k][0]) - xmin) * ratiox + size[0]
            vert[k * 8 + 5] = (funcy(points[k][1]) - ymin) * ratioy + size[1]
        mesh.vertices = vert


if __name__ == '__main__':
    from math import sin, cos
    from kivy.app import App

    class TestApp(App):

        def build(self):

            graph = Graph(xlabel='Cheese', ylabel='Apples', x_ticks_minor=5,
                          x_ticks_major=25, y_ticks_major=1,
                          y_grid_label=True, x_grid_label=True, padding=5,
                          xlog=False, ylog=False, x_grid=True, y_grid=True,
                          xmin=-50, xmax=50, ymin=-1, ymax=1)
            plot = MeshLinePlot(color=[1, 0, 0, 1])
            plot.points = [(x / 10., sin(x / 50.)) for x in range(-500, 501)]
            graph.add_plot(plot)
            plot = MeshLinePlot(color=[0, 1, 0, 1])
            plot.points = [(x / 10., cos(x / 50.)) for x in range(-600, 501)]
            graph.add_plot(plot)
            plot = MeshLinePlot(color=[0, 0, 1, 1])
            graph.add_plot(plot)
            plot.points = [(x, x / 50.) for x in range(-50, 51)]
            return graph

    TestApp().run()