1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
|
"""
This code is part of the Python PolSARpro software:
"A re-implementation of selected PolSARPro functions in Python,
following the scientific recommendations of PolInSAR 2021"
developed within an ESA funded project with SATIM.
Author: Olivier D'Hondt, 2025.
Scientific advisors: Armando Marino and Eric Pottier.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-----
# Description: module containing polarimetric decomposition functions
"""
import numpy as np
import xarray as xr
import dask.array as da
from polsarpro.util import boxcar, C3_to_T3, S_to_C3, S_to_T3, C4_to_T4, T3_to_C3
from polsarpro.auxil import validate_dataset
def cameron(
input_data: xr.Dataset,
) -> xr.Dataset:
"""Applies the Cameron decomposition to the S matrix.
Args:
input_data (xr.Dataset): Input image of S matrices.
Returns:
xr.Dataset: Output class (1: plane, 2: dihedral, 3: dipole, 4: cylinder, 5: narrow diplane, 6: 1/4 wave, 7: left helix, 8: right helix).
Notes:
This decomposition is only applicable to Sinclair matrices (S). Therefore it may not be applied to geocoded data since resampling the S matrix may result in a loss of polarimetric information.
"""
allowed_poltypes = "S"
_ = validate_dataset(input_data, allowed_poltypes=allowed_poltypes)
in_ = input_data.astype("complex64", copy=False)
# remove NaNs
eps = 1e-30
mask = in_.to_array().isnull().any("variable")
in_ = in_.fillna(eps)
out = _compute_cameron(in_)
return xr.Dataset(
# add dimension names
{k: (tuple(input_data.dims), v) for k, v in out.items()},
attrs=dict(
poltype="cameron",
description="Results of the Cameron decomposition.",
),
coords=input_data.coords,
) # .where(~mask)
def freeman(
input_data: xr.Dataset,
boxcar_size: list[int, int] = [3, 3],
) -> xr.Dataset:
"""Applies the Freeman-Durden decomposition. This decomposition is based on physical modeling
of the covariance matrix and returns 3 components Ps, Pd and Pv which are the powers of resp.
surface, double bounce and volume backscattering.
Args:
input_data (xr.Dataset): Input image, may be a covariance (C3), coherency (T3) or Sinclair (S) matrix.
boxcar_size (list[int, int], optional): Boxcar dimensions along azimuth and range. Defaults to [3, 3].
Returns:
xr.Dataset: Ps, Pd and Pv components.
References:
Freeman A. and Durden S., “A Three-Component Scattering Model for Polarimetric SAR Data”, IEEE Trans. Geosci. Remote Sens., vol. 36, no. 3, May 1998.
"""
allowed_poltypes = ("S", "C3", "T3")
poltype = validate_dataset(input_data, allowed_poltypes=allowed_poltypes)
# in_ = input_data.astype("complex64", copy=False)
if poltype == "C3":
in_ = input_data
elif poltype == "T3":
in_ = T3_to_C3(input_data)
elif poltype == "S":
in_ = S_to_C3(input_data)
# pre-processing step, it is recommended to filter the matrices to mitigate speckle effects
in_ = boxcar(in_, boxcar_size[0], boxcar_size[1])
# remove NaNs
eps = 1e-30
mask = in_.to_array().isnull().any("variable")
in_ = in_.fillna(eps)
out = _compute_freeman_components(in_)
return xr.Dataset(
# add dimension names
{k: (tuple(input_data.dims), v) for k, v in out.items()},
attrs=dict(
poltype="freeman",
description="Results of the Freeman-Durden decomposition.",
),
coords=input_data.coords,
).where(~mask)
def h_a_alpha(
input_data: xr.Dataset,
boxcar_size: list[int, int] = [3, 3],
flags: tuple[str] = ("entropy", "alpha", "anisotropy"),
) -> xr.Dataset:
"""Performs the H/A/Alpha polarimetric decomposition on full-pol SAR data.
This function computes the H/A/Alpha decomposition from input polarimetric SAR data
using eigenvalue analysis of the coherency matrix. The decomposition
provides physical insight into scattering mechanisms through parameters such as
entropy (H), anisotropy (A), and the alpha scattering angle (alpha). Additional
eigenvalue-based parameters can also be computed by specifying corresponding flags.
Args:
input_data (xr.Dataset): Input polarimetric SAR dataset. Supported types are:
- "S": Sinclair scattering matrix
- "C3": Lexicographic covariance matrix
- "T3": Pauli coherency matrix
- "C4" and "T4": 4x4 versions of the above
- "C2": Dual-polarimetric covariance
boxcar_size (list[int, int], optional): Size of the spatial averaging window to be
applied before decomposition (boxcar filter). Defaults to [3, 3].
flags (tuple[str], optional): Parameters to compute and return from the decomposition.
Possible values include:
- "entropy": Scattering entropy (H)
- "anisotropy": Scattering anisotropy (A)
- "alpha": Mean alpha scattering angle (alpha)
- "beta", "delta", "gamma", "lambda": Other angular or eigenvalue related parameters
- "nhu", "epsilon" additional angles defined only for 4x4 matrices. Will be ignored if not processing 4x4 matrices.
- "alphas", "betas", "deltas", "gammas", "lambdas": Per-eigenvalue versions of the above
Defaults to ("entropy", "alpha", "anisotropy").
Returns:
xr.Dataset: An xarray.Dataset where data variable names correspond to the requested flags, and values are the corresponding 2D arrays (or 3D if the flag returns multiple values per pixel).
Notes:
For C2 inputs, only 'alpha(s)', 'delta(s)', 'anisotropy', 'entropy' and 'lambda(s)' can be computed. Other passed flags will be ignored.
If the S matrix is given as an input, a 3x3 analysis will be assumed using the T3 matrix. For 4x4 and 2x2, use 'C4', 'T4' or 'C2' as an input.
References:
Cloude, S. R., & Pottier, E. (1997). An entropy based classification scheme for land
applications of polarimetric SAR. *IEEE Transactions on Geoscience and Remote Sensing*,
35(1), 68-78.
"""
# check flags validity
if not isinstance(flags, tuple):
raise ValueError("'flags' parameter must be a tuple.")
possible_flags = (
"entropy",
"anisotropy",
"alpha",
"beta",
"delta",
"epsilon",
"gamma",
"lambda",
"nhu",
"alphas",
"betas",
"deltas",
"epsilons",
"gammas",
"lambdas",
"nhus",
)
for flag in flags:
if flag not in possible_flags:
raise ValueError(
f"Flag '{flag}' not recognized. Possible values are {possible_flags}."
)
allowed_poltypes = ("S", "C2", "C3", "C4", "T3", "T4")
poltype = validate_dataset(input_data, allowed_poltypes=allowed_poltypes)
if poltype == "C2":
in_ = input_data
elif poltype == "C3":
in_ = C3_to_T3(input_data)
elif poltype == "T3":
in_ = input_data
elif poltype == "C4":
in_ = C4_to_T4(input_data)
elif poltype == "T4":
in_ = input_data
elif poltype == "S":
in_ = S_to_T3(input_data)
else:
raise ValueError(f"Invalid polarimetric type: {input_data.poltype}")
new_dims = tuple(input_data.dims)
eps = 1e-30
# pre-processing step, it is recommended to filter the matrices to mitigate speckle effects
in_ = boxcar(in_, dim_az=boxcar_size[0], dim_rg=boxcar_size[1])
# remove NaNs to avoid errors in eigh
mask = in_.to_array().isnull().any("variable")
in_ = in_.fillna(eps)
M = _reconstruct_matrix_from_ds(in_)
# eigendecomposition
meta = (
np.array([], dtype="float32").reshape((0, 0, 0)),
np.array([], dtype="complex64").reshape((0, 0, 0, 0)),
)
l, v = da.apply_gufunc(np.linalg.eigh, "(i,j)->(i), (i,j)", M, meta=meta)
l = l[..., ::-1] # descending order
v = v[..., ::-1]
# returns a dict
if in_.poltype in ("S", "T3", "C4"):
out = _compute_h_a_alpha_parameters_T3(l, v, flags)
elif in_.poltype in ("T4", "C4"):
out = _compute_h_a_alpha_parameters_T4(l, v, flags)
elif in_.poltype in ("C2"):
out = _compute_h_a_alpha_parameters_C2(l, v, flags)
return xr.Dataset(
# add dimension names, account for 2D and 3D outputs
{
k: (new_dims, v) if v.ndim == 2 else (new_dims + ("i",), v)
for k, v in out.items()
},
attrs=dict(
poltype="h_a_alpha", description="Results of the H/A/Alpha decomposition."
),
coords=input_data.coords,
).where(~mask)
def yamaguchi3(
input_data: xr.Dataset,
boxcar_size: list[int, int] = [3, 3],
) -> xr.Dataset:
"""Applies the Yamaguchi 3 component decomposition. This decomposition is based on physical modeling
of the covariance matrix and returns 3 components "odd", "surface" and "volume" which are the powers of resp.
surface, double bounce and volume backscattering.
Args:
input_data (xr.Dataset): Input image, may be a covariance (C3), coherency (T3) or Sinclair (S) matrix.
boxcar_size (list[int, int], optional): Boxcar dimensions along azimuth and range. Defaults to [3, 3].
Returns:
xr.Dataset: odd, surface and volume scattering components.
References:
Yamaguchi Y., Moriyama T., Ishido M. and Yamada H., “Four-Component Scattering Model for Polarimetric SAR Image Decomposition”, IEEE Trans. Geos. Remote Sens., vol. 43, no. 8, August 2005.
"""
allowed_poltypes = ("S", "C3", "T3")
poltype = validate_dataset(input_data, allowed_poltypes=allowed_poltypes)
# in_ = input_data.astype("complex64", copy=False)
if poltype == "C3":
in_ = input_data
elif poltype == "T3":
in_ = T3_to_C3(input_data)
elif poltype == "S":
in_ = S_to_C3(input_data)
# pre-processing step, it is recommended to filter the matrices to mitigate speckle effects
in_ = boxcar(in_, boxcar_size[0], boxcar_size[1])
# remove NaNs
eps = 1e-30
mask = in_.to_array().isnull().any("variable")
in_ = in_.fillna(eps)
out = _compute_yamaguchi3_components(in_)
return xr.Dataset(
# add dimension names
{k: (tuple(input_data.dims), v) for k, v in out.items()},
attrs=dict(
poltype="yamaguchi3",
description="Results of the Yamaguchi 3 component decomposition.",
),
coords=input_data.coords,
).where(~mask)
def yamaguchi4(
input_data: xr.Dataset,
boxcar_size: list[int, int] = [3, 3],
mode: str = "y4o",
) -> xr.Dataset:
"""Applies the Yamaguchi 4 component decomposition. This decomposition is based on physical modeling
of the covariance matrix and returns 4 components "odd", "surface", "volume" and "helix" which are the powers of resp. surface, double bounce, volume and helix backscattering.
Args:
input_data (xr.Dataset): Input image, may be a covariance (C3), coherency (T3) or Sinclair (S) matrix.
boxcar_size (list[int, int], optional): Boxcar dimensions along azimuth and range. Defaults to [3, 3].
mode (str, optional): One of the following modes "y4o" (original), "y4r" (with rotation) or "s4r" (). Defaults to "y4o".
Returns:
xr.Dataset: odd, surface, volume and helix scattering components.
References:
Yamaguchi Y., Moriyama T., Ishido M. and Yamada H., “Four-Component Scattering Model for Polarimetric SAR Image Decomposition”, IEEE Trans. Geos. Remote Sens., vol. 43, no. 8, August 2005.
"""
allowed_poltypes = ("S", "C3", "T3")
poltype = validate_dataset(input_data, allowed_poltypes=allowed_poltypes)
allowed_modes = ["y4o", "y4r", "s4r"]
if not mode in allowed_modes:
raise ValueError(f"Invalid mode {mode}. Possible values are {allowed_modes}")
# in_ = input_data.astype("complex64", copy=False)
if poltype == "C3":
in_ = C3_to_T3(input_data)
elif poltype == "T3":
in_ = input_data
elif poltype == "S":
in_ = S_to_T3(input_data)
# pre-processing step, it is recommended to filter the matrices to mitigate speckle effects
in_ = boxcar(in_, boxcar_size[0], boxcar_size[1])
# remove NaNs
eps = 1e-30
mask = in_.to_array().isnull().any("variable")
in_ = in_.fillna(eps)
out = _compute_yamaguchi4_components(in_, mode=mode)
poltype_out = f"yamaguchi4_{mode.lower()}"
return xr.Dataset(
# add dimension names
{k: (tuple(input_data.dims), v) for k, v in out.items()},
attrs=dict(
poltype=poltype_out,
description=f"Results of the Yamaguchi 4 component decomposition (mode={mode.lower()}).",
),
coords=input_data.coords,
).where(~mask)
def tsvm(
input_data: xr.Dataset,
boxcar_size: list[int, int] = [3, 3],
flags: tuple[str] = ("alpha_phi_tau_psi",),
) -> xr.Dataset:
"""Applies the TSVM decomposition.
Args:
input_data (xr.Dataset): Input image, may be a covariance (C3), coherency (T3) or Sinclair (S) matrix.
boxcar_size (list[int, int], optional): Boxcar dimensions along azimuth and range. Defaults to [3, 3].
flags (tuple[str], optional): Parameters to compute and return from the decomposition. Possible values include:
- "alpha_phi_tau_psi": Compute mean values of all output parameters.
- "alpha", "phi", "tau", "psi": Compute per eigenvalue versions of the parameter.
Defaults to ("alpha_phi_tau_psi").
Returns:
xr.Dataset: An xarray.Dataset where data variable names depend the requested flags, and values are the corresponding 2D arrays.
Notes:
Output variables have the same names as in the original PolSARpro C version. "alpha_s", "phi_s", "psi", "tau_m" followed by 1, 2 or 3 in the case of per-eigenvalue parameters.
"""
# check flags validity
if not isinstance(flags, tuple):
raise ValueError("'flags' parameter must be a tuple.")
possible_flags = (
"alpha_phi_tau_psi",
"alpha",
"phi",
"tau",
"psi",
)
for flag in flags:
if flag not in possible_flags:
raise ValueError(
f"Flag '{flag}' not recognized. Possible values are {possible_flags}."
)
allowed_poltypes = ("S", "C3", "T3")
poltype = validate_dataset(input_data, allowed_poltypes=allowed_poltypes)
if poltype == "S":
in_ = S_to_T3(input_data)
elif poltype == "C3":
in_ = C3_to_T3(input_data)
elif poltype == "T3":
in_ = input_data
else:
raise ValueError(f"Invalid polarimetric type: {input_data.poltype}")
new_dims = tuple(input_data.dims)
eps = 1e-30
# pre-processing step, it is recommended to filter the matrices to mitigate speckle effects
in_ = boxcar(in_, dim_az=boxcar_size[0], dim_rg=boxcar_size[1])
# remove NaNs to avoid errors in eigh
mask = in_.to_array().isnull().any("variable")
in_ = in_.fillna(eps)
M = _reconstruct_matrix_from_ds(in_)
# eigendecomposition
meta = (
np.array([], dtype="float32").reshape((0, 0, 0)),
np.array([], dtype="complex64").reshape((0, 0, 0, 0)),
)
l, v = da.apply_gufunc(np.linalg.eigh, "(i,j)->(i), (i,j)", M, meta=meta)
l = l[..., ::-1] # descending order
v = v[..., ::-1]
out = _compute_tsvm_parameters(l, v, flags)
return xr.Dataset(
# add dimension names, account for 2D and 3D outputs
{
k: (new_dims, v) if v.ndim == 2 else (new_dims + ("i",), v)
for k, v in out.items()
},
attrs=dict(
poltype="tsvm", description="Results of Touzi's TSVM decomposition."
),
coords=input_data.coords,
).where(~mask)
def vanzyl(
input_data: xr.Dataset,
boxcar_size: list[int, int] = [3, 3],
) -> xr.Dataset:
"""Applies the Van Zyl 1992 3-component decomposition. This decomposition is based on physical modeling
of the covariance matrix and returns 3 components Ps, Pd and Pv which are the powers of resp.
surface, double bounce and volume backscattering.
Args:
input_data (xr.Dataset): Input image, may be a covariance (C3), coherency (T3) or Sinclair (S) matrix.
boxcar_size (list[int, int], optional): Boxcar dimensions along azimuth and range. Defaults to [3, 3].
Returns:
xr.Dataset: Ps, Pd and Pv components.
References:
Jakob J. van Zyl, Yunjin Kim, Synthetic Aperture Radar Polarimetry, Wiley; 1st edition (October 14, 2011), ISBN-10 1-118-11511-2, ISBN-13 978-1118115114
"""
allowed_poltypes = ("S", "C3", "T3")
poltype = validate_dataset(input_data, allowed_poltypes=allowed_poltypes)
# in_ = input_data.astype("complex64", copy=False)
if poltype == "C3":
in_ = input_data
elif poltype == "T3":
in_ = T3_to_C3(input_data)
elif poltype == "S":
in_ = S_to_C3(input_data)
# pre-processing step, it is recommended to filter the matrices to mitigate speckle effects
in_ = boxcar(in_, boxcar_size[0], boxcar_size[1])
# remove NaNs
eps = 1e-30
mask = in_.to_array().isnull().any("variable")
in_ = in_.fillna(eps)
out = _compute_vanzyl_components(in_)
return xr.Dataset(
# add dimension names
{k: (tuple(input_data.dims), v) for k, v in out.items()},
attrs=dict(
poltype="freeman",
description="Results of the Freeman-Durden decomposition.",
),
coords=input_data.coords,
).where(~mask)
# below this line, functions are not meant to be called directly
def _compute_h_a_alpha_parameters_C2(l, v, flags):
eps = 1e-30
# Pseudo-probabilities (normalized eigenvalues)
p = np.clip(l / (eps + l.sum(axis=2)[..., None]), eps, 1)
outputs = {}
if "entropy" in flags:
H = np.sum(-p * np.log(p), axis=2) / np.float32(np.log(2))
outputs["entropy"] = H
if "anisotropy" in flags:
A = (p[..., 0] - p[..., 1]) / (p[..., 0] + p[..., 1] + eps)
outputs["anisotropy"] = A
if "alpha" in flags or "alphas" in flags:
# Alpha angles for each mechanism
alphas = np.arccos(np.abs(v[:, :, 0, :]))
# Convert to degrees
alphas *= 180 / np.pi
if "alpha" in flags:
# Mean alpha
alpha = np.sum(p * alphas, axis=2)
outputs["alpha"] = alpha
if "delta" in flags or "deltas" in flags:
phases = np.atan2(v[:, :, 0, :].imag, eps + v[:, :, 0, :].real)
deltas = np.atan2(v[:, :, 1, :].imag, eps + v[:, :, 1, :].real) - phases
deltas = np.atan2(np.sin(deltas), eps + np.cos(deltas))
deltas *= 180 / np.pi
if "delta" in flags:
delta = np.sum(p * deltas, axis=2)
outputs["delta"] = delta
# Average target eigenvalue
if "lambda" in flags or "lambdas" in flags:
# lambda is a python reserved keyword, using lambd instead
lambd = np.sum(p * l, axis=2)
outputs["lambda"] = lambd
# extras outputs: non averaged parameters (ex: alpha1, alpha2, alpha3)
if "alphas" in flags:
outputs["alphas"] = alphas
if "deltas" in flags:
outputs["deltas"] = deltas
if "lambdas" in flags:
outputs["lambdas"] = l
return outputs
def _compute_h_a_alpha_parameters_T3(l, v, flags):
eps = 1e-30
# Pseudo-probabilities (normalized eigenvalues)
p = np.clip(l / (eps + l.sum(axis=2)[..., None]), eps, 1)
outputs = {}
if "entropy" in flags:
H = np.sum(-p * np.log(p), axis=2) / np.float32(np.log(3))
outputs["entropy"] = H
if "anisotropy" in flags:
A = (p[..., 1] - p[..., 2]) / (p[..., 1] + p[..., 2] + eps)
outputs["anisotropy"] = A
if "alpha" in flags or "alphas" in flags:
# Alpha angles for each mechanism
alphas = np.arccos(np.abs(v[:, :, 0, :]))
# Convert to degrees
alphas *= 180 / np.pi
if "alpha" in flags:
# Mean alpha
alpha = np.sum(p * alphas, axis=2)
outputs["alpha"] = alpha
# Extra angles: beta, delta and gamma angles
if "beta" in flags or "betas" in flags:
betas = np.atan2(np.abs(v[:, :, 2, :]), eps + np.abs(v[:, :, 1, :]))
betas *= 180 / np.pi
if "beta" in flags:
beta = np.sum(p * betas, axis=2)
outputs["beta"] = beta
if "delta" in flags or "gamma" in flags or "deltas" in flags or "gammas" in flags:
phases = np.atan2(v[:, :, 0, :].imag, eps + v[:, :, 0, :].real)
if "delta" in flags or "deltas" in flags:
deltas = np.atan2(v[:, :, 1, :].imag, eps + v[:, :, 1, :].real) - phases
deltas = np.atan2(np.sin(deltas), eps + np.cos(deltas))
deltas *= 180 / np.pi
if "delta" in flags:
delta = np.sum(p * deltas, axis=2)
outputs["delta"] = delta
if "gamma" in flags or "gammas" in flags:
gammas = np.atan2(v[:, :, 2, :].imag, eps + v[:, :, 2, :].real) - phases
gammas = np.atan2(np.sin(gammas), eps + np.cos(gammas))
gammas *= 180 / np.pi
if "gamma" in flags:
gamma = np.sum(p * gammas, axis=2)
outputs["gamma"] = gamma
# Average target eigenvalue
if "lambda" in flags or "lambdas" in flags:
# lambda is a python reserved keyword, using lambd instead
lambd = np.sum(p * l, axis=2)
outputs["lambda"] = lambd
# extras outputs: non averaged parameters (ex: alpha1, alpha2, alpha3)
if "alphas" in flags:
outputs["alphas"] = alphas
if "betas" in flags:
outputs["betas"] = betas
if "deltas" in flags:
outputs["deltas"] = deltas
if "gammas" in flags:
outputs["gammas"] = gammas
if "lambdas" in flags:
outputs["lambdas"] = l
return outputs
def _compute_h_a_alpha_parameters_T4(l, v, flags):
eps = 1e-30
# Pseudo-probabilities (normalized eigenvalues)
p = np.clip(l / (eps + l.sum(axis=2)[..., None]), eps, 1)
outputs = {}
if "entropy" in flags:
H = np.sum(-p * np.log(p), axis=2) / np.float32(np.log(4))
outputs["entropy"] = H
if "anisotropy" in flags:
A = (p[..., 1] - p[..., 2]) / (p[..., 1] + p[..., 2] + eps)
outputs["anisotropy"] = A
if "alpha" in flags or "alphas" in flags:
# Alpha angles for each mechanism
alphas = np.arccos(np.abs(v[:, :, 0, :]))
# Convert to degrees
alphas *= 180 / np.pi
if "alpha" in flags:
# Mean alpha
alpha = np.sum(p * alphas, axis=2)
outputs["alpha"] = alpha
# Extra angles: beta, delta and gamma angles
if "beta" in flags or "betas" in flags:
# betas = np.atan2(np.abs(v[:, :, 2, :]), eps + np.abs(v[:, :, 1, :]))
beta_num = np.sqrt(
np.real(
v[:, :, 2, :] * v[:, :, 2, :].conj()
+ v[:, :, 3, :] * v[:, :, 3, :].conj()
)
)
betas = np.atan2(beta_num, eps + np.abs(v[:, :, 1, :]))
betas *= 180 / np.pi
if "beta" in flags:
beta = np.sum(p * betas, axis=2)
outputs["beta"] = beta
if "epsilon" in flags or "epsilons" in flags:
epsilons = np.atan2(np.abs(v[:, :, 3, :]), eps + np.abs(v[:, :, 2, :]))
epsilons *= 180 / np.pi
if "epsilon" in flags:
epsilon = np.sum(p * epsilons, axis=2)
outputs["epsilon"] = epsilon
if "delta" in flags or "gamma" in flags or "deltas" in flags or "gammas" in flags:
phases = np.atan2(v[:, :, 0, :].imag, eps + v[:, :, 0, :].real)
if "delta" in flags or "deltas" in flags:
deltas = np.atan2(v[:, :, 1, :].imag, eps + v[:, :, 1, :].real) - phases
deltas = np.atan2(np.sin(deltas), eps + np.cos(deltas))
deltas *= 180 / np.pi
if "delta" in flags:
delta = np.sum(p * deltas, axis=2)
outputs["delta"] = delta
if "gamma" in flags or "gammas" in flags:
gammas = np.atan2(v[:, :, 2, :].imag, eps + v[:, :, 2, :].real) - phases
gammas = np.atan2(np.sin(gammas), eps + np.cos(gammas))
gammas *= 180 / np.pi
if "gamma" in flags:
gamma = np.sum(p * gammas, axis=2)
outputs["gamma"] = gamma
if "nhu" in flags or "nhus" in flags:
nhus = np.atan2(v[:, :, 3, :].imag, eps + v[:, :, 3, :].real) - phases
nhus = np.atan2(np.sin(nhus), eps + np.cos(nhus))
nhus *= 180 / np.pi
if "nhu" in flags:
nhu = np.sum(p * nhus, axis=2)
outputs["nhu"] = nhu
# Average target eigenvalue
if "lambda" in flags or "lambdas" in flags:
# lambda is a python reserved keyword, using lambd instead
lambd = np.sum(p * l, axis=2)
outputs["lambda"] = lambd
# extras outputs: non averaged parameters (ex: alpha1, alpha2, alpha3)
if "alphas" in flags:
outputs["alphas"] = alphas
if "betas" in flags:
outputs["betas"] = betas
if "epsilons" in flags:
outputs["epsilons"] = epsilons
if "deltas" in flags:
outputs["deltas"] = deltas
if "gammas" in flags:
outputs["gammas"] = gammas
if "nhus" in flags:
outputs["nhus"] = nhus
if "lambdas" in flags:
outputs["lambdas"] = l
return outputs
# this is a convenience function to give eigh the right data format
def _reconstruct_matrix_from_ds(ds):
eps = 1e-30
if {"y", "x"}.issubset(ds.dims):
new_dims = ("y", "x")
elif {"lat", "lon"}.issubset(ds.dims):
new_dims = ("lat", "lon")
else:
ValueError(
"Input data does not have valid dimension names. ('y', 'x') or ('lat', 'lon') allowed."
)
new_dims_array = new_dims + ("i", "j")
if ds.poltype == "C2":
# build each line of the T3 matrix
C2_l1 = xr.concat((ds.m11, ds.m12), dim="j")
C2_l2 = xr.concat((ds.m12.conj(), ds.m22), dim="j")
# Concatenate all lines into a 2x2 matrix
return (
xr.concat((C2_l1, C2_l2), dim="i")
.transpose(*new_dims_array)
.chunk({new_dims[0]: "auto", new_dims[1]: "auto", "i": 2, "j": 2})
+ eps
)
if ds.poltype == "T3":
# build each line of the T3 matrix
T3_l1 = xr.concat((ds.m11, ds.m12, ds.m13), dim="j")
T3_l2 = xr.concat((ds.m12.conj(), ds.m22, ds.m23), dim="j")
T3_l3 = xr.concat((ds.m13.conj(), ds.m23.conj(), ds.m33), dim="j")
# Concatenate all lines into a 3x3 matrix
return (
xr.concat((T3_l1, T3_l2, T3_l3), dim="i")
.transpose(*new_dims_array)
.chunk({new_dims[0]: "auto", new_dims[1]: "auto", "i": 3, "j": 3})
+ eps
)
elif ds.poltype == "T4":
# build each line of the T4 matrix
T4_l1 = xr.concat((ds.m11, ds.m12, ds.m13, ds.m14), dim="j")
T4_l2 = xr.concat((ds.m12.conj(), ds.m22, ds.m23, ds.m24), dim="j")
T4_l3 = xr.concat((ds.m13.conj(), ds.m23.conj(), ds.m33, ds.m34), dim="j")
T4_l4 = xr.concat(
(ds.m14.conj(), ds.m24.conj(), ds.m34.conj(), ds.m44), dim="j"
)
# concatenate all lines into a 4x4 matrix
return (
xr.concat((T4_l1, T4_l2, T4_l3, T4_l4), dim="i")
.transpose(*new_dims_array)
.chunk({new_dims[0]: "auto", new_dims[1]: "auto", "i": 4, "j": 4})
+ eps
)
else:
raise NotImplementedError("Implemented only for C2, T3 and T4 poltypes.")
def _compute_freeman_components(C3):
eps = 1e-30
# Make copies to avoid modifying original data
c11 = C3.m11.data.copy()
c13r = C3.m13.data.real.copy()
c13i = C3.m13.data.imag.copy()
c22 = C3.m22.data.copy()
c33 = C3.m33.data.copy()
fv = 1.5 * c22
c11 -= fv
c33 -= fv
c13r -= fv / 3
# Volume scattering condition
cnd1 = (c11 <= eps) | (c33 <= eps)
fv = da.where(cnd1, 3 * (c11 + c22 + c33 + 2 * fv) / 8, fv)
# Compute c13 power
pow_c13 = c13r**2 + c13i**2
# Data conditioning for non-realizable term
cnd2 = ~cnd1 & (pow_c13 > c11 * c33)
arg_sqrt = da.maximum(c11 * c33 / da.maximum(pow_c13, eps), 0)
scale_factor = da.where(cnd2, da.sqrt(arg_sqrt), 1)
c13r *= scale_factor
c13i *= scale_factor
# Recompute after conditioning
pow_c13 = c13r**2 + c13i**2
# Odd bounce dominates
cnd3 = ~cnd1 & (c13r >= 0)
alpha = da.where(cnd3, da.float32(-1), da.float32(eps))
arg_div = c11 + c33 + 2 * c13r
arg_div = da.where(arg_div == 0, eps, arg_div)
fd = da.where(cnd3, (c11 * c33 - pow_c13) / arg_div, eps)
fs = da.where(cnd3, c33 - fd, eps)
arg_sqrt = da.maximum((fd + c13r) ** 2 + c13i**2, eps)
arg_div = da.where(fs == 0, eps, fs)
beta = da.where(cnd3, da.sqrt(arg_sqrt) / arg_div, eps)
# Even bounce dominates
cnd4 = ~cnd1 & (c13r < 0)
beta = da.where(cnd4, 1, beta)
arg_div = c11 + c33 - 2 * c13r
arg_div = da.where(arg_div == 0, eps, arg_div)
fs = da.where(cnd4, (c11 * c33 - pow_c13) / arg_div, fs)
fd = da.where(cnd4, c33 - fs, fd)
arg_sqrt = da.maximum((fs - c13r) ** 2 + c13i**2, eps)
arg_div = da.where(fd == 0, eps, fd)
alpha = da.where(cnd4, da.sqrt(arg_sqrt) / arg_div, alpha)
# Compute Freeman components
Ps = fs * (1 + beta**2)
Pd = fd * (1 + alpha**2)
Pv = 8 * fv / 3
# Compute span on __original__ covariance, not modified one
sp = C3.m11.data + C3.m22.data + C3.m33.data
min_span, max_span = da.nanmin(sp), da.nanmax(sp)
min_span = da.maximum(min_span, eps)
Ps = da.where(Ps <= min_span, min_span, da.where(Ps > max_span, max_span, Ps))
Pd = da.where(Pd <= min_span, min_span, da.where(Pd > max_span, max_span, Pd))
Pv = da.where(Pv <= min_span, min_span, da.where(Pv > max_span, max_span, Pv))
return {"odd": Ps, "double": Pd, "volume": Pv}
def _compute_yamaguchi3_components(C3):
eps = 1e-30
# Make copies to avoid modifying original data
c11 = C3.m11.data.copy()
c13r = C3.m13.data.real.copy()
c13i = C3.m13.data.imag.copy()
c22 = C3.m22.data.copy()
c33 = C3.m33.data.copy()
# Freeman-Yamaguchi algorithm
num = np.where(c33 != 0, c33, eps)
den = np.where(c11 != 0, c11, eps)
ratio = 10.0 * da.log10(num / den)
msk_l = ratio <= -2
msk_h = ratio > 2
msk_m = (ratio > -2) & (ratio <= 2)
fv = da.where(msk_m, 2 * c22, 15 * c22 / 8)
c13r = da.where(msk_m, c13r - fv / 8, c13r - 2 * fv / 15)
c11 = da.where(msk_l, c11 - 8 * fv / 15, c11)
c33 = da.where(msk_l, c33 - 3 * fv / 15, c33)
c11 = da.where(msk_h, c11 - 3 * fv / 15, c11)
c33 = da.where(msk_h, c33 - 8 * fv / 15, c33)
c11 = da.where(msk_m, c11 - 3 * fv / 8, c11)
c33 = da.where(msk_m, c33 - 3 * fv / 8, c33)
# Volume scattering condition
cnd1 = (c11 <= eps) | (c33 <= eps)
fv = da.where(cnd1 & msk_m, c11 + 3 * fv / 8 + c22 / 2 + c33 + 3 * fv / 8, fv)
fv = da.where(cnd1 & msk_l, c11 + 8 * fv / 15 + c22 / 2 + c33 + 3 * fv / 15, fv)
fv = da.where(cnd1 & msk_h, c11 + 3 * fv / 15 + c22 / 2 + c33 + 8 * fv / 15, fv)
# Compute c13 power
pow_c13 = c13r**2 + c13i**2
# Data conditioning for non-realizable term
cnd2 = ~cnd1 & (pow_c13 > c11 * c33)
arg_sqrt = da.maximum(c11 * c33 / da.maximum(pow_c13, eps), 0)
scale_factor = da.where(cnd2, da.sqrt(arg_sqrt), 1)
c13r *= scale_factor
c13i *= scale_factor
# Recompute after conditioning
pow_c13 = c13r**2 + c13i**2
# Odd bounce dominates
cnd3 = ~cnd1 & (c13r >= 0)
alpha = da.where(
cnd3, da.float32(-1) + 1j * da.float32(0), da.float32(eps) + 1j * da.float32(0)
)
arg_div = c11 + c33 + 2 * c13r
arg_div = da.where(arg_div == 0, eps, arg_div)
fd = da.where(cnd3, (c11 * c33 - pow_c13) / arg_div, eps)
fs = da.where(cnd3, c33 - fd, eps)
arg_div = da.where(fs == 0, eps, fs)
beta = da.where(cnd3, (fd + c13r + 1j * c13i) / arg_div, eps)
# Even bounce dominates
cnd4 = ~cnd1 & (c13r < 0)
beta = da.where(cnd4, 1 + 1j * 0, beta)
arg_div = c11 + c33 - 2 * c13r
arg_div = da.where(arg_div == 0, eps, arg_div)
fs = da.where(cnd4, (c11 * c33 - pow_c13) / arg_div, fs)
fd = da.where(cnd4, c33 - fs, fd)
arg_div = da.where(fd == 0, eps, fd)
alpha = da.where(cnd4, (c13r - fs + 1j * c13i) / arg_div, alpha)
# Compute Freeman components
Ps = fs * (1 + beta.real**2 + beta.imag**2)
Pd = fd * (1 + alpha.real**2 + alpha.imag**2)
Pv = fv
# Compute span on __original__ covariance, not modified one
sp = C3.m11.data + C3.m22.data + C3.m33.data
min_span, max_span = da.nanmin(sp), da.nanmax(sp)
min_span = da.maximum(min_span, eps)
Ps = da.where(Ps <= min_span, min_span, da.where(Ps > max_span, max_span, Ps))
Pd = da.where(Pd <= min_span, min_span, da.where(Pd > max_span, max_span, Pd))
Pv = da.where(Pv <= min_span, min_span, da.where(Pv > max_span, max_span, Pv))
return {"odd": Ps, "double": Pd, "volume": Pv}
def _compute_yamaguchi4_components(T3, mode="y4o"):
eps = 1e-30
span = T3.m11.data + T3.m22.data + T3.m33.data
min_span = span.min()
min_span = da.where(min_span > eps, min_span, eps)
max_span = span.max()
# Apply unitary rotation for corresponding modes
if mode in ["y4r", "s4r"]:
theta = 0.5 * da.arctan(
(2 * T3.m23.data.real + eps) / (T3.m22.data - T3.m33.data + eps)
)
T3_new = _unitary_rotation(T3, theta)
else:
T3_new = T3.copy(deep=True)
T11 = T3_new.m11.data
T22 = T3_new.m22.data
T33 = T3_new.m33.data
T12 = T3_new.m12.data
T13 = T3_new.m13.data
T23 = T3_new.m23.data
Pc = 2 * da.abs(T23.imag)
# Surface scattering
hv_type = da.ones_like(T11, dtype="uint8")
if mode == "s4r":
C1 = T11 - T22 + (7 / 8) * T33 + Pc / 16
hv_type = da.where(C1 > 0, 1, 2)
# Surface scattering
num = T11 + T22 - 2 * T12.real
den = T11 + T22 + 2 * T12.real
num = da.where(num != 0, num, eps)
den = da.where(den != 0, den, eps)
ratio = 10 * da.log10(num / den)
# ratio = 10 * da.log10((T11 + T22 - 2 * T12.real + eps) / (T11 + T22 + 2 * T12.real + eps))
cnd = hv_type == 1
cnd_ratio = (ratio > -2) & (ratio <= 2)
Pv = da.where(
cnd,
da.where(cnd_ratio, np.float32(2), np.float32(15 / 8)) * (2 * T33 - Pc),
np.float32(eps),
)
# Double bounce scattering
Pv = da.where(hv_type == 2, (15 / 16) * (2 * T33 - Pc), Pv)
mask_v = Pv >= 0
TP = T11 + T22 + T33
# 4 component algorithm
# Expression used in both surface and double cases
C = T12 + T13
# Surface scattering
cnd_hv = hv_type == 1
S = da.where(cnd_hv, T11 - Pv / 2, eps)
D = da.where(cnd_hv, TP - Pv - Pc - S, eps)
C = da.where(cnd_hv & (ratio <= -2), C - Pv / 6, C)
C = da.where(cnd_hv & (ratio > 2), C + Pv / 6, C)
C_pow = C.real**2 + C.imag**2
cnd_tp = (Pv + Pc) > TP
Pv = da.where(cnd_hv & cnd_tp, TP - Pc, Pv)
cnd_c0 = (2 * T11 + Pc - TP) > 0
S = da.where(S != 0, S, eps)
D = da.where(D != 0, D, eps)
Ps = da.where(cnd_hv & ~cnd_tp, da.where(cnd_c0, S + C_pow / S, S - C_pow / D), eps)
Pd = da.where(cnd_hv & ~cnd_tp, da.where(cnd_c0, D - C_pow / S, D + C_pow / D), eps)
# Double bounce scattering
cnd_hv = hv_type == 2
S = da.where(cnd_hv, T11, S)
D = da.where(cnd_hv, TP - Pv - Pc - S, D)
D = da.where(D != 0, D, eps)
Pd = da.where(cnd_hv, D + C_pow / D, Pd)
Ps = da.where(cnd_hv, S - C_pow / D, Ps)
cnd_ps = Ps < 0
cnd_pd = Pd < 0
# Corrections apply for both surface and double
both_neg = cnd_ps & cnd_pd
ps_neg = cnd_ps & ~cnd_pd
pd_neg = ~cnd_ps & cnd_pd
Ps = da.where(both_neg, 0, Ps)
Pd = da.where(both_neg, 0, Pd)
Pv = da.where(both_neg, TP - Pc, Pv)
Ps = da.where(ps_neg, 0, Ps)
Pd = da.where(ps_neg, TP - Pv - Pc, Pd)
Pd = da.where(pd_neg, 0, Pd)
Ps = da.where(pd_neg, TP - Pv - Pc, Ps)
Ps = da.where(Ps <= min_span, min_span, da.where(Ps > max_span, max_span, Ps))
Pd = da.where(Pd <= min_span, min_span, da.where(Pd > max_span, max_span, Pd))
Pv = da.where(Pv <= min_span, min_span, da.where(Pv > max_span, max_span, Pv))
Pc = da.where(Pc <= min_span, min_span, da.where(Pc > max_span, max_span, Pc))
# If Pv < 0 use three components and set Pc to 0
out_3comp = _compute_yamaguchi3_components(T3_to_C3(T3_new))
Ps = da.where(mask_v, Ps, out_3comp["odd"])
Pd = da.where(mask_v, Pd, out_3comp["double"])
Pv = da.where(mask_v, Pv, out_3comp["volume"])
Pc = da.where(mask_v, Pc, 0)
out = {
"odd": Ps,
"double": Pd,
"volume": Pv,
"helix": Pc,
}
return out
def _compute_tsvm_parameters(l, v, flags):
eps = 1e-30
# Pseudo-probabilities (normalized eigenvalues)
p = np.clip(l / (eps + l.sum(axis=2)[..., None]), eps, 1)
outputs = {}
# --- Psi parameters
phases = np.atan2(v[:, :, 0, :].imag, eps + v[:, :, 0, :].real)
# Rotation factor e^{-i phase} with shape (M, N, K)
rot = np.exp(-1j * phases)
v *= rot[..., None, :]
psis = 0.5 * np.atan2(v[:, :, 2, :].real, eps + v[:, :, 1, :].real)
# --- Tau and Phi parameters
z1 = v[:, :, 1, :].copy()
z2 = v[:, :, 2, :].copy()
c = np.cos(2 * psis)
s = np.sin(2 * psis)
v[:, :, 1, :] = z1 * c + z2 * s
v[:, :, 2, :] = z2 * c - z1 * s
taus = 0.5 * np.atan2(-v[:, :, 2, :].imag, eps + v[:, :, 0, :].real)
phis = np.atan2(v[:, :, 1, :].imag, eps + v[:, :, 1, :].real)
# --- Alpha parameters
z1 = v[:, :, 0, :].copy()
z2 = v[:, :, 2, :].copy()
c = np.cos(2 * taus)
s = np.sin(2 * taus)
v[:, :, 0, :] = z1 * c + 1j * z2 * s
v[:, :, 2, :] = z2 * c + 1j * z1 * s
alphas = np.arccos(v[:, :, 0, :].real)
taus = np.where((psis < -np.pi / 4) | (psis > np.pi / 4), -taus, taus)
phis = np.where((psis < -np.pi / 4) | (psis > np.pi / 4), -phis, phis)
# Convert to degrees
# for it in [psis, taus, phis, alphas]:
# for it in [psis, taus, phis]:
# for it in [psis]:
# it *= 180 / np.pi
alphas *= 180 / np.pi
phis *= 180 / np.pi
taus *= 180 / np.pi
psis *= 180 / np.pi
# Default flag: compute mean parameters
if "alpha_phi_tau_psi" in flags:
alpha = np.sum(p * alphas, axis=2)
phi = np.sum(p * phis, axis=2)
tau = np.sum(p * taus, axis=2)
psi = np.sum(p * psis, axis=2)
outputs["alpha_s"] = alpha
outputs["phi_s"] = phi
outputs["tau_m"] = tau
outputs["psi"] = psi
# Extra outputs: non averaged parameters (ex: alpha1, alpha2, alpha3)
if "alpha" in flags:
outputs["alpha_s1"] = alphas[..., 0]
outputs["alpha_s2"] = alphas[..., 1]
outputs["alpha_s3"] = alphas[..., 2]
if "phi" in flags:
outputs["phi_s1"] = phis[..., 0]
outputs["phi_s2"] = phis[..., 1]
outputs["phi_s3"] = phis[..., 2]
if "tau" in flags:
outputs["tau_m1"] = taus[..., 0]
outputs["tau_m2"] = taus[..., 1]
outputs["tau_m3"] = taus[..., 2]
if "psi" in flags:
outputs["psi1"] = psis[..., 0]
outputs["psi2"] = psis[..., 1]
outputs["psi3"] = psis[..., 2]
return outputs
def _unitary_rotation(T3, theta):
T3_out = {}
cos_t = np.cos(theta)
sin_t = np.sin(theta)
T11 = T3.m11.data.copy()
T22 = T3.m22.data.copy()
T33 = T3.m33.data.copy()
# Decompose into real/imag
T12_re, T12_im = da.real(T3.m12.data), da.imag(T3.m12.data)
T13_re, T13_im = da.real(T3.m13.data), da.imag(T3.m13.data)
T23_re, T23_im = da.real(T3.m23.data), da.imag(T3.m23.data)
# --- Rotation ---
T11_new = T11
T12_re_new = T12_re * cos_t + T13_re * sin_t
T12_im_new = T12_im * cos_t + T13_im * sin_t
T13_re_new = -T12_re * sin_t + T13_re * cos_t
T13_im_new = -T12_im * sin_t + T13_im * cos_t
T22_new = T22 * cos_t**2 + 2.0 * T23_re * cos_t * sin_t + T33 * sin_t**2
T23_re_new = (
-T22 * cos_t * sin_t + T23_re * (cos_t**2 - sin_t**2) + T33 * cos_t * sin_t
)
T23_im_new = T23_im * (cos_t**2 + sin_t**2)
T33_new = T22 * sin_t**2 + T33 * cos_t**2 - 2.0 * T23_re * cos_t * sin_t
# Recombine
T3_out["m11"] = T11_new
T3_out["m22"] = T22_new
T3_out["m33"] = T33_new
T3_out["m12"] = T12_re_new + 1j * T12_im_new
T3_out["m13"] = T13_re_new + 1j * T13_im_new
T3_out["m23"] = T23_re_new + 1j * T23_im_new
attrs = {"poltype": "T3", "description": "Coherency matrix (3x3)"}
return xr.Dataset({k: (tuple(T3.dims), v) for k, v in T3_out.items()}, attrs=attrs)
def _compute_vanzyl_components(C3):
# use larger eps to avoid overflow in square
eps = 1e-15
HHHH = C3.m11.data
HHVV = C3.m13.data
HVHV = C3.m22.data / 2
VVVV = C3.m33.data
# pre-compute some factors
pow_HHVV = (HHVV * HHVV.conj()).real
det = da.sqrt((HHHH - VVVV) ** 2 + 4 * pow_HHVV + eps)
factor1 = VVVV - HHHH + det
factor2 = VVVV - HHHH - det
lambda1 = 0.5 * (HHHH + VVVV + det)
lambda2 = 0.5 * (HHHH + VVVV - det)
alpha = 2 * HHVV / (factor1 + eps)
beta = 2 * HHVV / (factor2 + eps)
omega1 = (lambda1 * factor1**2) / (factor1**2 + 4 * pow_HHVV + eps)
omega2 = (lambda2 * factor2**2) / (factor2**2 + 4 * pow_HHVV + eps)
# target generator
A0A0 = omega1 * ((1 + alpha.real) ** 2 + alpha.imag**2)
B0Bp = omega1 * ((1 - alpha.real) ** 2 + alpha.imag**2)
Ps = da.where(
A0A0 > B0Bp,
omega1 * (1 + (alpha * alpha.conj()).real),
omega2 * (1 + (beta * beta.conj()).real),
)
Pd = da.where(
A0A0 > B0Bp,
omega2 * (1 + (beta * beta.conj()).real),
omega1 * (1 + (alpha * alpha.conj()).real),
)
Pv = 2 * HVHV
# compute span
sp = C3.m11.data + C3.m22.data + C3.m33.data
min_span, max_span = da.nanmin(sp), da.nanmax(sp)
min_span = da.maximum(min_span, eps)
Ps = da.where(Ps <= min_span, min_span, da.where(Ps > max_span, max_span, Ps))
Pd = da.where(Pd <= min_span, min_span, da.where(Pd > max_span, max_span, Pd))
Pv = da.where(Pv <= min_span, min_span, da.where(Pv > max_span, max_span, Pv))
return {"odd": Ps, "double": Pd, "volume": Pv}
def _compute_cameron(S):
eps = 1e-30
Shh = S.hh.data
Svv = S.vv.data
Shv = 0.5 * (S.hv.data + S.vh.data)
r2 = da.sqrt(2)
alpha = (Shh + Svv) / r2
beta = (Shh - Svv) / r2
gamma = Shv * r2
pow_alpha = (alpha * alpha.conj()).real
pow_beta = (beta * beta.conj()).real
pow_gamma = (gamma * gamma.conj()).real
real = 2 * (beta.real * gamma.real + beta.imag * gamma.imag)
diff_abs = pow_beta - pow_gamma
tol = (pow_alpha + pow_beta + pow_gamma) * eps
# magnitude used several times
den = da.sqrt(real**2 + diff_abs**2)
den = da.where(den > eps, den, eps)
# primary condition
is_zero = (da.fabs(real) < tol) & (da.fabs(diff_abs) < tol)
sin_xi = real / den
cos_xi = diff_abs / den
# angle when not zero
xi_nonzero = da.where(
cos_xi > 0,
da.arcsin(sin_xi),
da.pi - da.arcsin(sin_xi),
)
# final Xi
xi = da.where(is_zero, 0.0, xi_nonzero)
c = da.cos(xi / 2.0)
s = da.sin(xi / 2.0)
epsilon = (1.0 / r2) * (c * (Shh - Svv) + s * 2.0 * Shv)
SMhh = (1.0 / r2) * (alpha + c * epsilon)
SMvv = (1.0 / r2) * (alpha - c * epsilon)
SMhv = (1.0 / r2) * (s * epsilon)
psi_max = -xi / 4.0
# norms of S and SM
norm_S = da.sqrt(da.abs(Shh) ** 2 + 2.0 * da.abs(Shv) ** 2 + da.abs(Svv) ** 2)
norm_SM = da.sqrt(da.abs(SMhh) ** 2 + 2.0 * da.abs(SMhv) ** 2 + da.abs(SMvv) ** 2)
norm = norm_S * norm_SM
norm = da.where(norm > eps, norm, eps)
# complex scalar product <S, SM>
prod = Shh * da.conj(SMhh) + 2.0 * Shv * da.conj(SMhv) + Svv * da.conj(SMvv)
# avoid invalid values in arccos
arg_acos = da.clip(da.abs(prod) / norm, -1, 1)
# angle tau
tau = da.arccos(arg_acos)
# --- case tau < pi/8
cp = np.cos(psi_max)
sp = np.sin(psi_max)
s2p = np.sin(2 * psi_max)
ssm1 = cp**2 * SMhh - s2p * Shv + sp**2 * SMvv
ssm2 = sp**2 * SMhh + s2p * Shv + cp**2 * SMvv
pow_ssm1 = da.real(ssm1 * ssm1.conj())
pow_ssm2 = da.real(ssm2 * ssm2.conj())
cnd1 = pow_ssm1 >= pow_ssm2
z = da.where(
cnd1,
ssm2 * da.conj(ssm1) / pow_ssm1,
ssm1 * da.conj(ssm2) / pow_ssm2,
)
psi_max = da.where(cnd1, psi_max, psi_max + da.pi / 2.0)
psi_max = da.fmod(psi_max, 2.0 * da.pi)
zr = z.real
zi = z.imag
pow_z = da.real(z * z.conj())
den2 = 1.0 + pow_z
plane = da.sqrt((1 + zr) ** 2 + zi**2) / da.sqrt(2 * den2)
dihedral = da.sqrt((1 - zr) ** 2 + zi**2) / da.sqrt(2 * den2)
dipole = 1.0 / da.sqrt(den2)
cylinder = da.sqrt((1 - zr / 2) ** 2 + zi**2 / 4) / da.sqrt(5 / 4 * den2)
narrow_dip = da.sqrt((1 + zr / 2) ** 2 + zi**2 / 4) / da.sqrt(5 / 4 * den2)
quartp = da.sqrt((1 + zi) ** 2 + zr**2) / da.sqrt(2 * den2)
quartm = da.sqrt((1 - zi) ** 2 + zr**2) / da.sqrt(2 * den2)
# mechanism classification
stack = da.stack(
[
plane,
dihedral,
dipole,
cylinder,
narrow_dip,
da.maximum(quartp, quartm),
]
)
cls_tau = da.argmax(stack, axis=0) + 1
cls_tau = cls_tau.astype(da.int32)
# --- case where tau >= pi/8
norm_S = da.where(norm_S > eps, norm_S, eps)
p_r = Shh.real + 2 * Shv.imag - Svv.real
p_i = -Shh.imag + 2 * Shv.real - Svv.imag
c_hel_g = da.sqrt(p_r**2 + p_i**2) / (2 * norm_S)
p_r = Shh.real - 2 * Shv.imag - Svv.real
p_i = -Shh.imag - 2 * Shv.real - Svv.imag
c_hel_d = da.sqrt(p_r**2 + p_i**2) / (2 * norm_S)
cls_hel = da.where(c_hel_g > c_hel_d, da.int32(7), da.int32(8))
# --- combining the two possible cases
out = da.zeros_like(cls_tau, dtype=da.int32)
mask_tau = tau < (da.pi / 8.0)
out = da.where(mask_tau, cls_tau, cls_hel)
return {"cameron": out}
|